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1. Introduction.

Let IT denote a translation plane of order ¢* with kernel GF(g) and let ¢
be a collineation group of I7 in the translation complement. That is, ¢ is a
subgroup of I'L(2k, g). Normally, @ is taken to belong to the linear translation
complement while simultaneous disclaimers are made as to the differences
between the situations linear and nonlinear.

If ¢ is nonsolvable then there is a nonsolvable subgroup in;the linear
translation complement. This usually suffices for the study in question. How-
ever, when ¢ is solvable, the fact that ¢ may not be linear creates many
problems.

In several recent articles, translation planes of order ¢* with kernel GF(q)
which admit collineation groups of order ¢® have been studied. In order to
apply various analyses of functions on finite fields, the group ¢ is required to
be in the linear translation complement.

For a general study, we must therefore consider the following:

LINEARITY QUESTION. If II is a translation plane of order ¢*=p*" with
kernel GF(q) admitting a group G of order q¢* in the translation complement, is
G a subgroup of the linear translation complement?

If II is a semifield plane of even order ¢* (for example Desarguesian) which
admits a Baer involution then there is a group ¢ of order ¢* such that
|@NGL(II)| =¢*/2 or ¢* depending on the kernel.

Hence, in order to study the linearity question in dimension 2, we must
make an additional assumption.

In the odd order case, a linear group of order ¢*> which acts on translation
plane of order ¢* and kernel GF(g) turns out to be Abelian (see e.g. [3]). So,

This article was conceived while the authors were visiting the University of Palermo
in the Spring of 1985. The authors gratefully acknowledge the support of the C.N.R. of
Italy. Also, the authors would like to thank Professors C. Bartolone and F. Bartolozzi for
making the arrangements for the visits.



78 V. Jua and N.L. JouNSON

it makes sense to consider the linearity question for Abelian groups in
dimension 2.

LINEARITY QUESTION FOR ABELIAN GROUPS IN DIMENSION 2. If Il is a
translation plane of order ¢* and kernel GF(q) which admits an Abelian colline-
ation group G of order q¢* in the translation complement, is G linear?

To see how strongly dependent the question is on the translation plane,
we illustrate an Abelian group ¢ of order p**» in I'L(2r, p*) which is not

in GL(2», p?). Let 8:{(6 ?), 0,1 rXr zero and identity matrices respec-

tively and C any »Xr matrix whose entries are in GF(p)}. Then € is a group

of order p™.

Let 6:(x, v)—(x°, y°), c€AutGF(p®) so |¢|=p. Then & centralizes & so
that <&, ) is an Abelian group of order p**!' which is not in GL(2r, p?). For
dimension 4 groups, and p=2,

K&, 8> =2°.

So there are Abelian groups in /'L(4, g) which are not in GL(4, ¢) of order =¢*.
Nevertheless, we prove:

(2.9) THEOREM. Let II be a translation plane of order p*"=q?, p a prime,
r an integer with kernel GF(q). If II admits an Abelian collineation group of
order ¢* in the translation complement then G is in the linear translation comple-
ment.

(2.10) THEOREM. Let Il be a translation plane of order ¢*=p*, p a prime,
r an integer with kernel GF(q). Assume Il admits an Abelian collineation group
of order ¢* in the translation complement.

(1) If ¢ is even then II is a semifield plane or a Betten plane.

(2) If ¢ is odd then I is a semifield plane or a “desirable” plane.

2. Abelian collineation groups.

In this section, we consider translation planes I/ of order p*=q* p a
prime, 7 an integer, with kernel F=GF(q). We assume II admits an Abelian
collineation group ¢ of order ¢* in the translation complement.

(2.1) LEMMA.
(i) There exists an elation © in 4.
(ii) We may choose coordinates so that g:(é {-) where I, O are 2X2

matrices over F=GF(q).
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A|B
(iii) The elements of G may be represented in the form (x, y)—(x°, y“)(—owl—j—q—)
where x, y are 2-vectors, A, B are 2X2 matrices and o= AutF.

PROOF. |4NGL{4, q)|=q¢*/r where ¢g=p". Also, ¢ acting as a linear group
over the prime field P fixes some l-space over P pointwise. Hence, there is a
component £ of II which is left invariant by g¢. (Note, by Jha-Johnson [2], ¢
is transitive on [.—[.MN.L.) Choose .£ as (x=0) where x=(x;, x,), x;=F.
¢|.L<I'L(2, q). So, |@/€|<rq where & denotes the elation group of ¢ (with
axis .£). Hence, €#<1) (i.e., |&|=[q/r]).

Let re&—{1} and assume the image of y=0 is y=x. Then z':<é f)
Since geg<I'L{4, q), clearly, g has the form (x, y)—i(x", y”)(af). But, =

commutes with g (and with (x, y)—(x?, y?)) so that A=C.
This proves (2.1).

(2.2) LEMMA. Assume GN\GL4, q)+& (where & is the elation subgroup).
Then |&|<q.

A|B
Proor. By (2.1), elements of ¢NGL(4, ¢) have the form (—O—Z) Since

SNGL4, q) is a p-group and A=GL(2, ¢g), we may choose coordinates so that
A———(%) ‘i) for some asF.

1 a
01 B
1 a
0 1o

1
Cy Co
Cs 64))

If ¢NGL{4, ¢)+¢& then some corresponding a+0. That is h=| —=

e8NGL4, q) for some a=+0. (
Let g be an arbitrary elation of ¢. g must be of the form (
Form the commutator

acs a(ci—cy)+a’c
ghg‘lh"lz(l (5 e, >)
I

Since this commutator is (é ?), it must be that ac;=0 or ¢;=0 and a(c;—c,)

+a%c;=0 or ¢;=c,. Hence,

o {(I & ”15”))

0] I

ueF and m is some function (additive) of F}.

Thus, |&]=g.

(2.3) LEMMA. Let q=p">4 where r=7p*-s for (p, s)=1. Then
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el = 3?7 = pPiamt > W/,

PrOOF. |&€|=q/[r], where [r], is the largest power of p dividing r.
pPisi>prte2 if and only if pt-s—t>pt-s/2 if and only if pt-s/2>t. Since
pt-s=2t-s and 2¢-s>2t unless (¢, s)e{(, 1), (2, 1)} we may assume ¢g=2 or 4.
(However, the translation planes of order 4 and 16 are known [1].)

(2.4) LEMMA. If 6NGL(4, ¢)#& then GSGL(4, q).
PrOOF. By lemmas (2.2) and (2.3), v/ ¢ <¢/p'<|&|<q and

. {(1 © "15‘”))

0 I

uEZEF}

where | Y| =q/pt (see the proof to (2.2)). Then let g=¢ and have the form

( v 4 A
X, y)_')(x » Y ) _5

%) for o= AutF. g commutes with & so that for heé&,

gh is o (u m(u))
(x, ) —> (x, y”)(O A>(O 0 I” )
and hg is
u’ (m(u))’
(x, y)—>(x”, ya)(é (0 Iu” ))(g g)
Hence,

(5 “)a=a@ "),

(a1 G2
Let A-(a3 a4> so that

(1) wa;+(m(u)’as=ayu,

2) u’a;=asu.
If a;#0 then u’=u for all ucX. Since |X|>+/¢ it must be that o=1. If
a;=0 then u’a,=a,u. However, ¢ acts transitively on [.—(c0) so that A is
nonsingular. Therefore, if a;=0 then a,#0. Hence u°=wu for all usl.

Hence, o=1. Since this argument is valid for all elements g=g, it follows
that S GL(4, g).

(2.5) LEMMA. If ¢NGL4, q) is the elation subgroup of @, assume GZGL(4, q).

I

C
(1) Then GNGLA, q):{(ng)} for some additive set of nonsingular ma-

trices in GL(2, q).
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(2) Let the subgroup of GL(2, q) which is generated by the set of matrices
C of (1) be denoted by R. Then | RN\(scalar group)| <+/7q.

Proor. (1) The form is clear by the previous lemma (2.2). Since y=0
—3y=xC under this group and we have a translation plane, the matrices C are
nonsingular. Since ¢N\GL(4, ¢) is elementary abelian, this set is also additive.

A|B
(2) Assume | RN\(scalar group)|>+/¢q. Then if (x, y)—g>(x<f, ya)(—b__A_) is

an arbitrary element of & we must have C°A=AC since ¢ is abelian. Since
{C>=2R, we can extend this equation to D° A=AD for all De R. If |&N(scalar

group)| >4/ ¢ then there exist at least [+/ ¢ ]+1 elements (‘6 3) such that

(%ﬂ aQ,)AzA(% 2) That is, a°=a or ¢=1 since A is nonsingular (see (2.4)).

So, =GL(4, q). Hence, we have the proof to (2).
We now consider the group R.

(2.6) LEMMA. R contains a subset of order =q®/[r], which acts semiregu-
laply on a 2-dimension vector space V.

ProOOF. The set of C-matrices of (2.5) have cardinality ¢*/[7],. But y=xC
is a component of the associated translation plane. Hence, xC=x for some
x€V implies C=I and xC=xC implies C=C.

R/BRNZ=ZPGL(2, q) where 2 denotes the center of GL(2, ¢).

(2.7) LEMMA. Assume q#4. Under the assumptions of (2.5), if R/RNZ
has a subgroup PSL(2, p*) of index dividing 4 then SL(2, ¢)S R.

PROOF. Let ¢g=p" so s/r. Let r=p*-k where (p, k)=1 and t=1. Clearly
SL(2, p")S RZ so SL(Z, p*)S R as the p-elements must belong to R.

Hence, |R|=Z4+q—1)-|PSL2, p*)|. If p*#q then p°<+/q. Let d=
(2, g—1). So |R|=Aqg-1)/d)p(p**—1). However, SL(2, p*)S R and the
orbit length of any vector v# 0 under R =¢*/[r],—1 but is <4(4/q¢ —1)/d-(orbit
length under SL(2, p*)). However, the minimum orbit length of SL(2, p%) is
p*—1=<q—1 as each Sylow p-subgroup must fix some nonzero vector and
P’=V7g.

As ¢*/[r],=p**"*-¢, hence we must have ¢*/[r],—1=(4(v/ G —1)/d)(g—1) or

-ty 4(pPHrr—1)(p?"* 1)
2ptek-t)__
(1) pEPER—1 < p .

We shall show that

4ppt.k/2ppt.k

top~
(2) R
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However, (1) implies

4ppt.k/2ppt.k

2pteb—t__
P 1< P

or
4ppt.k/2ppt.k

2ptok-t <
p = d

To prove (2), we first assume p=5. Then 5¥5%k-t>5.55k/2.55%k if and
only if 5%-2/2—t=1 if and only if 5¢-2=2¢t+2. Hence, (2) is valid for p=b5.
If p=3 then '
32-3‘-1;-: > 3,333-k/2_33t-1g
if and only if

or 3'-k=2t+2 which is valid unless t=1 and k=1. That is, pPiE=3=g,
However, 3%2>2.

If p=2 then 2¢"%-20/2%2 if and only if 2¢-'k—¢>1 unless t=2 and k=1 or
t=1 and k=1, 3 contrary to (1). Hence, (2) is valid unless ¢g=2? or ¢=2%.
However, for ¢=2¢, the index contributes to the order of the Sylow 2-subgroups

and the Sylow 2-subgroup must fix a vector. Hence, the equation should be
actually : '
2

q
[rls

-1 Wg—-Dg—1)
if g 7s even.

Hence, (2.7) is proved.

Now ¢NGL(4, q)={(é ?)} and <C>=R2SL(, g). If geg has the form

(x, ) —> (x7, y7)| 218
x, y) —>(x7, ——
y y ola
for A, B are 2X2 matrices and s=AutF then C°A=AC. However, this ex-

tends to R so, for example, ((1) ‘f)aA..—_A((l) ‘f) for aqll deF. If A=(01 aé)

as a,
then (a1+ad36,a3 az_‘;liiaa“):(g; Z;gigz) so that ¢;=0 and a,d=q.d’ for all

d and fixed a,, a, nonzero (as A is nonsingular).

Hence, letting d=1, we have a;=a,, so that d=d? for all deF. Hence,
o=1.

Thus we have

(2.8) LEMMA. If R/RNZ has a subgroup isomorphic to PSL(2, p*) then
GSGL4, q).
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By (2.8), we may assume that R/RNZ

1) is a subgroup of a group of order dividing 2(¢+1)/d, where d=(2, ¢—1),
or

2) a subgroup of a group of order dividing 2¢(¢g—1)/d,

3) is an index 1 or 2 group isomorphic to A4, S, or A,.

We consider each case in turn.

Case 1. |R|=Z(/q—12(q=%1)/d. Since |R|=¢*/[r],—1, and since
(v ¢ —1)g+1)<+/q -q, we may apply the argument of (2.7) to obtain a con-
tradiction. ‘

Case 2. |9zl}|gmz1(2/d>q(q—1). Let S, be a Sylow p-subgroup of R.

Then S, fixes a nonzero vector v so that the R orbit of » has length

|R |
=78,
contradiction.

| RNZ|(2/d)(g—1). Again, by the argument of (2.7), we obtain a

Case 3. R/RNZE has A, As, S5 as an index 1 or 2 subgroup.

Since |R|=q%/[r]p,—1, let g=p", r=(pt-s) for (p, s)=1.
For G=A,, A;, S;, we have

QIGlvq)—1z2|G{(v/q—1)
so we consider the inequality

— q
QClGlvg)—-1z .

2

-1

or rather
(*) 2|G| = p(s/Z)Z)‘-s-t.

If G=A, then 24=p®»?hs-t implies p=2, (3®/»*~t>27). If p=2 then
24>2%2"1s=t only if (¢, s)e{(, 1), 2, 1)} so ¢=2% or 2>, However, when ¢ is
even, the Sylow 2-groups fix a nonzero vector so the smallest orbit argument
implies that 3(+/ ¢ —1)=¢%/[r].—1 for ¢=2%* which cannot be the case.

If G=A; then (1204/7)=¢*/[r], if and only if 120=p¢/»?*s-t For p=5
then p¢/25+-1>120, For p=3, 3®/»3s-t>30/23-1-3%2  Sg 3 possible problem
occurs when (¢, s)=(, 1) or ¢=3%

However, the Sylow 3-group fixes a vector #0O so that we must have
40(/3F—=1)=32%/3—1. Also, |R*NZ||3*—1 and VI —1. So |RNEZ|=1, 2.
Hence, we must have 40.2=3%—1, a contradiction.

If G=S;, 240> p¥/»2*2-t and, as above, we must have p<3. If p=3 and
=2 then 3¢/#%:-25240 so again (z, s)=(1, 1). In this case, we reduce to
120=3°—1. If p=2, since the Sylow 2-subgroups fix a nonzero vector, the
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equation reduces to 15=>2¢/2%s-¢ which implies (¢, s)=(1, 1) or g=2% Since the
translation planes of order 16 are determined we do not need to consider this
case.

So by the preceding lemmas, we have the proof to (2.9). The proof of
(2.10) now follows directly from Johnson, Wilke [3]. Also, the reader is referred
to for the definition of Betten planes and desirable planes.
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