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1. Introduction.

The purpose of this paper is to prove the following

THEOREM (1.1). Let $P=k[X_{1},$ $X_{2},$ $\cdots$ , $X_{n}\ovalbox{\tt\small REJECT}$ be a formal power series ring
over an algebraically closed field $k$ of ch $k\neq 2$ . Let $R=P/I$, where I is an ideal
of $P$ and suppOse that dim $R=d\geqq 2$ . Then the following two conditions are equiv-
alent.

(1) $R$ is a regular local ring.
(2) $R$ is a Cohen-Macaulay ring that possesses only finitely many isomorphism

classes of indecompOsable maximal Buchsbaum modules. (See Section 2 for the
notion of maximal Buchsbaum module.)

When this is the case, the syzygy modules of the residue class field $k$ of $R$

are the representatjves of indecompOsable maximal Buchsbaum modules and so there
are exactly $d$ non-isomorphjc indecompOsable maximal Buchsbaum modules over $R$ .

Our contribution in the above theorem is the implication (2) $\Rightarrow(1)$ . The last
assertion and the implication (1) $\Rightarrow(2)$ are due to [6] (see also [5, Theorem 3.2]),

where some consequences of the result are discussed too.
We would like to note here that the assumption $\dim R\geqq 2$ in Theorem (1.1)

is not superfluous. There actually exist non-regular Cohen-Macaulay local rings
$R$ of dim $R=1$ that possess only finitely many isomorphism classes of indecom-
posable maximal Buchsbaum modules. The typical example is the ring

$R=k[X,$ $YI/(X^{3}+Y^{2})$

( $k$ , any field), which has exactly 5 indecomposable maximal Buchsbaum modules
(cf. (5.3)). So the result of one-dimensional case seems more complicated.
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Our proof of Theorem (1.1) is based on the recent progress [3] and [10] of
the theory of Cohen-Macaulay local rings of finite CM-representation type, $i$ . $e.$ ,
Cohen-Macaulay local rings with only finitely many isomorphism classes of inde-
composable maximal Cohen-Macaulay modules. Let $R$ be as in (1.1). Then the
ring $R$ is evidently of finite CM-representation type, if it satisfies the condition
(2) of (1.1) (since any Cohen-Macaulay module is by definition Buchsbaum, see
(2.1)). According to [1], [3] and [12] such rings $R$ are rather rare and when
$R$ is Gorenstein, it is already proved by [3] (see [8, Satz 1.2] too) that $R$ must
be a simple hypersurface in the sense of [9]; so the structure of $R$ is com-
pletely known.

In Section 2 of this paper we will establish a technical lemma (2.3) which
enables us to construct infinitely many non-isomorphic indecomposable maximal
Buchsbaum modules, once there is given an indecomposable maximal Cohen-
Macaulay module satisfying certain requirements. The lemma also helps us
reduce our problem to the case where $R$ is a Gorenstein ring and consequently,
to the case where $R$ is a simple hypersurface(Proposition(2.4)). We will prove
Theorem (1.1) by paralogism and the proof is divided into two parts, $i.e.$ , the
case where dim $R\geqq 3$ and the case where dim $R=2$ . In both cases the theorems
on simple hypersurfaces in [3] and [10] are quite helpful to accomplish the
proof of Theorem (1.1) by finding indecomposable maximal Cohen-Macaulay R-
modules which satisfy the requirements of (2.3).

Let us now explain how to organize this paper. The proof of Theorem (1.1)

of the case where $\dim R\geqq 3$ (resp. dimR $=2$) shall be given in Section 3 (resp.

Section 4). Section 2 is devoted to preliminaries. The definition of Buchsbaum
modules and some basic results on matrix factorizations of maximal Cohen-
Macaulay modules over hypersurfaces shall be summarized too. In Section 5 we
shall explore the ring $k\ovalbox{\tt\small REJECT} X,$ $YI/(X^{3}+Y^{2})$ , that is the simplest counterexample to
rheorem (1.1) in one-dimensional case.

Throughout this paper let $R$ be a Noetherian local ring with maximal ideal
$\mathfrak{m}$ and dim $R=d$ . We denote by $H_{\iota \mathfrak{n}}^{i}(\cdot)$ the $j^{th}$ local cohomology functor of $R$

relative to $\mathfrak{m}$ .

2. Preliminaries.

We begin with the definition of Buchsbaum modules.

DEFINITION (2.1) ([13]). Let $M$ be a finitely generated R-module. Then $M$

is said to be a Buchsbaum module, if the difference

$I_{R}(M)=l_{R}(M/qM)-e_{q}(M)$

is an invariant of $M$, that is independent of the particular choice of a parameter
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ideal $q$ for $M$ (here $l_{R}(M/qM)$ and $e_{q}(M)$ respectively denote the length of $M/qM$

and the multiplicity of $M$ relative to q).

Consequently, $M$ is a Cohen-Macaulay module if and only if $M$ is a Buchs-
baum module of $I_{R}(M)=0$ . Thus the concept of Cohen-Macaulay module is
naturally generalized by that of Buchsbaum module. We say that a Buchsbaum
R-module $M$ is maximal, if $\dim_{R}M=\dim R$ .

The readers may consult the monumental book [15] for the general ref-
erence on Buchsbaum rings and modules and also for the recent developments
of the theory. So let us note here only the next criterion, which we need in
the sequel:

LEMMA (2.2) ([14, Corollary 1.1]). Let $M$ be a finitely generated R-module
with $depth_{R}M=t<\dim_{R}M=s$ . Assume that $H_{1\mathfrak{n}}^{i}(M)=(0)$ for $i\neq t,$ $s$ . Then Mis a
Buchsbaum module if and only if

$\mathfrak{m}\cdot H_{\mathfrak{m}}^{t}(M)=(0)$ .

The following lemma is the key of this paper.

LEMMA (2.3). SuppOse that $R$ is a Cohen-Macaulay ring of dim $R=d\geqq 2$ and
that R $Po\mathfrak{B}esSeS$ the canonical module $K_{R}$ . Let $L$ be a maximal Cohen-Macaulay
R-module and let $\Lambda=End_{R}L$ (resp. $J$ ) denote the endomorphism ring of $L$ (resp.

the Jacobsm radical of $\Lambda$ ). If $\dim_{R/\mathfrak{m}}\Lambda/J=1$ and if one of the following cmdi-
tions

(a) $\dim_{R/11t}L/JL\geqq 2$

(b) $\dim_{R/t\mathfrak{n}}JL/(J^{2}L+\mathfrak{m}L)\geqq 2$

is satisfied, then $R$ has a family $\{M_{\lambda}\}_{\lambda\in R/\mathfrak{m}}$ of indecomPosable maximal Buchsbaum
modules such that $M_{\lambda}\neq M_{\mu}$ for $\lambda\neq\mu$ .

PROOF. Choose elements $f$ and $g$ of $L$ (resp. $JL$), when the condition ( $a\rangle$

(resp. $(b)$) is satisfied, so that the classes $\overline{f}$ and $\overline{g}$ of $f$ and $g$ in $L/JL$ (resp.

$JL/(J^{2}L+\mathfrak{m}L))$ are linearly independent over $R/\mathfrak{m}$ . For each $\lambda\in R/\mathfrak{m}$ , let $c_{\lambda}\in R$

be such that $\lambda=c_{\lambda}$ modm. We put $h_{\lambda}=f+c_{\lambda}\cdot g$ and define

$M_{\lambda}=JL+Rh_{\lambda}$ (resp. $M_{\lambda}=J^{2}L+\mathfrak{m}L+Rh_{\lambda}$ ),

if (a) (resp. $(b)$) is the case. Then as $M_{\lambda}\supset \mathfrak{m}L$ , applying the functors $Hi(\cdot)$ to
the exact sequence

$(\#)$ $0arrow M_{\lambda}arrow Larrow L/M_{\lambda}arrow 0$

we get

$H_{\mathfrak{n}t}^{i}(M_{\lambda})=\{\begin{array}{ll}L/M_{\lambda} (i=1),H_{\mathfrak{n}}^{a}(L) (i=d),(0) (i\neq 1, d).\end{array}$
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Hence by (2.2) $M_{\lambda}$ is a maximal Buchsbaum R-module.
Take the $K_{R}$-dual $[\cdot]^{*}$ of the sequence $(\#)$ . Then as $depth_{R}K_{R}=d\geqq 2$ , we

get $L^{*}=M_{\lambda}^{*}$ whence
$M_{\lambda}^{**}=L$

by [7, Satz 6.1]. This guarantees that $M_{\lambda}$ is indecomposable, because so is $L$

by the assumption that $\dim_{R/\mathfrak{m}}\Lambda/J=1$ .
Let $\phi:M_{\lambda}arrow M_{\mu}$ be an isomorphism for some $\lambda,$ $\mu\in R/\mathfrak{m}$ . Then as $M_{\lambda}^{**}=L$

and $M_{\mu}^{**}=L$ , the map $\phi$ extends to an automorphism $\psi$ of $L$ . Write $\psi=c+\rho$

with $c\in R$ and $\rho\in J$. Then as $\rho M_{\lambda}\subset M_{\lambda}$ by the definition of $M_{\lambda}$ , we get

$M_{\mu}=\psi M_{\lambda}\subset M_{\lambda}$ .
Hence $h_{\mu}\in M_{\lambda},$

$i$ . $e.,\overline{f}+\mu\overline{g}\in R/\mathfrak{m}(\overline{f}+\lambda\overline{g})$ , which forces $\lambda=\mu$ as required.

PROPOSITION (2.4). SuppOse that $R$ is a Cohen-Macaulay ring of dim $R\geqq 2$

and that RpOssesses the canonical module $K_{R}$ . If $R$ has only finitely many iso-
morPhism classes of indecomPosable maximal Buchsbaum modules and if the field
$R/\mathfrak{m}$ is infinite, then the completion $R$ of $R$ is a hypersurface.

PROOF. If $R$ were not a Gorenstein ring, then by (2.3) we can construct
from $L=K_{R}$ infinitely many non-isomorphic indecomposable maximal Buchsbaum
R-modules, because $Hom_{R}(K_{R}, K_{R})=R$ and because $\dim_{R’ \mathfrak{m}}K_{R}/\mathfrak{m}K_{R}\geqq 2$ by [7, Satz
6.10]. Hence $R$ has to be Gorenstein. Since $R$ is of finite CM-representation
type, by [8, Satz 1.2] $\hat{R}$ is even a hypersurface.

PROPOSITION (2.5). Let $R$ be a normal ring of dim $R=2$ and suppOse that the
field $R/\mathfrak{m}$ is infinite. If $R$ has only finitely many isomorphim classes of indecoyn-

posable maximal Buchsbaum modules, then $R$ is $a$ UFD.

PROOF. Assume that $R$ is not a UFD and take a non-principal prime ideal
$\mathfrak{p}$ of $R$ so that $\dim R_{\mathfrak{p}}=1$ . Then $End_{R}\mathfrak{p}=R$ and $\dim_{R/\mathfrak{m}}\mathfrak{p}/\mathfrak{m}\mathfrak{p}\geqq 2$ . Since $\mathfrak{p}\cong$

$Hom_{R}(Hom_{R}(\mathfrak{p}, R),$ $R$ ), by the proof of (2.3) (replacing the $K_{R}$-dual by the R-dual)

we can construct from the R-module $L=\mathfrak{p}$ a family $\{M_{\lambda}\}_{\lambda\in R/m}$ of non-iso-
morphic indecomposable maximal Buchsbaum R-modules –this is a contradiction.

The rest of this section is devoted to a brief survey on matrix factoriza-
tions.

Let $P_{0}$ be a regular ring with maximal ideal no and let $0\neq f\in \mathfrak{n}_{0}$ . Then a
matrix factorization of $f$ is a pair

$\phi$ $\psi$

$(Farrow G, Garrow F)$

of homomorphisms of finitely generated free $P_{0}$-modules such that

$\phi\circ\psi=f\cdot 1_{G}$ and $\psi\circ\phi=f\cdot 1_{F}$ .
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A morphism between two matrix factorizations $(F^{\phi}arrow G, Garrow F)\psi$ and $(F^{\prime^{\phi’}}arrow G’$ ,
$G\prime^{\psi’}arrow F’)$ is a pair

$(Farrow^{\alpha}F’, Garrow G’)$
$\beta$

of homomorphisms which make the following square

$\alpha_{F’}\downarrow Farrow Garrow G\phi\phi\downarrow\beta$

commutative. The matrix factorizations of $f$ form an additive category, which
we denote by $MF(f)$ .

For each $X=(F^{\phi}arrow G, Garrow F)\in MF(f)\emptyset$ , we dePne

cok $X$ $:=Coker\phi$ .
Then one can easily check that cokX is a maximal Cohen-Macaulay $R_{0}$-module
(here $R_{0}$ $:=P_{0}/fP_{0}$) and the operation cok is an additive functor from $MF(f)$ to
the category $MCM(R_{0})$ of maximal Cohen-Macaulay $R_{0}$-modules. We say that a
matrix factorization $X$ of $f$ is projective (resp. trivial), if cokX is free (resp.

cok $X=(0))$ .
The next result due to D. Eisenbud is fundamental.

PROPOSITION (2.6) ([4, Chapter 6]). The functor cok induces an equivalence
between the category $MF(f)/J$ and the category $MCM(R_{0})$ , where $J$ denotes the
ideal in $MF(f)$ (in the sense of [11, 2.2]) generated by the morphjsms that factor
through the trivial matrix factorization

$(P_{0}arrow^{1}P_{0}, P_{0}arrow^{f}P_{0})$ .
Now suppose that $P_{0}=k\ovalbox{\tt\small REJECT} X_{1},$ $X_{2},$ $\cdots$ , $X_{n}\ovalbox{\tt\small REJECT}$ is a formal power series ring over

an algebraically closed field $k$ of ch $k\neq 2$ . Let $P=P_{0}\ovalbox{\tt\small REJECT} Y,$ $ZJ$ be a formal power
series ring over $P_{0}$ . We consider the ring $R:=P/(f+Y^{2}+Z^{2})P$ and the category
$MF(f+Y^{2}+Z^{2})$ of matrix factorizations of $f+Y^{2}+Z^{2}$ . The purpose is to com-
pare $MCM(R)$ and $MCM(R_{0})$ . First let us write

$u=Y+iZ$ and $v=Y-iZ$

(so that $uv=Y^{2}+Z^{2}$) and introduce an additive functor

$H$ : $MF(f)arrow MF(f+Y^{2}+Z^{2})$

that associates to $(\phi, \psi)\in MF(f)$ the matrix factorization
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$((\begin{array}{ll}u \psi\phi -v\end{array}), (\begin{array}{ll}v \psi\phi -u\end{array}))$

of $f+Y^{2}+Z^{2}$ , and to $aImorphism(\alpha, \beta)$ in $MF(f)$ the morphism

$((\begin{array}{ll}\alpha 00 \beta\end{array}), (\begin{array}{ll}\alpha 00 \beta\end{array}))$

in $MF(f+Y^{2}+Z^{2})$ . Let $\underline{MCM}(R_{0})$ (resp. $\underline{MCM}(R)$ ) be the quotient of the category
$MCM(R_{0})$ (resp. $MCM(R)$ ) by the ideal which is generated by the morphisms
that factor through free $R_{0}$-modules (resp. free R-modules). By (2.6) $\underline{MCM}(R_{0})$

and $\underline{MCM}(R)$ are respectively the quotients of $MF(f)$ and $MF(f+Y^{2}+Z^{2})$ by the
ideals of morphisms factoring through projective matrix factorizations, too. So
$H$ induces a functor from $\underline{MCM}(R_{0})$ to $\underline{MCM}(R)$ and Kn\"orrer’s periodicity theorem
can be stated as follows:

THEOREM (2.7) ([10, Theorem 3.1]). $H$ induces an equivalence between the
categories $\underline{MCM}(R_{0})$ and $\underline{MCM}(R)$ .

3. Proof of Theorem (1.1) in the case where $\dim R\geqq 3$ .
Let $P=k[X_{1},$ $X_{2},$ $\cdots$ , $X_{n},$ $Y,$ $Z\ovalbox{\tt\small REJECT}$ be a formal power series ring over an

algebraically closed field $k$ of ch $k\neq 2$ . We put

$P_{0}=k\ovalbox{\tt\small REJECT} X_{1},$ $X_{2},$ $\cdots$ , $X_{n}\ovalbox{\tt\small REJECT}$ and no $=$ $(X_{1}, X_{2}, \cdots , X_{n})P_{0}$ .
Let $0\neq f\in \mathfrak{n}_{0}^{2}$ and define

$R_{0}$ $:=P_{0}/fP_{0}$ and $R$ $:=P/(f+Y^{2}+Z^{2})P$ .
Then we have the following

THEOREM (3.1). Let $L$ be an indecompOsable maximal Cohen-Macaulay R-
module such that $L\neq R$. Then

dim $k\Lambda/J=1$ and $\dim_{k}L/JL\geqq 2$ ,

where $\Lambda=End_{R}L$ (resp. $J$ ) denotes the endomorphism ring of $L$ (resp. the Jacobson
radical of $\Lambda$ ).

To prove Theorem (3.1) we need three more functors $T,$
$\rho$ and rest. First,

for $each_{\wedge}^{T}X=(F_{1}arrow F_{2}, F_{2}arrow F_{1})\in MF(f)$ , let

$TX=(F_{2}arrow^{\psi}F_{1}, F_{1}arrow^{\phi}F_{2})$ .
Then

$T$ : $MF(f)arrow MF(f)$

is an involutive functor and cokTX is the first syzygy module of $cokX$. Let
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$\rho$ : $MF(f+Y^{2}+Z^{2})arrow MF(f)$

be the functor which sends a matrix factorization

$(F_{1}arrow^{\Phi}F_{2}, F_{2}arrow^{\Psi}F_{1})$

of $f+Y^{2}+Z^{2}$ to the matrix factorization of $f$ defined by the induced maps be-
tween $F_{1}/(Y, Z)F_{1}$ and $F_{2}/(Y, Z)F_{2}$ . On the level of maximal Cohen-Macaulay
modules we have a functor

rest : $MCM(R)arrow MCM(R_{0})$ ,

$M-M/(Y, Z)M$ .
The following identification is easily checked.

(3.2) $\rho\circ H=id\oplus T$ and restcok $=cok\circ\rho$ .
In the proof of (3.1) we need the following remark. It is almost obvious

and we omit the proof.

LEMMA (3.3). Let $M$ and $N$ be maximal Cohen-Macaulay $R_{0}$-modules such
that $M$ is indecompOsable and $M\neq R_{0}$ . Let $\alpha\in Hom_{R_{0}}(M, N)$ and assume that $\alpha$

factors through a free $R_{0}$-module. Then

$\alpha(M)\subset \mathfrak{m}_{0}N$ ,

where $\mathfrak{m}_{0}$ denotes the maximal ideal of $R_{0}$ .
PROOF OF THEOREM (3.1). By virtue of (2.6) and [10, (3.6)] we may choose

an indecomposable matrix factorization $X$ of $f$ so that $L=cokH(X)$ . Let $M_{1}=$

cok $X$ and $M_{2}=cokTX$. Then by (3.2) we have

$L/(Y, Z)L=M_{1}\oplus M_{2}$ .
Let $\epsilon;Larrow M_{1}\oplus M_{2}$ denote the canonical epimorphism. To see dim $kL/JL\geqq 2$ , it
is enough to show

$\epsilon(JL)\subset J_{1}M_{1}\oplus J_{2}M_{2}$ ,

where $J_{i}$ denotes the Jacobson radical of $End_{R_{0}}M_{i}$ .
Consider the following commutative diagram

End
$Xarrow^{H}$

End $H(X)arrow^{\rho}$ End $(X\oplus TX)$

$cok\downarrow$

rest
$\downarrow cok$

$End_{R}L$ $arrow End_{R_{0}}(M_{1}\oplus M_{2})$

of algebras, where all the homomorphisms are induced by the corresponding
functors (hence the vertical homomorphisms are surjective, see (2.6)). Let $\phi\in J$
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and write $\phi=cok\psi$ with $\psi\in EndH(X)$ . Then as EndH(X) is local by [10, (3.6)],
$\psi$ is in the Jacobson radical of EndH(X). So by (2.7) we can write that

$\psi=H(\xi)+\eta$

with $\xi$ in the Jacobson radical of End $X$ and $\eta\in EndH(X)$ which factors through
a projective matrix factorization of $f+Y^{2}+Z^{2}$ . Hence

rest $\phi=cok(\rho(H(\xi)))+cok(\rho(\eta))$

$=cok(\xi\oplus T\xi)+cok(\rho(\eta))$ ,

as $\rho\circ H=id\oplus T$ by (3.2).

Note that $T\xi$ is in the Jacobson radical of EndTX (since $\xi$ is in the Jacobson
radical of End $X$ ) and we get cok $\xi\in J_{1}$ and $cokT\xi\in J_{2}$ . Hence the image of the
endomorphism $cok(\xi\oplus T\xi)=cok\xi\oplus cokT\xi$ of $M_{1}\oplus M_{2}$ is contained in $J_{1}M_{1}\oplus J_{2}M_{2}$ .
Write that

$cok(\rho(\eta))=(\begin{array}{ll}a_{11} a_{12}a_{21} a_{22}\end{array})$

with $a_{ij}\in Hom_{R_{0}}(M_{j}, M_{i})$ and recall that the morphism $\eta$ factors through a pro-
jective matrix factorization of $f+Y^{2}+Z^{2}$ . Then we find that each $a_{ij}$ factors
through a free $R_{0}$-module, as so does $cok(\rho(\eta))=rest(cok\eta)$ . Hence by (3.3) we
get ${\rm Im} a_{ij}\subset \mathfrak{m}_{0}M_{i}$ and therefore

${\rm Im}(cok(\rho(\eta)))\subset J_{1}M_{1}\oplus J_{2}M_{2}$ .

Thus for any $\phi\in J,$ ${\rm Im}(rest\phi)\subset J_{1}M_{1}\oplus J_{2}M_{2}$ which guarantees

$\epsilon(JL)\subset J_{1}M_{1}\oplus J_{2}M_{2}$

as required. This completes the proof of Theorem (3.1).

We are now in position to prove Theorem (1.1) in the higher dimensional
case. Let $R$ be as in (1.1) and assume that $R$ satisfies the condition (2) of (1.1).

Then by (2.4) $R$ must be a hypersurface and so we may assume the ideal $I$ is
Principal, say $I=gP$. Let us suppose that $R$ is non-regular. Then as $R$ has
finite CM-representation type, by virtue of [3, Theorem $A$] the possible normal
form of the $g’ s$ is completely classified. In particular if dim $R=d\geqq 3$ , we must
have

$gP=(f+Y^{2}+Z^{2})P$

for some regular system $X_{1},$ $X_{2},$ $\cdots$ , $X_{d-1},$ $Y,$ $Z$ of parameters of $P$ and for some
non-zero element $f$ of ng where $\mathfrak{n}_{0}$ is the maximal ideal of $k[X_{1}, X_{2}, \cdots , X_{d-1}]|$ .
However in this situation, Lemma (2.3) and Theorem (3.1) claim that $R$ cannot
satisfy the condition (2) in (1.1)–hence dim $R=2$ .

When dim $R=2$, the possible normal form of the $g’ s$ in $P=k[X,$ $Y,$ $Z\ovalbox{\tt\small REJECT}$ is
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$f+Z^{2}$ where $f$ is one of the following type ([3, Theorem $A]$ and [9]):

$(A_{n})$ $X^{2}+Y^{n*1}$ $(n\geqq 1)$

$(D_{n})$ $X^{n-1}+XY^{2}$ $(n\geqq 4)$

(E) $X^{3}+Y^{4}$ (chk $\neq 3$)

$X^{3}+Y^{4},$ $X^{3}+X^{2}Y^{2}+Y^{4}$ (ch $k=3$ )

(E) $X^{3}+XY^{3}$ (chk $\neq 3$)

$X^{3}+XY^{3},$ $X^{3}+X^{2}Y^{2}+XY^{3}$ (ch $k=3$)

(E) $X^{3}+Y^{5}$ (ch $k\neq 3,5$)

$X^{3}+Y^{5},$ $X^{3}+X^{2}Y^{3}+Y^{5},$ $X^{3}+X^{2}Y^{2}+Y^{5}$ (ch $k=3$ )

$X^{3}+Y^{5},$ $X^{3}+XY^{4}+Y^{5}$ (ch $k=5$).

In the above list, one can easily check that any $P/(f+Z^{2})$ is a normal ring but
except $(E_{8})$ it cannot be a UFD. Consequently, by (2.5) our ring $R$ must be of
type $(E_{8})$ .

In the next section we will prove that the ring $R$ still fails to be of type
(E).

4. Proof of Theorem (1.1) in the case where dimR $=2$ .
Let $P=k[X,$ $Y,$ $Z\ovalbox{\tt\small REJECT}$ be a formal power series ring over an algebraically

closed field $k$ of ch $k\neq 2$ . Let

$F=X^{3}+Y^{2}G+Y^{5}+Z^{2}$ ,

where $G$ is either $0$ or one of the following:

$X^{2}Y,$ $X^{2}$ (ch $k=3$),

$XY^{2}$ (chk $=5$).

We put $R:=P/FP$. Recall that $R$ is a normal ring. Let $x,$ $y,$ $z$ and $g$ respec-
tively denote $X,$ $Y,$ $Z$ and $G$ mod $FP$. We denote by $\mathfrak{m}$ the maximal ideal
$(x, y, z)R$ of $R$ .

Let $L$ be the R-submodule of $R^{2}$ generated by

$f_{1}=(\begin{array}{l}x^{2}z\end{array})$ , $f_{2}=(\begin{array}{l}-y0\end{array})$ , $f_{3}=(\begin{array}{l}-zx\end{array})$ and $f_{4}=(\begin{array}{l}0y\end{array})$ .

Let $\Lambda=End_{R}L$ (resp. $J$ ) denote the endomorphism ring of $L$ (resp. the Jacobson
radical of $\Lambda$ ).

With the above notation the purpose of this section is to check the follow-
ing assertions (4.1), which will complete the proof of Theorem (1.1) as is noted
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in the end of Section 3.

THEOREM (4.1). (1) $L$ is an indecomposable maximal Cohen-Macaulay R-
module.

(2) dim $kL/JL=1$ .
(3) dim $kJL/(J^{2}L+\mathfrak{m}L)\geqq 2$ .
We divide the proof of (4.1) into several steps. First of all let $L’$ denote

the second syzygy module of $R/\mathfrak{m}$ :

$0arrow L’arrow R^{3}arrow R(xyz)arrow R/\mathfrak{m}arrow 0$ .

Then $L’$ is a maximal Cohen-Macaulay R-module of rank 2. The next assertion
is directly checked.

(4.2) $L’$ is generated by

$(\begin{array}{l}x^{2}y^{4}+ygz\end{array})$ , $(\begin{array}{l}-yx0\end{array})$ , $(\begin{array}{l}-z0x\end{array})$ and $(\begin{array}{l}0-zy\end{array})$ .

As $rank_{R}L=2$ and as $L$ is a homomorphic image of $L’$ (via the homo-

morphism $\phi:R^{3}arrow R^{2}$ defined by $\phi((\begin{array}{l}abc\end{array}))=(\begin{array}{l}ac\end{array}))$ , we have $L’\cong L$ and hence $L$ is a

maximal Cohen-Macaulay R-module. By (4.2) we check that the following se-
quence
$(\#)$

$R^{4}R^{4}\overline{(y^{4}+x^{2}z0yg-xz0xy}arrow R^{2}(_{z0xy}^{x^{2}-y-z0})$

is exact. So the matrix factorization of $F=X^{3}+Y^{2}G+Y^{\text{\’{o}}}+Z^{2}$ corresponding to
$L$ is

$((\begin{array}{lll}Z 0 X Y0 Z-(Y^{4}+YG) X^{2}X^{2} -Y -Z 0Y^{4}+YG X 0 -Z\end{array}), (\begin{array}{lll}Z 0 X Y0 Z-(Y^{4}+YG) X^{2}X^{2} -Y -Z 0Y^{4}+YG X 0 -Z\end{array}))$ .

By (4.2) we similarly have the following

PROPOSITION (4.3). The sequence

$0arrow Rarrow^{q}Larrow^{p}Rarrow R/\mathfrak{m}arrow 0$

is exact, where $q(1)=f_{2}$ and $p((\begin{array}{l}ab\end{array}))=b$ .
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To see that $L$ is indecomposable we consider the ring $S:=k[X,$ $Y\ovalbox{\tt\small REJECT}/(X^{3}$

$+Y^{2}G+Y^{5})$ . The ideal $(x^{2}, y)S$ is the first syzygy module of the ideal $(x, y)S$ ,
and $(x^{2}, y)S\neq(x, y)S$ ; actually the matrix factorization of $X^{3}+Y^{2}G+Y^{5}$ cor-
responding to $(x, y)S$ is

$((\begin{array}{ll}X^{2} -YY^{4}+YG X\end{array}), (\begin{array}{ll}X Y-(Y^{4}+YG) X^{2}\end{array}))$ .

On the other hand the matrix factorization of $X^{3}+Y^{2}G+Y^{5}+Z^{2}$ corresponding
to $L$ has the form

$((\begin{array}{llll}Z 0 X Y0 Z -(Y^{4}+YG) X^{2}X^{2} -Y -Z 0Y^{4}+YG X 0 -Z\end{array}), (\begin{array}{llll}Z 0 X Y0 Z -(Y^{4}+YG) X^{2}X^{2} -Y -Z 0Y^{4}+YG X 0 -Z\end{array}))$ ,

whence by [10, (2.7)] we readily get that $L$ is indecomposable.
Let us show $\dim_{k}L/JL=1$ . As dim $k\Lambda/J=1$ , it is enough to see that $L=$

$\Lambda f_{2}$ . Take the R-dual $[\cdot]^{*}$ of the exact sequence

$0arrow Rarrow^{q}Larrow \mathfrak{m}arrow 0$

given in (4.3). Then since $R$ is Gorenstein, the resulting exact sequence has the
following form

$q^{*}$

$0arrow Rarrow L^{*}arrow R^{*}arrow R/\mathfrak{m}arrow 0$ .
As $L^{*}$ is again a maximal Cohen-Macaulay R-module, this sequence is funda-
mental in the sense of M. Auslander [2]. Let $v\in L$ and let $\phi:Rarrow L$ denote the
homomorphism defined by $\phi(1)=v$ . Then as $L$ is indecomposable and $L\not\cong R$ ,
the induced homomorphism $\phi^{*}:$ $L^{*}arrow R^{*}$ is not surjective and so by [2, Proposi-
tion 6.1] there is a homomorphism $\psi^{*}:$ $L^{*}arrow L^{*}$ such that $\phi^{*}=q^{*}\circ\psi^{*}$ . Hence
$\phi=\psi^{0}q$ for some $\psi\in\Lambda$ and thus $L=\Lambda f_{2}$ .

To show that $\dim_{k}JL/(J^{2}L+\mathfrak{m}L)\geqq 2$ we consider the ring $T:=R/yR$
$(=k\ovalbox{\tt\small REJECT} X, Z\/(X^{3}+Z^{2}))$ . Let $\overline{T}$ denote the normalization of $T$ and put $t=-z/x$ .
Then

$\overline{T}=k\ovalbox{\tt\small REJECT} t\ovalbox{\tt\small REJECT}$ , $x=-r^{2}$ and $z=t^{3}$ .
Let $\overline{L}=L/yL$ and recall that any indecomposable maximal Cohen-Macaulay T-
module is isomorphic to $T$ or $\overline{T}$ ([8, Satz 1.6]). Then we have that

$\overline{L}=\overline{T}\oplus\overline{T}$ ,

as $rank_{T}\overline{L}=2$ and as $\overline{L}$ is minimally generated by the four elements $\{\overline{f}_{i}\}_{1\leq i\leq 4}$

(here $-$ denotes the reduction mod $yL$ ).
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LEMMA (4.4). $\overline{f}_{2}$ and $\overline{f}_{3}$ form a T-free basis of $\overline{L}$ .

PROOF. As $xf_{1}=(y^{4}+yg)f_{2}+zf_{S}$ and $zf_{4}=yf_{1}+x^{2}f_{2}$ , we get $\overline{f}_{1}=-t\overline{f}_{3}$ and
$\overline{f}_{4}=t\overline{f}_{2}$ . Hence the T-module $\overline{L}$ is generated by $\overline{f}_{2}$ and $\overline{f}_{3}$ .

Since $End_{T}\overline{L}=End_{\overline{T}}\overline{L}$ , we shall identify $End_{T}\overline{L}$ with $\Gamma=M_{2}(\overline{T})$ (the matrix
algebra) via the T-free basis $f_{2}$ and $\overline{f}_{8}$ .
canonically considered to be a subalgebra

$ofEnd_{T}\overline{L}andwehaveLet\overline{\Lambda}=\Lambda/y\Lambda Thenahomomor-\overline{\Lambda}maybe$

phism

$\phi$ : $\Lambdaarrow End_{T}\overline{L}=\Gamma$

of R-algebras. Thus via $\phi$ we may write each element of $\Lambda$ as a $2\cross 2$ matrix
with entries in $\overline{T}$. For example since

$(\begin{array}{llll}x^{2} -y -z 0z 0 x y\end{array})(\begin{array}{lll}0 0 0 -10 0-(y^{3}+g) 00 1 0 0y^{3}+g 0 0 0\end{array})(\begin{array}{lll}z 0 yx0 z -(y^{4}+yg)x^{2}x^{2} -y 0-zy^{4}+yg x 0 -z\end{array})=0$ ,

the middle matrix induces an element $\rho$ of $J$ (see the exact sequence $(\#)$ above).

As $\rho(f_{2})=f_{3}$ and $p(f_{3})=-(y^{3}+g)f_{2}$ ,

$\phi(\rho)=(\begin{array}{ll}0 h1 0\end{array})$

(here $h$ denotes $-g$ mod $yR$). Later, in the proof of (4.6), this endomorphism $\rho$

will play a key role.

LEMMA (4.5). $\phi(J^{2})\subset t\Gamma$ .
PROOF. Let $I$ be a maximal left ideal of $\Gamma$ and put $V=\Gamma/I$. Then $I\supset t\Gamma$,

as $t\Gamma$ is the Jacobson radical of $\Gamma$ and so $V$ is a simple $\Gamma/t\Gamma$-module. Because
$\Gamma/t\Gamma=M_{2}(k)$ , we get dim$kV=2$ and therefore the $\Lambda$ -module $V$ has a composi-
tion series of length at most 2. Hence $]^{2}V=(O)$ and we have $\phi(J^{2})\subset t\Gamma$.

PROPOSITION (4.6). Let $\xi\in J$ and write

$\phi(\xi)=(\begin{array}{ll}a bc d\end{array})$ .

Then $a,$
$d\in t\overline{T}$ and $b\in t^{2}\overline{T}$.

PROOF. As $p\in J,$ $\phi(\rho\xi)=(\begin{array}{ll}0 h1 0\end{array})\cdot(\begin{array}{ll}a bc d\end{array})\in t\Gamma$ by (4.5). Hence $a,$
$b\in t\overline{T}$. Con-

sidering $\phi(\xi\rho)$ , we get $d\in t\overline{T}$ too. Notice that det $\phi(\eta)=\det\eta$ mod $yR$ for any
$\eta\in\Lambda$ . Then we see that $ad-bc\in t^{2}\overline{T}$, since $ad-bc\in t\overline{T}\cap T=t^{2}\overline{T}$. Therefore if
$c\in t\overline{T}$, we readily get $b\in t^{2}\overline{T}$. When $c\in t\overline{T}$, considering $\phi(\rho+\xi)=(1+cah+bd)$

instead, we get $h+b\in t^{2}\overline{T}$ and so $b\in t^{2}\overline{T}$ (as $h\in t^{2}\overline{T}$ ) also in this case.
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Now we are ready to check the assertion (3) in (4.1). We put

$W=\mathfrak{n}^{2}\overline{f}_{2}+\mathfrak{n}\overline{f}_{3}$ ,

where $\mathfrak{n}=t\overline{T}$. Let $\xi\in J^{2}$ and write

$\phi(\xi)=(\begin{array}{ll}a bc d\end{array})$ .

Then by (4.6) we ‘get $c\in \mathfrak{n}$ , $a,$
$d\in \mathfrak{n}^{2}$ and $b\in \mathfrak{n}^{3}$ , from which it follows that

$\phi(\xi)(\overline{f}_{i})\in Wfori=2,3$ . Hence Im $\phi(\xi)\subset W$ for any $\xi\in J^{2}$ . Let $M=J^{2}L+\mathfrak{m}L$ and
let $\epsilon;Larrow\overline{L}=L/yL$ denote the canonical epimorphism. Then as $\mathfrak{m}\overline{T}=\mathfrak{n}^{2}$ and
${\rm Im}\phi(\xi)\subset W$ for $\xi\in J^{2}$ , we get that $\epsilon(M)\subset W$ and therefore an epimorphism

$L/(J^{2}L+\mathfrak{m}L)arrow\overline{L}/W$ .
Hence dim $kL/(J^{2}L+\mathfrak{m}L)\geqq\dim_{k}\overline{L}/W=3$ , by which we have

dim $kJL/(J^{2}L+\mathfrak{m}L)\geqq 2$

since $\dim_{k}L/JL=1$ by the assertion (2). This completes the proof of both
Theorems (4.1) and (1.1).

5. An example of one-dimensional case.

As is noted in Section 1, the assumption that $\dim R\geqq 2$ in Theorem ( $1.1\rangle$

cannot be omitted. When dim $R=1$ , maximal Buchsbaum R-modules $M$ are
characterized by the condition that

$\dim_{R}M=1$ and $\mathfrak{m}\cdot H_{\mathfrak{m}}^{0}(M)=(0)$

(see (2.2)). This condition (is not too much weak but) seems not quite strong.
Nevertheless, in some sense surprisingly, there exist such Cohen-Macaulay local
rings $R$ of dimR $=1$ that are non-regular but possess only finitely many iso-
morphism classes of indecomposable maximal Buchsbaum modules. In what fol-
lows we will explore the typical example $R=kIt^{2},$ $t^{3}\ovalbox{\tt\small REJECT}$ .

Now let $k$ be any field and $S=k\ovalbox{\tt\small REJECT} t\ovalbox{\tt\small REJECT}$ a formal power series ring. We put
$R:=k\ovalbox{\tt\small REJECT} t^{2},$ $t^{3I}$ . Then $R$ and $S$ are the only indecomposable maximal Cohen-
Macaulay R-modules and the R-module $S$ has a resolution of the following form

$\epsilon$

$...arrow R^{2}arrow R^{2}arrow R^{2}arrow Sarrow 0$ ,
$(\begin{array}{ll}t^{3} t^{4}-t^{2} -t^{3}\end{array})(\begin{array}{ll}t^{3} t^{4}-t^{2} -r^{3}\end{array})$

where $\epsilon((\begin{array}{l}ab\end{array}))=a+bt$ . Therefore we have an embedding $\sigma:Sarrow R^{2}$ which sends
1 (resp. t) to $(\begin{array}{l}t^{3}-t^{2}\end{array})$ (resp. $(\begin{array}{l}t^{4}-t^{3}\end{array})$ ) and makes the diagram
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$Sarrow^{\sigma}R^{2}arrow^{\epsilon}S$

$\downarrow t$

a
$\downarrow\rho$

$\epsilon$

$\downarrow-t$

$Sarrow R^{2}arrow S$

commutative, where $\rho=(\begin{array}{l}0-t^{2}0-1\end{array})$ . Let $A=(a_{ij})$ and $B=(b_{ij})$ be $m\cross m$ matrices
with entries in $k$ and let

$\phi$ : $(R^{2})^{m}arrow(R^{2})^{m}$

denote the homomorphism defined by

$\phi((x_{i}))=(\sum_{j=1}^{m}a_{ij}x_{j}+\sum_{j=1}^{m}b_{ij}\rho(x_{j}))$ .

Then we clearly have the following

(5.1) The diagram

$S^{m}arrow^{\sigma^{m}}(R^{2})^{m}arrow^{\epsilon^{m}}S^{m}$

$\downarrow A+tB$ $\downarrow\phi$ $\downarrow A-tB$

$S^{m}arrow(R^{2})^{m}\sigma^{m}arrow S^{m}\epsilon^{m}$

is commutative (here $\sigma^{m}$ and $\epsilon^{m}$ resPectively denote the direct sum of $mcoP\iota es$ of
$\sigma$ and $\epsilon$ ).

Let $\mathfrak{m}(=t^{2}S)$ denote the maximal ideal of $R$ and let $N$ be an R-submodule
of $S$ containing $\mathfrak{m}$ . We put $M:=R^{2}/\sigma(N)$ . Then

PROPOSITION (5.2). $M$ is an indecomPosable maximal Buchsbaum R-module
with $HO(M)=S/N$.

PROOF. Considering the exact sequence

$0arrow S/Narrow Marrow Sarrow 0$ ,

we get $H_{t\mathfrak{n}}^{0}(M)=S/N$, as $\mathfrak{m}\cdot(S/N)=(0)and_{\Delta}^{p}asS$ is Cohen-Macaulay. So $M$ is a
maximal Buchsbaum R-module. Assume that $M=M_{1}\oplus M_{2}$ for some non-zero
submodules $M_{1}$ and $M_{2}$ . Then $M_{i}’ s$ are cyclic, since $M$ is generated by two
elements. If $\dim_{R}M_{i}=1$ for $i=1,2$, the isomorphisms $S\cong M/H_{\iota \mathfrak{n}}^{0}(M)\cong M_{1}/H_{\mathfrak{n}}^{0_{1}}(M_{1})$

$\oplus M_{2}/H_{m}^{0}(M_{2})$ claim that $S$ is decomposable. Hence $\dim_{R}M_{i}$ must be $0$ for some
$i$, say $i=2$ . Then $M_{2}\subset H_{t\mathfrak{n}}^{0}(M)$ and so $S$ is a homomorphic image of $M_{1}$ –this
is impossible, because $M_{1}$ is cyclic while $S$ is not. Thus we see $M$ is indecom-
posable.

We define
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$M_{1}$ $:=R^{2}/\sigma(\mathfrak{m})$ ,

$M_{2}$ $:=R^{2}/\sigma(R)$ ,

$M_{3}$ $:=R^{2}/\sigma(tS)$ .
By (5.2) $M_{i}’ s$ are indecomposable maximal Buchsbaum R-modules and $M_{1}\not\cong M_{i}$

for $i=2,3$ , because

dim ${}_{k}H_{\mathfrak{m}}^{0}(M_{i})=\{_{1}2$ $(i=2,3)(i=1),$ .
$M_{2}$ is of projective dimension 1 but $M_{3}$ is not; so $M_{2}\neq M_{3}$ .

The goal of this section is the following

THEOREM (5.3). $M_{1},$ $M_{2},$ $M_{3},$ $S$ and $R$ are the indecomposable maximal
Buchsbaum R-modules.

To prove this theorem we need one more lemma (5.4), the proof of which
is routine (use the induction on the size of matrices $C$ ) and will be omitted.

LEMMA (5.4). Let $C$ be an $m\cross n$ matrix with entries in $S/t^{2}S$ . Then there
exist an invertible $m\cross m$ matrix $P$ with entries in $S/t^{2}S$ and an invertible $n\cross n$

matrix $Q$ with entries in $k$ such that PCQ has the following form

$[------------..$
,

$--------------_{} \frac{t}{0},’,,\frac{}{0j0}1o^{r_{}}o_{}1^{t},$
‘

$^{_{}}0^{t}0.j’----_{} \frac{t..}{}";_{I}$ mod $t^{2}S$ .

PROOF OF THEOREM (5.3). Let $M$ be an indecomposable maximal Buchsbaum
R-module such that $M\neq R$ . Let $V=H_{m}^{0}(M)$ . Then $\mathfrak{m}V=(O)$ by (2.2).

CLAIM. $V\subset \mathfrak{m}M$ and $M/V\cong S^{m}$ for some $m\geqq 1$ .
For let $W=V\cap \mathfrak{m}M$ and write $V=W\oplus W’$ . Then $W’\cap \mathfrak{m}M=(O)$ and we have

an embedding $W’arrow Marrow M/\mathfrak{m}M$, which naturally splits. Hence $W’=(0)$ as $M$ is
indecomposable and thus $V\subset \mathfrak{m}M$. Since $M/V$ is Cohen-Macaulay, the second
assertion is clear.

By the above claim we get a commutative diagram
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$0$

$0$

$V\downarrow$

$0-N\downarrow-(R^{2})^{m}arrow M\downarrowarrow 0$

$0-S^{m}(R^{2})^{m}\downarrow i\Vert\overline{\sigma^{m}}arrow s_{0}^{m}\epsilon^{m}\downarrow\downarrowarrow 0$

with exact rows and columns. Here we consider $N$ to be an R-submodule of $S^{m}$

and the homomorphism $i:Narrow S^{m}$ to be the inclusion map. Hence $\mathfrak{m}\cdot S^{m}\subset N$, as
$V\cong S^{m}/N$. Let $\tau:S^{m}arrow S^{m}/\mathfrak{m}S^{m}=(S/t^{2}S)^{m}$ denote the canonical epimorphism.
We put $U=\tau(N)$ and $n=\dim_{k}U$ . If $n=0$, then $N=\mathfrak{m}\cdot S^{m}$ and so $M=(R^{2}/\sigma(\mathfrak{m}))^{m}$ .
Consequently, we get $m=1$ and $M=M_{1}$ .

Now suppose $n\geqq 1$ and let $v_{1},$ $v_{2},$
$\cdots$ , $v_{n}$ be a k-basis of $U$ . Let us apply

(5.4) to the $m\cross n$ matrix $C=(\nu_{1}, v_{2}, \cdots , v_{n})$ . Then Lemma (5.4) asserts that by
some automorphism $P$ of $(S/t^{2}S)^{m},$ $U$ is mapped onto the k-subspace $U’$ which
is spanned by the columns of an $m\cross n$ matrix of the following form:

$(\#)$ $[-----...$

.
$-- _{i}1......._{}’----o\prime 01,,\prime ^{\frac{0.\prime\prime\prime,\prime\prime t\prime t\prime}{\prime t}}’\prime jj""\prime 1"|"_{}j_{}\prime _{1,\prime}_{}$ $mod t^{2}S$ .

Let $L$ be the R-submodule of $S^{m}$ generated by the columns of the above matrix
$(\#)$ and put $N’=\mathfrak{m}\cdot S^{m}+L$ . Then clearly $U’=\tau(N’)$ .

We write $P=A+tB$ mod $t^{2}S$ with $m\cross m$ matrices $A$ and $B$ with entries in $k$ .
Then since the following diagram

$S^{m}arrow^{\tau}(S/t^{2}S)^{m}$

$A+tB|$
$\tau$

$\downarrow P$

$S^{m}arrow(S/t^{2}S)^{m}$

is commutative and since $U’=\tau(N’)$ , we get that $N’=(A+tB)N$.
Let us now recall the diagram in (5.1):
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$0arrow S^{m}arrow^{\sigma^{m}}(R^{2})^{m}arrow^{\epsilon^{m}}S^{m}arrow 0$

$\downarrow A+fB$ $\downarrow\phi$ $\downarrow A-tB$

$0arrow S^{m}arrow(R^{2})^{m}\sigma^{m}arrow S^{m}\epsilon^{m}arrow 0$ .

Then as the rows of this diagram are exact and as both the matrices $A+tB$

and $A-tB$ are invertible, the middle $\phi$ has to be an isomorphism whence, via
$\phi$ , we find that

$M=(R^{2})^{m}/\sigma^{m}(N)\cong(R^{2})^{m}/\sigma^{m}(N’)$ .
Consequently we may assume that $N=N’$ . The condition that $M$ is indecom-
posable now causes a very tight restriction on the form of the matrix $(\#)$ above.
We readily see that $m=1$ and the matrix $(\#)$ must be one of

$(1 t)$ , (1) and $(t)$ .
Thus $M=R^{2}/\sigma(S)(=S),$ $M=R^{2}/\sigma(R)(=M_{2})$ , or $M=R^{2}/\sigma(tS)(=M_{3})$ as claimed.
This completes the proof of Theorem (5.3).
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