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0. Introduction.

As is well-known, there are vast references on (local) hypoellipticity of de-
generate elliptic-parabolic operators (cf. [2], [3], [8], [9], [13] and their
references). However, one can find only few papers concerned with global
hypoellipticity. Oleinik and Radkevich and Fedii proved global hypo-
ellipticity of degenerate elliptic-parabolic operators when S={x : dim Lie(x)<d}
is either a smooth hypersurface or an isolated point. Fedii and Fujiwara
and Omori found an operator which is globally hypoelliptic but not (locally)
hypoelliptic ; Amano generalized their results. In this paper, we shall show
sufficient conditions for global hypoellipticity, which are stated in terms of dif-
fusion and drift vector fields. Our results contain Oleinik and Radkevich’s, Fedii’s
and Fujiwara and Omori’s theorems as special cases. We can apply our theo-
rems when S is not a smooth hypersurface, and further, since the proof of
theorems essentially depends on a certain type of moderate a priori estimates
(Proposition 2.1), our results are applicable to a wider class of operators.

Recently, Kusuoka and Stroock and Omori proved similar theorems ;
their methods are different from ours. Unfortunately, their results are not
applicable to the operators which are not of Hérmander type.

Throughout this paper, £ is an open set of R¢, and

i,j=1

a a
P= 3 awaxiazﬁ _Zlb‘axj—i-c(x)
<
is a differential operator with real coefficients satisfying

a(x) = a’i(x) € C=(2), bi(x) € CD), c(x)e C=(Q)
and

zV‘_, a“(x):£;,=20 for any (x, &) € @xR?,

=1

1,

<,

i.e., P is a degenerate elliptic-parabolic operator in £. We define vector fields
XO: Xl: Y Xd by
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Xo= b= 30,090, Xi= 3aY0., (1<i<d).
i=1 =1 =1

X, is called drift vector field and each X; (1=/<d) is called diffusion vector field.
Lie(-) denotes a distribution (in the sense of differential geometry) generated by
the Lie algebra Lie(X,, X, ---, Xy), i.e., Lie(x)={X(x): XeLie(X,, X,, ---, Xo)}.
S stands for the set {x€Q:dimLie(x)<d}. In this paper, C*(2) denotes a
set of all C* smooth real-valued functions defined in 2, and C}) denotes a
set of functions feC*(2) whose derivatives 9%2f (|a|<k) are bounded in .
Unless otherwise specified, we use the same notation of Kumano-go [10].

THEOREM 1. Assume that S is a compact set of 2. If there is a real-valued
function @< C=(Q) such that

S={xe2: d(x)=0},

and if there is a finite sequence of vector fields {X®}}L, such that each X® is
expressed as X P=X¢_ AP X;, A= C>(2) and

S = ,,(V_jl{xES:X""-'-X‘”X‘”(D(x)#O}, 0.1

then the operator P is globally hypoelliptic in 8.

Modifying the proof of [Theorem I, we can prove the following fact: Assume
that S is a compact set of 2, assume that there is a real-valued function @< C=(Q)
and there is a constant p>0 such that

Sc{xel:|0(x)|<p},

and assume that there is a finite sequence of vector fields {X‘®}]L; satisfying the
same conditions of [Theorem 1. If ue9’'(Q) and Pucs H(R2) for a real number
s, and if p>0 is sufficiently small, then ucs H(2). Here p depends on s. This
shows that a solution us D'(2) of the equation Pu=f (f€C=(2)) is sufficiently
smooth, if the set S is sufficiently thin with respect to the vector fields X,, X, -,
X, (cf. Example 1).

ExXAMPLE 1. Let us consider an operator
P, = 0%, +a,(x1, x,)0%,
in R?, where =0, a,€C=(2) and

a(x){>0 (1 D(x)| > p)
Tl =00 (10w)I<p).

Here @(x)=0(x,, x,)=(x?+xi—x)*—(x?+x}). In case p=0, shows
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the P,=P, is globally hypoelliptic. It is to be noted that we cannot apply
Oleinik and Radkevich’s and Fedii’s theorems to the operator P, since @(x)=0
is not a C* submanifold of R* and since d,,9(0)=0%,®(0)=0. is not
applicable to the operators P, with p>0. However, modifying the proof, we
can prove the following: If u€9’(R?) and P,uc H,(R?) for a real number s,
and if p>0 is sufficiently small with respect to s, then ue H(R?).

THEOREM 2. Assume that S is a compact set of £ with S=§, and assume
that
Xi(x)=0, Xy(x)-e;,+0 in S 0.2)

holds for some i, (1<i,<d). Then the operator P is globally hypoelliptic in £2.

k-th
Here ¢,=(0, -+, 0,1, 0, =, 0), k=12, -, n. By Lemmaly S=S, Xi(x)
=0 and Xy(x)-e;,#0 imply a**(x)=0and b*(x)#0, i.e., P is (degenerate) para-
bolic in x;,. Roughly speaking, shows that the operator P is globally
hypoelliptic in 2, if P is (degenerate) parabolic in 2 with respect to a certain
variable (cf. Example 2). is not contained in In fact,

we cannot apply to the operators with $#@. We can remove the
assumption S=S of if we replace [(0.2) by a®e®(x)=0, b*(x)#0 in S.

EXAMPLE 2. Let a=C=(f2) be a nonnegative function such that R*\(supp a)
is compact. Then the operator

0z,+a(x,, x,)0%,

is globally hypoelliptic in R2 It is not necessary that the boundary of suppa
is C*= smooth.

If we restrict ourselves to a certain sub-class of formally self-adjoint de-
generate elliptic operators, then the global hypoellipticity follows from a moder-
ate assumption which is weaker than

THEOREM 3. Assume that S is a compact set of 2, and assume that P is a
formally self-adjoint operator such that

02a¥(x)=0 in S (1L |al|L2, 1<, j<d) and ¢<0in Q. 0.3)
Then the operator P is globally hypoelliptic in 2, if the system

i= ié LX(x)  (LeR) (0.4)

is weakly controllable in 2, i.e., if for any points pQ and q=8, and for any
neighborhoods V(p) and V(q) of p and g, there is a finite sequence of open sets V,
(k=0,1, -, N) in £ and there is a finite sequence of C* functions ¢*(¢, x)
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0Zt<T,, x€Vy, k=1, -, N) such that peV,CV(p), q€VyCV(g), V.=
¢k(Tk) Vk—l) (k:]-: Tty N); ¢k(t) X)EQ (OétéTk; xEVk; kzly Tty N) and

#= TAGHX(GY,  $'0 v =x,

where ;= C=(R), and such that each ¢*(T., +) is a C* diffeomorphism from V-,
onto V.

remains valid when 2 is a C* manifold. In fact, we can prove
the following fact: Let P be a degenerate elliptic-parabolic operator defined on
a C~ manifold M. Assume that S is a compact set of M with SE M, and assume
that P is a formally self-adjoint operator such that
d
P-= 3 0,(a%0,;-)+c

1, j=1

in local coordinates, and such that 0%a*=0in S (1< |a| L2, 14, j<d) and ¢<0
in Q. If the system (0.5) is weakly controllable on M, then the operator P is
globally hypoelliptic on M (cf. Example 3). In case S=M, P is not always glo-
bally hypoelliptic (cf. [7]). However, by modifying the proof of
we can show that if the system (0.5) is weakly controllable on M, and if
ue 9’ (M), PeC*(M) and ue C=(U) for some open set U of M, then us C*(M).
This shows that C* regularity of solutions propagates along the diffusion vector
fields X,, -+, Xq (cf. Example 4).

ExAMPLE 3. Let a(x)=a(x,, x,) C~(T?) be a nonnegative function such that
a(x)=0 implies 0¢a(x)=0 (x=T? |a|=2), where T?*=R?/2zZ?. Then the
operator

0z, +0z,(a(xy, x:)0z,")

is globally hypoelliptic on 72 if and only if the system
i= 34X (LeR)
is weakly controllable on 7%, where X;=0,, and X,=a(x)0,,.
EXAMPLE 4. Let
P= 3 a%0,0.,

be a degenerate elliptic operator with real constant coefficients defined on a
torus T°=R?/2xrZ* Assume that the system

X =

g

1
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is weakly controllable on T2, where Xi:2§-=1a”6$j (i=1,2). If ueg(T?,
Pue C=(T?) and if ueC=U) for some open set U of T?, then ues C(T?).

1. Preliminaries.

In this section, we shall prove elementary lemmas on nonnegative functions,
positive semi-definite quadratic forms and degenerate elliptic-parabolic operators.

LEMMA 1.1. Let f(t)e C¥R) be a nonnegative function. Then we have
(f'®r= 2(§£l F/&ONfE  teR). (L1

PROOF. For any t€ R, Taylor’s formula gives

0< fG+h) < f(t)+f’(t)h+%h2 (heR),

where C=sup,r|f”(s)|]. Hence, we obtain
(ffOr—=2Cf)=0 (teR). n
LEMMA 1.2 ([14]). Let (a¥) be a symmetric positive semi-definite dxXd ma-

trix. Then we have

(éa”‘&j)zé a”(kjE:la“EkEz) eR?, 1<i<d). (1.2)

PrOOF. By applying Lemma 1.1 to the nonnegative functions

G5 B s €=, -, 8)eRY 1SiSd),

1

we obtain [(1.2) [ ]
LEMMA 1.3 ([14]). Let a¥(x)eCiR?) (1=, j=d) be real-valued functions
such that a*(x)=a’*(x) (x€ R*%) and

S a¥(xeE; =0 (xeRY ESRY).

%, j=1

Then there is a constant C=0 depending only on sup|o¢a®’| (1<4, j<d, 1< |a| £2)
such that

da s
2 a”(x)uxla:iuxlzj) (1.3)

i,7=1

& P_ g
<i,§1ark(x)urixj) = Cz=21(
(ueCyRY), xeR?, 1=k=<d).

PrROOF. Since the matrix (a%/(x)) is positive semi-definite, a*(x)=0, a*(x)
+2a%(x)+ai(x)20 and (¢*(x)?<a*(x)a’(x). By Lemma L1, we have
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(a¥,(x0)) = 2C1a*(x),
(a¥(x)+2a¥,(x)+a¥, (%)) £ 4Cy(a*(x)+a’(x))
for 14, 7, k< d, where
C,=sup{|a¥ (x)|: xeR¢ 1<4, k< d},

C; =sup{|a¥,. (x)+2a¥,,,(0)+af,. ()| : xR, 14, 7, k< d}.
Hence, we obtain

(@50 S (3 CoA3C) @ () +ai(n);

this gives

(i,]z‘:)1 a¥ (X) sz, )2 < 2d2(% C1+3C2> lé (ﬁ)l a”(X)MMiuxlx,-)-

We now fix a point p of R¢ arbitrarily. Since a symmetric matrix is dia-
gonalized by a suitable orthogonal matrix, and since for any orthonormal trans-
formation (x;, xz, -+, xa)—(¥1, ¥s, ==+, ¥aq) direct computation gives

. 2 0y & 0y, 0y
j — n ij tYrm
Cylain; = ,?—;1 0x, (l,n%layn d0x; 0x; uy”’"‘>

and

d

. d .0y, 0y
tJ —_ igZst Yom
G Uz paithape; = nz=31<l,2=1a 0x; axj uy"yluynym>'

we may assume that the matrix (a®(p)) is diagonal. Therefore, it follows that
2

(i’]Zd__)l ai",,(p)ux,-x,-) <Gy l_)i (iél a“(i))ux,xiuzlzj) ,

where C;=0 is a constant independent of the choice of p. [ |

REMARK. By applying to the function
ww) =5 B émrx, (R4 E =R,

we obtain

d 2 d . d s

(tZ ai’,,(X)Eim) = C(lfl 2 a2 2 a“(x)&&) (1.9)
,j=1 i,j=1 1, j=1
(x€R4, &, neR?, 1Sk<d)

(cf. [16]). (1.4) shows that a¥,(x)=0 if a*(x)=a(x)=0.

LEMMA 1.4. For any compact set KCQ and for any ¢=0, any multi-index
B+0 and any 0>0, there is a constant C=0 such that
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[ Peg>ull-1p0 < 0l Pull-o+Cllul, (usCx(). (L.5)

PROOF. Since K is a compact set contained in £, we may assume that P

is a degenerate elliptic-parabolic operator with real coefficients belonging to the
class Cy(R?). [1.3) gives

B IPeult = O3 (B [0 dn) +Hull weCx@).

i, 1

Integrating by parts, we obtain

Sa uxk.tluxkx]

ij d 10 5 s

a ux,,x_,uxkzk x+ axkuxlxjuxkdx“" 2 axixjuxkdx

S(a Juzlx]—l-b uxi-l—cu)uzkxkdx—i—S(azkuzzzl—l—bxkuxl—l—cxku)uxkdx

+S(.%.a§cfixj——%-b§i+c)u3kdx (usCz(2)).

Hence, we have

%‘LIIIP(,s)uH% = Cz{llPuHx-aHu|l1+a—l—(|§=llll’<ﬁ>ull_,)llu[[1+,,—|-[[unf}

(ueCR(2));
this implies that

2 HP(ﬁ,ullz < Gl Pulli-olullisotlulive)  (ueCx(@). (1.6)
Since [P, 47'], [Py, A71]1€S°, we have

[Pegruli2y £ |Pepp A~ ullo+Collully  (ueCr(Q)) (1.7)
and
[PA ull1-0 S | Pull-o+Csllully, (weC3(2)). (1.8)

Therefore, it follows from (1.6), (1.7) and that
I£XI|P(ﬁ)u1]3|ﬁx < CollPull-sllulls+lul?)  (ueCxr@)). (1.9)

It is easy to show that
[Pegrull2ipn = Collully  (ueCx(2))

for |Bl=2. Thus, (1.5) is proved. |

REMARK. Since we may assume P<S?% and since
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[Py, A°] € S+, [P, A*]— ﬁElC,s/I“‘le SINN
1Bi=

for some constants Cg, we can prove, by (1.5), the following fact: For any
compact set KC£2 and for any s€R, any ¢=0, any multi-index B+0 and any
0>0, there is a constant C=0 such that

IPcg>tills-1p1 < 0l Pulls-o+Cllullsss  (ueCr(D)). (1.10)

LEMMA 1.5. For any compact set KCQ and for any ¢=0, any multi-index
a+0 and any 0>0, there is a constant C=0 such that

[P<Oully < 8| Pull-o+Cllulls,  (ueCH(R)). - (11D
PROOF. gives

S IPouls < O 3 (et de+ulf)  wecu@).
laT=1 Ji=1

1

Integrating by parts, we obtain

. . 1 -
1 [ tJj Bl ij 2
Sa uxiuxja'x = Sa uxixjudx+ 5 &axizju dx

= —S(a“uxizj—kbiuxi—i—cu)udx—i—g(—l- ai"ixj— ibﬁcf}—c)uzdx

2 2
(us Ce()).
Hence, we have
l%IIIP(muII% < Co(1(Pu, w)| +uld) (s Ce(R)). (1.12)

It is easy to show that
IPOullf < Colulll  (ueCx(2)
for |a|=2. Therefore, is proved. n
REMARK. Since we may assume P<S?, and since

[P, A7 S (a+0), [P, A5]— 3 CgA*~*Pyy € S°
181=1
for some constants Cg, we can prove, by [1.10) and [1.II), the following fact:
For any compact set KC 2 and for any s€ R, any ¢=0, any multi-index a=0
and any 0>0, there is a constant C=0 such that

[P ulls < 6] Pulls-o+Clulsss  (ueCx(D). (L13)

For a real-valued function @ C=(2), we put
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U, t)={xE.Q: [@(x)l<-i—}* t>0),

U@, )= {xc2:|9(x)| =0}
and

V@, n={xe0: (3

1,7

00,0.) +100 <1} >0,

1

V(0 00) = {xc: (|3, a"0.,0.,) (x)+]0(x)] =0}

1 1

LEMMA 1.6. Let @<= C=(Q) be a real-valued function such that U(D, o)+ @
and U(D, to)ERQ for some t,>>0. Then there are constants Cy>0 and C=0 inde-
pendent of t=t, such that for any t=t,

Cot? inf (

U, by

31 4P, @ >i|u112+t inf ( S} a0, 4+ 3 b0 )HuHZ
=) ) O uo. p\i 52 T = o 0

(1.14)
= C(1Pullollullot1l®) (ueC3U(D, 1).

PRrROOF. For a real-valued function uC3U(D, t)), we put
v=(T—e'®)'u, T = const>e¢?.

Direct computation gives
d B d . o d ,
Pu = (T—e“”)( 2 a2 blvx.—{—cv)—e‘ tz( > a”@z.(bx.)v
1, 7=1 = ¢ i,7=1 L

a d d
‘H(,Z AP, .+ 2 bi(Dx.)U—I—Zt.Z‘} a”@xivx.} .
JJ= LR ey v 1,5=1 J

1 1

Integrating by parts, we obtain
S(T——e”’)‘lPu-vdxz —-S Ed] av, v dx—l—S(—l— i al¥ 1 f}b‘ +c)v2dx
=t P73 2153 T 9 ;T

—tZSe“D(T—e”’)“( ,]2: aijﬁbxi@,j)vzdx

1 1

—tSe“’)(T——e“p)‘l(.é a0yt é b"@xi)vzdx
1, j=1 i=1

at{te'”(T—e'?) '@, v}v, dx .

—of %

i, j=1

Since

2&,%1 a”{te“”(T—e”’)‘l@xiv}vxjdx!

d .
Py a”vxivxjdx

i,7=1

§ tzgezm(T__ecd))—z(. ﬁ:

1,7

aifq)zi@xj)vzdx—l—g

1

and
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ew)(T__et¢>—l__ ezza)(T__euD)—z — etd)(T_zez@)(T__ec(D)_z ,

we have

S(T_etdi)—zpu udx < —tzge"p(T—-e“‘p)(T—ew)“‘(. é

1,7

a410,,0, Ju*dx

1

—tfe Ty 3 0,0t B0, Yutdr (L15)
i, 9=1 i=1
—}-S(T—e“’))‘z(l é a¥ 1 éb‘ +c)u2dx
2971 TS 2 ;T )
Combining (1.15) and
et e?<e, (T—e)'Z(T—e?)'<(T—e)' (x€U9, 1),
we obtain (1.14). n

LEMMA 1.7. Let @ C=(R2) be a real-valued function such that V(®, o)+ @
and V(®, t)&R for some t,>0. Then there is a constant C=0 independent of
t=t, such that for any t=t,

tint 3 (b 5 0¥, )0l =< CUPulfulotJul) (1.16)

Vo, 0 is1
(ueC3(V(D, 1))
PROOF. For a real-valued function u= C3(V(Q, 1)), we put
v=(T—e?)"y, T = const>e.

As in the proof of Lemma 1.6, we have

S(T-—e”’)'lPu-vdx = ——S EdJ a“vx.vzjdx—i—g(l é a?‘x_——l— Zd} b§.+c)v2dx
; t 245=1 " 2 =T

1,7=1

——tzge”’(T——e“’))“(i’él a“@xi@xj>v2dx

2, j=1

14 . d .
—tfe? T =B 00,0t B0, Yo

"‘Ztgew)(T——em))‘l(. éz

1,7

a0, v, .)vdx .
1 J

Since

—ZSetdj(T— e“”)"a”@,ivzjvdx

= the”’(T—e“’)’za”@xi@zjvzdx—l—ge“’)(T—e”’)‘z(a“(bxi)xjvzdx
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and
Tesz(T__etdi)-z_em)(T_euD)-l — eth)(T_ecw)-z ,
we obtain
S(T——-e“”)‘zPu-ua’x = tzgem’(T—e“p)“‘(. Zdlla”(lizi@zj)uzdx
1, j=
1

—tle Tt {Z 33 (b B a¥) 0. Jurdx (L17)

+Hr—en (3 2 ot 5 B b k).
Hence, combining (1.17) and
etLe?<e, T—e)'S(T—e?)'<(T—e)t  (x€V(D, 1),
o( 2 090.,0.)<1  (xeV(@,1),
et
we have (1.16). n

LEMMA 1.8 ([14]). Assume that dimLie(x)=d in 2. Then for any ¢=C3(82)
and any N>0, there is a function ¢=C32) with ¢=¢ and there are constants
C=0 and k>0 such that

Igullo < CligpPull-s+ldull-x)  (ueC=(Q)). (1.18)

REMARK. By applying (1.14), (1.16) and [(1.18) to XA*u=X(x){D,)*u instead
of u, where X(x) is a real-valued function satisfying either

1e CUW@,2t), x=1 in U@, t)
or
e C(VW, 2t), 1=1 nVv@, v,

we obtain the following facts:

1°. On the same assumption of for any t>t, and for any s€R
and any N>0, there are constants C,, C,=0 independent of t=t, and C=C()=0
such that
. d . . d .. d
Catt inf (33 6900, Ylultt inf (33 690+ [0, )lul, (119)

U, ) \i, j= i,5=
< Ci([lPulls+lulld+Cllull-» (ueCU(D, 1))).
2°. On the same assumption of for any t>t, and for any s€ R

and any N>0, there are constants C,=0 independent of t=¢, and C=C()=0
such that
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it {2 (- 2 eg)o-fiut.

(1.20)
< ClPulls+llullo+Clull-y ~ (ueCV(D, 1)) .

3°. If dimLie(x)=d in £, then for any ¢=CH2) and for any seR and
any N>0, there is a function ¢ CH(R2) with ¢&¢ and there are constants C=0
and £>0 such that

Iguls < CUlgPulls-s+lgull-»)  (eC=(2)). (L.21)

2. A criterion of global hypoellipticity.

In this section, we shall show a criterion of global hypoellipticity (Proposi-
tion 2.1) which is a reformation of theorems given by Oleinik and Radkevich
[14], Fedii [3] and Morimoto [13]. & denotes a set of all functions fe CH(&)
such that 0<f<1in 2 and f=1 in a neighborhood of S={x:dimLie(x)<d}
in 2. A,, . is a pseudodifferential operator with symbol <{&>*(1+e<&>)~* (s€R,
t>0, €>0). |-lls.;, stands for the norm |- ||s ;.= 4s.s.c-lo. It is easy to show
that

1482 culle < Cll A5 Mull,  (uES)
and
1482 cullo = ClA U, (u€S),

where C.=0 is a constant depending on ¢ and C=0 is a constant independent
of ¢. Unless otherwise specified, we use the same notation as in Section 0.

PROPOSITION 2.1. Assume that S is a compact set, and assume that for any
0>0 and for any multi-index B (1<|B|<2) and any N>0, there is a bounded open
neighborhood U of S in 2 and there is a nonnegative constant C=C(9, B, N, U)
such that

lullo < C( Pulo+lull-5)  (wel3U)) 2.1)
and
I Pegsull-1p0 < 0l Pullo+Clul-»  (ueC3U)). (2.2)

Then for any ¢ and for any s€R and any N>O0, there is a functionipEF with
OE¢ and there is a nonnegative constant C=C(@, s, N) such that

lgulls = C(lgPulls+lgull-»)  (ueH-5(2)). (2.3)

COROLLARY. Assume that S is a compact set, and assume that for any >0
and for any N>OQ there is a bounded open neighborhood U of S in Q and there
is a nonnegative constant C=C(0, N, U) such that

lullo < 8l Pullo+Cllull-y  (ueC3(U)). (2.4)
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Then for any ¢ and for any s€R and any N>O, there is a function ¢€F with
OS¢ and there is a nonnegative constant C=C(¢, s, N) such that
guls = Cl¢Pulls+lgull-»)  (ueH-x(2)).
PROOF OF COROLLARY. (1.5) and imply Hence, fol-

lows immediately from Proposition 2.1. |

Before proving |[Proposition 2.1, we shall show two lemmas.

LEMMA 2.2. On the same assumption of Proposition 2.1 we have the follow-
ing estimates: For any compact set KC{2 and for any ¢, any multi-index B+0,
any N>0 and any 6>0, there are constants Co,=0 and k>0 independent of 0, and
there is a constant C=0 such that

lullo < Coll Pullo+lul-x)  (veCZ()), (2.5)

g IPcgyull-1p1 < 0l Pullo+Cllull-y (0= CR(2) (2.6)
an

ILP, ¢Julle < Colll Pull-+lull-»)  (ueCx(2). @.7)

ProoF. Unless otherwise specified, each CY denotes a nonnegative constant
independent of J, and each C, denotes a nonnegative constant depending on 4.
Since we may assume that P=S? and since

[P’ ¢] = ]Elcu¢Ca)P(a)+la%2Ca¢(a) (28)

= X IC;P(Q)Sﬁ(a)"‘[a%g C:1¢(a) ’ (2-9>

la|=

where C,, C, are constants, we have, by (1.12) and [2.8),

ICP, ¢Tullo < CXUPull-o+Hlul-ot 3 Idcorullot 3 Igemule) (e CHD)
for any ¢=0. By there is a constant £,>0 independent of >0 such
that for any ¢€%

2 _Jpculs = ColIPul-g+lull-n) (v CR(D).

1sta
Hence, we obtain

ILP, ¢Jullo < C8(IPull-c+lul-c)  (eC%(2) (2.10)
for any ¢=%. It follows from that there is a function ¢,=F such that

IPpinl-ion < 1Pl Clguull-x  (ueCR(D)

for 1<|B1<2. Let ¢,=CH{2) be a function satisfying 0<¢,<1 in 2 and
¢1+¢,=1 in K. Then we have, by (1.5),

1Pegsdaull-10 < C3UPGoull-o+ldoull)  (weCR(D))
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for any 8+0 and any ¢=0. By [1.21), there is a constant #,>0 independent of
0>0 such that :

Igotelle, < CYUNPull-e,+lull-») (e CRL)).
Hence, by (1.12), and the above three inequalities, we have

IPpul-131 S S IPulo+ Collulmince s (ECHQ)  (@1D)

for any B+#0. It follows from that there is a function ¢, & such that
Ipulle < CY| Phrullo+ldiull-n) (v CR(2)).

Let ¢,=C%(82) be a function satisfying 0<¢,<1 in 2 and ¢ +¢,=1in K.
Then we have, by (1.18)

ldaullo = Co(I Pullot+lul-5)  (ueCR(D)).
Hence, by

lullo < Clll Pullotul-minces, v) (€ CR(D)), (2.12)

where £;,>0 is a constant independent of 0. Combining (2.11) and we
obtain and

Since gives
[ Pegsulls-151 < Ol Pulls+0ILP, A Jullo+10 g, A°Tull-1p+Cullull-»

(ueC%x(Q),

we can prove the following estimates: For any d>0and for any r(1<7<s+2+N)
and any s€R

”P(ﬁ)u”s—lﬁl = 5I|Pu|],

rS1BISs+2+N

+C(0_ B Pt S Pepstle-ip)

151 81Ss+2+N r+ls|fISs+2+N
+Cullull-y  (ueCRD);
this implies that
IPegrtlls-1510 S Ol Pulls+Cusllull-» (e C%(2) (2.13)
for any +#0. On the other hand, since
lulls £ CUIPulls+ILP, A*Tullo+lull-n)  (ueCx(2),
by [2.5), we obtain
luls S CLllPulACH(_ S IPgpul-iptlul-v) (eCH@) 214)

1s181ss+2+N
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for any seR. It follows from and (2.14) that
. ll,ulla = CY(l Pulls+ull-n) (ne Cz(2)). (2.15)

Combining with we have [

LEMMA 2.3. On the same assumption of Proposition 2.1 we have the follow-
ing estimates: For any compact set KC 8 and for any ¢ F, any multi-index B+0,
any s, teR, any N>0, any ¢ (0<e<1) and any 6>0, there are constants C,=0 and
k>0 independent of e and 8, and there is a constant C=0 independent of & such
that ‘

lulls,e.e < ColllPulls,s,e+lull-n) (weCx(2)), (2.16)
|Ppstlo-ipnee S O1Pulloi et Cllull-y  (eCHR)  (@17)

and
ILP, @Julls,e,e = ColllPulls—s, s, +lull-n) (veCR(2)). (2.18)

PROOF. Unless otherwise specified, each C% denotes a nonnegative constant
independent of ¢ and §, and each C, denotes a nonnegative constant independent
of e.

By we have
ILP, ¢lulls,e.c < C(l)'mE:I(”P(a)AS.t,s¢(a)u”0+“[P(a); Ay, 1Pcartillo)
+C8]§=2ll¢<a>ulls.z,e
= C‘a’la‘él(llPAs.:,e¢<a>u||-a+|l¢<a>ul|s+a,z,s+Ilull—zv)

+C8 2 Ndrtllsee (weCR(E))

la|=2

for any #=0. Direct computation gives
IPAs, ¢, ePeasttll-o £ I@carAs, e e Pull -t 1@carL P Ay, Jtt]l -0
H1 45,0, [P, $ear]ull-a+ 104506 [P, Pearlluell-o
+104s,t.er Pear]Pull-o+ILP, [4s,1e5 Gear]Tull-o
= CllPulls-o.0,6t 2 1Pulls=0,s.
+lﬁ%lllp(ﬁ)u”s-a-lﬁl.t,s+”u”s-a,2,s) (ue Cx(2)),

and gives
1P ulmgie S CUIPulsma. et B 1Pessulsmomipies

Hlulls-o.r e tlull-n)  (ueCR(Q)).
Therefore, we obtain
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“[P; ¢]u”8,t,e § Cg(”Puus—a,t,e+|ﬁl2=1“P(,B)u”3—a~lﬂl.t.e+”u”s—o.t,e

(2.19)
Hul-n+ 3 Ifulers it 3 Idcaulr,

(ueCx(2)
for any ¢=0. Since, by
1Pegyrlls-1g1.e.e S Ol Pulls,e,e+0lILP, As,e,eJullo
HILPepss AsecJull-ip+Collull-y - (eCR(Q)),

we can prove the following fact: For any 6>0 and for any » (1<r<s+2+N)

| Pessullominee S 81Pule e+ CY 8 5 1Pgulle-igie

rsSIBISs+2+N SIBISs+2+N

| Pegstlle-1pn.c.e)+Colel -

T+1s| fiss+24N
(ueCz(2);
this implies that
I Pepstills-1p1,c.e < 0| Pulls,c,et+Collull-y (€ CR(Q)) (2.20)
for any B+0. It follows from [(2.5) that

Nlsece < 1Pullee+C8(_ B NPgsellsmipreetliul-n)  (2.20)

12| BISs+24N
(ue Cx(2)) .

shows that there is a constant x, (0<x;<1/2) independent of ¢ and 0 such
that

”¢(a)u”s+x1,t,e —-<._— Cgo(”fb(a)-Ao,t,eu”8+x1+”u“s+xl—l,t,e)
= C?l(”PAo.c,su”s-xl“l‘”u“savxrl,t,e)
< C?a(”Pu”s~n,z.s+|ﬂ|2=1”P(ﬁ>u”s—xl+lﬁr,t.e

Fhulls-ey oot N0l srry-1,0,e) (ueCx(2)
for any a==0; this gives
252”¢(a>u”s+x1

1| ay

(2.22)
< CU(IPulliey et S| Pepstelsmeyeiresetlutliony ) (e CR)).

181=1

Combining (2.19), (2.21) and (2.22), we obtain [2.16), [(2.17) and [2.18). m

PrROOF OF PROPOSITION 2.1. Let ¢=9 be a function satisfying ¢=¢ and
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let {¢;}{- be a finite sequence of functions belonging to the class & such that
s+2—Jk<—N and ¢=¢,€,E - E¢,;=¢. Since CYR) is dense in H_y(2),
we have, by

”¢0u||s. sH24N, e = C1(]|P¢ou“s, 8+2+N,s+”u”-N) ’
“P¢0u”3,s+2+N,e e C2.o(”¢opu”s. sta+n, e HILP, ¢o]¢1u”s.s+z+N,e)

= Ca,o(”SboPu”s, s+2+N,s+”P¢‘1u”s—x, s+2+N, )
and

”Pébju”s-jx. st N, s = Cz,j(llgbqu ”s—j/c, s+2+N,e+“[P: ¢j]¢j+1u”s-j;,s+2+N,e)

= C3,j(”¢qu”s-jlc, 3+2+N,s+”P¢’j+1u”3—(j+1)x, s+24N, &) »

where Cy, C,,;, Cs,;=0 and £>0 are constants independent of ¢. Hence we
have
@ulls, se2em,e = CligPulls, staen, e TllQull-n),

where C,=0 is a constant independent of e. Letting e—0, we obtain the de-
sired estimate. n

REMARK. Modifying the proof of Proposition 2.1, we can prove the follow-
ing fact: Let P° (0<d<1) be a degenerate elliptic-parabolic operator of the
form

PP = 3 a(x) =t 3 bYx) = +cox)
_i.j=1aa x 0x0x; i=1 o\ x 0x; ax

with real coefficients satisfying a¥, b§, cs€ C=(2) and

sup sup max {|d%a}(x)|, 02b}(x)!, |0%ca(x)|} < oo
0<os1 z€Us 1,5

for any multi-indices @, 8, . Here U, is an open neighborhood of S; in .
We define a subset S; of 2 by

S; = {xeQ:dimLie(X§, X3¢, .-, X{)(x)<d},

where X3= ?=1(b§——231=131ja§j)6“ and X‘E::Z}Lla};faxj (1£i<d). Assume that
each S; is a compact set and {ycs::9,C %2, and assume that for any 6>0 and
for any multi-index B (1=<|B|=2)and any N>0, there is a nonnegative constant
C, independent of § and C(0)=C(@, B, N, U;) such that

lullo £ CollPPulo+C@llull-y  (weCHUs) (2.23)
and
1 P3gyull-151 £ 8l Poulle+COlull-y  (ueC3WUs). (2.24)

Then for any ¢= & and for any s R and any N>0, there is a number 6>0, there
is a function ¢=F with ¢=¢ and there is a nonnegative constant C=C(g, s, N)
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such that , ,
lgulls < CUgPulls+ I Qull-x) (ue H-5(2)). (2.25)

We can replace [2.23) and [2.24) by ‘
lulle < 8| PPulle+COlull-x»  (ueCFUs)). (2.26)

3. Proof of Theorems 1, 2 and 3.

In this section, we shall prove Theorems 1, 2 and 3. Itis to be noted that,
by virture of Proposition 2.1, we have only to show either (2.1)-(2.2) or (2.4).

PROOF OF THEOREM 1. Step 1. We put

OO =P, OB =XB ... XDH (b=1])
and
SO—__S: Sk:® (k>2N)’

Sernr = {r€Su: B 1X0(x)| =0},
Sorer = {xESep41: OF(x)=0} 0=E<N-1)
and further, we put
S®=8N\S;, S®=8S S,y (OZEZ2N).

It is easy to show, by (1.2), that

d
P* =0, )
i=

1

AIOBOH >0 in SeP

1

and

d . .
3 a9OROP =0, XD #0  in S,

i,5=1
Let {U®}2% and {U®(t,)}3Y, be families of open sets such that
SHey e

and

d . 1/2
U (t,y) = {xeUed: (09| <td, (|2 a¥0808) " (0>41}, G.1
J

i, j=1

Uty = {xeUe 01 (3 a90808) " (0)+] 0P| <k,

(3.2)

d
i j=1
| Xo@P ()| >t}

where t,=1 are parameters and y>0 is a sufficiently small constant. Here
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UB=UB(t,)=@ if S¥=@. It is easy to show, by [0.1} (3.1) and (3.2), that
sc Juwa,) 3.3)

for all sufficiently large t,. Then there is a family of C*~ functions {¢,,.,}i%
satisfying the following conditions:

0=¢i:, =1 inQ, supp@s ., CURNt,),

k.1, =1 in UB (@ IN{xcU®(¢t,): dist(x, oU¥(¢,))<tz4} 3.4)
and

sup{ti®05@s..,(X)| : x€UP @), 1,21} < +o0  (1=£]a|=3), @5

where A and B are sufficiently large positive constants independent of x€U®,
t,=z1 and k=0, ---, 2N. Here ¢, ., =0 if U®(t,)=@. In fact, we have only
to consider functions f(t)eC%(R) and XeCG(R?%) such that 0Zf(#)<1 (teR),
F®=0 (111 =1/3), fO)=1(t|=2/3), 0=X(x)<1 (x&R?), suppXC{x:|x|<1} and

SX(x)dx=1, and put
Br.0a() = (Ley(x—3)fat distCy, BUP(E )y

= Sx“*( y)F(thdist(x—y, DU, ))dy,

where Xek(x)=s;dX(e;‘x) and &,=3"1;4
Step 2. Modifying the proof of Lemma 1.6, we have

d
tEk inf (2 aij@ék?@gz?)geczkmk)(T_ecgk¢(k))_4u2dx
Uk, )\, j=1 ¢ 7
2k
d X d
Ftor inf ( 2 atj@‘(tk_)xv_!_ 2 bidjék})gecqu)(k)(T__etgkdb(k))_sugdx
U(Zk)(ng) 1, j=1 L) =1 1’

< ——S(T—e‘zk'pw)‘zPu-udx
sup ‘—1— 3 al, —= S +C‘S(T—e‘2k"’””)‘2u2dx
vt | 21521 T2 &7
(ue CFUR(t.4)));
this implies, by (3.1),
B8P =t C1—C)lulle £ Cif|Pulle  (ueCTUER(ty,))), (3.6)

where C;=0 is a constant independent of ¢,,=1. Modifying the proof of
1.7, we obtain
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i TR (IR PY (49 ¢ OCkI\-3, 2
trps:r  inf {2 -2 azfj)(Dzi} et2k 1@ (T —gl2k 1@ ) =3y 2 x
i=1

U(2k+1)“2k+1) i=1

< —-S(T—e‘ZkHd’( By-2 Py udx

i BN~
(890K OB | eteres P (T —garr® V) -ty

d
13 k41 sup (ijzz

UCED g4y

+ Su %é aixjizj""% é bii‘l‘c‘S(T—-et2k+l¢(k))‘2uzdx

2k 1)p
UCEFD (g 1

(ue CYUE D (th41)));
this gives, by (3.2),
tirli—Collulle = CollPulle (e CHU* O (t2041))), 3.7

where C,=0 is a constant independent of #,,+,=1. Here, it follows from [3.6)

and that
tulle < Csl|Pully  (ue CTUR()) (3.8)

for all sufficiently large ¢t,=1 (=0, :--, 2N), where C,=0 is a constant inde-

pendent of ¢,.
Step 3. By we obtain

SET N sy P 1t llo

= C3[]|¢k,8k¢k,tkpu”0+‘ {i,‘,{; a(Pr 5, Prty) 225+ ébi(gbk,sksbk,tk)xi}uuo

1/2 ]
Ly

(ue C%(2),

a”uziuzj}

+ H{ n;l anm(¢k,8k¢k»tk)xn(¢k’sk¢k't’e)”"‘} {i,é

1 1

where K is a compact set of 2. Here we used the inequality

d Y 2
{1:,]231 a(Pr, 5,9+, tk)xiuxj}

d d .
= %= "™ (Pr, s, Pr. o) 2n(Pr s, Pk 1) e ) 12=1 a Uy U, .

n 1

Integrating by parts, we have

Sdiju-”iuxjdx = ——S(d”uz,-x,-l-Eiuzi+€’u)udx+g(% 0iay— %5;i+6>u2dx’

where
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d

-i] — { 2
n, m=

b=,

N {n’éﬂanm(gﬁk, 2Pk 1)z, (Dr, s, Pe, ﬁk>xm}c :

1

anm(¢k, 3k¢k’ tk)$n<¢k, xk¢k, L‘k)zm}a” ’

jte

0"™(Ba, 4B, 14)en(Br sy Br.00)an B

1

this gives

{n,%zlanm(gék,skfﬁk,tk)zn(¢k,sk¢k,tk>xm}{ ii} a* uxluxj}}

1, j=1

Ly

= C4|:”Pu”%+ {n,‘éﬂanm@ék' sk¢k' ‘k>$n(¢k- 8k¢k, tk>$m}u”z

(5 2,085 Do) wecz@y,
where C,=0 is a constant independent of s, and ?¢,. (3.5) shows that
@r.s, 050k, e ulle = tECs|ulle (1= |a]<3),
where C;=0 is a constant independent of s, and ¢,. Hence, we obtain

$k7@s. oxPr.euullo = Colll Pullo+2Zlullot 2 N@5Bk,s, 08B, e, Jullo)

(3.9)
(ueCx(2)),
where C,=0 is a constant independent of s, and ¢,. (3.4) shows that
(supp(0%@s,s,) 050, NNSr =D (a+0) (3.10),

for all sufficiently large ¢, and s,=e’*. Here we note that, by virture of (3.10),,
we can estimate the last term of (3.9), by (3.9)i<, [resp. (1.18)] when 2>0 [resp.
k=0]. Therefore, follows from (3.4), (3.9) and (3.10). ]

PrROOF OF THEOREM 2. Throughout the proof, each C, (k= N) denotes a
nonnegative constant independent of y>0. Without loss of generality, we may
assume, by Remark of that a**(x)=a'(x)=0 (1<i<d) and b(x)+0
in S. We may suppose that 2=R? and b'(x)=1 in R?. We put

Pr = 2 J(x>aztaz]+ 2 b (x>a-z't+cr(x) ’

where ai/=a%, b;'zbi—27a“, ¢, =c—r+7*a* and y>0. Modifying the proof of
Lemma 1.6, we can show that for any sufficiently large y>0 and for any bounded
open neighborhood U of S
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S(T——e“’l)""Pfu -u dx
< ——tzge‘zl(T—-ez“‘l)(T—e”l)“**a}luzdx——tSe”l(T——e“"l)‘3b}u2dx

[Tty (G @P)ee~ 3 Ot )utdr (ueCTOY,

where T>0 is a sufficiently large constant and >0 is a parameter; since a'*=
a™=0 in S and b'=1, this implies that

lullo < 77'CollPTully  (weC3U))

for any y>0 and for some open neighborhood U of S. Hence, Remark of the
proof of [Proposition 2.1 shows that for any s R there is a number y>0 such
that P'fue C*(R?) implies us HP(R?).

Let ue 9/(R%) be a distribution satisfying Pue C=(R%). We put v=e'%1y
(y>0). Direct computation gives

Pu = P(e "*1p) = ¢"7%1( PTyp).

Hence, for any seR there is a number >0 such that ve HP(R?), i.e., ue
Hi<(R?), Therefore, P is globally hypoelliptic. [}

PrROOF OF THEOREM 3. Throughout the proof, each C, (k=N) denotes a
nonnegative constant. Modifying the proofs of Lemmas [.3 and we can
show that for any 4 (0<d<1) and for any bounded open neighborhood U of S
with U@

IﬁE{ﬂHH@WH% = Cx{sup(laéa”(x)l rxel, 14, j<d, 15171£2)

) (5 (@ ety dnt ) Iull) (weC3OY)

and

Sa”u,kziu”xjdx = g(a”umj+a};"juxt—l—cu)ux,xkdx

—I—g(ag'gkuzi,j~|~ai"jxkuxi—l—c,ku)uzkdx-i—gcu%kdx

(ueC3WU));
these imply, by (0.3), that

[ Pgyull-ign < 0| Pullo+llullo)+Collull-:  (ueC3(U), 1=[81=2) (3.11)
for any 0 (0<d6<1) and for some open neighborhood U of S.
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Let V and W be open sets of 2 and let ¢(¢, x) (0=t<T, x<V) be integral
curves in £ such that V&@\S, W& and

b= DUPXLP), 90, D=z,

where ;€ C>(2), and such that ¢(-)=¢(T, ) is a C= diffeomorphism from V
onto W. Since

|

w(@eN—u(x) = " = {ugtt, x))dt

[=3)

¢
=] S aXaxge, mdt @eCsw)

we have

[ Juondy= (| ueirdet 3 1xaord),

ltlzgm < Cllullzgant B 1 Xetlzyar) (e C5ON.

Direct computation gives, by and (0.3),
| XiulZ,wr = Csl(Pu, u)l (ue C3U)) .
Since V&2\S, we have, by
lullz,on & Coll Pull-e+lull-x)  (ueC3U))
for any N>0, where £>0. Combining the above estimates, we obtain
lull,om < Colll Pull-c+llull-w)+e7 Col Pullo+ellull,  (weCHU))
for any €>0. Hence, by the weak controllability of
lulo < Cs(l Pullotlull-»)  (ueCHU)). (3.12)

By [Proposition 2.1, it follows from (3.11) and (3.12) that the operator P is
globally hypoelliptic in £. [}
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