On the number of exceptional values of the Gauss maps of minimal surfaces

By Hirotaka FUJIMOTO

(Received May 9, 1986) (Revised Oct. 29, 1986)

§1. Introduction.

In 1961, R. Osserman showed that the Gauss map of a complete non-flat minimal (immersed) surface in \mathbb{R}^3 cannot omit a set of positive logarithmic capacity ([8]). Moreover, he proved the following:

THEOREM 1.1 ([9]). Let M be a minimal surface in \mathbb{R}^m $(m \ge 3)$, and p be a point of M. If all normals at points of M make angles of at least α with some fixed direction, then

$$|K(p)| \leq \frac{1}{d(p)^2} \cdot \frac{16(m-1)}{\sin^4 \alpha}$$

where K(p) and d(p) denote the Gauss curvature of M at p and the distance from p to the boundary of M respectively.

Afterwards, F. Xavier gave the following improvement of the former result of R. Osserman.

THEOREM 1.2 ([11]). The Gauss map of a complete non-flat minimal surface in \mathbb{R}^3 can omit at most six points of the sphere.

Recently, the author gave a generalization of this to the case of complete minimal surfaces in \mathbb{R}^m $(m \ge 4)$ ([4], [5]). He studied also the value distribution of the Gauss map of a complete submanifold M of \mathbb{C}^m in the case where the universal covering of M is biholomorphic to the unit ball in \mathbb{C}^n ([6]).

In this paper, relating to these results we shall give the following theorem.

THEOREM I. Let M be a minimal surface in \mathbb{R}^3 . Suppose that the Gauss map $G: M \rightarrow S^2$ omits at least five points $\alpha_1, \dots, \alpha_5$. Then, there exists a positive constant C depending only on $\alpha_1, \dots, \alpha_5$ such that

$$|K(p)| \leq \frac{C}{d(p)^2}$$

for an arbitrary point p of M.

Since $d(p) = \infty$ for any $p \in M$ in the case where M is complete, we have the following improvement of Theorem 1.2 as an immediate consequence of Theorem I.

COROLLARY 1.3. The Gauss map of a complete non-flat minimal surface in \mathbb{R}^3 can omit at most four points of the sphere.

We know some examples of complete non-flat minimal surfaces in \mathbb{R}^3 whose Gauss maps omit four points ([8], [10]). So, the number four of exceptional values of the Gauss map of Corollary 1.3 is best-possible.

We now consider a complete minimal surface M in \mathbb{R}^4 . The Gauss map may be identified with a pair of meromorphic functions $g=(g_1, g_2)$ (cf. § 5). Relating to the results in [2] and [5], we shall prove the following:

THEOREM II. Let M be a complete non-flat minimal surface in \mathbb{R}^4 and let $g=(g_1, g_2)$ be the Gauss map of M.

(i) In the case $g_1 \not\equiv const.$ and $g_2 \not\equiv const.$, if g_1 and g_2 omit q_1 points and q_2 points respectively, then $q_1 \leq 2$, or $q_2 \leq 2$, or

$$rac{1}{q_1-2} + rac{1}{q_2-2} \ge 1$$
 ,

(ii) In the case where one of g_1 and g_2 is constant, say $g_2 \equiv const.$, then g_1 can omit at most three points.

After some preparations, we shall furnish a function-theoretic lemma in §3 and give the proof of Theorem I in §4. Theorem II will be proved in §5.

It is a pleasure to thank the referee for his questions and comments, which led to improvements in the exposition.

§2. Preliminaries on Poincaré metrics.

In this section, we shall give some elementary properties of the Poincaré metric of a domain in the complex plane C.

For a domain D of hyperbolic type in C we denote the Poincaré metric of D by $ds^2 = \lambda_D(z)^2 |dz|^2$. By definition, $\lambda_D(z)$ is a positive C^2 -function satisfying the condition $\Delta \log \lambda_D = \lambda_D^2$. In particular, for a disc $\Delta(R) := \{z ; |z| < R\}$ we have

$$\lambda_{\Delta(R)}(z) = \frac{2R}{R^2 - |z|^2} \, .$$

We need later the following generalized Schwarz's lemma.

THEOREM 2.1. Let D be a domain in C and λ be a positive C²-function on D satisfying the condition $\Delta \log \lambda \geq \lambda^2$. Then, for every holomorphic map $f: \Delta(R) \rightarrow D$,

Gauss maps of minimal surfaces

$$|f'(z)|\lambda(f(z)) \leq \frac{2R}{R^2 - |z|^2}.$$

For the proof, see, e.g., [1], p. 13.

Take q distinct points $\alpha_1, \dots, \alpha_q$ in C, where $q \ge 2$. For brevity, we set

$$\lambda_{\alpha_1,\ldots,\alpha_q}(z) := \lambda_{C \setminus \{\alpha_1,\ldots,\alpha_q\}}(z).$$

PROPOSITION 2.2. Take an arbitrary constant K_0 with $K_0 > \max(1, |\alpha_1|, \dots, |\alpha_q|)$. Then, there exist positive constants A_i $(0 \le i \le q)$ depending only on $K_0, \alpha_1, \dots, \alpha_q$ such that

(i)
$$\lambda_{\alpha_1, \cdots, \alpha_q}(z) \ge \frac{A_0}{|z| \log |z|}$$
 for $|z| \ge K_0$,

(ii)
$$\lambda_{\alpha_1,\dots,\alpha_q}(z) \ge \frac{A_i}{|z - \alpha_i| \left(1 + \log^+ \frac{1}{|z - \alpha_i|}\right)} \quad (1 \le i \le q)$$

for $|z| \leq K_0$ and $z \neq \alpha_1, \dots, \alpha_q$, where $\log^+ x = \max(\log x, 0)$.

For the proof, we use the following fact shown by L. V. Ahlfors ([1], p. 17).

(2.3) Set
$$D := \{z; |z| \le 1, |z| \le |z-1|\}$$
 and

$$\zeta(z) := \frac{\sqrt{1-z}-1}{\sqrt{1-z}+1} \quad (z \in D),$$

where $\sqrt{1-z}$ means the branch with $\operatorname{Re}\sqrt{1-z}>0$ for $z\in D$. Then,

$$\lambda_{0,1}(z) \geq \left| \frac{\zeta'(z)}{\zeta(z)} \right| \frac{1}{4 - \log |\zeta(z)|} \qquad (z \in D).$$

PROOF OF PROPOSITION 2.2. We shall show first

$$\liminf_{z \to 0} \lambda_{0,1}(z) |z| \log \frac{1}{|z|} \ge 1.$$
 (1)

Since $|\zeta'(z)/\zeta(z)| = |z|^{-1}|z-1|^{-1/2}$, we have by (2.3)

$$\begin{split} \lambda_{0,1}(z)|z|\log|1/z| &\geq \frac{\log|1/z|}{|z-1|^{1/2}(4+\log(|\sqrt{1-z}+1|^2/|z|))} \\ &= \frac{\log|1/z|}{|z-1|^{1/2}(\log|1/z|+4+2\log|\sqrt{1-z}+1|)} \,, \end{split}$$

which tends to 1 as z tends to 0. So, we get (1).

Since Poincaré metrics are invariant under biholomorphic transformations and u=1/z maps $C \setminus \{0, 1\}$ biholomorphically onto itself,

$$\lambda_{0,1}(z)|dz| = \frac{1}{|z|^2} \lambda_{0,1}(\frac{1}{z})|dz|.$$

Therefore, we obtain from (1)

$$\liminf_{z \to \infty} \lambda_{0,1}(z) |z| \log |z| = \liminf_{u \to 0} \lambda_{0,1}(u) |u| \log \frac{1}{|u|} \ge 1.$$
 (2)

For each index $i \ (1 \le i \le q)$ we take another index j. Applying the distance decreasing property of Poincaré metrics to the inclusion map of $C \setminus \{\alpha_1, \dots, \alpha_q\}$ into $C \setminus \{\alpha_i, \alpha_j\}$, we see

$$\lambda_{\alpha_1,\dots,\alpha_q}(z) \ge \lambda_{\alpha_i \alpha_j}(z) \qquad (z \in C \setminus \{\alpha_1,\dots,\alpha_q\}).$$
(3)

Moreover, we have

$$\lambda_{\alpha_{i}\alpha_{j}}(z) = \frac{1}{|\alpha_{j} - \alpha_{i}|} \lambda_{0,1} \left(\frac{z - \alpha_{i}}{\alpha_{j} - \alpha_{i}} \right), \qquad (4)$$

because $w = (z - \alpha_i)/(\alpha_j - \alpha_i)$ maps $C \setminus \{\alpha_i, \alpha_j\}$ biholomorphically onto $C \setminus \{0, 1\}$. Therefore, we conclude from (3), (4) and (1)

$$\liminf_{z \to \alpha_i} \lambda_{\alpha_1, \dots, \alpha_q}(z) |z - \alpha_i| \left(1 + \log^+ \frac{1}{|z - \alpha_i|} \right)$$

$$\geq \liminf_{u \to 0} \lambda_{0, 1}(u) |u| \log \frac{1}{|u|} \left(1 - \frac{\log^+ |\alpha_i - \alpha_j|}{\log |1/u|} \right) \geq 1.$$

We now consider the function

$$h_i(z) := \lambda_{\alpha_1, \dots, \alpha_q}(z) |z - \alpha_i| \left(1 + \log^+ \frac{1}{|z - \alpha_i|} \right)$$

on the set $\Delta' := \{z; |z| \leq K_0\} \setminus \{\alpha_1, \dots, \alpha_q\}$ for each i $(1 \leq i \leq q)$. We can easily conclude $A_i := \inf_{z \in \Delta'} h_i(z) > 0$ because h_i is continuous and $\liminf_{z \to \alpha_j} h_i(z) > 0$ for each $j=1, 2, \dots, q$. The constants A_i satisfy the inequality (ii) of Proposition 2.2.

Next, we consider the function

$$h_0(z) := \lambda_{\alpha_1, \cdots, \alpha_q}(z) |z| \log |z|$$

on the set $\Delta'' := \{z; |z| \ge K_0\}$. By (2), (3) and (4),

$$\begin{split} &\lim_{z \to \infty} \inf \lambda_{\alpha_1, \cdots, \alpha_q}(z) |z| \log |z| \\ &\geq \lim_{z \to \infty} \inf \lambda_{\alpha_1 \alpha_2}(z) |z| \log |z| \\ &= \liminf_{z \to \infty} \frac{1}{|\alpha_2 - \alpha_1|} \lambda_{0, 1} \left(\frac{z - \alpha_1}{\alpha_2 - \alpha_1} \right) |z| \log |z| \\ &= \liminf_{u \to \infty} \lambda_{0, 1}(u) |u| \log |u| \ge 1 \,. \end{split}$$

Therefore, $A_0:=\inf_{z\in \mathcal{A}''}h_0(z)>0$ and A_0 satisfies the desired inequality (i) of Proposition 2.2. This completes the proof of Proposition 2.2.

§3. A function-theoretic lemma.

The purpose of this section is to prove the following function-theoretic lemma.

LEMMA 3.1. Let g be a meromorphic function on $\Delta(R)$ which omits q distinct values $\alpha_1, \dots, \alpha_{q-1}$ and $\alpha_q = \infty$, where $q \ge 3$. For $0 < (q-1)\varepsilon' < \varepsilon$, there exists a constant B depending only on ε , ε' , $\alpha_1, \dots, \alpha_q$ such that

$$\frac{(1+|g(z)|^2)^{(q-2-\varepsilon)/2}|g'(z)|}{(\prod_{i=1}^{q-1}|g(z)-\alpha_i|)^{1-\varepsilon'}} \leq B\left(\frac{2R}{R^2-|z|^2}\right).$$

For the proof, we set

$$B(w) = \frac{(1+|w|^2)^{(q-2)/2}}{\sum_{i=1}^{q-1} |(w-\alpha_1)\cdots(w-\alpha_{i-1})(w-\alpha_{i+1})\cdots(w-\alpha_{q-1})|}$$

Then, B(w) is bounded by a constant B_1 because it is continuous on $C \setminus \{\alpha_1, \dots, \alpha_{q-1}\}$ and the limits $\lim_{w \to \infty} B(w)$ and $\lim_{w \to \alpha_i} B(w)$ $(1 \le i \le q-1)$ exist. Therefore, we have the following

(3.2) In the situation of Lemma 3.1, there exists a constant B_1 depending only on $\alpha_1, \dots, \alpha_q$ such that

$$\frac{(1+|g|^2)^{(q-2)/2}|g'|}{\prod_{i=1}^{q-1}|g-\alpha_i|} \leq B_1\left(\sum_{i=1}^{q-1}\frac{|g'|}{|g-\alpha_i|}\right).$$

We shall prove next the following

(3.3) Let $g, \alpha_1, \dots, \alpha_q$ be as in Lemma 3.1 and $\eta > 0$. Then, there exist some constants $C_i > 0$ ($1 \le i \le q-1$) depending only on $\alpha_1, \dots, \alpha_q, \eta$ such that

$$\frac{|g'|}{(1+|g|^2)^{\eta/2}|g-\alpha_i|\left(1+\log^+\frac{1}{|g-\alpha_i|}\right)} \le C_i\left(\frac{2R}{R^2-|z|^2}\right).$$
(5)

To this end, we take a constant $K_0 > \max(1, |\alpha_1|, \dots, |\alpha_{q-1}|)$ and set

$$\begin{split} & \varDelta_1 := \{ z \!\in\! \mathit{\Delta}(R) \text{ ; } | g(z)| \!<\! K_0 \} \\ & \varDelta_2 := \{ z \!\in\! \mathit{\Delta}(R) \text{ ; } | g(z)| \!\geq\! K_0 \}. \end{split}$$

Then, by Proposition 2.2,

$$\lambda_{\alpha_1, \cdots, \alpha_{q-1}}(g(z)) \geq \frac{A_i}{|g(z) - \alpha_i| \left(1 + \log^+ \left| \frac{1}{g(z) - \alpha_i} \right| \right)}$$

Η. Γυμιμοτο

for $z \in \mathcal{I}_1$ and

$$\lambda_{\alpha_1, \cdots, \alpha_{q-1}}(g(z)) \geq \frac{A_0}{|g(z)| \log |g(z)|}$$

for $z \in A_2$. On the other hand, since $\Delta \log \lambda_{\alpha_1, \dots, \alpha_{q-1}} = \lambda_{\alpha_1, \dots, \alpha_{q-1}}^2$, Theorem 2.1 implies that

$$|g'(z)|\lambda_{\alpha_1,\dots,\alpha_{q-1}}(g(z)) \leq \frac{2R}{R^2 - |z|^2}.$$

Therefore, we have

$$\frac{|g'|}{(1+|g|^2)^{\eta/2}|g-\alpha_i|(1+\log^+\frac{1}{|g-\alpha_i|})} \leq \frac{|g'|}{|g-\alpha_i|(1+\log^+\frac{1}{|g-\alpha_i|})} \leq \frac{1}{A_i} \frac{2R}{R^2 - |z|^2}$$

for $z \in \mathcal{I}_1$ and

$$\frac{|g'|}{(1+|g|^2)^{\eta/2}|g-\alpha_i|\left(1+\log^+\frac{1}{|g-\alpha_i|}\right)} \leq \frac{\log|g|}{(1+|g|^2)^{\eta/2}(1-|\alpha_i|/K_0)} \frac{|g'|}{|g|\log|g|} \leq \frac{B_3}{A_0} \left(\frac{2R}{R^2-|z|^2}\right)$$

for $z \in \mathcal{A}_2$, where $B_3 := \sup_{|w| \ge K_0} (1 - |\alpha_i| / K_0)^{-1} (1 + |w|^2)^{-\eta/2} \log |w| < +\infty$. The constant $C_i := \max(1/A_i, B_3/A_0)$ satisfies the inequality (5).

PROOF OF LEMMA 3.1. Since

$$\frac{(1+|g|^2)^{(q-2-\varepsilon)/2}|g'|}{(\prod_{i=1}^{q-1}|g-\alpha_i|)^{1-\varepsilon'}} = \frac{(1+|g|^2)^{(q-2)/2}|g'|}{\prod_{i=1}^{q-1}|g-\alpha_i|} \frac{(\prod_{i=1}^{q-1}|g-\alpha_i|)^{\varepsilon'}}{(1+|g|^2)^{\varepsilon/2}},$$

we have only to show by virtue of (3.2) that there exists a constant D_i such that

$$k_{i}(z) := \frac{(\prod_{i=1}^{q-1} |g(z) - \alpha_{i}|)^{\epsilon'}}{(1 + |g(z)|^{2})^{\epsilon/2}} \frac{|g'(z)|}{|g(z) - \alpha_{i}|} \le D_{i} \left(\frac{2R}{R^{2} - |z|^{2}}\right)$$
(6)

for each $i \ (1 \leq i \leq q-1)$.

Take ε'' with $0 < \varepsilon' < \varepsilon''$ and $\varepsilon - (q-1)\varepsilon'' > 0$, and set

Gauss maps of minimal surfaces

$$H(w) := \frac{|(w-\alpha_1)\cdots(w-\alpha_{q-1})|^{\epsilon'} \left(1+\log^+\frac{1}{|w-\alpha_i|}\right)}{(1+|w|^2)^{(q-1)\epsilon''/2}}$$

The function H(w) on $C \setminus \{\alpha_1, \dots, \alpha_{q-1}\}$ is obviously continuous and $\lim_{w \to \alpha_i} H(w) = 0$ $(1 \le i \le q)$. Therefore, H(w) is bounded by a constant depending only on $\alpha_1, \dots, \alpha_q, \varepsilon', \varepsilon''$. On the other hand, for $\eta := \varepsilon - (q-1)\varepsilon'' > 0$,

$$k_{i}(z) = \frac{|g'(z)| H(g(z))}{(1+|g(z)|^{2})^{\eta/2} |g(z) - \alpha_{i}| \left(1 + \log^{+} \frac{1}{|g(z) - \alpha_{i}|}\right)}$$

By the use of (3.3) we have the desired inequality (6).

§ 4. Minimal surfaces in R^3 .

Let $x=(x_1, x_2, x_3): M \to \mathbb{R}^3$ be a (connected oriented) minimal surface in \mathbb{R}^3 . With each positive isothermal local coordinates (u, v) associating a holomorphic local coordinate $z=u+\sqrt{-1}v$, we may regard M as a Riemann surface. Let $G: M \to S^2$ be the Gauss map of M. By definition, G maps each point p of Mto the unit vector $G(p) \in S^2$ which is normal to M at p. Instead of G, we study the map $g: M \to \overline{C} := \mathbb{C} \cup \{\infty\}$ which is the conjugate of the composite of G and the stereographic projection from S^2 onto \overline{C} . By the assumption of minimality of M, g is a meromorphic function on M.

For the proof of Theorem I, we may replace M by the universal covering of M. On the other hand, there is no compact minimal surface in \mathbb{R}^3 , and any meromorphic function on \mathbb{C} which omits three distinct values is a constant because of Picard's theorem. Therefore, by Koebe's uniformization theorem we assume that M is the unit disc Δ .

Set $\phi_i := \partial x_i / \partial z = (\partial x_i / \partial u - \sqrt{-1} \partial x_i / \partial v) / 2$ for each i=1, 2, 3. By elementary calculation, we see

$$g = \frac{\phi_3}{\phi_1 - \sqrt{-1} \phi_2}$$

(see [10]). On the other hand, the metric on M induced from \mathbb{R}^3 is given by $ds^2 = \lambda^2 |dz|^2 = 2(|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2)|dz|^2$. If we set $f := \phi_1 - \sqrt{-1} \phi_2$, it is easily shown that

$$\lambda^2 = \|f\|^2 (1 + \|g\|^2)^2$$
 ,

where f has no zero in case that g has no pole. The curvature K of M is given by

$$K = -\frac{\Delta \log \lambda}{\lambda^2} = -\frac{4|g'|^2}{|f|^2(1+|g|^2)^4}.$$
 (7)

Now, suppose that $\overline{C} \setminus g(M)$ contains five distinct points $\alpha_1, \dots, \alpha_5$ as in Theorem I. By a suitable coordinate change we may assume that $\alpha_5 = \infty$. Let z_0 be an arbitrary point of M. Our purpose is to prove that

$$|K(z_0)| \leq \frac{C}{d(z_0)^2}$$

for a suitable positive constant C depending only on $\alpha_1, \dots, \alpha_5$, where $d(z_0)$ is the largest lower bound of the lengths of all piecewise smooth curves going from z_0 to the boundary of M. Without loss of generality, we assume that $z_0=0$ and $K(0)\neq 0$. Take real numbers ε , ε' with $0 < 4\varepsilon' < \varepsilon < 1$. Set $p:=2/(3-\varepsilon)$. We consider a many-valued analytic function

$$\psi := \frac{f^{1/(1-p)}(\prod_{i=1}^{4}(g-\alpha_i))^{p(1-\epsilon')/(1-p)}}{(g')^{p/(1-p)}}$$
(8)

on an open set $M' := \{z \in M; g'(z) \neq 0\}$. Take an arbitrary single-valued branch ϕ_0 of ϕ in a neighborhood of the origin. Then ϕ_0 has an analytic continuation ϕ_{γ} along any continuous curve $\gamma : [0, 1] \rightarrow M'$ with $\gamma(0) = 0$. Let $\pi : \tilde{M}' \rightarrow M'$ be the universal covering of M'. Each point \tilde{z} of \tilde{M}' corresponds to the homotopy class of a continuous curve $\gamma : [0, 1] \rightarrow M'$ with $\gamma(0) = 0$ and $\gamma(1) = \pi(\tilde{z})$. Define

$$w = F(\tilde{z}) := \int_{\gamma} \phi_{\gamma}(z) dz .$$
(9)

Obviously, F is a single-valued holomorphic function on \tilde{M}' and satisfies the condition that $F(\tilde{o})=0$ and $dF(\tilde{z})\neq 0$ for any $\tilde{z}\in \tilde{M}'$, where \tilde{o} denotes the point of \tilde{M}' corresponding to the constant curve o. Then, we can find a positive constant R such that F maps a connected open neighborhood U of \tilde{o} bijectively onto $\mathcal{A}(R):=\{w\in C\,;\,|w|< R\}$. Choose the largest R with this property and consider a map $\Phi:=\pi \cdot (F|U)^{-1}:\mathcal{A}(R)\to M$. Here, we shall give the following estimate of R.

(4.1) There exists a positive constant E_1 depending only on $\alpha_1, \dots, \alpha_5$ and $\varepsilon, \varepsilon'$ such that

$$R^{1-p} \leq E_1 |K(0)|^{-1/2}$$
.

To see this, we set $h(w) = g(\Phi(w))$. Since

$$\left|\frac{dw}{dz}\right| = \frac{|f|(\prod_{i=1}^{4}|g-\alpha_i|)^{p(1-\varepsilon')}}{|g'|^{p}} \left|\frac{dw}{dz}\right|^{p}$$

by (8) and (9), we have

$$\begin{split} \Phi^* ds^2 &= \lambda (\Phi(w))^2 \left| \frac{dz}{dw} \right|^2 |dw|^2 \\ &= |f \cdot \Phi|^2 (1 + |g \cdot \Phi|^2)^2 \cdot \frac{|g'(\Phi(w))|^{2p} |dz/dw|^{2p}}{|f \cdot \Phi|^2 (\prod_{i=1}^4 |g \cdot \Phi - \alpha_i|)^{2p(1-\varepsilon')}} |dw|^2 \end{split}$$

$$=\frac{(1+|h|^2)^2|h'|^{2p}}{(\prod_{i=1}^4|h-\alpha_i|)^{2p(1-\varepsilon')}}|dw|^2$$

On the other hand, since $d\Phi(\mathbf{o}) \neq 0$ for the map $z = \Phi(w)$, we can take w as a holomorphic local coordinate around the origin. The curvature $K(\mathbf{o})$ of M at the origin is given by

$$K(\mathbf{o}) = -\frac{4|h'(\mathbf{o})|^2}{(1+|h(\mathbf{o})|^2)^2} \frac{(\prod_{i=1}^4 |h(\mathbf{o}) - \alpha_i|)^{2p(1-\varepsilon')}}{(1+|h(\mathbf{o})|^2)^2 |h'(\mathbf{o})|^{2p}}$$
$$= -\frac{4|h'(\mathbf{o})|^{2(1-p)}(\prod_{i=1}^4 |h(\mathbf{o}) - \alpha_i|)^{2p(1-\varepsilon')}}{(1+|h(\mathbf{o})|^2)^4}.$$

Now, apply Lemma 3.1 to the function h. Then, we see

$$\frac{(1+|h(\mathbf{0})|^2)^{(3-\varepsilon)/2}|h'(\mathbf{0})|}{(\prod_{i=1}^4|h(\mathbf{0})-\alpha_i|)^{1-\varepsilon'}} \le \frac{2B}{R}$$

Consequently,

$$R^{1-p} \leq \frac{(2B)^{1-p} (\prod_{i=1}^{4} |h(0) - \alpha_i|)^{(1-\varepsilon')(1-p)}}{(1+|h(0)|^2)^{(1-p)/p} |h'(0)|^{1-p}}$$
$$\leq 2|K(0)|^{-1/2} \frac{(2B)^{1-p} (\prod_{i=1}^{4} |h(0) - \alpha_i|)^{1-\varepsilon'}}{(1+|h(0)|^2)^{(p+1)/p}}$$

For sufficiently small ε , ε' ,

$$E_1 := 2 \sup_{w \in C} \frac{(2B)^{1-p} (\prod_{i=1}^{4} |w - \alpha_i|)^{1-\varepsilon'}}{(1+|w|^2)^{(p+1)/p}} < \infty.$$

The constant E_1 satisfies the inequality (9). Thus, we conclude (4.1).

Now, for each point a with |a| = R we consider a line segment

$$\Delta(R)$$
 and a curve

in

$$\Gamma_a: z = \Phi(ta), \quad 0 \leq t < 1$$

 $L_a: w = ta$, $0 \leq t < 1$

in M'. We shall prove that there exists a point a_0 with $|a_0| = R$ such that Γ_{a_0} tends to the boundary of M, namely, for each compact set C in M we can find some t_0 with $0 < t_0 < 1$ satisfying the condition that $\Phi(ta_0) \notin C$ for $t_0 < t < 1$. Assume that there is no point with such property. Then, for each point a with |a| = R there exists a sequence $\{t_\nu; \nu = 1, 2, \cdots\}$ which tends to 1 as ν tends to $+\infty$ such that $\{\Phi(t_\nu a); \nu = 1, 2, \cdots\}$ converges to a point $z_0 \in M$. Then, $g'(z_0) \neq 0$. In fact, if $g'(z_0) = 0$, then we can find a positive constant E_2 such that

$$|\psi(z)| \ge \frac{E_2}{|z-z_0|^{mp/(1-p)}}$$

in a neighborhood V of z_0 , where m denotes the zero multiplicity of g' at z_0 . Therefore, we have

$$R = \int_{L_a} |dw| = \int_{\Gamma_a} \left| \frac{dw}{dz} \right| |dz|$$
$$= \int_{\Gamma_a} |\psi(z)| |dz|$$
$$\ge E_2 \int_{L_a \cap V} \frac{|dz|}{|z - z_0|^{mp/(1-p)}} = \infty$$

,

because $mp/(1-p)=2m/(1-\varepsilon)>1$. This contradicts (4.1). Thus, we have $z_0 \in M'$. Take a relatively compact, simply connected open neighborhood V' of z_0 with $\overline{V'} \subset M'$. Since $|\psi|$ is a nowhere zero continuous function on M', there exists a positive constant E_3 such that $|\psi(z)| \ge E_3$ on $\overline{V'}$. If there exists a sequence $\{t'_{\nu}; \nu=1, 2, \cdots\}$ which tends to 1 as ν tends to $+\infty$ such that $\Phi(t'_{\nu}a) \notin V'$, then we have easily an absurd conclusion

$$R = \int_{\Gamma} |dw| \ge E_{s} \int_{\Gamma} |dz| = \infty \,.$$

Therefore, $\Phi(ta) \in V'$ ($t_0 < t < 1$) for some t_0 . Moreover, by the same argument as above, we can easily conclude

$$\lim_{t\to 1} \Phi(ta) = z_0.$$

Take a connected component \tilde{V} of $\pi^{-1}(V')$ which includes $\{(F|U)^{-1}(ta): t_0 \leq t < 1\}$. Since $\pi | \tilde{V} : \tilde{V} \to V'$ is a homeomorphism, $(F|U)^{-1}(ta)$ tends to a point $\tilde{z}_0 \in \tilde{M}$ as t tends to 1. On the other hand, F maps an open neighborhood of \tilde{z}_0 biholomorphically onto an open neighborhood of a. This shows that $(F|U)^{-1}$ can be extended holomorphically to a neighborhood of each point a with |a|=R as a map into \tilde{M}' . Since $\{w; |w|=R\}$ is compact, we can easily find a constant R' with R < R' such that there exists a holomorphic map $H(w): \Delta(R') \to M'$ with the property that $H(w)=(F|U)^{-1}(w)$ for $w \in \Delta(R)$ and $(F \cdot H)(w)=w$ for $w \in \Delta(R')$. Then, F maps an open set $H(\Delta(R'))$ biholomorphically onto $\Delta(R')$. This contradicts the property of R. Accordingly, we can choose a point a_0 with $|a_0|=R$ such that Γ_{a_0} tends to the boundary of M. Therefore, d(o) is not larger than the length of Γ_{a_0} .

Now, we apply Lemma 3.1 to the function h to see

$$\frac{(1+|h|^2)|h'|^p}{(\prod_{i=1}^4 |h-\alpha_i|)^{p(1-\varepsilon')}} \le B^p \Big(\frac{2R}{R^2 - |w|^2}\Big)^p,$$

where 0 . This implies that

Gauss maps of minimal surfaces

$$\begin{split} d(\mathbf{0}) &\leq \int_{\Gamma_{a_0}} ds = \int_{L_{a_0}} \Phi^* ds \\ &= \int_{L_{a_0}} \frac{(1+|h|^2)|h'|^p}{(\Pi_{i=1}^4|h-\alpha_i|)^{p(1-\varepsilon')}} |dw| \\ &\leq B^p \int_{L_{a_0}} \left(\frac{2R}{R^2 - |w|^2}\right)^p |dw| \\ &= B^p \int_0^R \left(\frac{2R}{R^2 - t^2}\right)^p dt \\ &= 2^p B^p R^{1-p} \int_0^1 \frac{dt}{(1-t^2)^p} \,. \end{split}$$

By the help of (4.1) we complete the proof of Theorem I.

§ 5. Minimal surfaces in R^4 .

Let $x=(x_1, x_2, x_3, x_4): M \to \mathbb{R}^4$ be a complete minimal surface in \mathbb{R}^4 . As in the case of minimal surfaces in \mathbb{R}^3 , for the proof of Theorem II we may assume that M is biholomorphic to the unit disc Δ . As is well-known, the set of all oriented 2-planes in \mathbb{R}^4 is canonically identified with the quadric

$$Q_2(C) := \{ (w_1 : \dots : w_4) ; w_1^2 + \dots + w_4^2 = 0 \}$$

in $P^{3}(C)$. By definition, the Gauss map $G: M \rightarrow Q_{2}(C)$ is the map which maps each point z of M to the point of $Q_{2}(C)$ corresponding to the oriented tangent plane of M at z. The quadric $Q_{2}(C)$ is biholomorphic to $\overline{C} \times \overline{C}$. By suitable identifications we may regard G as a pair of meromorphic functions $g=(g_{1}, g_{2})$ on M. Set $\phi_{i}:=\partial x_{i}/\partial z$ for $i=1, \dots, 4$. Then, g_{1} and g_{2} are given by

$$g_1 = \frac{\phi_3 + \sqrt{-1}\phi_4}{\phi_1 - \sqrt{-1}\phi_2}, \qquad g_2 = \frac{-\phi_3 + \sqrt{-1}\phi_4}{\phi_1 - \sqrt{-1}\phi_2}$$

and the metric on M induced from R^4 is given by

$$ds^{\rm 2} = |f|^{\rm 2} (1 + |g_1|^{\rm 2}) (1 + |g_2|^{\rm 2}) |dz|^{\rm 2}$$
 ,

where $f := \phi_1 - \sqrt{-1} \phi_2$.

We first study the case where $g_i \not\equiv \text{const.}$ for i=1, 2. Suppose that g_1 and g_2 omit q_1 distinct values $\alpha_1, \dots, \alpha_{q_1} \equiv \infty$ and q_2 distinct values $\beta_1, \dots, \beta_{q_2} \equiv \infty$ respectively. Moreover, we assume that $g'_1(0) \neq 0$, $g'_2(0) \neq 0$ and

$$q_1 > 2, \qquad q_2 > 2, \qquad \frac{1}{q_1 - 2} + \frac{1}{q_2 - 2} < 1.$$
 (10)

Take real numbers ε , ε' such that $0 < (q_i - 1)\varepsilon' < \varepsilon < q_i - 2$ for i=1, 2 and

$$\frac{1}{q_1-2-\varepsilon}+\frac{1}{q_2-2-\varepsilon}<1.$$

Set $p_i:=1/(q_i-2-\varepsilon)$ for i=1, 2. By the assumption (10), we see $q_i \ge 4$ (i=1, 2). Moreover, we have $q_2 \ge 5$ in the case $q_1=4$, and $q_2 \ge 4$ in the case $q_1 \ge 5$. It suffices to consider the cases $(q_1, q_2)=(4, 5)$ and $(q_1, q_2)=(5, 4)$. In each case, $p_i/(1-p_1-p_2)>1$ (i=1, 2) for a sufficiently small ε . We now consider a many-valued function

$$\psi := \frac{f^{1/(1-p_1-p_2)}(\prod_{i=1}^{q_1-1}(g_1-\alpha_i))^{p_1(1-\varepsilon')/(1-p_1-p_2)}(\prod_{j=1}^{q_2-1}(g_2-\beta_j))^{p_2(1-\varepsilon')/(1-p_1-p_2)}}{(g_1')^{p_1/(1-p_1-p_2)}(g_2')^{p_2/(1-p_1-p_2)}}$$
(11)

on a set $M' := \{z \in M; g'_1(z) \neq 0 \text{ and } g'_2(z) \neq 0\}$. Let ψ_0 be a single-valued branch of ψ in a neighborhood of the origin and $\pi : \tilde{M}' \to M'$ be the universal covering of M'. As in the previous section, for each $\tilde{z} \in \tilde{M}'$ taking a continuous curve γ whose homotopy class corresponds to \tilde{z} and an analytic continuation ψ_{γ} of ψ_0 along γ , we define

$$F(\tilde{z}) := \int_{\gamma} \phi_{\gamma}(\zeta) d\zeta$$
.

Then, $F(\delta)=0$ and $dF(\tilde{z})\neq 0$ for all $\tilde{z}\in \tilde{M}'$. We choose the largest R such that F maps a connected neighborhood of δ bijectively onto $\mathcal{L}(R)$, where $R<+\infty$ by virtue of Liouville's theorem. Set $h_i(w):=g_i(\Phi(w))$ on $\mathcal{L}(R)$ for i=1, 2, where $\Phi=\pi \cdot (F|U)^{-1}$. The metric on $\mathcal{L}(R)$ induced from M by Φ is given by

$$\Phi^* ds^2 = |f \cdot \Phi|^2 (1+|h_1|^2) (1+|h_2|^2) \left| \frac{dz}{dw} \right|^2 |dw|^2 .$$

On the other hand, by (11) and the definition of F, we have

$$\left|\frac{dw}{dz}\right| = \frac{|f|(\prod_{i=1}^{q_1-1}|g_1-\alpha_i|)^{p_1(1-\varepsilon')}(\prod_{j=1}^{q_2-1}|g_2-\beta_j|)^{p_2(1-\varepsilon')}}{|g_1'|^{p_1}|g_2'|^{p_2}} \left|\frac{dw}{dz}\right|^{p_1+p_2}$$

It follows that

$$\left|\frac{dz}{dw}\right| = \frac{|h_1'|^{p_1}|h_2'|^{p_2}}{|f|(\prod_{i=1}^{q_1-1}|h_1-\alpha_i|)^{p_1(1-\varepsilon')}(\prod_{j=1}^{q_2-1}|h_2-\beta_j|)^{p_2(\star-\varepsilon')}},$$

because $h'_i(w) = g'_i(\Phi(w))\Phi'(w)$ (i=1, 2). Therefore, we obtain

$$\Phi^* ds^2 = \frac{(1+|h_1|^2)(1+|h_2|^2)|h_1'|^{2p_1}|h_2'|^{2p_2}}{(\prod_{i=1}^{q_1-1}|h_1-\alpha_i|)^{2p_1(1-\varepsilon')}(\prod_{j=1}^{q_2-1}|h_2-\beta_j|)^{2p_2(1-\varepsilon')}} |dw|^2 \, .$$

By the same reason as in the previous section, we can find a point a_0 with $|a_0|=R$ such that for the line segment L from 0 to a_0 in $\Delta(R)$ the curve $\Gamma=\Phi(L)$ tends to the boundary of M. By the assumption of the completeness of M the length d of Γ is infinite. On the other hand, we obtain by the help of Lemma 3.1

$$d \leq \int_{L} \frac{(1+|h_{1}|^{2})^{1/2}(1+|h_{2}|^{2})^{1/2}|h_{1}'|^{p_{1}}|h_{2}'|^{p_{2}}}{(\prod_{i}|h_{1}-\alpha_{i}|)^{p_{1}(1-\epsilon')}(\prod_{j}|h_{2}-\beta_{j}|)^{p_{2}(1-\epsilon')}} |dw|$$
$$\leq B' \int_{L} \left(\frac{2R}{R^{2}-|w|^{2}}\right)^{p_{1}+p_{2}} |dw| = B'' R^{1-(p_{1}+p_{2})} < \infty$$

which is absurd. This completes the proof of Theorem II, (i).

We next consider the case $g_1 \not\equiv \text{const.}$ and $g_2 \equiv \text{const.}$ Suppose that g_1 omits four distinct values $\alpha_1, \dots, \alpha_4$, where we assume $\alpha_4 = \infty$. In this case, we use a many-valued function

$$\psi := \frac{f^{1/(1-p)}(\prod_{i=1}^{4}(g_1 - \alpha_i))^{p(1-\epsilon')/(1-p)}}{(g')^{1/(1-p)}}$$

instead of (11), where $0 < 3\varepsilon' < \varepsilon < 1$ and $p := 1/(2-\varepsilon)$. By the same method as above, we can construct a continuous curve of finite length which goes from the origin to the boundary of M. This contradicts the assumption that M is complete. Therefore, we conclude Theorem II, (ii).

References

- L. A. Ahlfors, Conformal invariants, Topics in geometric function theory, McGraw-Hill, New York, 1973.
- [2] C.C. Chen, On the image of the generalized Gauss map of a complete minimal surface in R⁴, Pacific J. Math., 102 (1982), 9-14.
- [3] S.S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math., 19 (1967), 15-34.
- [4] H. Fujimoto, On the Gauss map of a complete minimal surface in R^m, J. Math. Soc. Japan, 35 (1983), 279-288.
- [5] H. Fujimoto, Value distribution of the Gauss maps of complete minimal surfaces in *R^m*, J. Math. Soc. Japan, 35 (1983), 663-681.
- [6] H. Fujimoto, Non-integrated defect relation for meromorphic maps of complete Kähler manifolds into $P^{N_1}(C) \times \cdots \times P^{N_k}(C)$, Japanese J. Math., 11 (1985), 233-264.
- [7] R. Narasimhan, Complex analysis in one variable, Birkhäuser, Boston, 1985.
- [8] R. Osserman, Minimal surfaces in the large, Comment. Math. Helv., 35 (1961), 65-76.
- [9] R. Osserman, Global properties of minimal surfaces in E³ and Eⁿ, Ann. of Math., 80 (1964), 340-364.
- [10] R. Osserman, A survey of minimal surfaces, Van Nostrand, New York, 1969.
- [11] F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere, Ann. of Math., 113 (1981), 211-214.

Hirotaka FUJIMOTO

Department of Mathematics Faculty of Science Kanazawa University Marunouchi, Kanazawa 920 Japan