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\S 0. Introduction.

This paper is concerned with classification of homotopy representations (up

to G-homotopy). Let $G$ be a finite group. A homotopy representation $X$ of $G$ is
a finite dimensional G-CW-complex such that for each subgroup $H$ of $G$ , the H-
fixed point set $X^{H}$ is homotopy equivalent to a sphere $S^{m}$ of dimension $m$ which
is equal to dim $X^{H}$ , or the empty set. T. tom Dieck and T. Petrie first introduced
homotopy representations in [6] and studied their stable theory. Recently
E. Laitinen studied the unstable theory of homotopy representations in [8] and
showed that two homotopy representations $X$ and $Y$ are G-homotopy equivalent
if and only if their dimension functions are equal and a certain invariant $D_{n}(X, Y)$

in the unstable Picard group $Pic_{n}(G)$ vanishes, where $n=DimX=DimY$.
T. tom Dieck studied the dimension functions of homotopy representations

in [2]. In particular, he showed that the dimension function of a homotopy
representation of a $P$-group $G$ is equal to that of some linear G-sphere. (See

also [7].) This result implies that the dimension functions of homotopy repre-
sentations of a $P$-group are classified by the representation theory.

The purpose of this paper is to investigate the number $Num(G, n)$ of G-
homotopy types of homotopy representations with the same dimension function $n$ .

In Section 1, we show that the number $Num(G, n)$ is at most the order of
$Pic_{n}(G)$ (Proposition 1.7). In Section 2, we show that the number $Num(G, n)$ is
equal to the order of $Pic_{n}(G)$ under certain hypotheses (Theorem 2.1). In par-
ticular, if $G$ is a nilpotent group of odd order, then the number $Num(G, n)$ is
equal to the order of $Pic_{n}(G)$ (Corollary 2.7). In Section 3, we compute the
order of $Pic_{n}(G)$ in general (Theorem 3.6). If a homotopy representation $X$ has
a G-homotopy type of a finite G-CW-complex, we call it finite. In Section 4,
we discuss a similar problem for finite homotopy representations. However it
seems difficult to compute the number Num $f(G, n)$ of G-homotopy types of
finite homotopy representations with the same dimension function $n$ because of
complexity of the finiteness obstruction. When $G$ is an abelian group of odd
order, the number $Num_{f}(G, n)$ is described by using the Swan homomorphisms
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(Corollary 4.10).

This paper is based on [6] and [8], which we review in Section 1.
The author would like to thank Professor M. Nakaoka and Professor

K. Kawakubo for helpful conversations and encouragement.

\S 1. Preliminaries.

We first collect the various notations and results from [6] and [8]. Let $X$

be a homotopy representation of $G$ and $S(G)$ the set of subgroups of $G$ . We
define an integer-valued function Dim $X$ on $S(G)$ by $(DimX)(H)=\dim X^{H}+1$ for
$H\in S(G)$ and we call it the dimension function of $X$. If $X^{H}$ is emPty, we set
dim $X^{H}=-1$ . (We adopt tom Dieck and Petrie’s definition for Dim $X.$ ) Let
$Dim(G)$ denote the set of the dimension functions of homotopy representations
of $G$ . E. Laitinen introduced an essential isotropy group of $X$. Its definition is
based on the following lemma.

LEMMA 1.1 ([8, Lemma 2.1]). Let $n$ be the dimension function of a homotoPy
representatjon $X$.

(1) If $n(H)=n(K)$ and $H\leqq K$, then the inclusion $X^{K}\subset X^{H}$ is a homotoPy
$eq\iota uvalmce$ .

(2) Each subgroup $H$ is contained in a unique maximal subgroup $\overline{H}$ with
$n(H)=n(\overline{H})$ .

An isotropy group $H\in Iso(X)$ with $H=\overline{H}$ is called an essential isotropy group.
The set of essential isotropy groups is denoted by EssIso(X). By Lemma 1.1,
EssIso(X) depends only on the dimension function. Let $\phi(G)$ be the set of con-
jugacy classes of subgroups of $G$ and $C(G)$ the set of integer-valued functions
on $\phi(G)$ . We note that the dimension function can be regarded as an integer-
valued function on $\phi(G)$ . Let $A(G)$ be the Burnside ring of $G$ . A ring homo-
morphism $x;A(G)arrow C(G)$ is defined by $(\chi(x))(H)=|S^{H}|-|T^{H}|$ for $x=[S]-[T]$

and $(H)\in\phi(G)$ , where $S$ and $T$ are finite G-sets. It is well-known that $\chi$ is
injective. We regard $A(G)$ as the subring of $C(G)$ via $\chi$ . We recall the Picard
group introduced in [6]. We abbreviate $A(G)$ and $C(G)$ to $A$ and $C$ respectively.
We put $\overline{C}=C/|G|C$ and $\overline{A}=A/|G|C$ , which make rings. Let $C^{*}$ be the unit
group of $C$ . The Picard group of $G$ is defined by

$Pic(G)=\overline{C}^{*}/\overline{A}^{*}C^{*}$ .
Laitinen introduced in [8] the unstable Picard group in order to establish

the unstable theory of homotopy representations. The unstable Picard group
for $n=DimX$ is defined as follows. We denote by $C_{n}$ (resp. $A_{n},$ $C_{n}^{*}$ ) the subset
of functions $d\in C$ (resp. $A,$ $C^{*}$ ) satisfying the following unstability conditions
for $n$ .
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(1.2) (Unstability conditions [8]).

(1) $d(H)=1$ when $n(H)=0$ .
(2) $d(H)=1,0,$ $-1$ when $n(H)=1$ .
(3) $d(H)=d(\overline{H})$ for any $(H)\in\phi(G)$ .

We call $d\in C$ invertible if $d(H)$ is prime to $|G|$ for any $(H)\in\phi(G)$ . We denote
by $\overline{C}_{n}^{*}$ (resp. $\overline{A}_{n}^{*}$ ) the subset of elements of $\overline{c}*$ (resp. $\overline{A}^{*}$ ) represented by invert-
ible functions in $C_{n}$ (resp. $A_{n}$). We note that $\overline{C}_{n}^{*}$ makes a subgroup of $\overline{C}^{*}$ and
also $\overline{A}_{n}^{*}$ makes a subgroup of $\overline{C}_{n}^{*}$ . (Note that $C_{n}$ and $A_{n}$ are not rings in
general.) The unstable Picard group of $G$ (for $n\in Dim(G)$ ) is defined by

$Pic_{n}(G)=\overline{C}_{n}^{*}/\overline{A}_{n}^{*}C_{n}^{*}$ .
(Note that $Pic_{n}(G)$ is a finite abelian group.)

Let $X$ and $Y$ be homotopy representations with the same dimension function
$n$ , and $f:Yarrow X$ a G-map. If we orient $X$ and $Y$ in the sense of Laitinen, the
degree function $d(f)$ in $C$ is defined by $d(f)(H)=\deg f^{H}$ , and satisfies the un-
stability conditions for $n$ . Using the equivariant obstruction theory, Laitinen
showed that there exists a $G$-map $f:Yarrow X$ such that $d(f)$ is invertible. Further,
he defined an unstable invariant by

$D_{n}(X, Y)=[d(f)]\in Pic_{n}(G)$ ,

whose definition is independent of choices of $f$ and orientation [8]. The follow-
ing is an important result for the classification of homotopy representations.

PROPOSITION 1.3 ([8, Theorem 5]). Let $X$ and $Y$ be homotoPy represen-
iations of $G$ with the $same$ &mension function $n$ . Then $X$ is $G$-homotopy eqwvalent
to $Y$ if and only if $D_{n}(X, Y)$ vamshes.

The equivariant obstruction theory played an important role in [6] and [8].
Let Xand Ybe as above. Let $S$ be a closed family of $s(G)$ , where $S$ is called
closed if $S$ satisfies the conditions: (a) if $H\in S$ and $H<K$, then $K\in S$ , and (b)

if $H\in S$ , then gHg $\in S$ for any $g\in G$ . Then $X(S)= \bigcup_{H\in S}X^{H}$ is a G-CW-sub-
complex of $X$. Let $f_{S}$ : $X(S)arrow Y$ be a G-map. The following holds from the
equivariant obstruction theory.

PROPOSITION 1.4 ([8, Proposition 3.3], [5, Chap. 8]). Under the above situa-
tion,

(1) There exzsts a $G$-map $f:Xarrow Y$ extending $f_{S}$ .
(2) Let $H$ be a maximal subgroup in $S(G)\backslash S$ . We assume that $H\in EssIso(X)$

and dim $X^{H}\geqq 1$ . We Put a closed family $\mathcal{T}=S\cup(H)$ , where $(H)$ is the conjugacy
class of H. Then, for any integer $k$ , there exists a $G$-map $f_{\mathcal{T}}$ ; $X(\mathcal{T})arrow Y$ extend-
ing $f_{S}$ such that deg $f_{g}^{H}=\deg f^{H}+k|WH|$ . Here $WH=NH/H$ and $NH$ is the
normalizer of $H$ in $G$ .
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Smith theory is also useful for the theory of homotopy representations. The
following result will be used in later sections.

LEMMA 1.5. Let $f$ : $Xarrow Y$ be a G-map of homotopy representations with the
same &men\alpha on function. Supp0se that deg $f^{H}$ is prime to $|G|$ for any $H\neq 1$ .
Then deg $f$ is also prime to $|G|$ .

PROOF. Let $p$ be a prime divisor of $|G|$ . Then $G$ has a subgroup $Z/p$ of
order $p$ . Since deg $f^{z/p}$ is prime to $p$ , deg $f$ is also prime to $p$ for any prime
divisor $p$ of $|G|$ . (See [8].) It follows that deg $f$ is prime to $|G|$ .

Let $X,$ $Y,$ $Z$ be homotopy representations with the same dimension function
$n$ . Then

LEMMA 1.6.
(1) $D_{n}(X, Z)=D_{n}(X, Y)\cdot D_{n}(Y, Z)$ .
(2) $D_{n}(X, Y)^{-1}=D_{n}(Y, X)$ .
PROOF. Let $g:Zarrow Y$ and $f:Yarrow X$ be G-maps with invertible degree func-

tions. The composition $f\circ g:Zarrow X$ also has an invertible degree function $d(f\circ g)$

$=d(f)\cdot d(g)$ . Hence $D_{n}(X, Z)=[d(f\circ g)]=[d(f)][d(g)]=D_{n}(X, Y)\cdot D_{n}(Y, Z)$ . In
particular $D_{n}(X, X)=D_{n}(X, Y)\cdot D_{n}(Y, X)$ . Since $D_{n}(X, X)=1$ by Proposition 1.3,
it follows that $D_{n}(X, Y)^{-1}=D_{n}(Y, X)$ .

Let $Num(G, n)$ denote the number of G-homotopy types of homotopy repre-
sentations of $G$ with the same dimension function $n$ . The following is our
starting point.

PROPOSITION 1.7. $Num(G, n)\leqq|Pic_{n}(G)|(<\infty)$ .

PROOF. Let $X_{1},$ $X_{2},$ $\cdots$ , $X_{r}$ be homotopy representations with Dim $X_{i}=n$

such that $X_{i}$ and $X_{j}$ are not G-homotopy equivalent for $i\neq j$ . If $r>|Pic_{n}(G)|$ ,
then there exist $X_{s}$ and $X_{t}(s\neq t)$ such that $D_{n}(X_{1}, X_{s})=D_{n}(X_{1}, X_{t})$ . We see
that $D_{n}(X_{s}, X_{t})=1$ by Lemma 1.6. Hence $X_{s}$ and $X_{t}$ are G-homotopy equivalent
by Proposition 1.3. This is a contradiction.

\S 2. Realization of invertible functions.

Let $X$ be a homotopy representation of $G$ and $n$ the dimension function of
X. For any homotopy representation $Y$ with DimY$=n$ , there exists a G-map
$f:Yarrow X$ such that the degree function $d(f)$ is invertible and satisfies the unsta-
bility conditions. We shall discuss the converse.

QUESTION. Let $d$ be any invertible function satisfying the unstability con-
ditions. Do there exist a homotopy representati0n $Y$ with Dim $Y=n$ and a G-map
$f:Yarrow X$ such that the degree function $d(f)$ is equal to $d^{p}$
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From the proof of Proposition 1.7, if this question has an affirmative answer,
we see that the number $Num(G, n)$ is equal to the order of $Pic_{n}(G)$ . In [6,
Theorem 6.3], one can find an affirmative answer under certain technical hy-
potheses. We shall adopt the following hypotheses instead of tom Dieck and
Petrie’s in order to make their answer sharper.

HYPOTHESIS I. EssIso(X) is closed under intersection.

We put $s_{0}=\{H\in S(G)|n(H)\leqq 3\}$ .
HYPOTHESIS II. For any invertible function $d$ satisfying the unstability con-

&tions, there exzst a G-CW-complex $Y(S_{0})$ and a G-map $f_{S_{0}}$ : $Y(S_{0})arrow X$ such that
(1) $Iso(Y(S_{0}))=S_{0}\cap EssIso(X)$ ,
(2) dim $Y(S_{0})^{H}=\dim X^{H}$ and $Y(S_{0})^{H}$ is homotopy equzvalent to $S^{n(H)-1}$ for

$H\in S_{0}$ ,
(3) deg $f_{s_{0}}^{H}=d(H)$ for $H\in S_{0}$ .

(We permit $Y(S_{0})$ to be empty.)

We shall show the following by using tom Dieck and Petrie’s argument.

THEOREM 2.1. We assume that $X$ satisfies Hyp0theses I and II. Then, for
any invertible function $d$ satisfying the unstability con&tions, there exist a homotopy
represen tation $Y$ and a G-map $f:Yarrow X$ such that Dim$Y=DimX$ and $d(f)=d$ . In
particular $Num(G, n)=|Pic_{n}(G)|$ .

We need the following result for the proof of Theorem 2.1.

PROPOSITION 2.2. Let $Z$ be a homotopy representatjon with dim $Z\geqq 3$ . We
assume that $1\in S(G)$ is an essential isotropy group of Z. Then for any integer $k$

which is pnme to $|G|$ , there exzst a homotopy representati0n $B$ with DimB $=DimZ$

and a G-map $\psi:Barrow Z$ such that deg $\psi=k$ and deg $\psi^{H}=1$ for $H\neq 1$ and further
$B$ and $\psi$ satisfy the following conditions:

(1) $B$ is obtained by attaching cells of types $G\cross D^{m-1}$ and $G\cross D^{m}$ to the
$(m-1)$-skeleton $Z_{m-1}$ of $Z$, where $m=\dim Z$ ,

(2) $\psi|Z_{m-1}=id$ .

PROOF. Since 1 is an essential isotropy group of $Z,$ $\dim Z^{H}<m$ for $H\neq 1$

(Lemma 1.1). Hence $G$ acts freely on $Z\backslash Z_{m-1}$ . Since $\dim Z\geqq 3$ , we can apply
[6, Proposition 6.4] to $Z$ . Then we obtain a G-CW-complex $B$ and a G-map
$\psi:Barrow Z$ such that $B$ is homotopy equivalent to $S^{m}$ and deg $\psi=k$ . From the
construction in the proof of [6, Proposition 6.4], we see that $B$ and $\psi$ satisfy
the conditions (1) and (2). For $H\neq 1,$ $B^{H}=Z^{H}$ and $\psi^{H}=id$ by the conditions (1)

and (2). Therefore $B$ and $\psi$ are the desired homotopy representation and G-map.

PROOF OF THEOREM 2.1. The proof of Theorem 2.1 is similar to that of
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[ $\theta$, Theorem 6.3]. We shall give the detailed proof. We prove it inductively.
Let $S\subset S(G)$ be a closed family containing $S_{0}$ . (For the definition of a closed
family, see Section 1.) We note $S_{0}$ is a closed family. We consider the follow-
ing statement.

$(S)$ There exzst a G-CW-complex $Y(S)$ and a G-map $f_{S}$ : $Y(S)arrow X$ such that
$(a, S)$ $Iso(Y(S))=S\cap EssIso(X)$ ,
$(b, S)$ dim $Y(S)^{K}=\dim X^{K}$ and $Y(S)^{K}$ is homotopy $eq\iota uvalmtioS^{n(K)-1}$ for

$K\in S$ ,
$(c, S)$ deg $fg=d(K)$ for $K\in S$ .
We note that $(S_{0})$ is our assumption of Theorem 2.1. Let $H$ be a maximal

subgroup in $S(G)\backslash S$ . We put $\mathcal{T}=S\cup(H)$ . Then $\mathcal{T}$ is a closed family. As the
induction step, we show that $(\mathcal{T})$ holds if $(S)$ holds. If $H$ is not an essential
isotropy group, then we put $Y(\mathcal{T})=Y(S)$ and $f=f_{S}$ . Then $(a, \mathcal{T})$ is clearly
satisfied. For $(b, \mathcal{T})$ and $(c, \mathcal{T})$ , we may consider those when $K=H$. Take any
$x\in Y(\mathcal{T})^{H}$ . Then the isotropy group $G_{x}$ belongs to $\mathcal{T}\cap EssIso(X)$ by $(a, \mathcal{T})$ ,

and $G_{x}>H$ since $H\not\in S\cap EssIso(X)$ . Since EssIso(X) is closed under intersection
(Hypothesis I), $G_{x}=\overline{G}_{x}\geqq\overline{H}>H$ by [8, Lemma 2.9] and hence $\overline{H}\in S\cap EssIso(X)$

$=Iso(Y(S))$ . Hence $Y(\mathcal{T})^{H}=Y(S)^{H}$ and also $Y(S)^{\overline{H}}$ is homotopy equivalent to
$S^{n(\overline{H})-1}=S^{n(H)-1}$ by $(b, S)$ . Since the inclusion $X^{\overline{H}}\subset X^{H}$ is a homotopy equivalence
(Lemma 1.1), deg $f_{T}^{H}=\deg f_{S}^{\overline{H}}=d(\overline{H})$ . Since $d$ satisfies the unstability conditions,
$d(\overline{H})=d(H)$ and hence deg $f_{T}^{H}=d(H)$ .

When $H$ is an essential isotropy group of $X$, we apply [6, Proposition 5.9]

to a WH-map $f_{s}^{H}$ : $Y(S)^{H}arrow X^{H}$ . Then we obtain a homotopy representation $Y’(\mathcal{T})$

$(\supset Y(S)^{H})$ of $WH$ and a WH-map $f’$ : $Y’(\mathcal{T})arrow X^{H}$ such that $Dim(Y’(\mathcal{T}))=DimX^{H}$

and $f’|Y(S)^{H}=f_{s}^{H}$ . By the construction in [6, Proposition 5.9], $WH$ acts freely
on $Y’(\mathcal{T})\backslash Y(S)^{H}$ . By Lemma 1.5, deg $f’$ is prime to $|WH|$ . Choose an integer
$k$ such that $k\cdot\deg f’\equiv d(H)$ modl $WH|$ . We apply Proposition 2.2 to $Y’(\mathcal{T})$ .
Then we obtain a homotopy representation $B$ of $WH$ and a WH-map $\psi:Barrow$

$Y’(\mathcal{T})$ such that deg $\psi=k$ and deg $\psi^{K}=1$ for $1\neq K\leqq WH$. From the construction
of $B$ and $Y’(T)$ , we see that

$Y(S)^{H}\subset Y’(\mathcal{T})_{b-1}\subset B$ $(b=\dim B)$ , and
$f^{f}\circ\psi|Y(S)^{H}=f_{S}^{H}$ .

The degree of $f’\circ\psi:Barrow X^{H}$ is $d(H)$ modulo $|WH|$ . By Proposition 1.4, we get
a WH-map $f’’$ : $Barrow X^{H}$ such that $\deg f’’=d(H)$ and $f’’|Y(S)^{H}=f’\circ\psi|Y(S)^{H}=f_{S}^{H}$ .
We apply [6, Lemma 4.11] and then we obtain a G-CW-complex $Y(\mathcal{T})$ and a G-
map $f_{\mathcal{T}}$ : $Y(\mathcal{T})arrow X$ such that $Y( \mathcal{T})\supset Y(S)\bigcup_{Y(S)}HB,$ $f_{T}|Y(S)=f_{S},$ $f_{\mathcal{T}}|B=f’$ , and
$Y(\mathcal{T})/Y(S)=G\cross_{NH}B/G\cross_{NH}Y(S)^{H}$ . From the proof of [6, Lemma 4.11], we see
that
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$Y(\mathcal{T})^{H}=B$ , $Y(\mathcal{T})^{K}=Y(S)^{K}$ for $K\in S$ ,
and also

$f\not\equiv=f’$ , $f_{\mathcal{T}}^{K}=f\xi$ for $K\in S$ .

It is not difficult to show that $Y(\mathcal{T})$ and $f_{\mathcal{T}}$ satisfy $(a, \mathcal{T}),$ $(b, \mathcal{T})$ and $(c, \mathcal{T})$ .
Therefore $(\mathcal{T})$ holds if $(S)$ holds.

In the end of induction, we obtain a homotopy representation $Y(S(G))$ and
a G-map $f_{S(G)}$ which are desired. Thus the proof is complete.

REMARK. tom Dieck and Petrie showed that $D;v(G, h^{\infty})arrow Pic(G)$ is an iso-
morphism [6, Theorem 6.3], where $v(G, h^{\infty})$ is the torsion subgroup of the
homotopy representation group of $G$ . Laitinen’s result Proposition 1.3 is con-
sidered as the unstable version of injectivity of $D$ . Our result is considered as
that of surjectivity of $D$ .

We shall discuss Hypotheses I and II. If a homotopy representation $X$ is a
smooth G-manifold, then it is well-known that EssIso(X) $=Iso(X)$ and $X$ satisfies
Hypothesis I. In particular, a linear G-sphere, which is an unit sphere of a real
representation of $G$ , satisfies Hypothesis I. Clearly Hypothesis I depends only
on the dimension function of a homotopy representation. Therefore, if a homot-
opy representation $X$ has the dimension function of a linear G-sphere, then $X$

also satisfies Hypothesis I. A homotopy representation of a $p$-group always has
the dimension function of a linear G-sphere ([2], [7]). In the sequal we see
that a homotopy representation of a $p$-group satisfies Hypothesis I. More gener-
ally Laitinen showed the following.

PROPOSITION 2.3 ([8, Proposition 2.12]). Let $G$ be a finite mlp0tent group.
Then a homotopy representati0n of $G$ satisfies Hyp0thests I.

Next, we consider Hypothesis II. We show the following.

PROPOSITION 2.4. Let $X$ be a homotopy representati0n with the dimension
function $n$ . If $n(H)\equiv n(G)$ mod2 for any $H\in S_{0}$ , then $X$ satisfies Hypothesjs II.

We need the following result in [6].

PROPOSITION 2.5 ([6, Proposition 12.1]). Let $X$ and $Y$ be homotopy repre-
sentations of $G$ such that $(DimX)(1)\neq(DimY)(1)$ and $(DimX)(H)=(DimY)(H)$

for any $H\neq 1$ . Then
(1) $G$ has peri0dec cohomology.
We denote by $p(G)$ its mimmal period.
(2) $p(G)$ divides $(DimX)(1)-(DimY)(1)$ except for $G=Z/2$ .

PROOF OF PROPOSITION 2.4. If $n(G)>3$ , we need not give the proof.
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Case (1): $n(G)=3$ . It is easy to see that $s_{0}\cap EssIso(X)=\{G\}$ . Since $X^{G}$ is
homotopy equivalent to $S^{2}$ , there is a map $f:S^{2}arrow X^{G}$ of degree $d(G)$ . We put
$Y(S_{0})=S^{2}$ , which has trivial G-action. Then the composition of $f$ with the in-
clusion $X^{G}\subset X$ is the desired G-map $f_{S_{0}}$ .

Case (2): $n(G)=2$ . By the assumption for $n$ , we see $S_{0}\cap EssIso(X)=\{G\}$ .
Hence the above argument is still valid.

Case (3): $n(G)=1$ . If $S_{0}\cap EssIso(X)=\{G\}$ , then the proof is similar to that
of Case (1). If $H\neq G$ and $H\in s_{0}\cap EssIso(X)$ , then $n(H)=3$ by the assumption.
A WH-space $X^{H}$ is a homotopy representation of $WH$, and $\dim(X^{H})^{H/H}=2$ and
$\dim(X^{H})^{K/H}=0$ for $H<K\leqq NH$. We apply Proposition 2.5 to $X^{H}$ and $S^{0}$ (with

trivial WH-action). Then we see that $WH$ has periodic cohomology and its
period $p(WH)\leqq 2$ . Hence $WH$ is cyclic. (See [1, p. 159].)

ASSERTION. There exist a free reprentati0n $V_{H}$ of $WH$ and a WH-map
$f_{H}$ : $S(V_{H}\oplus R)=S(V_{H})*S^{0}arrow X^{H}$ such that deg$f_{H}=d(H),$ $f_{H}(S^{0})=X^{G}$ and the degree
of $f_{H}|S^{0}$ : $S^{0}arrow X^{G}$ is equal to $d(G)(=\pm 1)$ . Here a representation $V$ of $G$ is
called free if $G$ acts freely on $V\backslash \{0\}$ and $*means$ the join.

We assume this for a while. Let $G,$ $H_{1},$ $\cdots$ , $H_{r}$ be representatives of con-
jugacy classes of subgroups in $S_{0}\cap EssIso(X)$ . We put $Y=\coprod_{i=1}^{r}G\cross_{NH_{i}}S(V_{H_{i}}\oplus R)$ ,

where $S(V_{H_{i}}\oplus R)$ is regarded as a $NH_{i}$-space via the projection $NH_{i}arrow WH_{i}=$

$NH_{i}/H_{i}$ . Also $f_{H_{i}}$ is regarded as a $NH_{i}$-map. We define a G-map
$G\cross NH_{i}f_{H_{i}}$ : $G\cross NH_{i}S(V_{H_{i}}\oplus R)arrow X$ by $[g, x]arrow gf_{H_{i}}(x)$ for $g\in G$ and $x\in S(V_{H_{i}}\oplus R)$ .
We put $f=\coprod_{i=1}^{r}G\cross NH_{i}f_{H_{i}}$ : $Yarrow X$. We also put $S^{0}=\{p^{+}, p^{-}\}\subset S(V_{H_{i}}\oplus R)$ .
Collapse $\coprod_{i\Leftarrow 1}^{r}G\cross_{NH_{i}}\{p^{+}\}$ (resp. $\coprod_{i=1}^{r}G\cross_{NH_{i}}\{p^{-}\}$ ) to a point. We denote by $Y(S_{0})$

the resulting G-CW-complex, and by $f_{S_{0}}$ : $Y(S_{0})arrow X$ the G-map induced from $f$ .
It is not difficult to check the conditions in Hypothesis II.

Case (4): $n(H)=0$ . We omit the proof because it is similar to the proof
of Case (3).

PROOF OF ASSERTION. If $WH=1$ , then one can easily see it. We assume
$WH\neq 1$ . Let $g:S^{0}arrow X^{G}$ be a map of degree $d(G)$ . Let $\alpha$ be a generator of the
cyclic group $WH$. Let $W_{j}$ be a 2-dimensional representation of $WH$ such that
the generator $\alpha$ acts on $W_{j}$ by rotation of $2\pi j/|WH|$ . If $j$ is prime to $|WH|$ ,
then $W_{j}$ is a free representation. By the equivariant obstruction theory, or
Proposition 1.4, there exists a WH-map $h:S(W_{j}\oplus R)arrow X^{H}$ such that $h^{WH}=g$ .
It follows from Lemma 1.5 that deg $h$ is prime to $|WH|$ . Put degh $=l$ . We
choose an integer $s$ with 1. $s\equiv d(H)$ modl $WH|$ and also choose an integer $t$ with
$t\cdot s\equiv 1$ modl $WH|$ . Then there exists a WH-map $k:S(W_{t}\oplus R)arrow S(W_{1}\oplus R)$ such
that degk $\equiv s$ modl $WH|$ and $\deg k^{WH}=1$ . Hence $\deg h\circ k\equiv d(H)$ $mod |WH|$

and $\deg(h\circ k)^{WH}=1$ . By the equivariant obstruction theory, or Proposition 1.4,
we obtain the desired WH-map $f_{H}$ .
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We give an example satisfying the assumption in Proposition 2.4.

LEMMA 2.6. Let $X$ be a homotopy representati0n of $G$ with the dimension
function $n$ . If $G$ has an odd order, then $n(H)\equiv n(G)$ mod2 for any $H\in S(G)$ .

PROOF. This is the well-known result. We give its short proof. We
define $d\in C(G)$ by $d(H)=x(X^{H})-1=(-1)^{n(H)-1}$ , where $\chi$ denotes the Euler
characteristic. Then $d$ belongs to the unit group $A(G)^{*}$ of the Burnside ring
[5]. Since $G$ has an odd order, $A(G)^{*}$ consists of $\pm 1[5]$ . Hence $d(H)=d(G)$

and so $n(H)\equiv n(G)$ mod2.

We obtain from the above results:

COROLLARY 2.7. Let $G$ be a mlp0tent group of odd order. Let $n$ be the
&mension function of a homotopy representation. Then the number $Num(G, n)$ is
equal to the order of $Pic_{n}(G)$ .

\S 3. The order of the unstable Picard group.

Let $n$ be the dimension function of a homotopy representation $X$ of $G$ . We
first compute the order of $Pic_{n}(G)$ when $n(G)\geqq 2$ . We assume $n(G)\geqq 2$ for a
while. Then we note that $C_{n}$ is a subring of $C=C(G)$ and also $A_{n}$ is a sub-
ring of $A=A(G)$ . Since $|G|C_{n}$ is an ideal of $C_{n}$ , we can define a ring $\overline{C}_{n}=$

$C_{n}/|G|C_{n}$ . We can also dePne a ring $A_{n}=A_{n}/|G|C_{n}$ since $|G|C_{n}$ is an ideal
of $A_{n}$ . We consider the following pullback diagram of rings (cf. [5]).

$\frac{A\downarrow}{A}nnn=_{\frac{C\downarrow}{C}}n$

Here the horizontal maps are the natural inclusions and the vertical maps
are the projections. From the Mayer-Vietoris sequence of Picard groups of
rings [5], we obtain the exact sequence:

$1arrow A_{n}^{*}arrow C_{n}^{*}\cross\overline{A}_{n}^{*}arrow\overline{C}_{n}^{*}arrow$ Pic $A_{n}arrow PicC_{n}\cross Pic\overline{A}_{n}$ ,

where * indicates the unit group of a ring. We note that $\overline{A}_{n}^{*}$ and $\overline{C}_{n}^{*}$ in the
sequence are isomorphic to $\overline{A}_{n}^{*}$ and $\overline{C}_{n}^{*}$ defined in Section 1 respectively. It
follows from the same argument as in [5, Proposition 10.3.6] that Pic $C_{n}=1$

and Pic $\overline{A}_{n}=1$ . Hence we obtain the exact sequence:

$1arrow C_{n}^{*}\overline{A}_{n}^{*}arrow\overline{C}_{n}^{*}arrow$ Pic $A_{n}arrow 1$ ,

since $C_{n}^{*}\overline{A}_{n}^{*}$ is the image of $C_{n}^{*}\cross\overline{A}_{n}^{*}$ . Hence Pic $A_{n}$ is isomorphic to $Pic_{n}(G)$ .
We shall compute the order of Pic $A_{n}$ . We still assume $n(G)\geqq 2$ . We define an
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isomorphism of rings $i:Carrow\Pi_{(H)\in\phi(G)}Z$ by $i(d)=(d(H))$ . Then the image of $A$

coincides to the subring:

{ $(d_{H}) \in\prod_{(H)\in\phi(G)}Z|$
congruences $(^{*})_{H}$ for $(H)\in\phi(G)$ },

where
$(^{*})_{H}$ : $d_{H} \equiv-\sum n_{H,K}d_{K}$ mod $|WH|$ ,

and $n_{H.K}$ are certain integers. The sum is taken over G-cojugacy classes $(K)$

such that $H\triangleleft K,$ $H\neq K$ and $K/H$ is cyclic. (For the detail, see [5].)

We put $\mathcal{F}_{n}$ (abbr. $\mathcal{F}$ ) $=\{(H)\in\phi(G)|H=\overline{H}\}$ . From the unstability conditions
and $n(G)\geqq 2$ , we can also define an isomorphism of rings $j:C_{n}arrow\Pi_{(H)\in \mathcal{F}}Z$ by
$j(d)=(d(H))$ . We put

$B=$ { $(d_{H}) \in\prod_{(H)\in \mathcal{F}}Z|$ congruences $(^{**})_{H}$ for $(H)\in \mathcal{F}$ },

where
$(^{**})_{H}$ : $d_{H} \equiv-\sum n_{H,K}d_{\overline{K}}$ modl $WH|$ .

The sum is taken over G-conjugacy classes $(K)$ such that $H\triangleleft K,$ $H\neq K$ and
$K/H$ is cyclic.

LEMMA 3.1. $j(A_{n})=B$ .
PROOF. Take $d\in A_{n}$ . Then $i(d)$ satisfies the congruences $(^{*})_{H}$ for $(H)\in\phi(G)$ ,

and $d(K)=d(\overline{K})$ for $(K)\in\phi(G)$ . Hence $j(A_{n})\subset B$ . Take $(d_{H})\in B$ . From the
proof of [8, Theorem 2], we see tbat there exists a G-map $f:Xarrow X$ of a
homotopy representation $X$ with DimX$=n$ such that $d(f)(H)=d_{H}$ for $(H)\in \mathcal{F}$ .
Since $d(f)\in A_{n}$ by [8], it follows that $(d_{H})\in j(A_{n})$ . Therefore $j(A_{n})=B$ .

We may compute the order of Pic $B$ . The order of Pic $B$ can be computed
by the same way as in [10] or [4]. Then we see that

$|PicB|=2^{-f}|B^{*}|$
$\prod_{(H)\in \mathcal{F}}\varphi(|WH|)$ ,

where $f=|\mathcal{F}|$ and $\varphi$ is the Euler function. We have obtained

PROPOSITION 3.2. If $n(G)\geqq 2$ , then

$|Pic_{n}(G)|=2^{-f}|A_{n}^{*}|$
$\prod_{(H)\in \mathcal{F}}\varphi(|WH|)$ .

From now we consider the general case. We put $n=DimX$ and $n’=$

Dim $X*S^{1}$ . Note that $n’=n+2\geqq 2$ and $\mathcal{F}_{n}=\mathcal{F}_{n’}$ . We put $\mathcal{F}(i)=\{(H)\in \mathcal{F}|n(H)=i\}$

and $\mathcal{F}(\geqq i)=\{(H)\in \mathcal{F}|n(H)\geqq i\}$ . We define a homomorphism

$k$ : $\overline{C}_{n’}^{*}arrow\prod_{(H)\in \mathcal{F}(1)}Z/|WH|^{*}/\pm 1$

by $k([d])=(d(H)\cdot d(G)^{-1})$ , where $d$ is an invertible function satisfying the un-
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stability conditions for $n’$ .

LEMMA 3.3. The homomorphesm $k$ is surjective and Ker $k=\overline{C}_{n}^{*}\overline{A}_{n’}^{*}$ .
PROOF. The surjectivity is obvious. Take $[d]\in\overline{C}_{n}^{*}$ . Since $d(H)=\pm 1$ when

$n(H)=1$ , it follows that $k([d])=1$ . Take $[d]\in\overline{A}_{n’}^{*}$ . Then $d$ satisfies $(^{**})_{H}$ . If
$(H)\in \mathcal{F}(1)$ , then $d(H) \equiv-\sum n_{H.K}d(\overline{K})=-\sum n_{H.K}d(G)\equiv d(G)$ modl $WH|$ . Hence
$k([d])=1$ , and so $\overline{C}_{n}^{*}\overline{A}_{n’}^{*}\subset Kerk$ . Take $[d]\in Kerk$ . We choose $c_{1}\in C_{n}^{*}$ such
that $(c_{1}d)(H)\cdot(c_{1}d)(H)^{-1}=1$ in $Z/|WH|^{*}$ for $(H)\in \mathcal{F}(1)$ . Then $c_{1}d$ satisfies $(^{**})_{H}$

for $(H)\in \mathcal{F}$ with $n(H)\leqq 1$ . Indeed if $(H)\in \mathcal{F}(O)$ , then $H=G$ and so $WH=1$ .
Hence $(^{**})_{H}$ is satisfied. If $(H)\in \mathcal{F}(1)$ , then $- \sum n_{H,K}(c_{1}d)(\overline{K})=-\sum n_{H.K}(c_{1}d)(G)$

$\equiv(c_{1}d)(G)\equiv(c_{1}d)(H)$ modl $WH|$ .

ASSERTION. There exzsts $e\in A_{n’}$ such that $e$ is invertible and $e(H)=(c_{1}d)(H)$

when $n(H)\leqq 1$ .

We assume this for a while. Choose an integer $e’(H)$ such that $e’(H)e(H)$

$\equiv 1$ modlGl for $(H)\in \mathcal{F}$ . We define $c_{2}\in C_{n}$ which is invertible by $c_{a}(H)=$

$d(H)e’(\overline{H})$ if $n(H)\geqq 2$ , and $c_{2}(H)=c_{1}(H)$ if $n(H)\leqq 1$ . Then $(c_{2}e)(H)=d(H)e’(\overline{H})e(H)$

$=d(H)e’(\overline{H})e(\overline{H})\equiv d(H)$ modl $G|$ for $n(H)\geqq 2$ , and $(c_{2}e)(H)=c_{1}(H)c_{1}(H)d(H)=d(H)$

for $n(H)\leqq 1$ . Therefore $[c_{2}][e]=[d]$ in $\overline{C}_{n’}^{*}$ and Kerk $=\overline{C}_{n}^{*}\overline{A}_{n’}^{*}$ .

PROOF OF ASSERTION. We inductively choose an integer $e_{H}$ satisfying $(^{**})_{H}$

for $(H)\in \mathcal{F}$ and $e_{H}=(c_{1}d)(H)$ when $n(H)\leqq 1$ . (Here the integers $e_{H}$ need not be
prime to $|G|.$ ) We define $\overline{e}\in C_{n’}$ by $\overline{e}(H)=e_{\overline{H}}$ . Then $\overline{e}\in A_{n’}$ by Lemma 3.1.
It follows that there exists a G-map $f:Yarrow Y$ such that $d(f)=\overline{e}[8]$ , where $Y=$

$X*S^{1}$ . We construct the desired $e$ inductively. Suppose that there exists a G-
map $f_{S}$ : $Yarrow Y$ such that $d(f_{S})(H)$ is prime to $|G|$ for $(H)\in S$ , and $d(f_{S})(H)=$

$(c_{1}d)(H)$ when $n(H)\leqq 1$ . Here $S$ is a subfamily of $\phi(G)$ such that if $(H)<(K)$

and $(H)\in S$ , then $(K)\in S$ . Let $(H)$ be a maximal element of $\phi(G)\backslash S$ . We put
$\mathcal{T}=S\cup\{(H)\}$ . If $H\neq\overline{H}$, then $(\overline{H})\in S$ . Hence $d(f_{S})(H)=d(f_{S})(\overline{H})$ is prime to $|G|$ .
If $H=\overline{H}$, then $d(f_{S})(H)=\deg f_{S}^{H}$ is prime to $|WH|$ by Lemma 1.5. We can
choose an integer $m$ such that deg $f_{s}^{H}+m|WH|$ is prime to $|G|$ . By Proposition
1.4, we obtain a G-map $f_{\mathcal{T}}$ : $Yarrow Y$ such that deg $f_{\mathcal{T}}^{H}=\deg f_{s}^{H}+m|WH|$ and deg $f_{\mathcal{T}}^{K}$

$=\deg f_{S}^{K}$ for $(K)\in s$ . In the end of this process, we obtain a G-map $h:Yarrow Y$

such that $\deg h^{K}$ is prime to $|G|$ for $(K)\in\phi(G)$ and $\deg h^{K}=(c_{1}d)(K)$ when
$n(K)\leqq 1$ . Then $d(h)$ is the desired $e\in A_{n’}$ .

We put $Inv_{n}(G)=\overline{C}_{n}^{*}/\overline{A}_{n}^{*}$ . It is easy to see that the following sequences are
exact (cf. [4]).

(3.4) $1arrow A_{n}^{*}arrow C_{n}^{*}arrow Inv_{n}(G)arrow Pic_{n}(G)arrow 1$

(3.5) $1arrow Inv_{n}(G)-Inv_{n’}(G)arrow\overline{C}_{n’}^{*}/\overline{C}_{n}^{*}\overline{A}_{n’}^{*}arrow 1$ .
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Here the maps are defined by the obvious way and $n’=n+2$ , and $A_{n}^{*}$ denotes
the subgroup of elements of $A^{*}$ satisfying the unstability conditions for $n$ .

By Proposition 3.2 and (3.4), we have

$|Inv_{n’}(G)|=$ $\prod_{(H)\in \mathcal{F}}\varphi(|WH|)$ .
By Lemma 3.3 and (3.5), we have

$| Inv_{n}(G)|=2^{s}\cross\prod_{(H)\in \mathcal{F}(\geqq 2)}\varphi(|WH|)$ ,

where $s=|\{(H)\in \mathcal{F}|n(H)=1, |WH|\geqq 3\}|$ . By (3.4), we obtain

$|Pic_{n}(G)|=2^{s}|A_{n}^{*}||C_{n}^{*}|^{-1}$
$\prod_{(H)\in \mathcal{F}(\geqq 2)}$

$\varphi(|WH|)$ .

It can easily be seen that

$|A_{n}^{*}|=\{\begin{array}{ll}|A_{n’}^{*}| if n(G)\geqq 1|A_{n’}^{*}|/2 if n(G)=0 \end{array}$

and

$|C_{n}^{*}|=\{\begin{array}{ll}2^{f} if n(G)\geqq 12^{f-1} if n(G)=0 (f=|\mathcal{F}|_{\rangle} \end{array}$

Hence $|A_{n}^{*}||C_{n}^{*}|^{-1}=2^{-f}|A_{n’}^{*}$ . Therefore we have obtained

THEOREM 3.6. For any $n\in Dim(G)$ ,

$|Pic_{n}(G)|=2^{s}|A_{n}^{*}||C_{n}^{*}|^{-1}$
$\prod_{(H)\in \mathcal{F}(\geqq 2)}$

$\varphi(|WH|)$

$=2^{s-f}|A_{n’}^{*}| \prod_{(H)\in \mathcal{F}(\geqq 2)}\varphi(|WH|)$ ,

where $f=|\mathcal{F}|,$ $s=|\{(H)\in \mathcal{F}|n(H)=1, |WH|\geqq 3\}$ .
COROLLARY 3.7. Let $G$ be a fimte group of odd order. Then

$| Pic_{n}(G)|=2^{1-f}\prod_{(H)\in \mathcal{F}(\geqq 2)}\varphi(|WH|)$ .

PROOF. Since $G$ has an odd order, $A^{*}$ consists of $\pm 1$ . (See [5].) On the
other hand it is clear that $\pm 1\in A_{n’}^{*}\subset A^{*}$ . Hence $|A_{n’}^{*}|=2$ . If $(H)\in \mathcal{F}$ and
$n(H)=1$ , then $H=G$ by Lemma 2.6. Hence $s=0$ .

\S 4. Finite homotopy representations.

A homotopy representation $X$ which has a G-homotopy type of a finite G-
CW-complex is called a finite homotopy representation. In [6], tom Dieck and
Petrie dePned finiteness obstruction $\rho(X)\in\kappa(G)=\oplus_{(H)}\tilde{K}_{0}(ZWH)$ , where $\tilde{K}_{0}(ZWH)$

is the reduced projective class group of $ZWH$. tom Dieck and Petrie’s finiteness
obstruction has the following properties.
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PROPOSITION 4.1 ([6]).
(1) For homotopy representati0ns $X,$ $Y,$ $\rho(X*Y)=\rho(X)+\rho(Y)$ .
(2) If $X$ is a fimte homotopy representation, then $\rho(X)=0$ .
(3) Assume that $\bigcup_{H\in S_{0}}X^{H}$ is a finite G-CW-complex, where $S_{0}=$

$\{H\in S(G)|\dim X^{H}\leqq 2\}$ . Then $X$ is a fimte homotopy representati0n if $\rho(X)=0$ .

From the proof of [6, Proposition 7.24], we can replace the assumption of
(3) by the following:

HYPOTHESIS. There exist a fimte G-CW-complex $Y(S_{0})$ and a G-map $f_{S_{0}}$ :
$Y(S_{0})arrow X$ such that dim $Y(S_{0})^{H}=\dim X^{H}$ , and $Y(S_{0})^{H}$ is homotopy equivalent to
$S^{n(H)-1}$ and deg $f_{S_{0}}=\pm 1$ for any $H\in S_{0}$ .

From the proof of Proposition 2.4, we see that if $n=DimX$ satisfies that
$n(H)\equiv n(G)$ mod2 for any $H\in S_{0}$ , then Hypothesis is satisfied for $X$. In par-
ticular, if $G$ has an odd order, then Hypothesis is satisfied for any homotopy
representation. tom Dieck and Petrie also defined the homomorphism

$\rho:Pic(G)arrow\kappa(G)$ .

Let $X$ and $Y$ be homotopy representations with the same dimension function $n$

and $f:Yarrow X$ any G-map with an invertible degree function $d(f)$ . Then it is
known that $\rho([d(f)])=\rho(X)-\rho(Y)[6]$ . We denote the composition of $\rho$ with
the natural homomorphism $Pic_{n}(G)arrow Pic(G)$ by

$\rho_{n}$ : $Pic_{n}(G)arrow\kappa(G)$ .

Let Num$f(G, n)$ denote the number of G-homotopy types of finite homotopy re-
presentations with the same dimension function $n\in Dim_{f}(G)$ , where Dim $f(G)$

denotes the set of dimention functions of finite homotopy representations of $G$ .
PROPOSITION 4.2.
(1) Num $f(G, n)\leqq|Ker\rho_{n}|$ .
(2) If $G$ is a mlp0tent group of odd order, then Num $f(G, n)=|Ker\rho_{n}|$ .

PROOF. Let $X_{1},$ $X_{2},$ $\cdots$ , $X_{r}$ be finite homotopy representations such that $X_{i}$

and $X_{j}$ are not G-homotopy equivalent for $i\neq j$ . Let $f_{i}$ : $X_{i}arrow X_{1}$ be a G-map
with an invertible degree function. Since $X_{i}$ and $X_{1}$ are finite, $\rho([d(f_{i})])=0$

and hence $\rho_{n}([d(f_{i})])=0$ . By the similar argument as in Proposition 1.7, one
can see (1). Assume $G$ is a nilpotent group of odd order. For any $[d]\in Ker\rho_{n}$ ,
there exist a homotopy representation $Y$ and a G-map $f:Yarrow X_{1}$ such that
Dim $Y=n$ and $d(f)=d$ by Theorem 2.1. Then $\rho(Y)=\rho(Y)-\rho(X_{1})=-\rho_{n}([d(f)])$

$=0$ . It follows from Proposition 4.1 that $Y$ is a finite homotopy representation.
Therefore (2) follows. (See Section 2.)
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It seems difficult to compute Ker $\rho_{n}$ , or its order in general (cf. [9]). If $G$

is abelian, then Ker $\rho_{n}$ is described by using Swan homomorphisms. We shall
explain this. Let $G$ be an abelian group. We define $e_{H}$ : $\overline{C}^{*}arrow Z/|G|^{*}$ by
$e_{H}([d])=d(H)$ . We inductively define $u_{H}$ : $\overline{C}^{*}arrow Z/|G|^{*}$ by $u_{G}=e_{G}$ and $u_{H}=$

$e_{H}\Pi_{K>H}u_{K}^{-1}$ . Let denote by $\tilde{u}_{H}$ the composition of $u_{H}$ with the projection
$Z/|G|^{*}arrow Z/|G/H|^{*}$ .

PROPOSITION 4.3 ([3], [6]). The sequences

$1arrow$ $\overline{A}^{*}$

$arrow\overline{C}^{*}arrow^{u}$

$\prod_{H}Z/|G/H|^{*}$
$arrow 1$

$\downarrow p$

$1 arrow\overline{A}^{*}C^{*}arrow\overline{C}^{*}arrow\prod_{H}Z/p\circ u|G/H|^{*}/\pm 1arrow 1$

are exact, where $u=(\hat{u}_{H})$ and $p$ is the projection. In particular,

$Inv(G)=\overline{C}^{*}/\overline{A}^{*}\cong\prod_{H}Z/|G/H|^{*}$

$Pic(G)=\overline{C}^{*}/\overline{A}^{*}C^{*}\cong\prod_{H}Z/|G/H|^{*}/\pm 1$ .

We compute $Pic_{n}(G)$ of an abelian group $G$ . It is easy to see the next two
lemmas.

LEMMA 4.4. If $H=\overline{H}$ and $n(H)=0$ , then $u_{H}=1$ on $\overline{C}_{n}^{*}$ .

LEMMA 4.5. If $H=\overline{H}$ and $n(H)=1$ , then $u_{H}=\pm 1$ on $\overline{C}_{n}^{*}$ .

We put $\mathcal{F}=\{H\leqq G|H=\overline{H}\}$ .
LEMMA 4.6. If $H\in \mathcal{F}^{c}=S(G)\backslash \mathcal{F}$ , then $u_{H}=1$ on $\overline{C}_{p}^{*}$ .

PROOF. We prove it inductively. Let $\mathcal{F}_{1}$ be a subset of $\mathcal{F}^{c}$ . We assume
that $u_{K}=1$ on $\overline{C}_{n}^{*}$ if $K\in \mathcal{F}_{1}$ . Let $H$ be a maximal subgroup in $\mathcal{F}^{c}\backslash \mathcal{F}_{1}$ . We put
$\mathcal{F}_{2}=\mathcal{F}_{1}\cup\{H\}$ . Then on $\overline{C}_{n}^{*}$

$u_{H}=e_{H} \prod_{K>H}u_{K^{-1}}$

$=e_{H} \prod_{K>H}u_{K^{-1}}$ (By the assumption.)

$=e_{\overline{H}}( \prod_{K>\overline{H_{\frac{}{K}}}}u_{K^{-1}})u_{\overline{H}^{-1}}$

(Because if $K>H,$ $K=\overline{K}$, then $K\geqq\overline{H}[8$ , Lemma 2.9].)

$=(e_{\overline{H}} \prod_{\overline{H},K>}u_{K^{-1}})u_{\overline{H}^{-1}}$
(By the assumption.)

$=u_{H}\cdot u_{\overline{H}^{-1}}$

$=1$ .

Hence $u_{K}=1$ on $\overline{C}_{n}^{*}$ if $K\in \mathcal{F}_{2}$ . In the end of this process, we see that $u_{K}=1$
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on $\overline{C}_{n}^{*}$ if $K\in \mathcal{F}^{c}$ .
We obtain the commutative diagram:

$\overline{C}^{*}\underline{u}$

$\prod_{H\in S(G)}$
$Z/|G/H|^{*}$

$\cup$ $\cup$

$\overline{C}_{n}^{*}arrow^{u_{n}}$

$\Pi$ $Z/|G/H|^{*}\cross$ $\Pi$ ${\rm Im}\tilde{u}_{H}$

$\Vert$ $p\circ u_{n}H\in \mathcal{F}(\geqq 2)$ $\downarrow pH\in \mathcal{F}(1)$

$\overline{C}_{n}^{*}arrow$
$\prod_{H\in \mathcal{F}(\geqq 2)}$

$Z/|G/H|^{*}/\pm 1$ ,

where $u_{n}=u|C_{n}^{*}$ . It is not difficult to show that $u_{n}$ and $p\circ u_{n}$ are surjective.
We also note $u_{n}(C_{n}^{*})=Kerp$ . We show $Kerp\circ u_{n}=\overline{A}_{n}^{*}C_{n}^{*}$ . Since $Keru_{n}=$

$\overline{C}_{n}^{*}\cap Keru=\overline{C}_{n}^{*}\cap\overline{A}^{*}=\overline{A}_{n}^{*}$ , it follows that $\overline{A}_{n}^{*}\subset Kerp\circ u_{n}$ . Since $C_{n}^{*}\subset Kerp\circ u_{n}$ , it
follows that $\overline{A}_{n}^{*}C_{n}^{*}\subset Kerp\circ u_{n}$ . Take $x\in Kerpou_{n}$ . There exists $c\in C_{n}^{*}$ such
that $u_{n}(c)=u_{n}(x)$ since $u_{n}(x)$ is in Ker $p$ . Hence $xc^{-1}\in Keru_{n}=\overline{A}_{n}^{*}$ and so $x\in$

$\overline{A}_{n}^{*}C_{n}^{*}$ . Therefore Ker $p\circ u_{n}=\overline{A}_{n}^{*}C_{n}^{*}$ .
We have proved

PROPOSITION 4.7. The following diagram commutes and the honzontal maps
are isomorphjsms, which are induced from $p\circ u_{n}$ and $p\circ u$ .

$Pic_{n}(G)arrow$ $\Pi$ $Z/|G/H|^{*}/\pm 1$

$Pic(G)\downarrow\div\prod_{H\in S(G)}^{H\in \mathcal{F}(\geqq 2)}Z/|G/H|^{*}/\pm 1\cap$ .

tom Dieck and Petrie proved that the following diagram commutes.

(4.8)

Here $S_{G/H}$ : $Z/|G/H|^{*}/\pm 1arrow\tilde{K}_{0}(Z[G/H])$ is the Swan homomorphism of $G/H$.
(For the Swan homomorphism, see [11] and also [9].) From Proposition 4.7
and (4.8), we have

PROPOSITION 4.9. If $G$ is abelian, then

Ker
$\rho_{n}\cong\prod_{H\in \mathcal{F}(\geqq 2)}$ Ker $S_{G/H}$ .

COROLLARY 4.10. If an abelian group $G$ has an odd order, then Num$f(G, n)$

$=|\Pi_{H\in ff(\geqq 2)}$ Ker $S_{G1H}|$ , where $n\in Dim_{f}(G)$ .
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We shall give an example lastly. Let $G$ be $Z/p\cross Z/p$ ( $p$ : an odd prime),

and $H_{1},$ $H_{2},$ $\cdots$ , $H_{p+1}$ all subgroups of order $p$ . The dimension function $n$ of a
homotopy representation is that of a linear G-sphere. Since a linear G-sphere
has a finite G-CW-complex structure, the dimension function $n$ is in Dim$f(G)$ .
We define functions $n_{i}$ $(i=0,1, \cdots , p+1)$ as follows.

$n_{0}(K)=1$ for $H\in S(G)$ ,
and for $i\geqq 1$ ,

$n_{i}(K)=\{\begin{array}{ll}2 if K=H_{i} or 10 if K=H_{j}(j\neq i) or G.\end{array}$

Note that $n_{i}$ are the dimension functions of unit spheres of irreducible real rep-
resentations of $G$ . From the representation theory, the dimension function
$n\in Dim_{f}(G)=Dim(G)$ is uniquely described as $n= \alpha_{0}n_{0}+\sum t^{+1}=1\beta_{\iota}n_{i}$ , where $\alpha_{0}$ and
$\beta_{i}$ are non-negative integers. We put $P(n)=|\{i|\beta_{i}>0\}|$ . We note that
$|KerS_{z/p}|=|KerS_{G}|=(p-1)/2[11]$ . We have the following.
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