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Introduction.

A compact simply connected homogeneous K\"ahler manifold is called a Kahler
$C$-space. Recall that a K\"ahler C-space $Y$ with $b_{2}(Y)=1$ can be obtained by a
possible pair $(\mathfrak{g}, \alpha_{\tau})$ of a complex simple Lie algebra $\mathfrak{g}$ and a simple root $\alpha_{r}$ of

$\mathfrak{g}$ (cf. Section 1 below). Moreover, since $b_{2}(Y)=1$ , the Picard group of $Y$ is
isomorphic to $Z$. We denote its ample generator by $O_{Y}(1)$ and $O_{Y}(1)^{\emptyset a}$ by $O_{Y}(a)$ ,
$a\in Z$. For a positive integer $d$ , a member of the linear system $|O_{Y}(d)|$ is
called a hypersurface of degree $d$ in Y.

We sometimes encounter the phenomena that a certain K\"ahler C-space can
be embedded in another K\"ahler C-space with $b_{2}=1$ as a hypersurface. For ex-
ample, an n-dimensional projective space $P^{n}$ (resp. a complex quadric $Q^{n}$ ) can be
embedded in $P^{n+1}$ as a hyPersurface of degree 1 (resP. 2). On the other hand,
Kimura $[7, \Pi]$ showed that the cohomology group $H^{0}(T_{X})$ vanishes for a smooth
hypersurface $X$ in an irreducible Hermitian symmetric space of compact type if
the degree of $X$ is greater than two. This gives us the feeling that the above
phenomena can be completely classified. In fact, we show the following:

MAIN THEOREM. Let $Y$ be a Kahler $C$-space with $b_{2}=1$ . Then a Kahler
$C$-space $X$ can be embed&d as a hypersurface of degree $d$ in $Y$, if and only if
$X,$ $Y$ and $d$ are one of the followzng (up to ixmorphjsm):

(1) $X=P^{n}$ , $Y=P^{n+1}$ and $d=1$ .
(2) $X=Q^{n}$ , $Y=P^{n+1}$ and $d=2$ .
(3) $X=Q^{n}$ , $Y=Q^{n+1}$ and $d=1$ .
(4) $X=(C_{l}, \alpha_{2})$ , $Y=(A_{2l-1}, \alpha_{2})$ : the grassmannian Grass$(2,2l)$ , and $d=1$ .
(5) $X=(F_{4}, \alpha_{4})$ , $Y=(E_{6}, \alpha_{1})$ ; the irreducrble Hermitian symmetric space

of type Em, and $d=1$ .

In each of the above five cases, it is known that $X$ can be embedded in $Y$

as a hypersurface of the prescribed degree. The first three are standard and
the last two examples (4) and (5) are due to Sakane [14] and Kimura [8], re-
spectively. Thus the proof is reduced to showing the converse.
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The organization of the present article is as follows: In Section 1, we re-
view the construction of K\"ahler C-spaces with $b_{2}=1$ . We shall give Table 2
which contains some numerical invariants of them. In Section 2, we study the
vanishing of $H^{q}(\Omega_{Y}^{1}(a))$ for each K\"ahler C-space $Y$ with $b_{2}(Y)=1$ , where $\Omega_{Y}^{1}$ is
the cotangent bundle of $Y$ and $\Omega_{Y}^{1}(a)=\Omega_{Y}^{1}\otimes O_{Y}(a)$ . The complete vanishing
theorem for $H^{q}(\Omega_{Y}^{1}(a))$ can be found in (2.5). Finally, in Section 3, we complete
the proof of Main Theorem by means of (2.5) and Table 2.

The author wishes to thank Professors Y. Kimura and Y. Sakane for in-
forming him of their excellent results on K\"ahler $C$-spaces. He also wishes to
thank the referee for his valuable suggestion.

\S 1. Construction of K\"ahler C-spaces with $b_{2}=1$ .
In this section, we recall the construction of K\"ahler C-spaces with $b_{2}=1$ due

to Wang [15].

(a) We first review the theory of Lie algebras. A general reference is [6].

Let $\mathfrak{g}$ be a complex simple Lie algebra of rank $l$ and $\mathfrak{h}$ a Cartan subalgebra of
$\mathfrak{g}$ . An element $\alpha$ in the dual vector space $\mathfrak{h}^{*}$ of $\mathfrak{h}$ is called a root of $\mathfrak{g}$ (with

respect to $\mathfrak{h}$ ) if there exists a non-zero vector $E_{a}\in \mathfrak{g}$ such that

$[H, E_{\alpha}]=\alpha(H)E_{a}$ , for all $H\in \mathfrak{h}$ .
We denote by $\Phi$ the set of all non-zero roots of 9 and put $\mathfrak{g}_{\alpha}=CE_{a}$ . Then we
have a Cartan decomposition

$\mathfrak{g}=\mathfrak{h}+\sum_{a\in\Phi}\mathfrak{g}_{a}$ .
Since the Killing form $\kappa$ is non-degenerate on $\mathfrak{h}\cross \mathfrak{h}$ , for each $\lambda\in \mathfrak{h}^{*}$ , there exists
a unique vector $H_{\lambda}\in \mathfrak{h}$ satisfying

$\kappa(H, H_{\lambda})=\lambda(H)$ for all $H\in \mathfrak{h}$ .

Put $\mathfrak{h}_{0}=\Sigma_{a\in\Phi}RH_{\alpha}$ . Then we can define an inner product on the dual vector
space $\mathfrak{h}_{0}^{*}$ of $\mathfrak{h}_{0}$ by

$(\lambda, \mu)=\kappa(H_{\lambda}, H_{\mu})$ for $\lambda,$ $\mu\in \mathfrak{h}_{0}^{*}$ .
Fix a lexicographic order on $\mathfrak{h}_{0}^{*}$ and let $\Phi^{+}$ (resP. $\Phi^{-}$ ) be the set of all positive
(resp. negative) roots. Let $\Delta=\{\alpha_{1}, \cdots , \alpha_{l}\}$ denote a fundamental root system of
$\mathfrak{g}$ consisting of simple roots. The group $\Lambda$ of weights of 9-modules is the subset
of $\mathfrak{h}_{0}^{*}$ defined by

$\Lambda=$ { $\lambda\in \mathfrak{h}_{0}^{*}|\langle\lambda,$ $\alpha\rangle:=2(\lambda,$ $\alpha)/(\alpha,$ $\alpha)\in Z$ for all $\alpha\in\Phi$ }.

This is a lattice of $\mathfrak{h}_{0}^{*}$ generated by the fundamental weights $\lambda_{1},$ $\cdots$ , $\lambda_{l}$ associated
with $\Delta$ by $\langle\lambda_{t}, \alpha_{j}\rangle=\delta_{ij}$ .
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(1.1) DEFINITION. A weight $\lambda\in\Lambda$ is called
(1) singular if $(\lambda, \alpha)=0$ for some $\alpha\in\Phi$ ,
(2) regular with index $P$ if it is not singular and there exist exactly $p$

roots $\alpha\in\Phi^{+}$ with $(\lambda, a)<0$ .
Put

$\Lambda^{+}=$ { $\lambda\in\Lambda|(\lambda,$ $\alpha_{i})\geqq 0$ for each $\alpha_{i}\in\Delta$ }.

Then this is a fundamental domain for the action of the Weyl group $\mathcal{W}$ of $\mathfrak{g}$

and a weight in $\Lambda^{+}$ is called a dominant weight.

(b) Fix a simple root $\alpha_{r}(1\leqq r\leqq l)$ and define

$\Phi_{1}=\{\alpha\in\Phi|n_{r}(\alpha)=0\}$ ,

$\Phi(\mathfrak{n}^{+})=\{\alpha\in\Phi^{+}|n_{r}(\alpha)>0\}$ ,

$\Phi(\mathfrak{u})=\Phi_{1}\cup\Phi(\mathfrak{n}^{+})$ ,

where we denote by $n_{r}(\alpha)$ the coefficient of $\alpha_{r}$ when we express $\alpha$ as

$\alpha=\sum_{i=1}^{l}n_{i}(\alpha)\alpha_{i}$ $n_{i}(\alpha)\in Z$ .
Using these, we define Lie subalgebras of $\mathfrak{g}$ as follows:

$\mathfrak{g}_{1}=\mathfrak{h}+\sum_{\alpha\in\Phi_{1}}\mathfrak{g}_{\alpha}$
,

$\mathfrak{n}^{+}=$

$\sum_{\alpha\in\Phi(\mathfrak{n}^{+})}$

$\mathfrak{g}_{\alpha}$ ,

$u=\mathfrak{h}+$
$\sum_{a\in\Phi(u)}$

$\mathfrak{g}_{\alpha}$ .

Then $\mathfrak{g}_{1}$ (resp. $\mathfrak{n}^{+}$ ) is a reductive (resp. nilpotent) subalgebra of $\mathfrak{g}$ and $u=g_{1}+n^{+}$

is parabolic. Let $G$ be the connected, simply connected complex Lie group with
Lie $G=\mathfrak{g}$ and $U$ the connected complex Lie subgroup of $G$ with Lie $U=\mathfrak{u}$ . Take
a compact real form $\mathfrak{g}_{R}$ of $\mathfrak{g}$ such that $\mathfrak{g}_{R}\cap \mathfrak{h}=\sqrt{-1}\mathfrak{h}_{0}$ . Let $G_{R}$ be the connected
Lie subgroup of $G$ such that Lie $G_{R}=\mathfrak{g}_{R}$ and put $K=G_{R}\cap U$ . Note that the in-
jection of $G_{R}$ into $G$ induces a homeomorphism of a compact homogeneous
manifold $Y=G_{R}/K$ onto a simply connected complex homogeneous manifold $G/U$.
Under this homeomorphism, $Y$ becomes a complex manifold on which $G_{R}$ (and

also $G$ ) acts transitively as a group of holomorphic transformations. Moreover,
we have the following (see [2], p. 507):

(1.2) LEMMA. $H^{2}(Y, Z)\cong Z\lambda_{r}$ .
Thus we have constructed a K\"ahler C-space $Y$ with $b_{2}(Y)=1$ from each com-

plex simple Lie algebra $\mathfrak{g}$ and each simple root $\alpha_{r}$ of $\mathfrak{g}$ . Conversely, any K\"ahler

C-space with $b_{2}=1$ can be obtaired in the way just mentioned (cf. [15]). For
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this reason, we express the manifold $Y$ obtained above by the pair $(\mathfrak{g}, \alpha_{r})$ .
Since this notation depends on the choice of the numbering of the simple roots,
we fix it as in Table 1. Note in particular that $(A_{n}, \alpha_{1})$ denotes the complex
projective space $P^{n}$ . Moreover, the complex hyperquadric $Q^{n}$ is written as
$(B_{\iota}, a_{1})$ (where $n=2l-1$ ) or $(D_{l}, \alpha_{1})$ (where $n=2l-2$), according as $n$ is odd or
even, respectively.

There are some important examPles of K\"ahler C-spaces with $b_{2}=1$ , the
irreducrble Hermitian symmetric spaces of comPact $tyPe$ . In Table 1, the notation
$Oor$

’ means that the K\"ahler C-space corresponding to $\alpha_{r}$ is an irreducible
Hermitian symmetric space of compact type.

Table 1.
$A_{l}$ :

$B_{l}$ :

$C_{l}$ :

$D_{l}$ :

$E_{6}$ :

$E_{7}$ :

$E_{8}$ :

$F_{4}$ : $\ovalbox{\tt\small REJECT}$

1 2 3 4
$G_{2}$ :

$\ovalbox{\tt\small REJECT} 12$



Homogeneous hypersurfaces 691

(c) Put
$\Lambda_{1}^{+}=$ { $\lambda\in\Lambda|(\lambda,$ $\alpha_{i})\geqq 0$ for each $a_{i}$ , $i\neq r$ }.

For a weight $\lambda\in\Lambda_{1}^{+}$ , we denote by $(\rho_{-\lambda}^{1}, V_{-\lambda})$ the irreducible representation of
$\mathfrak{g}_{1}$ with lowest weight $-\lambda$ ([11, 6.3]). Let $(\tilde{\rho}, V)$ be a finite dimensional holo-
morphic representation of $U$. Then this defines the holomorphic vector bundle
$\mathcal{V}_{\overline{\rho}}$ over $Y$ associated to the principal bundle $Garrow Y=G/U$ by $\tilde{\rho}$ . We call such
$\mathcal{V}_{\overline{\rho}}$ a homogeneous vector bundle over $Y$. Assume that $\tilde{\rho}$ is irreducible and
denote by $\rho$ the differential of $\tilde{\rho}$ so that $(\rho, V)$ is an irreducible representation
of $\mathfrak{u}$ . Since $\rho$ is trivial on $\mathfrak{n}^{+}$ , we see that, on $\mathfrak{g}_{1},$ $(\rho, V)$ is equivalent to
$(\rho_{-\lambda}^{1}, V_{-\lambda})$ for some $\lambda\in\Lambda_{1}^{+}$ . Conversely, if we take an irreducible representation
$(\rho_{-\lambda}^{1}, V_{-\lambda})$ of $\mathfrak{g}_{1}$ with lowest weight $-\lambda,$ $\lambda\in\Lambda_{1}^{+}$ , then we can extend it to an
irreducible representation $(\rho_{-\lambda}, V_{-\lambda})$ of $\mathfrak{u}$ by making it trivial on $\mathfrak{n}^{+}$ and find a
representation $(\tilde{\rho}_{-\lambda}, V_{-\lambda})$ of $U$ such that the differential of $\tilde{\rho}-\lambda$ is $\rho_{-\lambda}$ . In this
case, we denote the vector bundle $\mathcal{V}_{\overline{\rho}-\lambda}$ by $\mathcal{V}_{-\lambda}$ and call it the homogeneous
vector bundle induced by an irreducible representation of $U$ with the lowest
weight $-\lambda$.

Let $\Phi_{1}^{+}$ be the set of all positive roots in $\Phi_{1}$ . We define a subset $\mathcal{W}^{1}$ of $\mathcal{W}$

by
$\mathcal{W}^{1}=\{\sigma\in \mathcal{W}|\sigma^{-1}(\Phi_{1}^{+})\subset\Phi^{+}\}$ .

If we denote by $\# A$ the cardinality of a set $A$ , then the index $n(\sigma)$ of $\sigma\in \mathcal{W}$

is defined by
$n(\sigma)=\#(\sigma(\Phi^{+})\cap\Phi^{-})$ .

Put $\delta=\Sigma_{i=1}^{l}\lambda_{i}=(1/2)\Sigma_{\alpha\in\Phi+}\alpha$ . Then the generalized Borel-Weil theorem [11,

p. 371], originally obtained by Bott [5, p. 228], can be stated as follows.

(1.3) THEOREM. Let $\lambda\in\Lambda_{1}^{+}$ and $\mathcal{V}_{-\lambda}$ be the homogeneous vector bundle on a
Kahler $C$-sPace $Y=G/U$ induced by an irreducible representation of $U$ with lowest
weight $-\lambda$ .

(1) If $\lambda+\delta$ is singular, then

$H^{i}(Y, \mathcal{V}_{-\lambda})=0$ for all $i$ .
(2) If $\lambda+\delta$ is regular with index $p$ , then $\lambda+\delta$ can be expressed umquely as

$\lambda+\delta=\sigma(\mu+\delta)$ , where $\mu\in\Lambda^{+}$ and $\sigma\in \mathcal{W}^{1}$ with $n(\sigma)=p$ . Moreover,

$H^{i}(Y, \mathcal{V}_{-\lambda})=0$ for $i\neq p$ ,

and $H^{p}(Y, \mathcal{V}_{-\lambda})$ is the irreducrble G-module with lowest weight $-\mu$ .
The followingJcan be found in [7, Lemmas 1 and 2].

(1.4) LEMMA. Let $\lambda\in\Lambda_{1}^{+}$ .
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Table 2.
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(1) If $(\lambda+\delta, \beta)\neq 0$ for all $\beta\in\Phi(\mathfrak{n}^{+})$ , then $\lambda+\delta$ is regular.
(2) Assume that there exist $\mu\in\Lambda^{+}$ and $\sigma\in W^{1}$ such that $\lambda+\delta=\sigma(\mu+\delta)$ . Then

$n(\sigma)=\#\{\beta\in\Phi(\mathfrak{n}^{+})|(\lambda+\delta, \beta)<0\}$ .

Let $O_{Y}(1)$ be the homogeneous vector bundle on $Y=G/U=(\mathfrak{g}, \alpha_{r})$ induced by
the irreducible representation of $U$ with the lowest weight $-\lambda_{r}$ . Then this is
known to be the ample generator of $Pic(Y)$ ( $[4]$ and [13, \S 4]). Since the weight
$\lambda_{r}+\delta$ is itself a dominant weight, we see from (1.3) that $H^{0}(\mathcal{O}_{Y}(1))$ is the ir-
reducible G-module with lowest weight $-\lambda_{r}$ . Note that there exists a positive
integer $k=k(Y)$ such that $K_{Y}=\mathcal{O}_{Y}(-k)$ since $Y$ is known to be rational (cf. [3,

Satz I]). We can compute $h^{0}(\mathcal{O}_{Y}(1))$ and $k(Y)$ by the formula (1.5) and (1.2) in
[10], respectively.

We close this section by listing in Table 2 all the K\"ahler C-spaces with
$b_{2}=1$ (up to isomorphism) together with some of their numerical invariants.
See also Remark (1.6) and Table 1 in [10].

(1.5) REMARK. Though the value of $h^{0}(O_{Y}(1))-1$ is given in [13, Table 1],

there are some mistakes for $(E_{8}, \alpha_{r})$ .

\S 2. Vanishing theorem for $H^{q}(\Omega_{Y}^{1}(a))$ .
Let $Y$ be a K\"ahler $C$-space with $b_{2}(Y)=1$ in Table 2. In this section, we

determine when $H^{q}(\Omega_{Y}^{1}(a))$ does not vanish.

(a) It is known that the cotangent bundle $\Omega_{Y}^{1}$ is induced by the represen-
cation $(Ad(U), \mathfrak{n}^{+})$ . Since, in general, $\mathfrak{n}^{+}$ is not even a completely reducible U-
module, we have defined in [10, \S 3] a descending filtration on $\mathfrak{n}^{+}:$

$0\subset\cdots\subset F^{i}(\mathfrak{n}^{+})\subset F^{i-1}(\iota\iota^{+})\subset\cdots\subset F^{1}(\mathfrak{n}^{+})=\mathfrak{n}^{+}$ ,

such that the linear subspaces $F^{i}(\mathfrak{n}^{+})=\Sigma_{n_{r}(\alpha)\geqq i}\mathfrak{g}_{\alpha}$ are also invariant by $Ad(U)$

and the graduations $G^{i}(\mathfrak{n}^{+})=F^{i}(\mathfrak{n}^{+})/F^{i+1}(\mathfrak{n}^{+})$ are completely reducible U-modules.
Further, we gave the lowest weights of $G^{i}(\mathfrak{n}^{+})$ in Table 3 in [10]. Thus we
can examine the vanishing of $H^{q}(\Omega_{Y}^{1}(a))$ by means of (1.3) and the following
spectral sequence:

(2.1) $E_{1}^{i.q- i}=H^{q}(G^{i}\Omega_{Y}^{1}(a))\Rightarrow H^{q}(\Omega_{Y}^{1}(a))$ ,

where we denote by $G^{i}\Omega_{Y}^{1}$ the homogeneous vector bundle induced by the U-
module $G^{i}(\mathfrak{n}^{+})$ . Here we recall some facts about $G^{i}(\mathfrak{n}^{+})$ which follows from the
definition and [10, Table 3].

(2.2) FACT. Let $Y=(\mathfrak{g}, a_{r})$ be a Kahler $C$-space with $b_{2}(Y)=1$ in Table 2.
Then any weight $\alpha$ of $G^{i}(n^{+})$ is an element in $\Phi(\mathfrak{n}^{+})$ satisfying $n_{r}(\alpha)=i$ . We
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further have:
(1) For each $i$ , the U-module $G^{i}(\mathfrak{n}^{+})$ is irreductble and the lowest weight is

the mimmal one among the roots $\alpha\in\Phi(\mathfrak{n}^{+})$ such that $n_{r}(\alpha)=i$ . In particular,
(i) the lowest weight of $G^{1}(\mathfrak{n}^{+})$ is $\alpha_{r}$ , and
(ii) if $Y=(B_{l}, \alpha_{2}),$ $(D_{l}, \alpha_{2}),$ $(E_{6}, a_{2}),$ $(E_{7}, \alpha_{1}),$ $(E_{8}, \alpha_{8}),$ $(F_{4}, \alpha_{1})$ or $(G_{2}, \alpha_{2})$ ,

then the lowest weight of $G^{2}(\mathfrak{n}^{+})$ is $\lambda_{r}$ and $G^{i}(\mathfrak{n}^{+})=0$ for $i\geqq 3$ .
(2) For an irreducrble Hermitian symmetric space of compact type, we have

$G^{1}(\mathfrak{n}^{+})=\mathfrak{n}^{+}$ . Thus the cotangent bundle is the homogeneous vector bundle induced
by the irreducible representati0n of $U$ with lowest weight $a_{r}$ .

For convenience, we list in Table 3 the lowest weights of $G^{i}(\mathfrak{n}^{+}),$ $i\geqq 2$ , for
$Y$ which does not appear in (2.2).

(b) First, we recall the following:

(2.3) LEMMA. Let $Y$ be a Kahler C-space and denote by $T_{Y}$ the tangent bundle
of $Y$.

(1) Assujme that dim $Y\geqq 3$ . Then for an ample divisor $D$ of $Y$, the group
$H^{0}(T_{Y}(-D))$ does not vamsh if and only if $Y$ is a projective space and $D$ is a
hyperplane.

(2) The group $H^{1}(T_{Y})$ vamshes.
(3) $H^{q}(\Omega\not\in)$ does not vamsh if and only if $p=q$ .
PROOF. (1) is a special case of Theorem 8 in [12]. (2) and (3) can be found

in [5], Theorem VII and Lemma 14.2, respectively. Q. E. D.

(2.4) LEMMA. Let $Y$ be an n-dimenstonal Kahler C-space with $b_{2}(Y)=1,$ $n\geqq 3$ .
Then the group $H^{q}(\Omega b(a))$ vamshes in the following cases:

(1) $a<0$ and $q\leqq n-2$ .
(2) $a>0$ and $q\geqq 1$ .

PROOF. (1) follows from the vanishing theorem of Kodaira-Nakano. (2) can
be found in [1, p. 66]. Q. E. D.

For the proof of the following (2.5), we need some explicit calculations.
Since they are quite elementary, we only give data to carry them out in Appendix
and leave the detail to the reader.

(2.5) THEOREM. Let $Y$ be an n-dimensional Kahler C-space with $b_{2}(Y)=1$ in
Table 2. Then the group $H^{q}(\Omega_{Y}^{1}(a))$ vanishes except for the following cases:

(1) $q=0$ and

$a\geqq\{21$
if $Y=(C_{l}, \alpha_{r}),$ $(F_{4}, \alpha_{4})$ or a symmetric space,
otherwise.
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(2) $q=1$ and $a=0$ .
(3) $q=n-1$ and

either
(i) $Y=Q^{n}$ and $a=2-n$ ,

$or$

(ii) $Y=(C_{l}, \alpha_{2})$ or $(F_{4}, a_{4})$ , and $a=1-k(Y)$ .
(4) $q=n$ and

$a\leqq\{1-k(Y)=-k(Y)-n$
if $Y=P^{n}$ ,

otherwise.

PROOF. If $q=1$ (resp. $q=n$ ), then, by (2.3) and (2.4), only the situation (2)

(resp. (4)) above is possible. Thus, by (2.3) (3) and (2.4), we only have to con-
sider the cases: (i) $q=0$ and $a>0$ , and (ii) $q=n-1$ and $a<0$ . Let $-\lambda$ be the
lowest weight of $G^{i}(\mathfrak{n}^{+})$ . First, consider the case (i). Note that the coefficient
of $\lambda_{r}$ in $-\lambda$ ( $i$ . $e.$ , the integer $\langle-\lambda,$ $a_{r}\rangle$ ) is either 1 or 2. By an argument in

Table 3.
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[10; \S 3], we can show $H^{0}(G^{i}\Omega_{Y}^{1}(b))=0$ for $b\leqq 1$ (resp. $b\leqq 0$) if $\langle-\lambda, a_{r}\rangle=2$

(resp. 1). Thus (1) follows from (2.1), (2.2) and Table 3. Next, consider the
case (ii). A direct calculation shows that $H^{n-1}(G^{i}\Omega_{Y}^{1}(a))$ does not vanish in the
following cases:

(A) $Y=Q^{n}$ : $i=1$ and $a=2-n$ ,
$Y=(C_{l}, a_{2})$ or $(F_{4}, a_{4})$ : $i=1$ and $a=1-k(Y)$ ,

(B) $Y=(B_{l}, a_{2}),$ $(D_{l}, \alpha_{2}),$ $(E_{6}, \alpha_{2}),$ $(E_{7}, a_{1}),$ $(E_{8}, a_{8}),$ $(F_{4}, \alpha_{1})$ or $(G_{2}, a_{2})$ :
$i=1$ and $a=1-k(Y)$ ,

(C) $Y=(F_{4}, \alpha_{3})$ : $i=2$ and $a=-k(Y)$ .
If $Y$ is one in (A), then $G^{j}(\mathfrak{n}^{+})=0$ for $j\geqq 3$ and we can show $H^{*}(G^{2}\Omega_{Y}^{1}(a))=0$

for $a$ in (A). Thus $H^{n-1}(\Omega_{Y}^{1}(a))$ does not vanish. If $Y$ is one in (B), then we
see that $H^{n}(G^{2}\Omega_{Y}^{1}(1-k))$ does not vanish. In fact, since the lowest weight of
$G^{2}(\mathfrak{n}^{+})$ is $\lambda_{r}$ (cf. (2.2)), $\lambda_{r}-(1-k(Y))\lambda_{r}=k(Y)\lambda_{r}$ is nothing but the lowest weight
corresponding to the canonical bundle $K_{Y}$ . Thus we get $H^{n}(G^{2}\Omega_{Y}^{1}(1-k))\cong$

$H^{n}(\Omega_{Y}^{n})\cong C$ . Now, (2.1) gives the following exact sequence:

$0arrow H^{n- 1}(\Omega_{Y}^{1}(1-k))arrow H^{n-1}(G^{1}\Omega_{Y}^{1}(1-k))$

$arrow H^{n}(G^{2}\Omega_{Y}^{1}(1-k))arrow H^{n}(\Omega_{Y}^{1}(1-k))arrow 0$ .
Since we have $H^{n}(\Omega_{Y}^{1}(1-k))=0$ by (2.3) (1), the above sequence shows the
equality,

$(*)$ $h^{n-1}(\Omega_{Y}^{1}(1-k))=h^{n-1}(G^{1}\Omega_{Y}^{1}(1-k))-h^{n}(G^{2}\Omega_{Y}^{1}(1-k))=h^{n-1}(G^{1}\Omega_{Y}^{1}(1-k))-1$ ,

where we set $h^{n-1}(\Omega_{Y}^{1}(1-k)):=\dim H^{n-1}(\Omega_{Y}^{1}(1-k))$ , etc. We show $h^{n-1}(G^{1}\Omega_{Y}^{1}(1-k))$

$=1$ . A direct calculation shows $\langle\delta, \lambda_{\gamma}\rangle=k(Y)$ and $\langle\alpha_{r}, \lambda_{r}\rangle=1$ . Let $\sigma_{1}$ (resp.
$\sigma_{2})$ denote the reflection with respect to the hyperplane orthogonal to $\alpha_{r}$ (resp.
$\lambda_{r})$ . Then we have

$\sigma_{2}\sigma_{1}(\delta)=\sigma_{2}(\delta-a_{r})=\delta-a_{r}-\langle\delta-\alpha_{r}, \lambda_{r}\rangle\lambda_{r}=-\alpha_{r}+(1-k)\lambda_{r}+\delta$ .
Since the lowest weight of $G^{1}(\mathfrak{n}^{+})$ is $a_{r}$ , this and (1.3) imply that $h^{n-1}(G^{1}\Omega_{Y}^{1}(1-k))$

$=\deg(O)=1$ . Thus, by $(*)$ , we get $H^{n-1}(\Omega_{Y}^{1}(1-k))=0$ for $Y$ in (B). Finally,
consider the case $Y=(F_{4}, \alpha_{3})$ . By (C), the group $H^{n-1}(\Omega_{Y}^{1}(-k))$ may not vanish.
However, we see $H^{n-1}(\Omega_{Y}^{1}(-k))\cong H^{1}(T_{Y})^{*}$ by Serre’s duality theorem. Thus (2.3)
(2) implies that $H^{n- 1}(\Omega_{Y}^{1}(-k))$ vanishes. Q. E. D.

(2.6) REMARKS. (1) Kimura [7] showed (2.5) in the case where $Y$ is an
irreducible Hermitian symmetric spaces of compact type. He also tried to ex-
tend it to an arbitrary K\"ahler C-spaces with $b_{2}=1$ in [9]. Unfortunately, his
result seems incomplete since he ignored (2.3) (1).

(2) It can be shown that $h^{n-1}(\Omega_{Y}^{1}(1-k))=1$ for $Y=(C_{l}, \alpha_{2})$ or $(F_{4}, \alpha_{4})$ , and
$h^{n- 1}(\Omega_{Y}^{1}(2-n))=1$ for $Y=Q^{n}$ .
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(2.7) COROLLARY. Let $Y$ be a Kahler C-space with $b_{2}(Y)=1$ wfuch is not a
projective space. Then the following hold for any posttive integer $d$ :

(1) $H^{0}(T_{Y}(-d))=0$ ,
(2) $H^{1}(T_{Y}(-d))=0$ except for the cases:

(i) $Y=Q^{n}$ and $d=2$ ,
(ii) $Y=(C_{l}, a_{2})$ or $(F_{4}, a_{4})$ , and $d=1$ .

\S 3. Proof of Main Theorem.

In this section, we complete the proof of Main Theorem. Let $Y$ be a Kahler
C-space with $b_{2}(Y)=1$ and $X$ a non-singular hypersurface of degree $d$ in Y.
We first study cohomological properties of $X$. In doing so, we assume that $Y$

is neither a projective space nor a complex hyperquadric. Thus, in particular,
we get dim $Y\geqq 5$ by Table 2. Since $X$ is an ample divisor of $Y$, it follows
from Lefschetz’s hyperplane-section theorem that $Pic(X)\cong Pic(Y)\cong Z$. To begin
with, we observe the following easy fact:

(3.1) LEMMA. Let $X$ and $Y$ be as above. Then

(1) dim $Y=\dim X+1$ ,

(2) $h^{0}(O_{Y}(1))=h^{0}(O_{X}(1))+\{01$ $forford=1d\geqq 2$
,

(3) $k(Y)=k(X)+d$ ,

where $O_{X}(1)$ denotes the restriction of $O_{Y}(1)$ to $X$ and $k(X)$ is the integer defined
by $K_{X}=\mathcal{O}_{X}(-k(X))$ .

PROOF. (1) is clear and (3) follows from the adjunction formula. To see (2),

consider the following exact sequence:

$0arrow O_{Y}(1-d)arrow O_{Y}(1)arrow \mathcal{O}_{X}(1)arrow 0$ .
Since it follows from [7, Theorem 6] that the group $H^{1}(\mathcal{O}_{Y}(a))$ vanishes for any
integer $a$ , the derived cohomology exact sequence shows the equality $h^{0}(O_{Y}(1))$

$=h^{0}(\mathcal{O}_{X}(1))+h^{0}(\mathcal{O}_{Y}(1-d))$ . This implies (2). Q. E. D.

The following is the heart of our argument.

(3.2) LEMMA. Let $X$ and $Y$ be as above. Then the group $H^{1}(T_{X}(-d))$ does
not vamsh.

PROOF. Consider the following exact sequences:

(1) $0arrow T_{X}arrow T_{Y}|_{X}arrow N_{X/Y}arrow 0$ ,

(2) $0arrow T_{Y}(-d)arrow T_{Y}arrow T_{Y}|_{X}arrow 0$ .
Note that the normal bundle $N_{X/Y}$ is isomorphic to $O_{X}(d)$ . Tensoring the above
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sequences with $O_{Y}(-d)$ , we get

$0arrow T_{X}(-d)arrow T_{Y}(-d)|_{X}arrow 0_{X}arrow 0$

and
$0arrow T_{Y}(-2d)arrow T_{Y}(-d)arrow T_{Y}(-d)|_{X}arrow 0$ .

From these, we derive the cohomology diagram of exact sequences:

$H^{0}(T_{Y}(-d))$

$H^{0}(T_{X}(-d))arrow H^{0}(T_{Y}L_{d})|_{X})arrow H^{0}(\mathcal{O}_{X})arrow H^{1}(T_{X}(-d))$

$\downarrow$

$H^{1}(T_{Y}(-2d))$ .
It follows from (2.7) that $H^{0}(T_{Y}(-d))=H^{1}(T_{Y}(-2d))=0$ , since we have assumed
that $Y$ is neither a projective space nor a complex quadric. Thus $H^{0}(T_{Y}(-d)|_{X})$

vanishes and in particular we have an injection of $H^{0}(O_{X})$ into $H^{1}(T_{X}(-d))$ .
Hence $H^{1}(T_{X}(-d))$ does not vanish. Q. E. D.

The following is due to the referee.

(3.3) LEMMA. Let $X$ be $(C_{l}, a_{r}),$ $(F_{4}, \alpha_{4})$ or an irreducible Hermitian sym-
metric space of compact type. Supp0se that $X$ can be embedded in another Kahler
C-space $Y$ with $b_{2}(Y)=1$ as a non-srngular hypersurface of degree $d$ . Then
$H^{0}(\Omega*(1))=0$ .

PROOF. Put $n=\dim X$. Tensoring the exact sequence (1) in the proof of
(3.2) with $O_{X}(-k(X)-1)$ , we get

$0arrow T_{X}(-k(X)-1)arrow T_{Y}(d-k(Y)-1)|_{X}arrow O_{X}(d-k(X)-1)arrow 0$ ,

because we have $k(Y)=k(X)+d$ by (3.1) (3). From this, we derive the cohomo-
logy exact sequence

$H^{n}(T_{X}(-k(X)-1))arrow H^{n}(T_{Y}(d-k(Y)-1)|_{X})arrow H^{n}(\mathcal{O}_{X}(d-k(X)-1))-0$ .

By Serre’s duality theorem and (2.5), we have $H^{n}(T_{X}(-k(X)-1))\cong H^{0}(\Omega_{X}^{1}(1))^{*}=0$

and thus $H^{n}(T_{Y}(d-k(Y)-1)|_{X})\cong H^{n}(\mathcal{O}_{X}(d-k(X)-1))$ . Since $H^{n}(O_{X}(d-k(X)-1))$

$\cong H^{0}(O_{X}(1-d))^{*}$ , we get

$H^{n}(T_{Y}(d-k(Y)-1)|_{X})\cong\{0C$

if $d=1$ .
if $d\geqq 2$ ,

Similarly, tensoring the exact sequence (2) in the proof of (3.2) with
$\mathcal{O}_{Y}(d-k(Y)-1)$ , we get

$0arrow T_{Y}(-k(Y)-1)arrow T_{Y}(d-k(Y)-1)arrow T_{Y}(d-k(Y)-1)|_{X}arrow 0$ .
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From this, we derive the cohomology exact sequence

$arrow H^{n}(T_{Y}(-k(Y)-1))arrow H^{n}(T_{Y}(d-k(Y)-1))arrow H^{n}(T_{Y}(d-k(Y)-1)|_{X})$

$arrow H^{n+1}(T_{Y}(-k(Y)-1))arrow H^{n+1}(T_{Y}(d-k(Y)-1))arrow 0$ .
Then, as above, we get $H^{n}(T_{Y}(-k(Y)-1))\cong H^{1}(\Omega_{Y}^{1}(1))^{*}=0$ and

$H^{n}(T_{Y}(d-k(Y)-1))\cong H^{1}(\Omega_{Y}^{1}(1-d))^{*}\cong\{0C$

if $d=1$ .
if $d\geqq 2$ ,

Thus we get $H^{n}(T_{Y}(d-k(Y)-1))\cong H^{n}(T_{Y}(d-k(Y)-1)|_{X})$ and $H^{n+1}(T_{Y}(-k(Y)-1))$

$\cong H^{n+1}(T_{Y}(d-k(Y)-1))$ . By Serre’s duality theorem and (2.5), this last iso-
morPhism shows $H^{0}(\Omega_{Y}^{1}(1))\cong H^{0}(\Omega_{Y}^{1}(1-d))=0$ . Q. E. D.

PROOF OF MAIN THEOREM: If $Y$ is $P^{n+1}$ or $Q^{n+1}$ , then the result is well-
known. Thus we assume that $Y$ is neither a projective space nor a complex
quadric. Further, it is shown by Kimura [8] and Sakane [14, Theorem 1] that
$(F_{4}, a_{4})$ (resp. $(C_{l},$ $\alpha_{2})$ ) can be embedded in $(E_{6}, a_{1})$ (resp. $(A_{2l-1},$ $\alpha_{2})$ ) as a hy-
persurface of degree 1. Thus, it suffices to show the “only if” part of Main
Theorem. Let $X$ be a non-singular hypersurface of degree $d$ in $Y$ and assume
that $X$ is homogeneous. Then the fact $Pic(X)\cong Z$ implies that $X$ is a K\"ahler C-
space with $b_{2}(X)=1$ . Thus, by (2.7) and (3.2), we see that $X$ and $d$ must be
one of the following:

(a) $X=Q^{n}$ and $d=2$ ,
(b) $X=(C_{l}, a_{2})$ , $l\geqq 3$ , and $d=1$ ,
(c) $X=(F_{4}, a_{4})$ and $d=1$ .

Then, it follows from (3.3) and (2.5) (1) that $Y$ is $(C_{l}, a_{r}),$ $(F_{4}, \alpha_{4})$ or a sym-
metric space. If we use Table 2 to find $Y$ satisfying (1), (2) and (3) in (3.1),

then a simple calculation shows that the only possible $Y$ is $P^{n+1}$ for (a),
$(A_{2l-1}, \alpha_{2})$ for (b), and $(E_{6}, a_{1})$ for (c), respectively. Q. E. D.

\S 4. Appendix.

We shall describe $\Phi(\mathfrak{n}^{+})$ and give the value $\langle\delta, \alpha\rangle$ for each $a\in\Phi(\mathfrak{n}^{+})$ . A
construction of $\Phi$ for each $\mathfrak{g}$ can be found in [6, \S 12].

First, we consider the case where $\mathfrak{g}$ is a classical Lie algebra. We denote
by $\epsilon_{1},$

$\cdots$ , $\epsilon_{n}$ the orthonormal basis for $R^{n}$ with respect to the usual inner
product $(\cdot, )$ .

(1) $Y=(A_{l}, a_{r})$ , $2\leqq r\leqq l+1-r,$ $l\geqq 4$ :
$\Delta=\{\alpha_{i}=\epsilon_{i}-\epsilon_{i+1} ; 1\leqq i\leqq l\}$ ,
$\Phi^{+}=\{\epsilon_{i}-\epsilon_{f} ; 1\leqq i<j\leqq l+1\}$ ,
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$\lambda_{i}=\epsilon_{1}+\cdots+\epsilon_{i}-\sum\epsilon_{j}\underline{i}$
$1\leqq i\leqq l$ ,

$l+1$

$l+1j=1$

$2\delta=l\epsilon_{1}+\cdots+(l-2i+2)\epsilon_{i}+\cdots-l\epsilon_{l+1}$ ,
$\Phi(\mathfrak{n}^{+})=\{\epsilon_{i}-\epsilon_{j} ; 1\leqq i\leqq r<j\leqq l+1\}$ ,
$\langle\delta, \epsilon_{i}-\epsilon_{j}\rangle=j-i$ .

(2) $Y=(B_{l}, a_{r})$ , $1\leqq r\leqq l-1,1\geqq 2$ :
$\Delta=\{\alpha_{i}=\epsilon_{i}-\epsilon_{i+1} ; 1\leqq i\leqq l-1, a_{l}=\epsilon_{l}\}$ ,
$\Phi^{+}=\{\epsilon_{i}\pm\epsilon_{j} ; 1\leqq i<j\leqq l, \epsilon_{i} ; 1\leqq i\leqq l\}$ ,

$\{\begin{array}{l}\lambda_{i}=\text{\’{e}}_{1}+\ldots+\epsilon_{i}, 1\leqq i\leqq l-1,\lambda_{l}=(\epsilon_{1}+\ldots+\epsilon_{l})/2.\end{array}$

$2\delta=(21-1)\epsilon_{1}+$ – $+(2l-\ +1)\epsilon_{i}+\cdots+\epsilon_{l}$ ,
$\Phi(\mathfrak{n}^{+})=\{\epsilon_{i}\pm\epsilon_{j} ; 1\leqq i\leqq r<j\leqq l, \epsilon_{i} ; 1\leqq i\leqq r, \epsilon_{i}+\epsilon_{j} ; 1\leqq i<j\leqq r\}$ ,
$\langle\delta, \epsilon_{i}-\epsilon_{j}\rangle=j-i$, $\langle\delta, \epsilon_{i}+\epsilon_{j}\rangle=2l+1-(i+j)$ ,
$\langle\delta, \epsilon_{i}\rangle=2l-\ +1$ .

(3) $Y=(C_{l}, a_{r})$ , $2\leqq r\leqq l,$ $1\geqq 3$ :
$\Delta=\{\alpha_{i}=\epsilon_{i}-\epsilon_{i+1} ; 1\leqq i\leqq l-1, \alpha_{l}=2\epsilon_{l}\}$ ,
$\Phi^{+}=\{\epsilon_{i}\pm\epsilon_{j} ; 1\leqq i<j\leqq l, 2\epsilon_{i} ; 1\leqq i\leqq l\}$ ,
$\lambda_{i}=\epsilon_{1}+$ $+\epsilon_{i}$ , $1\leqq i\leqq l$ ,
$\delta=l\epsilon_{1}+$ $+(l-i+1)\epsilon_{i}+\cdots+\epsilon_{l}$ ,
$\Phi(\mathfrak{n}^{+})=\{\epsilon_{i}\pm\epsilon_{j} ; 1\leqq i\leqq r<j\leqq l, 2\epsilon_{i} ; 1\leqq i\leqq r, \epsilon_{i}+\epsilon_{j} ; 1\leqq i<j\leqq r\}$ ,
$\langle\delta, \epsilon_{i}-\epsilon_{j}\rangle=j-i,$ $\langle\delta, \epsilon_{i}+\epsilon_{j}\rangle=2l+2-(i+J)$ ,
$\langle\delta, 2\epsilon_{i}\rangle=l-i-1$ .

(4) $Y=(D_{l}, a_{r})$ , $1\leqq r\leqq l-2$ or $r=l,$ $1\geqq 3$ :
$\Delta=\{\alpha_{i}=\epsilon_{i}-\text{\’{e}}_{i+1} ; 1\leqq i\leqq l-1, a_{l}=\epsilon_{l-1}+\epsilon_{l}\}$ ,
$\Phi^{+}=\{\epsilon_{i}\pm\epsilon_{j} ; 1\leqq i<j\leqq l\}$ ,

$\{\begin{array}{l}\lambda_{i}=\epsilon_{1}+\cdots+\epsilon_{i}, 1\leqq i\leqq l-2,\lambda_{l-1}=(\epsilon_{1}+\cdots+\epsilon_{l-1}-\epsilon_{l})/2,\lambda_{l}=(\epsilon_{1}+\cdots+\epsilon_{l})/2,\end{array}$

$\delta=(l-1)\epsilon_{1}+\cdots+(l-j)\epsilon_{i}+\cdots+\epsilon_{l-1}$ ,
$\Phi(\mathfrak{n}^{+})=\{\epsilon_{i}\pm\epsilon_{j} ; 1\leqq i\leqq r<j\leqq l, \epsilon_{i}+\epsilon_{j} ; 1\leqq i<j\leqq r\}$ ,
$\langle\delta, \epsilon_{i}-\epsilon_{j}\rangle=j-i$ , $\langle\delta, \epsilon_{i}+\epsilon_{j}\rangle=2l-(i+])$.

In case $\mathfrak{g}$ is an exceptional Lie algebra, we give the table of the positive
roots classified according to the value $\langle\delta, a\rangle$ . We abbreviate a positive root
$\alpha=\sum n_{i}a_{i}$ as $(n_{1}, \cdots , n_{l})$ in the following. Moreover, if $\mathfrak{g}=F_{4}$ or $G_{2}$ , then two
distinct root lengths can occur. We denote by $(n_{1}, \cdots n_{l})_{L}$ a long root and by
$(n_{1}, \cdots , n_{l})_{S}$ a short root.

(5) $E_{6},$ $E_{7}$ and $E_{8}$ . The positive roots of $E_{8}$ can be found in Table A.1.
The positive roots of $E_{6}$ (resp. $E_{7}$ ) can be identified with those of $E_{8}$ satisfying
$n_{7}=n_{8}=0$ (resp. $n_{8}=0$). In this case, $\langle\lambda_{i}, a\rangle=n_{i}$ for $\alpha=(n_{1}, \cdots , n_{8})$ .
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Table A. 1.
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(6) $F_{4}$ . The positive roots can be found in Table A.2. In this case, for
$a=(n_{1}, n_{2}, n_{3}, n_{4})$ , we have

$\langle\lambda_{i}, \alpha\rangle=\{\begin{array}{ll}2n_{i} if a is shorter than a_{i},n_{i} if a has the same length as \alpha_{i},n_{i}/2 if a is longer than \alpha_{i}.\end{array}$

Table A. 2.

(7) $G_{2}$ . The positive roots can be found in Table A.3. In this case, we
have, for $\alpha=(n_{1}, n_{2})$ ,

$\langle\lambda_{i}, \alpha\rangle=\{\begin{array}{ll}3n_{i} if \alpha is shorter than \alpha_{i} ,n_{i} if \alpha has the same length as \alpha_{i},n_{i}/3 if \alpha is longer than a_{i}.\end{array}$

Table A. 3.
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