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\S 1. Introduction.

A 3-knot will denote the (oriented) isotopy class of a smooth (oriented)

submanifold $K$ of the 5-sphere $S^{5}$ , where $K$ is a homology 3-sphere. When the
diffeomorphism type $\Sigma$ of $K$ is to be emphasized, we call the 3-knot $(S^{5}, K)$ a
$\Sigma$-knot. A 3-knot $(S^{5}, K)$ is simple if $\pi_{1}(S^{5}-K)\cong Z$. Simple $\Sigma$-knots are clas-
sified by their Seifert matrices (Theorem 2.2), just as simple $S^{3}$-knots are ([12]).
A 3-knot is decomposable if it is the connected sum of two 3-knots, both different
from the trivial $S^{3}$-knot.

In this paper, we consider the following four problems using the classifica-
tion of simple $\Sigma$-knots.

(A) Fixing $\Sigma$ , can one define a “trivial” knot among X-knots?
(B) When is a simple 3-knot decomposable?
(C) Does there exist a fibered 3-knot which is, though decomposable, not the

connected sum of two fibered 3-knots, both different from the trivial $S^{3}- knot^{P}$

(D) If a simple 3-knot is algebraically fibered, when is it geometrically
fibered?

As for Problem (A), we define a trivial $\Sigma$-knot to be a simple $\Sigma$-knot with
trimal Seifert matrix, i.e., a Seifert matrix S-equivalent to the zero matrix,

for each $\Sigma$ with zero Rohlin invariant. This trivial $\Sigma$-knot is unique (by

Theorem 2.2) and characterized by the property that $\pi_{i}(S^{5}-K)\cong\pi_{i}(S^{1})$ for all $i$ .
Furthermore, if $\Sigma$ bounds a compact contractible 4-manifold $M$, then $K$ bounds
$M$ embedded in $S^{5}$ (\S 5).

We can answer Problem (B) in terms of Seifert matrices (\S 3). From this
we can derive the following notable fact: If $\Sigma$ is not diffeomorphic to $S^{3}$ and
has zero Rohlin invariant, all simple $\Sigma$-knots except the trivial $\Sigma$-knot are de-
composable. As an application, we shall determine when an algebraic 3-knot is
decomposable (Theorem 3.4). As a corollary of this, we shall obtain the exis-
tence theorem of decomposable algebraic 3-knots (Corollary 3.8) analogous to a
result of Michel and Weber [13].

We answer Problem (C) affirmatively using a result of Donaldson [4]
(Example 4.1). Thus the solution of Problem (B) does not apply directly to the
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problem of decomposing fibered 3-knots into fibered 3-knots. Note that this is
the only odd dimension in which simple fibered knots with the property as in
(C) exist ([2], [20]).

Problem (D) is motivated by Kearton’s example of a simple $S^{3}$-knot which is
algebraically fibered but is not geometrically fibered ([9]). Combining the clas-
sification theorem with our previous result [18], we can partly answer Problem
(D). We show, for example, that an algebraically fibered simple 3-knot is stably
fibered (Proposition 4.4).

Throughout the paper, $\Sigma$ denotes an (oriented) homology 3-sphere. All maps
and manifolds are $C^{\infty}$ . The symbol $\approx$ denotes a diffeomorphism between mani-
folds.

The author would like to express his gratitude to Prof. Y. Matsumoto for
his constant encouragement, and the author is also thankful to the referee for
his helpful comments.

\S 2. Classification.

Let $(S^{5}, K)$ be a 3-knot. Then the following holds. See [10, Theorem (2)].

PROPOSITION 2.1. $(S^{5}, K)$ is simPle if and only if $K$ bounds a l-connected
compact oriented 4-submamfold of $S^{5}$ .

Suppose $(S^{5}, K)$ is a simple 3-knot. Let $F^{4}$ be a l-connected 4-submanifold
of $S^{5}$ bounded by $K$ as in Proposition 2.1. A Seifert form $\Gamma$ of $(S^{5}, K)$ (obtained

via $F$ ) is the bilinear map

$\Gamma:H_{2}(F)\cross H_{2}(F)arrow Z$

defined by $\Gamma(\alpha, \beta)=1k(\alpha, i_{*}\beta)$ , where lk denotes linking number and $i:Farrow S^{5}-F$

is the map defined by the translation in the positive normal direction. (We
always assume that the homology is with integer coefficient unless otherwise
indicated.) Since $H_{2}(F)$ is free abelian, we have a matrix representing the
form $\Gamma$, called a Seifert matrix.

Let $L_{1}$ and $L_{2}$ be integral square matrices. Then $L_{1}$ is congruent to $L_{2}$

(over $Z$ ) if $L_{1}=PL_{2}{}^{t}P$ for some integral unimodular matrix P. ( ${}^{t}P$ denotes the
transposed matrix of $P.$ ) Any matrix of the form

$( \frac{L}{\alpha,0}1|\frac{0}{00,10})$ or

where $\alpha$ is a row vector and $\beta$ is a column vector, is called an elementary
enlargement of $L_{1}$ . $L_{1}$ is an elementary reduction of any of its elementary
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enlargements. S-equivalence is the equivalence relation generated by congruence
over $Z$, elementary enlargement, and elementary reduction. If $L_{1}$ is S-equivalent
to $L_{2}$ , we write $L_{1}\sim L_{2}$ . If $L_{1}$ is congruent to $L_{2}$ (over $Z$ ), we write $L_{1}\simeq L_{2}$ .

DEFINITION. For a homology 3-sphere $\Sigma,$ $SK(\Sigma, S^{5})$ denotes the set of iso-
topy classes of simple $\Sigma$-knots in $S^{5}$ .

DEFINITION. For $\mu\in Z/2Z(=\{0,1\}),$ $SM(\mu)$ denotes the set of S-equivalence
classes of integral square matrices $L$ such that $L+{}^{t}L$ is unimodular and
sign $(L+\iota L)\equiv 8\mu$ (mod16), where sign $(L+{}^{t}L)$ denotes the signature of $L+{}^{t}L$ .
Note that $|\det(L+{}^{t}L)|$ and sign $(L+{}^{t}L)$ are invariants of the S-equivalence class
of $L$ .

For a homology 3-sphere $\Sigma,$ $\mu(\Sigma)(\in Z/2Z)$ denotes the Rohlin invariant of
$\Sigma$ (see [8]). Then we have the following classification theorem of simple $\Sigma_{-}$

knots.

THEOREM 2.2. For any homology 3-sphere $\Sigma$ , the map
$\Phi_{\Sigma}$ : $SK(\Sigma, S^{5})arrow SM(\mu(\Sigma))$

which associates with each knot its Seifert matrix is well-defined and bijective.

This theorem is an easy generalization of [12, Theorem 1, 2, 3] and can be
proved by the same argument as in [12]. The most important point lies in the
injectivity of $\Phi_{\Sigma}$ . This property is proved with the help of [18, \S 4]. See also
[7, p. 601].

\S 3. Decomposability.

For a simple 3-knot, we can determine when it is decomposable as follows.

PROPOSITION 3.1. Let $(S^{5}, K)$ be a srmple $\Sigma$-knot with Seifert matrix $L$ .
Then $(S^{5}, K)$ is decomp0sable if and only if the following con&tions are satisfied.

(1) $L\sim L_{1}\oplus L_{2}$ for some integral square matrices $L_{1}$ and $L_{2}$ (possibly trivzal).

(2) $\Sigma\approx\Sigma_{1}\#\Sigma_{2}$ for some homology 3-spheres $\Sigma_{1}$ and $\Sigma_{2}(pos\alpha bly$ diffeomorphjc
to $S^{3}$).

(3) $L_{i}$ is non-trivial or $\Sigma_{i}\neq S^{3}$ for $i=1,2$ .
(4) sign $(L_{i}+{}^{t}L_{i})\equiv 8\mu(\Sigma_{i})$ (mod16) for $i=1,2$ .

PROOF. Suppose $(S^{5}, K)=(S^{5}, K_{1})\#(S^{5}, K_{2})$ . Since $\pi_{1}(S^{5}-K)\cong Z$, we see
easily that $\pi_{1}(S^{5}-K_{t})=Z$. Thus $(S^{5}, K_{i})$ is simple. Using this fact and Theorem
2.2, we obtain the result easily.

In the following three cases, we can rewrite the above conditions more
simply.
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COROLLARY 3.2. Let $(S^{5}, K)$ be a $\alpha mple\Sigma$-knot with Seifert matrix $L$ .
(1) If $\mu(\Sigma)\neq 0$ and $\Sigma$ is an irreduczble 3-mamfold, then $(S^{5}, K)$ is decom-

p0sable if and only if $L\sim L_{1}\oplus L_{2}$ for some non-tnvzal integral square matrices $L_{1}$

and $L_{2}$ .
(2) If $\mu(\Sigma)\neq 0$ and $\Sigma$ is a reducible 3-manifold, then $(S^{5}, K)$ is decomposable.
(3) If $\mu(\Sigma)=0,$ $\Sigma\neq S^{3}$ , and $L$ is non-trivial, then $(S^{5}, K)$ is decomposable.

PROOF. (1) Using Proposition 3.1, one can prove this without difficulty.
(2) Let $\Sigma\approx\Sigma_{1}\#\Sigma_{2}$ , where $\Sigma_{i}\neq S^{3}$ . We may assume that $\mu(\Sigma_{1})=0$ and

$\mu(\Sigma_{2})\neq 0$ . Let $L_{1}$ be zero and $L_{2}=L$ . Then $L_{i}$ and $\Sigma_{i}$ satisfy the conditions
(1) through (4) of Proposition 3.1.

(3) Let $\Sigma_{1}=S^{3}$ and $\Sigma_{2}=\Sigma$ . Further let $L_{1}=L$ and $L_{2}$ be zero. Then these
satisfy the conditions (1) through (4) of Proposition 3.1. This completes the
proof.

Thus, for any $\Sigma$ with $\mu(\Sigma)=0$ and $\Sigma\neq S^{3}$ , all simple $\Sigma$-knots except the
trivial $\Sigma$-knot are decomposable. This is because no $\Sigma$-knot is the trivial $S^{3}-$

knot if $\Sigma\neq S^{3}$ . This motivated the definition of the trivial $\Sigma$-knot. We shall
characterize the trivial $\Sigma$-knot in \S 5.

DEFINITION. A simple $\Sigma$-knot $(S^{5}, K)$ is strictly decompOsable if $(S^{5}, K)=$

$(S^{5}, K_{1})\#(S^{5}, K_{2})$ for some non-trivial $\Sigma_{i}$-knots $(S^{5}, K_{i})(i=1,2)$ .
Under this definition, the following proposition is direct from Proposition 3.1.

PROPOSITION 3.3. Let $(S^{5}, K)$ be a $\mathfrak{N}mple\Sigma$-knot with Seifert matrix $L$ .
Then $(S^{5}, K)$ is strictly decompOsable if and only if the following conditions are
satisfied.

(1) $L\sim L_{1}\oplus L_{2}$ for some non-trivial integral square matrices $L_{1}$ and $L_{2}$ .
(2) $\Sigma\approx\Sigma_{1}\#\Sigma_{2}$ for some homology 3-spheres $\Sigma_{1}$ and $\Sigma_{2}(\phi ossibly$ diffeomorphjc

to $S^{3}$).

(3) sign $(L_{i}+{}^{t}L_{i})\equiv 8\mu(\Sigma_{i})$ (mod16) for $i=1,2$ .
Next we consider algebraic 3-knots. An algebraic knot is a knot that

arises around an isolated singular point of a complex hypersurface. More
precisely, let $f$ be an analytic function on some neighborhood of the origin $0$ in
$C^{n+1}$ with $f(O)=0$ . We suppose that $f$ has an isolated critical point at the origin.
Then the algebraic knot associated with $f$ is defined to be the isotopy class of
$K_{f}^{2n-1}=S_{\epsilon}^{2n+1}\cap f^{-1}(0)\subset S_{\epsilon}^{2n+1}$ for $\epsilon>0$ sufficiently small, where $S_{\epsilon}^{2n+1}$ is the $(2n+1)-$

sphere of radius $\epsilon$ about the origin. (As a general reference for this see [14].)

Algebraic knots are always simple fibered knots. A fibered knot is a knot
$(S^{2n+1}, K^{2n-1})$ whose complement $S^{2n+1}-K$ is a smooth fiber bundle over $S^{1}$ such
that the closure $\overline{M}$ of the fiber $M$ is a compact manifold with boundary $\partial\overline{M}=K$
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$(\overline{M}=M\cup K)$ . A fibered knot $(S^{2n+1}, K^{2n-1})$ is simple if $\overline{M}$ is $(n-1)$-connected
and $K$ is $(n-2)$-connected (see [5], [18]).

Let $(S^{2n+1}, K^{2n-1})$ be a simple fibered knot, and let $F^{2n}$ be its fiber, i.e.,
$F=\overline{M}=M\cup K$. A Seifert matrix of $(S^{2n+1}, K^{2n-1})$ obtained via $F$ is called special.
A special Seifert matrix of a simple fibered knot is always unimodular by virtue
of the Alexander duality.

THEOREM 3.4. Let $(S^{5}, K)$ be an algebraic 3-knot (different from the trivial
$S^{3}$-knot) with $K$ a homology 3-sphere. Let $L$ be its specjal Seifert matrix. Then
the following holds.

(1) If $\mu(K)=0$ , then $(S^{5}, K)$ is decompOsable.
(2) If $\mu(K)=0$ , then $(S^{6}, K)$ is strictly decomposable if and only if $L\simeq L_{1}\oplus L_{2}$

for some non-trivial unimodular matrices $L_{1}$ and $L_{2}$ with sign $(L_{1}+{}^{t}L_{1})\equiv 0$ (mod16).
(3) If $\mu(K)\neq 0$, then the following conditions are equivalent.

(a) $(S^{5}, K)$ is decomposable.
(b) $(S^{5}, K)$ is strictly decomposable.
(c) $L\simeq L_{1}\oplus L_{2}$ for some non-trivial unimodular matrices $L_{1}$ and $L_{2}$ .

We need the following two lemmas for the proof of Theorem 3.4.

LEMMA 3.5. Any integral square matrix $L$ with $L+{}^{t}L$ unimodular is S-
equivalent to a non-singular matrix ( $i$ . $e$ . with non-zero determinant) or zero.

LEMMA 3.6. SuppOse that $L_{1}$ and $L_{2}$ are S-equivalent non-singular matrices.
Then det $L_{1}=\det L_{2}$ . Furthermore, if $L_{1}$ and $L_{2}$ are unimodular, $L_{1}$ is congruent
to $L_{2}$ over $Z$.

These lemmas are due to Trotter ([12]).

PROOF OF THEOREM 3.4. (1) Since $(S^{\epsilon}, K)$ is non-trivial, rank $L\geqq 1$ (see

[14, \S 7]). Hence $L$ is non-trivial by Lemma 3.6. Furthermore, $K$ is not dif-
feomorphic to $S^{3}$ by [15]. It follows from Corollary 3.2 (3) that $(S^{5}, K)$ is de-
composable.

(2), (3) By Neumann [16], $K$ is irreducible as a 3-manifold. Using this fact,
Lemmas 3.5, 3.6, and Proposition 3.3, one can prove these results without dif-
ficulty.

EXAMPLE 3.7. Let $f(x, y, z)=x^{2}+y^{3}+z^{13}$ and let $(S^{5}, K_{f})$ be the algebraic
knot associated with $f$. It is well-known that $K_{f}$ is the Brieskorn manifold
$\Sigma(2,3,13)$ which is a homology 3-sphere with zero Rohlin invariant ([1]). Thus
$(S^{5}, K_{f})$ is decomposable. On the other hand, the Alexander polynomial $\Delta(t)$ of
$(S^{5}, K_{f})$ is the cyclotomic polynomial $\phi_{78}(t)$ , which is irreducible in $Z[t]$ ([14]).

Since $\Delta(t)=\det(tL+{}^{t}L)$ ( $L$ is a special Seifert matrix of $(S^{5},$ $K_{f})$ ), $L$ cannot be
the direct sum of two non-trivial matrices. Thus $(S^{5}, K_{f})$ is not strictly de-
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composable.

As a corollary of Theorem 3.4, we obtain the following existence theorem
of decomposable algebraic 3-knots. This is an extension to dimension three of
the theorem of Michel and Weber [13].

COROLLARY 3.8. Let $g:(C^{2}, O)arrow(C, 0)$ be an analytic function which has an
isolated critical Point and is locally irreductble at $0$ . SuPpose that the Puuseux
expansion of $g$ contains at least two pairs. Define $f:(C^{3}, O)arrow(C, 0)$ by $f(x, y, z)$

$=g(x, y)+z^{r}$ , where $r\geqq 2$ is an integer. Then if the algebraic 3-knot $(S^{5}, K_{f})$

assocrated with $f$ is a homology 3-sphere knot ( $i$ . $e$ . if $K_{f}$ is a homology 3-sphere),
$(S^{5}, K_{f})$ is decomposable.

PROOF. Let $L$ be a special Seifert matrix of $(S^{5}, K_{f})$ . It is shown in [13]

that $L\simeq L_{1}\oplus L_{2}$ for some non-trivial matrices $L_{1}$ and $L_{2}$ . Then Theorem 3.4
shows that $(S^{5}, K_{f})$ is decomposable.

EXAMPLE 3.9. Let $g(x, y)=y^{4}-2x^{3}y^{2}-4x^{5}y+x^{6}-x^{7}$ and let $f_{r}(x, y, z)=$

$g(x, y)+z^{r}$ for an integer $r\geqq 2$ (see [13, \S 4]). If $g.c.d.(2, r)=g.c.d.(3, r)=$

$g.c.d.(13, r)=1$ , then the algebraic knot $(S^{5}, K_{r})$ associated with $f_{r}$ is a homology
3-sphere knot ([18]). Since $g$ satisfies the condition of Corollary 3.8, $(S^{5}, K_{r})$

is decomposable for any $r$ prime to 2, 3 and 13.
Furthermore if $r\equiv 5$ (mod78), $(S^{5}, K_{r})$ is the connected sum of two non-

trivial simple fibered 3-knots ([18]). Note that a decomposable simple fibered
3-knot is not always the connected sum of two fibered 3-knots, both different
from the trivial $S^{3}$-knot. See Example 4.1.

\S 4. Fibered knots.

In this section we consider simple fibered 3-knots. First we construct an
example of a (strictly) decomposable simple fibered $S^{3}$-knot which is not the
connected sum of two non-trivial fibered $S^{3}$-knots.

EXAMPLE 4.1. Set

$A=[00000001$ $00000011$ $00000011$ $00000011$ $00000011$ $00100001$ $00110000$ $01000001)$ and $B=(-1-1000110-10000111-1-1000101-1-1-1-1-1001-10001111-10000101-10000011-1-1000111)$

.
Then both $A$ and $B$ are unimodular, and we have
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$\det(A+{}^{t}A)=1$ , sign$(A+{}^{t}A)=8$ ,

$\det(B+{}^{t}B)=1$ and sign$(B+{}^{t}B)=0$ .

Set $L=A\oplus A\oplus B$ . By [18, \S 3] there exists a simple fibered $S^{3}$-knot $(S^{5}, K)$

whose special Seifert matrix is $L$ . By Proposition 3.3, $(S^{5}, K)$ is strictly de-
composable.

ASSERTION. $(S^{5}, K)$ cannot be the connected sum of two non-trivzal fibered
$S^{3}$-knots.

PROOF. Suppose $(S^{5}, K)=(S^{5}, K_{1})\#(S^{5}, K_{2})$ , where $(S^{5}, K_{i})$ is a non-trivial
fibered $S^{3}$-knot $(i=1,2)$ . As in the proof of Proposition 3.1, $(S^{5}, K_{i})$ is simple.
Let $L_{i}$ be a special Seifert matrix of $(S^{5}, K_{i})$ . Then $L\simeq L_{1}\oplus L_{2}$ . Since

sign $(L_{i}+{}^{t}L_{i})\equiv 0$ (mod16)
and

sign$(L_{1}+{}^{t}L_{1})+sign(L_{2}+{}^{t}L_{2})=sign(L+{}^{t}L)=16$ ,

we may assume that sign $(L_{1}+{}^{t}L_{1})=16$ and sign $(L_{2}+{}^{t}L_{2})=0$ .
On the other hand, $\det(tL+{}^{t}L)=\Delta_{A}(t)^{2}\Delta_{B}(t)$ , where

$\Delta_{A}(t)=\det(tA+{}^{t}A)$

$=t^{8}+t^{7}-t^{5}-i^{4}-t^{3}+t+1$

$=\phi_{30}(t)$ (cyclotomic polynomial)
and

$\Delta_{B}(t)=\det(tB+{}^{t}B)$

$=t^{8}-19t^{7}+95t^{6}-221t^{5}+289t^{4}-221t^{3}+95t^{2}-19t+1$ .
Thus $\Delta_{A}(t)$ is irreducible. It is an easy exercise to show that $\Delta_{B}(t)$ is also ir-
reducible (see [21, \S 22]). Since

$\det(tL+{}^{t}L)=\det(tL_{1}+{}^{t}L_{1})\cdot\det(tL_{2}+{}^{t}L_{2})$

and both $L_{1}$ and $L_{2}$ are non-trivial, rank $L_{1}=16$ and rank $L_{2}=8$ .
Thus $L_{1}+{}^{t}L_{1}$ is a positive definite unimodular symmetric matrix of even

type. It is a well-known fact that $L_{1}+{}^{t}L_{1}$ is an intersection matrix of the fiber
$F$ of the fibered knot $(S^{5}, K_{1})$ . Thus $V=F\cup D^{4}$ (identified along $\partial F=K\approx S^{3}=\partial D^{4}$ )

is a smooth closed l-connected 4-manifold with a positive definite intersection
form which is not the standard form. This contradicts the result of Donaldson
[4]. This completes the proof.

REMARK 4.2. Let $(S^{5}, K_{A})$ and $(S^{5}, K_{B})$ be the non-trivial simple $S^{3}$-knots
having Seifert matrices $A\oplus A$ and $B$ respectively. Then $(S^{5}, K)=(S^{5}, K_{A})\#(S^{5}, K_{B})$ .
By [18] $(S^{5}, K_{B})$ is smoothly fibered. Thus $(S^{5}, K_{A})$ is not smoothly fibered.
However, $(S^{5}, K_{A})$ does fiber topologically. See [7], [9].
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REMARK 4.3. In the other odd dimensions, anomalous phenomena like
Example 4.1 cannot occur (see Stallings [20], Browder-Levine [2]).

As we have already mentioned, special Seifert matrices of fibered knots are
unimodular. Now we consider the converse.

DEFINITION. A simple 3-knot is algebraically fibered if its Seifert matrix is
S-equivalent to a unimodular matrix or zero.

Note that an algebraically fibered simple 3-knot is not always smoothly
fibered. In fact, Kearton [9] has constructed a counter-example using the result
of Donaldson [4].

Now we consider Problem (D) in \S 1. Partial answers are given as follows.
Let $(S^{5}, K_{S})$ be a simple fibered $S^{3}$-knot whose fiber is diffeomorphic to

$(S^{2}\cross S^{2}\# S^{2}\cross S^{2})^{o}(=S^{2}\cross S^{2}\# S^{2}\cross S^{2}-IntD^{4})$ . Fibered knot with this property
exists by [18, \S 6]. We call $(S^{5}, K_{S})$ a stabilizer by virtue of the next proposi-
tion.

PROPOSITION 4.4. Let $(S^{5}, K)$ be an algebraically fibered simple $\Sigma$-knot. Then
$(S^{5}, K)\# k(S^{5}, K_{S})$ is a simple fibered 3-knot for some non-negative integer $k$ .

PROOF. Let $L_{k}$ be a unimodular Seifert matrix of $(S^{5}, K)\# k(S^{5}, K_{S})$ . If $k$

is large enough, there exists a simple fibered $\Sigma$-knot $(S^{5}, K_{k})$ whose special
Seifert matrix is $L_{k}$ by [18, \S 3]. By Theorem 2.2, $(S^{5}, K)\# k(S^{5}, K_{S})$ is isotopic
to $(S^{5}, K_{k})$ . Thus $(S^{5}, K)\# k(S^{5}, K_{S})$ is fibered.

Set $E_{8}=[00000021$ $02000011$ $20000101$ $00200110$ $02001101$ $20100001$ $20000100$ $20000001]$ and $U=(\begin{array}{ll}0 11 0\end{array})$

.

PROPOSITION 4.5. Let $(S^{5}, K)$ be an algebraically fibered simple $\Sigma$-knot with
ummodular Seifert matrix L. SuPpose that $\Sigma$ bounds a compact contractible 4-
mamfold and that $L+{}^{t}L\simeq\alpha E_{8}\oplus\beta U$, where $\alpha$ is even and $\beta\geqq(3/2)|\alpha|+1$ . Then
$(S^{5}, K)$ is a simple fibered 3-knot.

PROOF. Let $M$ be a compact contractible 4-manifold whose boundary is $\Sigma$ .
Set $\alpha’=\alpha/2,$ $\beta’=\beta-3|\alpha’|$ and $F=M\#(-\alpha’)V_{4}\#\beta’(S^{2}\cross S^{2})$ , where $V_{4}$ is the non-
singular hypersurface of degree 4 in $CP_{3}$ . Then by [18, \S 3], there exists a
simple fibered $\Sigma$-knot $(S^{5}, K’)$ with special Seifert matrix $L$ and with fiber dif-
feomorphic to $F$. By Theorem 2.2, $(S^{5}, K)$ is isotopic to $(S^{5}, K’)$ . Thus $(S^{5}, K)$
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is fibered.

REMARK 4.6. In Proposition 4.5, if $L$ is non-trivial and $\Sigma\neq S^{3},$ $(S^{5}, K)$ is
the connected sum of two simple fibered 3-knots, both different from the trivial
$S^{3}$-knot. In fact, there exist a simple fibered $\Sigma$-knot $(S^{5}, K_{1})$ whose fiber is
diffeomorphic to $M$ (see \S 5) and a simple fibered $S^{3}$-knot $(S^{6}, K_{2})$ with Seifert
matrix $L_{s}$ By Theorem 2.2, $(S^{5}, K)=(S^{5}, K_{1})\#(S^{5}, K_{2})$ . Note that $(S^{5}, K_{1})$ is the
trivial $\Sigma$-knot.

\S 5. Characterization of the trivial $\Sigma$-knot.

THEOREM 5.1. Let $(S^{5}, K)$ be a simPle $\Sigma$-knot. Then the following conditions
are equivalent.

(1) $S^{5}-K$ is homotoPy equivalent to $S^{1}$ .
(2) $(S^{6}, K)$ is the trivial $\Sigma$-knot.

In the case that $\Sigma$ bounds a compact contractible 4-mamfold, (1) and (2) are also
$eq\iota uvalmf$ to the following condition.

(3) $K$ bounds a compact contractible 4-submanifold in $S^{5}$ .
PROOF. (1) $\neq(2)$ This follows from [12, \S 23].
(2) $\Rightarrow(1)$ By Proposition 4.4, $(S^{5}, K’)=(S^{5}, K)\# k(S^{5}, K_{S})$ is a simple fibered

3-knot for some $k$ . Set $X’=S^{5}-K’,$ $X=S^{5}-K$ and $X_{s}--S^{5}-K_{S}$ , and let $\tilde{X}’,\tilde{X}$

and $\tilde{X}_{S}t$)$e$ their infinite cyclic coverings respectively. Then we have $\tilde{H}_{q}(\tilde{X}’)=$

$\tilde{H}_{q}(\tilde{X})\oplus(\oplus{}_{k}\tilde{H}_{q}(\tilde{X}_{S}))$ . Since $(S^{5}, K’)$ is a simple fibered 3-knot, $\tilde{H}_{q}(\tilde{X})=0(q\neq 2)$

and $\tilde{H}_{2}(\acute{\dot{X}})$ is free abelian. If we let $L$ be a Seifert matrix of $(S^{5}, K),$ $tL+{}^{t}L$

is a presentation matrix of $\tilde{H}_{2}(\tilde{X};Q)$ over $Q\langle t\rangle=Q[t, t^{-1}]$ , where $t$ is a generator
of the covering transformation group of $\tilde{X}$ (see [11]). Since $L$ is S-equivalent
to the zero matrix, $\det(fL+{}^{t}L)=\pm r^{a}$ for some $\alpha$ . Hence we have $\tilde{H}_{2}(\tilde{X};Q)=$

$\tilde{H}_{2}(\tilde{X})\otimes_{Z}Q=0$ . Thus $\tilde{H}_{*}(\tilde{X})=0$ . Since $\pi_{1}(\tilde{X})=1,\tilde{X}$ is contractible. Thus $X$ is
homotopy equivalent to $S^{1}$ .

Next we consider the case that $\Sigma$ bounds a compact contractible 4-manifold
$M$.

(3) $\Rightarrow(2)$ This is clear.
(2) $\Rightarrow(3)$ Let $N=M\cross S^{1}/\sim$ , where $(x, 1)\sim(x, \theta)$ for every $x\in\partial M$ and $\theta\in S^{1}$ .

It is easily seen that $N$ is a homotopy 5-sphere. Thus $N$ is diffeomorphic to $S^{5}$ .
Hence $(N, \partial M)=(S^{5}, K’)$ is a simple (fibered) $\Sigma$-knot with a trivial Seifert matrix.
By Theorem 2.2, $(S^{5}, K)$ is isotopic to $(S^{5}, K’)$ . Thus $K$ bounds $M$ in $S^{5}$ . This
completes the proof.

REMARK 5.2. For $\Sigma$ with $\mu(\Sigma)\neq 0$ , there is no trivial $\Sigma$-knot by the very
definition. However, if we work in the topological category, a “trivial $\Sigma$-knot”
can be defined. In fact, there exists a topological (locally flat) $\Sigma$-knot $(S^{5}, K)$
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with $S^{5}-K$ homotopy equivalent to $S^{1}$ . For example this is obtained as $(S^{2}\Sigma, K)$ ,
where $S^{2}\Sigma$ is the double suspension of $\Sigma$ and $K$ is the image of the canonical
embedding of $\Sigma$ into $S^{2}\Sigma$ . By a result of Edwards and Cannon, $S^{2}\Sigma$ is homeo-
morphic to $S^{5}$ ([3], [6]). For other constructions of $(S^{5}, K)$ see [7] and [17].

Furthermore, if $(S^{5}, K_{i})$ are topological $\Sigma$-knots with $S^{5}-K_{i}$ homotopy
equivalent to $S^{1}(i=1,2),$ $(S^{5}, K_{1})$ is isotopic to $(S^{5}, K_{2})$ . For details see [19,

\S 2].
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