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Introduction.

This paper concerns the nonlinear parabolic equation in a real Hilbert space
$H$, which is of the form

(E) $\frac{d}{dt}u(t)+\partial\varphi(u(t))\ni f(t)$ ,

where $f\in L_{1oc}^{2}(R;H),$
$\varphi$ is a proper 1. $s.c$ . (lower semi-continuous) convex func-

tional on $H$ and $\partial\varphi$ is the subdifferential of $\varphi$ .
The existence of periodic solutions to (E) has been studied by many authors

under some assumptions on $\partial\varphi$ and $f$ (see [4], [7], [8], [12]).

The purpose of this paper is to show the existence of anti-periodic solutions
to (E) under some condition different from coerciveness. This is motivated by
the fact that generally elliptic operators defined on unbounded domains of $R^{n}$

are not coercive. We show the existence of anti-periodic solutions in case $\partial\varphi$ is
odd (Theorem 1.1). Next we apply this result to a nonlinear heat equation
defined on an exterior domain of $R^{n}$ (Section 3). Finally we give examples to
see that the conditions assumed in Theorem 1.1 are essential for the existence
of a periodic solution to (E) (see Propositions 1.1 and 1.2).

1. Results.

Let $H$ be a real Hilbert space with inner product $(\cdot, )$ and norm $\Vert\Vert$ . We
consider the existence of periodic solutions to the equation;

$(E;\varphi, f)$ $\frac{d}{dt}u(t)+\partial\varphi(u(t))\ni f(t)$ .

Here $\varphi$ is a proper 1. $s.c$ . convex functional on $H$ and $\partial\varphi$ is the subdifferential
of $\varphi$ and $f\in L_{1oc}^{2}(R;H)$ .

Let $g$ be a locally square-integrable function on $R$ with values in $H$. Then
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$g$ is said to be $2T$-periodic [T-anti-periodic] if $g(t+2T)=g(f)[g(t+T)=-g(t)]$

$a.e$ . $t\in R$ .
Our main result is the following:

THEOREM 1.1. Suppose;

(1.1) $\varphi$ is even $(i. e. \varphi(-x)=\varphi(x), x\in H)$ .

(1.2) $f$ is T-anti-periodic.

Then there is a unique T-anti-periodic solution to (E).

COROLLARY 1.1. Under the conditions (1.1) and (1.2), there is a $2T$-Periodic
solution to (E).

REMARK 1.1. It is known that the periodic solution to (E) is unique if $\varphi$ is
strictly convex.

Condition (1.1) of Theorem 1.1 differs from the topological condition given
in [7]. Hence Theorem 1.1 is more useful for the case of nonlinear heat
equations defined on unbounded domains of $R^{n}$ (see Section 3).

Now we give some remarks on the conditions (1.1), (1.2).

The following condition often appears in considering asymptotic behavior of
solutions to $(E;\varphi, 0)$ (cf. [6], [10]):

(1.3) There is a constant $c>0$ such that $\varphi(-cx)\leqq\varphi(x)$ holds for each $x\in H$.

We claim that Corollary 1.1 does not hold under the assumptions (1.3), (1.2).

In fact we have:

PROPOSITION 1.1. There are $a$ 1. $s$ . $c$ . convex functional $\varphi_{1}$ and $f_{1}\in L_{1oc}^{2}(R;H)$

such that;
(i) $\varphi_{1},$

$f_{1}$ satisfies (1.3), (1.2), respectively.
(ii) There is no periodic solution to $(E;\varphi_{1}, f_{1})$ .

(See Section 4.)

We next consider the condition (1.2). We know;

PROPOSITION A (Haraux [7]). SuppOse that $f(\cdot)$ is $2T$-periodic and that
$(E;\varphi, f)$ has a $2T$-Periodic solution. Then

(1.4) $(2T)^{-1} \int_{0}^{2T}f(t)dt\in C1[\Re(\partial\varphi)]$ .

One gets (1.4) directly under the assumptions (1.1) and (1.2). In fact, (1.1)

yields that
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(1.5) $0\in\partial\varphi(0)\subset\Re(\partial\varphi)$ .
On the other hand, by (1.2) one has

(1.6) $\int_{0}^{2T}f(t)dt=0$ .

(1.5) and (1.6) together yield (1.4).

Therefore one might expect that Corollary 1.1 hold if (1.6) is assumed
instead of (1.2). But we have;

PROPOSITION 1.2. There are a $l.s$ . $c$ . convex functional $\varphi_{2}$ and $f_{2}\in L_{1oc}^{2}(R;H)$

such that;
(i) $\varphi_{2},$

$f_{2}$ satisfies (1.1), (1.6), respectively.
(ii) There is no perjOdjc solution to $(E;\varphi_{2}, f_{2})$ .

(See Section 5.)

Finally we note that Corollary 1.1 does not hold in case of considering the
equation

(E) $\frac{d}{dt}u(t)+Au(t)\ni f(t)$ ,

where $A$ is the infinitesimal generator of a unitary group in $H$. In fact we
have the following example;

$H=R^{2}$ , $A=(\begin{array}{ll}\cos 1 -\sin 1\sin 1 \cos 1\end{array})$ , $f(t)=(\begin{array}{l}t\cos\sin t\end{array})$ .

(Then $A$ is odd, $f$ is T-anti-periodic and (E) has no periodic solution.)

2. Proof of Theorem 1.1.

For each $a\in C1[\mathfrak{D}(\varphi)]$ there is a unique solution $u_{a}\in W_{1oc}^{1,1}((0, \infty);H)$

$\cap C^{0}([0, \infty);H)$ to (E) with $u(O)=a$ . We define a single-valued mapping $S$ by
$Sa=-u_{a}(T)$ for $a\in C1[\mathfrak{D}(\varphi)]$ .

To show that $S$ has a fixed point in $C1[\mathfrak{D}(\varphi)]$ we use the following fixed
point theorem;

THEOREM A (Browder and Petryshyn [5]). Let $S$ be a nonexpansive self-
mapping of a nonempty closed convex set $C$ of H. Then $S$ has a fixed point in
$C$ if and only if for any $x_{0}\in C$ the sequence of Picard iterates $\{x_{n}\}$ starting at
$x_{0}(i.e. x_{n+1}=Sx_{n})$ is bounded in $H$.

Let $u$ be the solution to (E) with arbitrary initial-value $u_{0}\in C1[\mathfrak{D}(\varphi)]$ . Then
the definition of $\{u_{n}\}$ means that $u_{n}=(-1)^{n}u(nT),$ $n\in N$ Hence it is sufficient
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to show that the set $\{u(t);t\geqq 0\}$ is bounded in $H$.
In what follows we show the boundedness of $\{u(t);t\geqq 0\}$ . By (1.1) the

relation $\partial\varphi(-x)=-\partial\varphi(x)$ holds for each $x\in \mathfrak{D}(\partial\varphi)$ . Hence

$u’(t)-f(t)\in-\partial\varphi(u(t))=\partial\varphi(-u(t))$

holds for $a$ . $e$ . $t\geqq 0$ , where $u’(t)=(d/dt)u(t)$ . Therefore, by (1.2) and the monoton-
icity of $\partial\varphi$ , we have

$\frac{d}{dt}\Vert u(t+T)+u(t)\Vert^{2}=2(u’(t+T)+u’(t), u(t+T)+u(t))$

$=2(u’(t+T)-f(t+T)+u’(t)-f(t), u(t+T)-(-u(t)))$

$\leqq 0$ , $a.e$ . $t\geqq 0$ ,

or

(2.1) $\Vert u(f+T)+u(t)\Vert\leqq\Vert u(T)+u(O)\Vert(=c_{1})$ , $t\geqq 0$ .

On the other hand Condition (1.1) also yields that $0\in\partial\varphi(0)$ . Hence

(2.2) $\frac{d}{dt}\Vert u(t)\Vert=\Vert u(t)\Vert^{-1}(u’(t), u(t))$

$=\Vert u(t)\Vert^{-1}\{(\partial\varphi(u(t))-\partial\varphi(O), u(t)-O)+(f(t), u(t))\}$

;$1 $\Vert u(t)\Vert^{-1}\{0+\Vert f(t)\Vert\Vert u(t)\Vert\}=\Vert f(t)\Vert$ , $a.e$ . $t\geqq 0$ .
Therefore

(2.3) $\Vert u(t+T)\Vert-\Vert u(t)\Vert\leqq\int_{t}^{t+T}\Vert f(s)\Vert ds=\int_{0}^{T}\Vert f(s)\Vert ds(=c_{2})$ , $t\geqq 0$ .

Now we assume that the set $\{u(t);t\geqq 0\}$ is unbounded. Then there is the
sequence $\{t_{n}\}$ in $[0, \infty$ ) defined by

$t_{n}= \inf\{t\geqq 0;\Vert u(t)\Vert\geqq n\}$ , $n\geqq N$,

where $N$ is a large integer. Note by definition that

(2.4) $\Vert u(s)\Vert\leqq\Vert u(t_{n})\Vert=n$ , $0\leqq s\leqq t_{n}$ , $n\geqq N$.
Moreover by (2.2) and (1.2) one has $t_{n}\uparrow\infty$ as $narrow\infty$ .

Fix an arbitrary $n\geqq N$ with $t_{n}\geqq T$ . Let $v(t)(t\in[t_{n}-T, \infty))$ be the solution
of the initial-value problem

$\{\begin{array}{ll}\frac{d}{dt}v(t)+\partial\varphi(v(t))\ni 0, t\geqq t_{n}-T,v(t_{n}-T)=u(t_{n}-T). \end{array}$

Then one has the estimates
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(2.5) $\Vert v(t_{n})-u(t_{n})\Vert\leqq\int_{t_{n}-T}^{\iota_{\tau\downarrow}}\Vert f(t)\Vert dt=\int_{0}^{T}\Vert f(t)\Vert dt(=c_{2})$ ; and

(2.6) $\varphi(v(t_{n}))\leqq\varphi(v(t))$ , $i\in[t_{n}-T, t_{n}$).

(1.1) and (2.6) together yield that

(2.7) $(-v(t_{n}), v’(s))\leqq-(v(s), v’(s))$ , $a$ . $e$ . $s\in[t_{n}-T, t_{n}$),

since the definition of subdifferential yields that

$(-v(t_{n})-v(s), -v’(s))\leqq\varphi(-v(t_{n}))-\varphi(v(s))$ .
By (2.7) and (2.4) we have

(2.8) $(v(t_{n}), v(t_{n})-v(t_{n}-T))= \int_{\iota_{n^{-T}}}^{\iota_{n}}(v(t_{n}), v’(s))ds$

$\leqq\int_{t_{n}-T}^{t_{n}}(-v(s), v’(s))ds=2^{-1}\{\Vert v(t_{n}-T)\Vert^{2}-\Vert v(i_{n})\Vert^{2}\}$

$\leqq 2^{-1}\Vert v(t_{n}-T)\Vert^{2}=2^{-1}\Vert u(t_{n}-T)\Vert^{2}\leqq 2^{-1}n^{2}$ .
Put $y=v(t_{n})-u(t_{n})$ and $z=v(t_{n}-T)+u(t_{n})(=u(t_{n}-T)+u(i_{n}))$ . Then estimates
(2.1) and (2.5) mean that $\Vert y\Vert\leqq c_{2}$ and $\Vert z\Vert\leqq c_{1}$ , respectively. Hence

(2.9) $(v(t_{n}), v(t_{n})-v(t_{n}-T))=(u(t_{n})+y, u(t_{n})+y+u(t_{n})-z)$

$\geqq 2\Vert u(t_{n})\Vert^{2}-(c_{1}+c_{2})\Vert u(t_{n})\Vert-c_{2}(c_{2}+c_{1})$

$=2n^{2}-(c_{1}+c_{2})n-c_{2}(c_{2}+c_{1})$ .
(2.8) and (2.9) together yield

$2n^{2}-(c_{1}+c_{2})n-c_{2}(c_{2}+c_{1})\leqq 2^{-1}n^{2}$ .
Since $c_{1}$ and $c_{2}$ are independent of $n$ , this estimate is a contraction. Therefore
the set $\{u(t);t\geqq 0\}$ is bounded.

Now aPplying Theorem A we conclude that there is a T-anti-periodic
solution to (E).

The uniqueness of the anti-periodic solution to (E) is obtained $by_{-}^{r}\backslash$ the fol-
lowing:

PROPOSITION $B$ (Baillon-Haraux [2]). The difference of any two $2T$-periodic
solutions to (E) is a constant vector of $H$.

3. An application to a generalized Lin’s equation.

Since Condition (1.1) differs from coerciveness, Theorem 1.1 seems to be
more useful in case of nonlinear heat equations dePned on unbounded domains
of $R^{n}$ .
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In this section, we show the existence of a solution to the equation;

(3.1) $\{\begin{array}{ll}\frac{\partial v}{\partial t}(x, t)-\Delta v(x, t)=0, (x, t)\in\Omega\cross R,\frac{\partial v}{\partial n}(x, t)+g[v(x, t)-h(x, t)]=0, (x, t)\in\Gamma\cross R,\end{array}$

with

(3.2) $-v(x, t+T)=v(x, t)$ , $(x, t)\in\Omega\cross R$.
Here $\Omega$ is an exterior domain of $R^{n}$ with smooth compact boundary $\Gamma$ and $n$

denotes the outer normal vector on $\Gamma$.
The equation (3.1) with $n=1(\Omega=[0, \infty))$ is discussed in [1; Section 6.2].

According to [1] the function $g$ with argument $v(x, t)-h(x, t)$ has the form
$c_{1}[v(x,$ $t)-c_{2}$ sin $t]^{3}$ in Lin’s problem and is also a power function in radiation
problems. In most physical situation $g$ and $h$ are continuous and $h(t)$ is periodic,
representing a pulsating energy source.

Our result is the following:

THEOREM 3.1. SuPpose;

(g1) $g$ is a nondegenerate measurable function on $R$,
(g2) $g$ is odd $(i.e. g(-r)=-g(r), r\in R)$ ,
(h1) $h(\cdot, t)\in W_{1\dot{o}c}^{12}(R_{j}C^{2}(\Gamma))$ ,
$\langle h2)$ $h(\cdot, f+T)=-h(\cdot, t)$ , $t\in R$ .
Then there is a unique solution $v\in W_{1\dot{o}c}^{12}(R;L^{2}(\Omega))$ to (3.1) and (3.2).

To show this we express the equation (3.1) in the subdifferential form

\langle 3.3) $\frac{d}{dt}u(t)+\partial\varphi(u(t))\ni f(t)$ , $t\in R$,

which is dePned in the space $L^{2}(\Omega)$ , as follows:
Extend the function $h$ on $\overline{\Omega}\cross R$ satisfying $h(\cdot, t)\in W_{1\dot{o}c}^{12}(R;L^{2}(\Omega))\cap$

$L_{1oc}^{2}(R;H^{2}(\Omega)),$ $h(\cdot, t+T)=-h(\cdot, t),$ $t\in R$, and $(\partial/\partial n)h(x, t)=0,$ $(x, t)\in\Gamma\cross R$.
Put

$u(x, t)=v(x, t)-h(x, t)$ , $f(x, t)= \frac{\partial h}{\partial t}(x, t)-\Delta h(x, t)$ .
Then we have the following;

(3.4) $f(\cdot, t)\in L_{1oc}^{2}(R;L^{2}(\Omega))$ with $f(\cdot, t+T)=-f(t)$ , $t\in R$.
(3.5) $v(\cdot, t)\in W_{1oc}^{1,2}(R;L^{2}(\Omega))$ if and only if $u(\cdot, t)\in W_{1oc}^{1,2}(R;L^{2}(\Omega))$ .
\langle 3.6) $v$ satisfies (3.1) if and only if $u$ satisfies
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$\{\begin{array}{ll}\frac{\partial u}{\partial t}(x, t)-\Delta u(x, t)=f(x, t), (x, t)\in\Omega\cross R,\frac{\partial u}{\partial n}(x, t)+g[u(x, t)]=0, (x, t)\in\Gamma\cross R.\end{array}$

Put

(3.7)$\varphi(u)=\{\begin{array}{l}2^{-1}\int_{\Omega}|\nabla u(x)|^{2}dx+\int_{\Gamma}G[u(s)]ds, if u\in H(\Omega) and the second term is finite, +\infty, otherwise,\end{array}$

where $G$ is the function defined by $G(r)= \int_{0}^{r}g(s)ds,$ $r\in R$. Since $g$ is nonnega-
tive by (g1), $G$ is a convex function on $R$. Hence $\varphi$ is a 1. $s.c$ . convex func-
tional on $L^{2}(\Omega)$ . By definition,

$\mathfrak{D}(\partial\varphi)=\{u\in H^{2}(\Omega);\frac{\partial u}{\partial n}(s)+g[u(s)]=0$ on $\Gamma\}$

(3.8)
$\partial\varphi(u)=\{-\Delta u\}$ for $u\in \mathfrak{D}(\partial\varphi)$ .

By (3.5), (3.6) and (3.8), we have;

LEMMA 3.1. $v\in W_{1\dot{o}c}^{12}(R;L^{2}(\Omega))$ is a solution to (3.1) if and only if $u$ is a
solution to the equatim (3.3) with $\varphi$ defined by (3.7).

$((3.5), (3.6)$ and (3.8), hence also Lemma 3.1, are obtained under the assumptions
(g1) and (h1).) Next, by (g2) and (h2), we have;

LEMMA 3.2. (i) $\varphi$ is even, and (ii) $f(\cdot, t+T)=-f(\cdot, t),$ $t\in R$ .
Now, applying Theorem 1.1, we get the existence and the uniqueness of the

solution to (3.1) and (3.2). Hence we proved Theorem 3.1.

4. Proof of Proposition 1.1.

To prove Proposition 1.1 we constract a 1. $s$ . $c$ . convex functional $\varphi_{1}$ and
$f_{1}\in L_{1oc}^{2}(R;H)$ with the following property;

(a) $f_{1}$ is T-anti-periodic.
(b) There are a 1. $s.c$ . convex functional $\psi$ on $H$ and $c\in(O, 1$] such that

(4.1) $\partial\psi$ is linear, and

(4.2) $c\{\varphi_{1}(x)-\varphi_{1}(0)\}\leqq\psi(x)-\psi(0)\leqq\varphi_{1}(x)-\varphi_{1}(0)$ , $x\in H$

(c) There is no periodic solution of $(E;\varphi_{1}, f_{1})$ .
REMARK 4.1. Property (b) yields (1.3). In fact, (4.1) yields that $\psi$ is even.

Hence by (4.2)
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$\varphi_{1}(-cx)-\varphi_{1}(0)\leqq c^{-1}\{\psi(-cx)-\psi(0)\}=c^{-1}\{\psi(cx)-\psi(0)\}$

$=c^{-1}\{\psi(cx+(1-c)0)-\psi(0)\}\leqq c^{-1}\{c\psi(x)+(1-c)\psi(O)-\psi(0)\}$

$=\psi(x)-\psi(0)\leqq\varphi_{1}(x)-\varphi_{1}(0)$ , $x\in H$.
This estimate means that (1.3) holds.

We construct $\varphi_{1},$
$\psi$ and $f_{1}$ in the space $l^{2}$ . Let $\epsilon,$

$\epsilon_{1}>0$ and $\{e_{i}\}_{i\geqq 0}$ be the
orthogonal basis of $l^{2}$ . Put

$z_{1}=e_{0}- \sum_{n=1}^{\infty}\epsilon^{n}e_{n}$ , $z_{2}=e_{0}+ \sum_{n=1}^{\infty}\epsilon^{n}e_{n}$ ,

$X_{1}=$ { $x\in l^{2}$ ; $(z_{1},$ $x)>0$ and $(e_{0},$ $x)>0$ } ,

$X_{2}=$ { $x\in l^{2}$ ; $(z_{2},$ $x)>0$ and $(e_{0},$ $x)<0$ } ,

where $(\cdot, )$ denotes the inner product in $\downarrow 2$ We define the functionals as
follows:

$\psi(x)=6^{-1}(e_{0}, x)^{2}+3^{-1}\sum_{n=1}^{\infty}(2n)^{-1}\epsilon^{n}(e_{n}, x)^{2}$ ,

$\varphi_{1}(x)=\{\begin{array}{ll}2^{-1}(z_{1}, x)^{2}+3\psi(x) if x\in X_{1},2^{-1}(z_{2}, x)^{2}+3\psi(x) if x\in\overline{X}_{2},3\psi(x) otherwise,\end{array}$

$f(t)=\rho(t)e_{0}$ ,
where

(4.3) $\rho(t)=\{\begin{array}{ll}1, r\in[2mT, (2m+1)T-\epsilon_{1}),-2\epsilon_{1}^{-1}, t\in[(2m+1)T-\epsilon_{1}, (2m+1)T),-1, t\in[(2m+1)T, (2m+2)T-\epsilon_{1}),2\epsilon_{1}^{-1}, t\in[(2m+2)T-\epsilon_{1}, (2m+2)T).\end{array}$

Then properties (a) and (b) hold with arbitrary $\epsilon,$
$\epsilon_{1}\in(0,1)$ .

We claim that (c) holds with sufficiently small $\epsilon,$
$\epsilon_{1}>0$ . Indeed, let

$u\in W_{1\dot{o}c}^{11}([0, \infty);l^{2})$ be the solution of the initial-value problem

$\{\begin{array}{ll}\frac{d}{dt}u(t)+\partial\varphi_{1}(u(t))\ni f_{1}(t), t>0,u(0)=e_{0}. \end{array}$

To see (c), we have only to show that the set $\{u(2mT);m\in N\}$ is unbounded
in $l^{2}$ with the aid of Theorem A in Section 2. We show this in a few lemmas.

LEMMA 4.1. Put $u_{k}(t)=(e_{k}, u(t)),$ $k=0,1,2,$ $\cdots$ , and $a(t)=\Sigma_{k=1}^{\infty}\epsilon^{k}u_{k}(t)$ . Then
one has

(4.4) $\frac{d}{dt}u_{0}(t)=\{\begin{array}{ll}-u_{0}(t)+a(t)+\rho(t) if u(t)\in X_{1},-u_{0}(t)-a(t)+\rho(t) if u(t)\in X_{2},- u_{0}(t)+\theta(t)a(t)+\rho(t) otherwise,\end{array}$
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with $\theta(t)\in[-1,1]$ , and, for $n\geqq 1$ ,

(4.5) $\frac{d}{dt}u_{n}(t)=\{\begin{array}{ll}\epsilon^{n}\{u_{0}(t)-a(t)-n^{-1}u_{n}(t)\}, if u(t)\in X_{2},\epsilon^{n}\{u_{0}(t)-a(t)-n^{-1}u_{n}(i)\}-1 if u(t)\in X_{2},\epsilon^{n}\{-a(t-!^{-n} u_{n}(t)\}, if u(t)\in\overline{X}_{1}\cap\overline{X}_{2},\epsilon^{n}\{-n u_{n}(t)\}, otherwise.\end{array}$

PROOF. By definition, one has

$\partial\varphi_{1}(x)=\{\begin{array}{ll}(x_{0}-\alpha(x))e_{0}+\Sigma\infty\epsilon^{n}(-x_{0}+\alpha(x)+n^{-1}x_{n})e_{n}, if x\in X_{1},n=1 (x_{0}+\alpha(x))e_{0}+\Sigma\infty\epsilon^{n}(x_{0}+\alpha(x)+n^{-1}x_{n})e_{n}, if x\in X_{2},n=1 \{\theta\alpha(x)e_{0}+\sum_{n=1}^{\infty}\epsilon^{n}(\alpha(x)+n^{-1}x_{n})e_{n} ; \theta\in[-1,1]\}, if x\in\overline{X}_{1}\cap\overline{X}_{2}, x_{0}e_{0}+\Sigma\infty\epsilon^{n}n^{-1}x_{n}e_{n}, otherwise,n=1 \end{array}$

where $x_{k}=(e_{k}, x),$ $k=0,1,2,$ $\cdots$ and $\alpha(x)=\Sigma_{k=1}^{\infty}\epsilon^{k}x_{k}$ . In fact, for example, if
$x\in X_{1}$ then one has

$\partial\varphi_{1}(x)=(z_{1}, x)z_{1}+\sum_{n=1}^{\infty}n^{-1}\epsilon^{n}(e_{n}, x)e_{n}$

$=(x_{0}- \alpha(x))\{e_{0}-\sum_{n=1}^{\infty}n^{-1}\epsilon^{n}e_{n}\}+\sum_{n=1}^{\infty}n^{-1}\epsilon^{n}x_{n}e_{n}$ .

Noting that $\alpha(u(t))=a(t)$ and that $x_{0}=0$ on $\overline{X}_{1}\cap\overline{X}_{2}$ , we get both (4.4) and
(4.5).

LEMMA 4.2. Let $\delta>0$ be fixed. Let $\epsilon,$

$\epsilon_{1}>0$ be such that

(4.6) $(1+2\delta)\epsilon(1-\epsilon)^{-2}<10^{-1}\delta$ ,

(4.7) $(1+2 \delta)\epsilon_{1}<\frac{2}{3}\delta(1-\frac{1}{T+1})$ .
Then for each $t\geqq 0$ one has

(4.8) $|a(t)|\leqq 3^{-1}\delta$ ,

(4.9) $\{\begin{array}{ll}|u_{0}(t)-1|\leqq\delta if r\in[2mT, (2m+1)T-\epsilon_{1}),|u_{0}(t)+1|\leqq\delta if t\in[(2m+1)T, (2m+2)T-\epsilon_{1}),|u_{0}(t)|\leqq 1+\delta otherwise.\end{array}$

PROOF. Put $I=\{t>0;|a(t)|\leqq 3^{-1}\delta\}$ . Since $u(O)=e_{0}$ , we see by (4.5) that
there is a positive number $t_{0}$ satisfying $[0, i_{0}$) $\subset I$ . We first show that (4.9) holds
for $r\in[0, t_{0}$). By (4.4)

(4.10) $|(d/dt)u_{0}(t)+u_{0}(t)-\rho(t)|\leqq\delta/3$ for $t\in[0, t_{0}]$ .
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Suppose that a nonnegative integer $m$ satisfies

(4.11) $2mT\leqq t_{0}$ and $|u_{0}(2mT)-1|\leqq\delta$ .

By the definition of $\rho$ , if $t\in[2mT,$ $(2m+1)T-\epsilon_{1})\cap[0, t_{0}]$ then

$(d/dt)u_{0}(t)\leqq-r$ if $u_{0}-1\geqq 3^{-1}\delta+r$ ,

$(d/dt)u_{0}(t)\leqq r$ if $u_{0}-1\geqq-(3^{-1}\delta+r)$ ,

where $r=2\delta/\{3(T-\epsilon_{1}+1)\}(<(2/3)\delta)$ . Hence

$|u_{0}(t)-1|\leqq\delta$ , if $t\in[2mT,$ $(2m+1)T-\epsilon_{1})\cap[0, t_{0}]$ ,

$|u_{0}((2m+1)T-\epsilon_{1})-1|\leqq 3^{-1}\delta+r$ , if $(2m+1)T-\epsilon_{1}\leqq t_{0}$ .
If $t\in[(2m+1)T-\epsilon_{1}, (2m+1)T]\cap[0, t_{0}]$ , then

$|u_{0}(t)|\leqq 1+\delta$ , if $t\in[(2m+1)T-\epsilon_{1}, (2m+1)T]\cap[0, t_{0}]$ ,

$|u_{0}((2m+1)T)+1|\leqq\delta$ , if $(2m+1)T\leqq t_{0}$ .
Similarly we can show

$|u_{0}(t)+1|\leqq\delta$ , if $t\in[(2m+1)T,$ $(2m+2)T-\epsilon_{1})\cap[0, t_{0}]$ ,

$|u_{0}(t)|\leqq 1+\delta$ , if $t\in[(2m+2)T-\epsilon_{1}, (2m+2)T]\cap[0, t_{0}]$ ,

$|u_{0}((2m+2)T)-1|\leqq\delta$ , if $(2m+2)T\leqq t_{0}$ .
Since $u(O)=e_{0}$ , integer $0$ satisfies the assumption (4.11). Now it is easy to see
that (4.9) holds for each $t\in[0, t_{0}]$ .

Next we show that $I=[0, \infty$ ). By (4.8) and (4.5) one has

$|(d/dt)u_{n}(t)+\epsilon^{n}n^{-1}u_{n}(t)|\leqq\epsilon^{n}(1+2\delta)$

for $t\leqq t_{0}$ and $n\geqq 1$ . Hence we get

(4.12) $|u_{n}(t)|\leqq n(1+2\delta)$ , $t\leqq t_{0},$ $n\geqq 1$ .

By (4.12) and (4.6) one has

$|a(t)|=| \sum_{k=1}^{\infty}\epsilon^{k}u_{k}(t)|\leqq(1+2\delta)\sum_{k=1}^{\infty}\epsilon^{k}k=(1+2\delta)\epsilon(1-\epsilon)^{-2}\leqq 10^{-1}\delta$

for $0\leqq t\leqq t_{0}$ , from which it follows that $I=[0, \infty$ ).

Consequently estimates (4.8) and (4.9) hold for each $t\geqq 0$ .
LEMMA 4.3. There is a sequence $\{t_{n}\}\subset[0, \infty$ ) satisfying

(4.13) $\Vert u(t_{n})\Vert\geqq n(1-2\delta)$ , $n\geqq 1$ .

PROOF. We see by (4.8) that
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$u(t)\in X_{1}$ if $|u(t_{0})-1|\leqq\delta$ ,

$u(t)\in X_{2}$ if $|u(t_{0})+1|\leqq\delta$ .
Hence by (4.5) and (4.9) we see that for each $n\geqq 1$ , there is a positive number
$t_{n}$ satisfying $u_{n}(t_{n})\geqq n(1-2\delta)$ . Since $\Vert u(t_{n})\Vert\geqq|u_{n}(t_{n})|$ by the definition of $u_{n}(t)$ ,
we have (4.13).

5. Proof of Proposition 1.2.

We constract $\varphi_{1},$
$f_{1}$ with required properties in the space $l^{2}$ . Let $\epsilon,$

$\epsilon_{1}>0$ .
Put

$z_{1}=e_{0}- \sum_{n=1}^{\infty}\epsilon^{n}e_{n}$ , $z_{2}=e_{0}+ \sum_{n=1}^{\infty}\epsilon^{n}e_{n}$ and $M\geqq 2$ ,

where $\{e_{n}\}_{n\geq 0}$ is the orthogonal basis of $l^{2}$ . We define the functionals $\varphi_{2}$ and
$f_{2}$ as follows;

$\varphi_{2}(x)=\psi_{1}(x)+\psi_{2}(x)$ ,

$\psi_{1}(x)=2^{-1}\{(z_{1}, x)^{2}+\sum_{n=1}^{\infty}n^{-1}\epsilon^{n}(e_{n}, x)^{2}\}$ ,

$\psi_{2}(x)=\{2^{-1}M\{(z_{2}0x)^{2}-4\}$
if $(z_{2}, x)^{2}>4$ ,
if $(z_{2}, x)^{2}\leqq 4$ ,

$f_{2}(t)=\rho(t)e_{0}$

with

$\rho(t)=\{\begin{array}{ll}1, t\in[2mT, 2mT+r-\epsilon_{1}),-4\epsilon_{1}^{-1}, t\in[2mT+r-\epsilon_{1},2mT+r),-3(M+1), t\in[2mT+r, (2m+2)T-\epsilon_{1}),4\epsilon_{1}^{-1} t\in[(2m+2)T-\epsilon_{1}, (2m+2)T).\end{array}$

Here $r$ is the constant such that $\int_{0}^{2T}\rho(f)dt=0$ holds. Then both (1.1) and (1.6)

hold.
We claim that $(E;\varphi_{2}, f_{2})$ has no periodic solution if $\epsilon,$

$\epsilon_{1}>0$ are sufficiently
small. Let $u(t)$ be the solution of

(5.1) $\{\begin{array}{l}d-- u(t)+\partial\varphi_{2}(u(t))\ni f_{2}(t), t>0,dtu(0)=e_{0}.\end{array}$

We show that the set $\{u(t);i\geqq 0\}$ is unbounded.
By definition, one has

(5.2) $\partial\varphi_{2}(x)=\{\begin{array}{ll}y(O), if (z_{2}, x)^{2}<4,y(M), if (z_{2}, x)^{2}>4,\{y(\theta);\theta\in[0, M]\}, if (z_{2}, x)^{2}=4,\end{array}$
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where $x_{k}=(e_{k}, x),$ $k=0,1,2,$ $\cdots$ , $\alpha(x)=\Sigma_{k=1}^{\infty}\epsilon^{k}x_{k}$ and

$y( \theta)=\{(\theta+1)x_{0}+(\theta-1)\alpha(x)\}e_{0}+\sum_{n=1}^{\infty}\epsilon^{n}\{(\theta-1)x_{0}+(\theta+1)\alpha(x)+n^{-1}x_{n}\}e_{n}$ .

Put $u_{n}(t)=(e_{0}, u(t)),$ $n=0,1,2,$ $\cdots$ , and $a(t)=\alpha(u(t))$ . Then by (5.2) one has
the following;

(i) If $t\in[2mT, 2mT+r-\epsilon_{1}$ ) and $(z_{2}, u(t))<4$ , then

$\frac{d}{dt}u_{0}(t)=-u_{0}(t)+a(t)+1$ ,

$\frac{d}{dt}u_{n}(t)=\epsilon^{n}\{u_{0}(t)-a(t)-n^{-1}u_{n}(t)\}$ , $n\geqq 1$ .

(ii) If $t\in[2mT+r,$ $2(m+1)T-\epsilon_{1})$ and $(z_{2}, u(t))>4$ , then

$\frac{d}{dt}u_{0}(t)=-(M+1)u_{0}(t)+(M-1)a(t)-3(M+1)$ ,

$\frac{d}{dt}u_{n}(t)=\epsilon^{n}\{-(M-1)u_{0}(t)-(M+1)a(t)-n^{-1}u_{n}(t)\}$ , $n\geqq 1$ .

Therefore, putting $I=\{t\geqq 0;|a(t)|\leqq 3^{-1}\delta\}$ for a fixed $\delta>0$ , we obtain in the
same way as in Section 4 that $I=[0, \infty$ ). Moreover, as is seen in Section 4, it
follows from (i) and (ii) that for each $n\geqq 1$ there is a positive number $t_{n}$

satisfying
$u_{n}(t_{n})>n(1-\delta)$ .

This estimate means that the set $\{u(t);t\geqq 0\}$ is unbounded in $l^{2}$ , or equivalently
that $(E;\varphi_{2}, f_{2})$ has no periodic solution.
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