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§1. Introduction.

The purpose of the present paper is to give an asymptotic bounds of the
dimension of twisted harmonic spinors.

Let (X, g) be an oriented 2n-dimensional compact spinnable Riemannian
manifold, and {L, A} a C= complex line bundle over X with a Hermitian fibre
metric h. We consider the twisted Dirac’s operator D;:I'(SQL*)—-I'(SRQL*)
which is naturally induced from the Levi-Civita connection of (X, g) and the
Hermitian connection of {L, h}. Here S denotes the spinor bundle of X. Let
4, be the Laplace-Beltrami operator of D,. Then, by Bochner-Weizenbock
formula, we obtain that, for uel'(SQL*),

SX<u, Ayud>dV, = SX{IVkuP—l-—Z—] u|*+k<Bu, wdv,,

where {,) represents the inner product on SQL* with respect to the metric g
and h, « is the scalar curvature of (X, g), and 6, is an element of End¢(SQL*¥)
which is defined as

A 1
Or:= P Z_(eiej®@n(€i, e;)).
1,7

Here {e,, -+, es,} is an oriented orthonormal base of T,X, and @, is the cur-
vature form of {L, h}. Now, following Demailly’s observation ([3]), we con-
sider the operator x/4+k@h as a potential of the Dirac’s operator D,, and we
shall show that the dimension of harmonic spinors of D, can be asymptotically
estimated in terms of the operator @h as k goes to infinity. In fact, using
Theorem 2.3 of [3], we shall show the following asymptotic estimation which
is a Dirac’s operator-version of Demailly’s result on g-operator.

THEOREM. For the curvature form @, of {L, h}, we define a subset X,
(resp. X.) of X as

X (resp. X):={xeX| (10,)"/dV )(x)>0 (resp. <0)},
where dV, is the volume form of (X, g), and we define H{(0) (resp. Hy(0)) as
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HE ) (resp. Hi (0)):= {harmonic sections of S:QL¥ (resp. S_.QL*)}.

Then we have the following estimation.
(1) If X-=@, we have

limk-"dimH#(0) = ——1-'—S c,(L)*, limk"dimH;(0) = 0.
koo nllx [

2) If Xi=@, we have

lkimk‘"dimH;(O) = —ZI—!SXCI(LYZ’ kizg/e‘"dimH;(O) =0.

Here S, (respectively S_) denotes the positive (respectively negative) spinor
bundle of X, and we call H}(0) (respectively H3(0)) twisted positive k-harmonic
spinors (respectively twisted negative k-harmonic spinors).

Intuitively, the theorem above can be explained as follows. Twisted positive
(resp. negative) k-harmonic spinors tend to concentrate on the set where the
determinant of the curvature form @, is positive (resp. negative).

The author would like to thank M. Furuta for his kind advice.

§2. Morse inequality for Dirac’s complex.

Let (X, g) be an oriented 2n-dimensional compact spinnable Riemannian
manifold, let {L, h} be a smooth Hermitian line bundle with the Hermitian con-
nection D, and let V be Levi-Civita’s connection of (X, g). Since (X, g) is
spinnable, there exists the spin(2xn) bundle Spin(X) over X. We lift the Levi-
Civita’s connection V to Spin(X) and the connection is represented by V again.
In the following, for any complex vector bundle E over X, I'(E) represents
smooth sections of E over X.

(2.1) DEFINITION. For any k=1, we define a differential operator

D, : I'(SRL¥) —> I'(SRQL*)
as

Di(f@8)x):= {Z eV /)@g+e:/@Digh(x)

where {e,, .-+, es,} is an orthonormal basis of T.X, D* is the connection of L*
induced from D, f (resp. g) is a local section of S (resp. L*) near x&X, and
V::=V,, Di:=Di,.
We define differential operators Dj, Dy, 4%, 47 as
Df:=D,|I'(S:QL*) : I'(S;QL*) — I'(S.QL*),
Dy :=D4|I(S-QL" : [(S-QL* —> I'S,QL",
F:=D;Df : I'S:QL*) — I'(S,RL*), and
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di:= DDy : I'(S-.®L*) —> I'(S-QL*).

It is well-known that Dy is the formal adjoint of Di with respect to the
inner product on I'(S.®L*) which is canonically defined by g and h, and that
D}, Dy are first order elliptic operators.

(2.2) DEFINITION. We define Dirac’s complek as
0— I'(S:QL*) — I'(S-.QL*) — 0.
Obviously, Dirac’s complex is an elliptic complex.
We shall construct a subcomplex of Dirac’s complex.
(2.3) DEFINITION. For any AR and k=1, we define Hf(2) and Hz(2) as
Hi(A):={uesl'(S.QL*))| uz‘aj U, Whgre iU y=R4 Uy, A< kA}

respectively. Since 4f are positive operator, Hf(A)=H7;()=0 for 1<0, and it
is obvious that

H;(0) =KerD; and H}0)=KerD}.
(2.4) LEMMA. We have
(1) 4Dy = Di 4,
(2) 4y Df = D{d;.

ProOF. 4}D;=(DyD})D;=D;(D{D;)=D;4;7. Hence we have obtain (1).
Similarly we will have (2). Q.E.D.

(2.5) LEMMA. For any A= R, we have
(1) Dy : Hi(D) —> H;Q2),
(2)  Df: H{QQ) —> Hi(A).

ProOF. We will only prove (1). (2) can be proved in the same way. Let
ue Hz(4). Then

U= ; Uy
where dyu, = 2,u, and A, £ k2. From (2.4) (1), we have
Ai(Dyuq) = Di(diua) = 2o Dy tta.
Since Dyu=3,D;u,, we have obtained (1). Q.E.D.
(2.6) DEFINITION. We define L%(S.®L*¥) (resp. L¥S-QL*)) as

L*S.®L*):= {L*sections of S,QL* with respect to the metric on
S.QL* induced from g and h in the canonical way},
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respectively. Let P (resp. P7): LA S.QL¥—H#(A) (resp. LAS-QL*¥)—Hz(A)
be the orthogonal projections. Then we define

Pj:= Pjei* : I'(S.QL*) — HF ),

respectively. Here i*:I(S:@L*)—L¥S,@L*) and i-: I(S.-QL*)—L¥S.®L*)
are the natural inclusions.

(2.7) LEMMA. We have
(1)  PiD{= Di{Pt.
(2) PiDy = D;P;.

PrROOF. We will only prove (1). (2) can be proved in the same way. Let
u=2,u, be the orthogonal decomposition of uel'(S.QL*) with respect to the
eigenfuntions {u,} of 4} with eigenvalues {4,}. Then

(DfPiXu)= 3 Diu,.
A522

On the other hand, from (2.4) (2), we have
A5(D¥uy) = Di(dius) = 2. Diu, and  PiDiu = ZézDzua.
Therefore we have obtained (1). Q.E.D.
From (2.5) and (2.7), we have obtained a chain homomorphism
D7

k

0 —— I'(S:®L*Y

I'S_.QL*) ——> 0

Then we have the following theorem.
(2.8) THEOREM. For any A=0, there exists a linear operator H; such that
Id—P}=H;D¥¢ and 1d—Py= D{H,.

Proor. Let

E. (resp. E.):= {eigenvalues of 4} (resp. 43)},
and for any veE, (resp. pyE.), we define

o5+ I'(S:QL*) — ©C{uc'(S:QL*)| dfu=vu}
(resp. pn : I'(S-QL*) —> EBC{vET(S_(X)L”)M;v:yv})



Dimension of harmonic spinors 323

as the orthogonal projection with respect to the L:inner product respectively.
From (2.4), we have

o;Df = Dipy and  p#D; = Dip;.
Let
.— -1 4 -1 -
G, (resp. G-).-ye%lv oF  (resp. #E%)_;z 07)

be the Green’s operator of 4% (resp. 4%). Then we have
G.Dj =D{G,, G.Dj=D;G.,
PiG, = G.Pf, P;G.=G_Pg,
[d—P{=4i{G,, Id—Py=4iG_.
Therefore for any =0, we obtain

ld— P} = (P{+4;G.)1d—P}) = D; D{G.(d—P}) = {D;G(1d—P7)} i,

and i
Id—Py7 = (d—Py)(Ps+4:G.) = (1d—P)Di D; G- = D{(Id—P})D; G-
= DH{D;G_(Id—Py)}.
So if we set
| H, = D;G_(1d—P),
we have (2.8). ' ~ Q.E.D.

As a consequence of (2.8), we obtain

(2.9) CorOLLARY (Morse inequality for Dirac’s complex). For any A=0, we
have »

(1)  dimKer{D}: I'(S:QL*)-I'(S_.QL*)} < dimH}Q),
(2) dimKer{Dy:I'(S-QL*)—-I'(S:QL*)} < dimH;(2),
3) dimH}(A)—dimHz(2) = ind(D}),

where
ind(D3) := dimH}(0)—dim Hz(0).

§3. Spinor representation.

In this section, we recall some well-known facts about Clifford algebra.
First of all, we shall give some notations.

(3.1) NOTATIONS.
E: an oriented 2n-dimensional vector space over R with an inner product,
{71, ***, 72} ¢ an oriented orthonormal basis of E over R,
¢(E): the Clifford algebra of E. '
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It is well-known that there exists a 2"-dimensional complex vector space 4

such that
c(EYRC = End¢(4)
R

as a C-algebra. Set
Ti= z'"rl o Tens
then it is easy to see that z?=1. Now we define 4, and 4_ as
4,:={6ed|t6=0}, 4.:=1{6cd|t6=—38}.
From the above argument, we have
4=4,.P4..
Since any element of spin(2n) commutes with 7, spin(2n) preserves 4. and
4_ respectively. The following fact is well-known.

(3.2) FACT (cf. [6]). Let S°be {—1, 1}. Then there exists a base of 4 over C

{uel,-n,sn-p vs;,-“. En-l}(sl""’ En—l)E(SO)n_l

such that
)y eno) = (€)U ey >
Yer-172k(Ueymen-y) = (—i€0-180)Uey, e,  for 2ER<n—1,

Tzn—1T2n(uel,--~,en_l) = (isn-d)usl,---, Ep—17
and

(2) 71T2(vel,---,en_1) = (—iel)vel,--',en-p
Ter-172r(Vepmen_) = (—184-180 ey, e, fOr 25k<n—1,

Ten-1720(Vey e oy) = €01V, py
(3.3) COROLLARY.

@)) .= & Cu., and

ee(SHn-1

(2) 4= & Cv..

ee(80)n-1

For
1
a = 71§10khk—lhk’ a,eR,
we define a, and a_ as

a,:=ald, : 4, —> 4, and a.:=ald. : 4. — 4_.
Using (3.3), it is easy to see that the following proposition holds.

(3.4) PROPOSITION. (1) The eigenvalues of a, are
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{—asr— " —@samtaserint - +aomtosksniz oes,

when n 1s even, and

{—as—  —GorntTArerint = Faomrtoskscn-nre ses,

when n is odd.
(2) The eigenvalues of a- are

{—aor— " —@scr+ntTAocrint - Faomtosksn-212 0e6,

when n is even, and

{—@sr— " — et arerint - Faomrtosrsn-nr2, 0e8,

when n is odd. Here &, represents the n-th permutation group.

§4. Bochner’s identity.

In this section, we shall recall Bochner’s identity for Dirac’s operator. Let
(X, g) be an oriented 2n-dimensional compact spinnable Riemannian manifold
and let {L, h} be a smooth complex line bundle over X with a Hermitian fibre
metric h. Let D be the Hermitian connection of {L, h}. Then we define a
connection V, of SQL* as

4.1 Ve :=VQldr:+1dsQD,
where D, is the connection of L* induced from D.
(4.2) FACT (Bochner’s identity, cf. [2]).

(1) For ueI'(S;QL*), we have
| < atwav, = {1Vawir+ S 1ur+8<Buu, u}av
¥ y &k 8 X k 4 hit, g

(2) For vel'(S.QL*), we have
| @ v, = {19+ F101+£<B0r, »}av,.

Where {,) represents the inner product on SQL* with respect to the metric g and
h, k is the scalar curvature of (X, g), and O, is an element of Endc(SQL*) which
is defined as

A 1

6,:= §§(eie1®6n(ei, e;).
Here {ey, -+, esn} is an oriented orthonormal base of T X, and @, is the curvdture
form of {L, h}. '
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§5. An asymptotic estimation of dimH#(4).
First of all, we shall give some notations and definitions.

(5.1) NOTATIONS.
E — X: a smooth complex vector bundle over X rankcE=r with a Hermitian
metric p and with a connection ¥,
L — X: a smooth complex line bundle over X with a Hermitian metric £ and
with the Hermitian connection D, ‘
and 9, : -—V@Ide—}-IdE@Dk where D, is the connection on L* induced from D.

We define a vector bundle Herm,(E) as

Herm,(E):= zkeJX Herm,(E;)

where E, is the fibre of E—X at xe X, and
Herm,(E;):= {¢<End(E,)| <u, ¢v)>,=<{Pu, v>, for any u, veE,}.
Let Vel'(Herm,(E)). Theﬁ the -homomorphism |
V@l : T(EQL*) —> I'(EQL*)
will be represented by V again.

(5.2) DEFINITION. Let W%3(L*QE) be the -completion of I'(L*@E) with
respect to the norm

el o= [S%{|u12+1ﬁku12}dvg]lfz,

where | | is the norm induced by g, h and p. We define a' quadratic form
Q. on WY L*Q®E) as

. : ]_ N .

Qr(u):= SX{—k—leulz—%Vu, u>}dVg
and for any A= R, we define N,(4) as

N,(2) := #{eigenvalues of Q,<4}.

(5.3). DEFINITION. For BeQ¥X):=I'(A*T*X), we define a real valued func-
tion v(X) on X for any AR as follows. For xeX, we represent B(x) as

B(x) = é“l Bi(x)ysi-1~72: -

with respect to an oriented orthonormal base {y,, -+, ..} Of T%X, where {B;(x)}
are real numbers satisfying S

|BAx)| =+ 2 | By(x)| > 0= Byys(x) = - = By(x).
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Then we define vg(2)(x) as

28—2n7r—7l

wa((x) = e — s | B - Bol 2 (4= Zep+niBwl )

1. PEN
where

N.={leZ|i=0},
(A if =0 oo (1 if 2>0
hi={g oz @ a={g 20
Since the function vz(2)(x) is monotone increasing with respect to 2, we
define Jx(2)(x) as
Dp(A)(x):= 01<i£101—’5(2+ e)x).

Now we state Demailly’s result.

(5.4) FacT (cf. [B]). Let Vy(x), -, V. (x) be the eigenvalues of V(x)e
Herm,(E;). Then there exists a countable set ® of R such that for any A R\D,
there exists lim,_ ..k "N,(A) which satisfies

N, ) = jglsxmh(v,ﬂ)dvg.

We shall apply this result to the case of E=S, or S., and of <{Vu, ud=
—(k/4k)| u|*—<Bru, ud.

(5.5) THEOREM. There exists a countable set ® of R such that there exists
lim, .ok "dimHER) for any A€ R\D® and (1) when n is even,

};inslk “*dimHF(Q)

vig,(At+(ascnr+ - +a —a — e —a av
Osksnlz,ae@ngl’ zeh( ( a1 g (2k) g(2k+1) o(n))) g2

}eirnk “rdimH; () ,

-»00

= = S Vi, A+ (ot  FQoaren—Taarin— = — o)AV,
0sks(n/2)-1,06, )X

(2) when n is odd,
limk -*dimHi(2)

= P S Vig,(d+(Qost = T aoren—Cocarn— ** —Qom))dVy,
0sks(n-1)/2,068p )X

}?imk “*dimHz ()

—00

= p S Vig,(A+(@snt = T @oerr—Qocrtn— " —Qom))dVy,
0sks(n-1)/2,0e6, JX

where
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1= -
On(x0) = = 22N si-iorei,  a(X)ER
with respect to an oriented orthonormal base {ri, ‘-, r2n} of T%*X.

PROOF. Since

Si=4, X Spin(X) and S_.=4_. X Spin(X),

spin¢2n) spin(2n)

we have the identity above from (3.4), and (5.4). Q.E.D.
As a consequence of (5.5), we obtain the following theorem.
(5.6) THEOREM.

. . 1 7 n
-n + —
(1) lim limk-"dimH7 (1) = -1 Sx+(ﬁ27c 6:) ,

0L A0 k-0

I I SRV A PR &
@  lim limk-"dimHy(l) = n!SX_(Zx @h),

0L A0 k—co
where

X, 1= {xeX| GO, x)/dV(x)>0} and X-:={xeX| (i0x(x))"/dV (x)<0}.

Proor. Fix xeX. We represent @,(x) as

1l ==
O.(x) = Z—E‘ AiY2i-1~7 21

with respect to an oriented orthonormal base {r, -, 722} of T%*X, where ;=R
satisfying
lail Z |a.] 2 - = as| > 0=|a5:| = =|anl.

Then it is easy to see

0L A-0(P1,*, PDFHENS

lim 2 ([tact o +amapu— - —a— S@pADIel] )
=1 +

__{ 1 if n=s, a,, -+, a,>0, and ap+y, -+, @, <0

“ 10 otherwise.

Therefore when »n is even, from (5.5), we obtain

lim lim%~"dimH{(2)

0L A0 k—oo

= > Vigy(@scyt -+ +ase—a — e —Qg)dV
Osksn/z,ae@ngx 19h( a(1) a(2k) g(2k+1) a(n)) g

T et =, (o)

and when n is odd, we obtain

lim limk-"dimH}(4)

0L 2-0 koo
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= > ~ S 5i9h(ao(1>+ Ao Qorin— —da(n))dVg
Oéké(n—l)/Z,GE’@n X

(T, o e, o

Similarly we will obtain the identity in the case of negative spinors. Q.E.D.

§6. An asymptotic estimation of dimension of harmonic spinors.

In this section, we shall apply (5.6) to an asymptotic estimation of the
dimension of harmonic spinors. The following theorem follows from (2.8) and
(5.6).

(6.1) THEOREM.

. 1 i n
-n 33 +
(1) llr?_iupk dimH}0) < n!Sx+(27r @h> , and
. m A T —1 { n
2) ll?ﬂiupk dlmHk(O)§—n—!SX_<—2;r-@h) .

As a consequence, we obtain the following theorem.
(6.2) THEOREM. (1) If [(@,)*/dV 1(x)=0 for any x< X, there exists

lkimk'" dimH£(0)

and )
limk~" dim H(0) =—'S el L)®,  limk-*dimHz(0) = 0.
k-co nJx koo

2) If [@O)*/dV, 1(x)Z0 for any x< X, there exists

| lim# " dim H3(0)

and

—1

limk-" dimHz(0) =——S e Ly,  limE-"dimH(0) = 0.
k-0 n! X k-0

ProoF. We shall only prove (1). (2) will be proved in the same way.
From (2.9), we obtain

E-rdimHF(0)— k- *dimH;(0) = £~"ind(D})
and from the Atiyah-Singer's index theorem (cf. [1]),
= k-ch(eL)YA(XN[X].

Therefore we have obtained
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lirr; infk-*dimH;(0)+ —EITSX (L) = lirrk} infl-*dimH {0}

< lirrk} supk~"dimH3;(0) = lin’} supk-"dimH;(0)+ %L ci{L)™.

From (6.1), we obtain

limk-* dim HF(0) = L'S c(L)*, and
k—co nl'Jx
Limk'“dimH;(O) =0. Q.E.D.

Addendum (added in June 1987). Let (X, g) be an oriented 2n-dimensional
compact Riemannian manifold and let {L, A} be a C>~ complex line bundle with
a Hermitian fibre metric h. Assume that X possesses a spin® structure. Then,
associated to the exact sequence '

1 — Spin — Spin® — S' —> 1,

we obtain +1/2 spinor bundle over X; S* respectively. As in Section 4, we
obtain a connection V§ of SQL* and its Laplace-Beltrami operator 4;. Now,
since we have Bochner-Weizenbsck formula for 4§ which is same as (4.2) (see
for instance [4], Theorem 1.1), we shall obtain the same results as in Section 6
in the case that X is spin®.
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