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Introduction.

In [V] Van de Ven raised the following question: Let $V$ be an irreducible
smooth algebraic $surface/C$ , with $H_{i}(V, Z)=(O)$ for $i>0$ . Is $V$ rational? Follow-
ing Van de Ven, we call such a surface $V$ , a complex homology 2-cell.

It can be easily shown that if $V$ is a complex homology 2-cell then
(i) $V$ is an affine surface,
(ii) for any smooth projective completion $X$ of $V$ , both the irregularity

$q(X)$ and the geometric genus $p_{g}(X)$ vanish, the divisor $D=X-V$ is simply-
connected and the irreducible components of $D$ generate freely the divisor class
group, Pic $X$,

(iii) a smooth projective completion $X$ of $V$ can be chosen such that $D=$

$X-V$ has at worst ordinary double point singularities.

For the proof of these, see [F], \S 1 and \S 2. In [F] it is also proved that
if $\overline{k}(V)\leqq 1$ , then (a homology 2-cell) $V$ is rational. An affirmative answer to
Van de Ven’s question would follow from:
$(*)$ “Let $X$ be an irreducible, smooth projective $surface/C$ with the geometric
genus $p_{g}(X)=0$ . Let $D$ be a reduced (not necessarily connected) curve on $X$ with
at worst ordinary double point singularities. Suppose each connected component of
SuppD is simply-connected and the irreducible comp0nents of $D$ generate the divisor
class group $PicX$. Then $X$ is rational.”

In this paper we settle the case of a general type surface in $(*)$ (see Theorem
below). The elliptic case will be considered in a subsequent paper.

THEOREM. Let $X$ and $D$ be as in $(*)$ . Then $X$ is not a surface of general
rype.

We have the following consequences of the theorem.

COROLLARY 1. The Chow group of a complex homology 2-cell $V$ is trivial.

In view of the properties of a complex homology 2-cell discussed above we
have to only verify that any O-cycle on $V$ is rationally equivalent to zero. But
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this follows immediately from the main theorem in [B-K-L] which asserts that
any O-cycle of degree $0$ on $X$ is trivial.

Also if $X$ is rational or elliptic with $p_{g}(X)=0$ then $SA_{0}(X)=0$ , by [B-K-L].

In [M-S], it is shown that if $SA_{0}(X)=0$ then any algebraic vector bundle on $X$

splits as a direct sum of a trivial subbundle and a line bundle. Hence we have
the next corollary.

COROLLARY 2. All algebraic vector bundles on a complex homology 2-cell are
trivial.

This is a generalization of C. S. Seshadri’s result on the triviality of algebraic
vector bundles on $C^{2}$ . The first non-trivial example of a smooth, contractible
$surface/C$ was given by C. P. Ramanujam in $[R$ , \S 3 $]$ . In [G-M], R. V. Gurjar
and M. Miyanishi have constructed infinitely many non-isomorphic complex
homology 2-cells and smooth contractible surfaces.

Let $X$ be as in $(*)$ . Then some connected component of $D$ supports an effec-
tive divisor $C$ with $C^{2}>0$ . Since every connected component of $D$ is simply-
connected by assumption, by a generalization of the Lefschetz hyperplane section
theorem proved in [N], we see that $\pi_{1}(X)$ is trivial. Thus, the geometric genus
and the irregularity of $X$ both vanish. These observation will be tacitly used
in the following sections.

We will briefly indicate some of the ideas used in the proof of the theorem.
Our proofs depend heavily on Y. Miyaoka’s inequality ([M], Theorem 1.1).

We assume that the surface $X$ is not rational. Then $K+D$ has a Zariski-decom-
position, so that Miyaoka’s inequality applies. In \S 2, by studying the blowing-
down process $\pi:Xarrow X’$ , where $X’$ is the minimal model for the function
field of $X$, we deduce an auxiliary inequality relating various integral in-
variants of $D$ and $X$. This auxiliary inequality (2.8) plays a central role in our
proof. A careful interpretation of terms involved in (2.8) yield a bound on the
number of components of the exceptional set $\mathcal{E}$ of $\pi$ that lie outside $D$ . The
geometric Lemma 4.1, about the effectivity of $\pm K$ is of general interest. It
plays another important role in our proof. To begin with, this lemma gives
better estimates of terms in (2.8). At this stage, by repeated application of
Miyaoka’s inequality we can reduce the problem to the case when $\mathcal{E}\subseteqq D$ . How-
ever, beyond this, the proof becomes heavily computational and mainly uses the
unimodularity of $D$ and lemmas in \S 4. So we must prepare ourselves with
some technical lemmas in \S 5 and \S 6, converting these properties of $D$ into
something easily checkable.

After that, it follows that tbe number of components $b_{2}(D)$ of $D$ is bounded
above. In the general type case, we have $b_{2}(D)\leqq 12$ . In \S 7 we complete the
proof of Theorem, the bulk of which goes into handling the situation $\mathcal{E}\subseteqq D$ .
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\S 1. Miyaoka’s inequality.

1.1. NOTATIONS, CONVENTIONS etc. Let $Y$ be a smooth projective surface
and $C$ a reduced curve on $Y$ . By a “component” of $C$ we always mean an ir-
reducible component of $C$ . By a $(-1)$-curve we mean an exceptional curve of
the 1st kind and by contraction we mean (a succession of) blowing-down of
$(-1)$-curves. We say $C$ is NC (normal crossings) if all the components of $C$

are smooth and $C$ has at worst ordinary double point singularities. $C$ is MNC
(minimal with normal crossings) if it is NC and after blowing-down any $(-1)-$

curve in $C$ , the image of $C$ is not NC. Let $K_{Y}$ denote the canonical divisor of
$Y$ . Suppose $C$ is NC and $K_{Y}+C$ has a Zariski decomposition $K_{Y}+C=P+N$

with $P$ and $N$ denoting positive and negative parts respectively. For the defini-
tion and properties of the Zariski decomposition, see ([F], \S 6). By Miyaoka’s
inequality, we have,

$0 \leqq\chi_{to_{P}}(Y)-\chi_{\iota op}(C)-\frac{1}{3}(K_{Y}+C)^{2}+\frac{1}{12}N^{2}$ ,

where $\chi_{top}$ denotes the topological Euler characteristic. (See Theorem 1.1 of [M].)

1.2. With $Y$ and $C$ as above, assume further that $p_{g}(Y)=0=q(Y)$ and all
components of $C$ are rational. Let $b_{i}=b_{i}(C)$ denote the $j^{th}$ betti number of $C$

( $i$ . $e$ . $b_{0}=number$ of connected components, $b_{1}=number$ of lin. ind. l-cycles, $b_{2}=$

number of components). Then we have

$\chi_{top}(Y)=\beta_{2}(Y)+2$ ; $\chi_{top}(C)=b_{0}-b_{1}+b_{2}$

$K_{Y}^{2}=10-\beta_{2}(Y)$ ; $K_{Y}\cdot C+C^{2}=2(b_{1}-b_{0})$

where $\beta_{i}(Y)$ denotes the $j^{th}$ betti number of $Y$ . The last equality follows from
repeated application of the adjunction formula. Thus the inequality yields:

(1.3) $0 \leqq 4\beta_{2}+b_{1}-b_{0}-4-3b_{2}-K_{Y}\cdot C+\frac{1}{4}N^{2}$ .

First we have the following:

1.4. LEMMA. SuppOse $C$ has a component $C_{0}$ such that $C_{0}\cdot(C-C_{0})\leqq 1$ . Then
$N^{2}<0$ .

PROOF. Clearly $(K_{Y}+C)\cdot C_{0}<0$ . Hence by elementary properties of the
Zariski decomposition, $C$ is a component of $N$. This implies $N^{2}<0$ .

1.5. Let now $Y$ be a smooth projective surface with $p_{g}(Y)=q(Y)=0$ and $C$

a reduced curve on $Y$ with all it’s components smooth and rational (but $C$ need
not be NC). Introduce the notation:

$M(Y, C)=4\beta_{2}+b_{1}-b_{0}-4-3b_{2}-K_{Y}\cdot C$
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where $\beta_{2},$ $b_{i}$ are as above. Then if $C$ is also NC and $K_{Y}+C=P+N$ is the
Zariski decomposition, the inequality (1.3) reads as follows:

(1.6) $0 \leqq M(Y, C)+\frac{1}{4}N^{2}$ .

The following lemma will be useful in the applications of the above inequality.

1.7. LEMMA. Suppose $C$ is MNC and $\psi:Yarrow Y’$ is a non-trivial comp0site of
contractions of $(-1)$-curves such that $C’=\psi(C)$ has all it’s comp0nents smooth and
$C=\psi^{-1}(C’)$ . Then $M(Y, C)\leqq M(Y’, C’)-1$ .

PROOF. Write $\psi=\psi_{r}\circ\cdots\circ\psi_{1},$ $r\geqq 1$ , where each $\psi_{i}$ contracts a $(-1)$-curve
$E_{i},$ $Y_{0}=Y,$ $C_{0}=C,$ $Y_{i}=\psi_{i}(Y_{i-1})$ and $C_{i}=\psi_{i}(C_{i-1})$ . Since each component of $C_{i}$

is smooth, $E_{i}$ intersects each component of $C_{i-1}$ , transversally in at most one
point. $C$ being MNC, it follows that $E_{1}\cdot(C_{0}-E_{1})\geqq 3$ and $E_{i}\cdot(C_{i-1}-E_{i})\geqq 2$ for
$i\geqq 2$ . To see the last inequality it suffices to note that if $E_{i}\cdot(C_{i-1}-E_{i})\leqq 1$ then,
from the analysis of blowing-ups we see easily that $C$ will not be MNC.

We have $-K_{Y}\cdot C\leqq-K_{Y_{1}}\cdot C_{1}-2and-K_{Y_{i-1}}\cdot C_{i-1}\leqq-K_{Y_{i}}\cdot C_{i}-1$ for $i\geqq 2$ . On
the other hand, $b_{0}(C_{i})=b_{0}(C_{i-1}),$ $b_{1}(C_{i})=b_{1}(C_{i-1}),$ $b_{2}(C_{i})=b_{2}(C_{i-1})-1,$ $\beta_{2}(Y_{i})=$

$\beta_{2}(Y_{i-1})-1$ for $i\geqq 1$ . Hence $M(Y, C)\leqq M(Y_{1}, C_{1})-1\leqq M(Y_{2}, C_{2})-1\leqq\ldots\leqq$

$M(Y_{r}, C_{r})-1=M(Y’, C’)-1$ . This completes the proof of the lemma.

1.8. REMARK. If $C$ and $C’$ are as in (1.7) and $C$ has a component $C_{0}$

satisfying $C_{0}\cdot(C-C_{0})\leqq 1$ , then from (1.4) and (1.7) above we get $0<M(Y’, C’)-1$ .

\S 2. An auxiliary inequality.

2.1. Now let $X$ and $D$ be as in $(*)$ . We shall assume that $X$ is not rational
for the rest of the paper and arrive at a contradiction. By assumption $D$ is a
tree of rational curves, $\beta_{1}(X)=0,$ $p_{g}(X)=0$ . We can contract $(-1)$-curves $E$ on
$X$ with $E\cdot D=1$ , without changing the hypothesis on $X$ and $D$ . Thus we may
assume that for each $(-1)$-curve $E$ on $X,$ $E\cdot D\geqq 2$ . In particular, it follows
that $D$ is MNC. For some $n$ (in fact for $n=2$) $|nK|\neq\emptyset,$ $(K=K_{X})$ and so $K+D$

has Zariski decomposition. Now we can apply (1.6) above with $Y=X$ and $C=D$ .
Our purpose in this section is to obtain a rough upper bound for $\beta_{2}=\beta_{2}(X)$ .
The following lemma is an easy consequence of non-rationality of $X$.

2.2. LEMMA. (i) Any two $(-1)$-curves on $X$ are disjoint.
(ii) $C^{2}<0$ for any comp0nent $C$ of $D$ .
2.3. Let now $X’’$ be the minimal model for the function field of $X,$ $\pi;Xarrow X’$

be the composite of contractions of $(-1)$-curves, $D’’=\pi(D)$ . Let $\mathcal{E}$ be the ex-
ceptional set for $\pi$ . Write $\pi=\varphi_{m^{\circ}}\ldots\circ\varphi_{1}$ , where each $\varphi_{j}$ is a contraction of a
$(-1)$-curve $E_{j}$ .
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Let $\psi_{0}=id_{X}$ and $\psi_{j}=\varphi_{j^{\circ}}\ldots\circ\varphi_{1}$ for $j\geqq 1$ . The integer $\beta(E_{j})=(\psi_{j-1}(D)-E_{j})\cdot E_{j}$

is the branching number of $E_{j},$ $w$ . $r.t$ . $\psi_{j-1}(D)$ . In view of the lemma above,
we can rearrange $\varphi_{j}’ s$ in such a way that if $\pi_{1}=\varphi_{n_{1}}\circ\cdots\circ\varphi_{1}=\psi_{n_{1}}$ , then

a) $D’=\pi_{1}(D)$ has all the components (still) smooth,
b) for each $j>n_{1},$ $E_{j}\cdot C\geqq 2$ for at least one component $C$ of $\psi_{j-1}(D)$ .
Let $X’=\pi_{1}(X),$ $\pi_{2}=\varphi_{m^{\circ}}\ldots\circ\varphi_{n_{1}+1}$ : $X’arrow X’’$ and $\mathcal{E}_{i}$ be the exceptional set for

$\pi_{i},$ $i=1,2$ . Write $m=n_{1}+n_{2}$ . Clearly $b_{2}(\mathcal{E}_{i})=n_{i},$ $b_{2}(\mathcal{E})=n_{1}+n_{2}$ . From now on
for any irreducible curve $C_{i}’’$ on $X’’$ , we shall denote it’s proper transform on $X$

(resp. on $X’$ ) by $C_{i}$ (resp. C\’i) etc. We denote the components of $\mathcal{E}_{1}$ by $\{L_{i}\}_{1\leq i\leq n_{1}}$

and those of $\mathcal{E}_{2}$ by $\{E_{i}’\}_{1\leq i\leq n_{2}}$ . The proper transform of $E_{i}’$ on $X$ will be denoted
by $E_{i}$ . For any component $C_{i}$ of $\mathcal{E}$ we define $\beta(C_{i})=\beta(\psi_{j-1}(C_{i}))$ where $j$ is
such that $\psi_{j-1}(C_{i})$ is a $(-1)$-curve (and by virtue of 2.2 (i), this is well defined).

We shall now introduce some subsets of $\mathcal{E}$ and some more notations:

$R_{2}=\cup\{L_{i}|\beta(L_{i})=2\}$ , $R_{3}=\cup\{L_{i}|\beta(L_{i})=3\}$ , $R_{4}=\cup\{L_{i}|\beta(L_{i})\geqq 4\}$ ,

$S=\mathcal{E}_{2}\cap D’$ , $r_{i}=b_{2}(R_{i})$ , $s_{2}=b_{2}(S)$ , $e_{1}=n_{1}-b_{2}(\mathcal{E}_{1}\cap D)$ ,

$\sigma=n_{2}-\sum_{E’\in S}(E^{J2}+2)$ .

Let now $D=\{D_{r}\},$ $D’=\{D_{s}’\}$ and $D’’=\{D_{t}’’\}$ . As stated above $D_{t}$ and $D_{t}’$

will denote the proper transforms of $D_{t}’’$ on $X$ and $X’$ respectively and $D_{s}$ will
denote the proper transform of $D_{s}’$ in $X$. Write $K,$ $K’$ and $K’’$ for the canonical
divisors of $X,$ $X’,$ $X’’$ resp. For $1\leqq j\leqq n_{1}$ , let now $\varphi_{j}$ contract $\psi_{j-1}(L_{j})$ where
$L_{j}\subset \mathcal{E}_{1}\cap R_{i}$ , for some $i=2,3$ or 4. (Note, $s_{1}=R_{2}\cup R_{3}\cup R_{4}.$ ) Then clearly,

(2.4) $\sum_{r}((\psi_{j-1}(D_{r}))^{2}+2)\leqq\{\begin{array}{ll}\sum_{r}((\psi_{j}(D_{r}))^{2}+2)-i if L_{j}\not\subset D\sum_{r}((\psi_{j}(D_{r}))^{2}+2)-i+1 if L_{j}\subset D.\end{array}$

Here we take $(\psi_{j-1}(D_{r}))^{2}=0$ (resp. $(\psi_{j}(D_{r}))^{2}=0$) if $\psi_{j-1}(D_{r})$ (resp. $\psi_{j}(D_{r})$ ) is a point.
By the adjunction formula we have $-K\cdot D=\Sigma_{r}(D_{r}^{2}+2)=\Sigma_{r}((\psi_{0}(D_{r}))^{2}+2)$ and
$-K’\cdot D’=\Sigma_{s}(D_{s}^{;2}+2)=\Sigma_{s}((\pi_{1}(D_{s}))^{2}+2)=\Sigma_{r}((\psi_{n_{1}}(D_{r}))^{2}+2)$ . Now by repeated ap-
plication of 2.4, for $j=1,$ $\cdots$ , $n_{1}$ and the fact that $n_{1}=r_{2}+r_{3}+r_{4}$ , we obtain

$-K\cdot D\leqq-K’\cdot D’-2r_{2}-3r_{3}-4r_{4}+b_{2}(\mathcal{E}_{1}\cap D)$

and hence,

(2.5) $-K\cdot D\leqq-K’\cdot D’-r_{3}-2r_{4}-n_{1}-e_{1}$ .
Let $\{p_{t.i}\}$ be all the singular points of $D_{t}’’$ , including the infinitely near ones,

and let the multiplicities at these be $m_{t,i}$ . Note that $m_{t,i}\geqq 2$ . By the genus
formula, $(D_{t}^{\prime;2}+2)+D_{t}’’\cdot K’=\Sigma_{i}m_{t.i}(m_{t.i}-1)$ . Since $D_{t}’$ is the smooth model for
$D_{t}’’$ , we have

$D_{t}^{\prime 2}+2 \leqq D_{t}^{JJ2}+2-\sum_{i}m_{t.i}^{2}=-\sum_{i}m_{t.i}-D_{t}’’\cdot K’$ .
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Now let
$\tau=\sum_{t.i}m_{t,\iota}-2n_{2}$ , $\lambda=\sum_{t}D_{t}’’\cdot K’’$ .

Then, $\Sigma_{t}(D_{t}^{\prime 2}+2)\leqq-\tau-2n_{2}-\lambda$ . Since $-K’\cdot D’=\Sigma_{s}(D_{s^{2}}’+2)=\Sigma_{t}(D_{t}^{\prime 2}+2)+$

$\Sigma_{E’\in S}(E^{\prime 2}+2)$ , from (2.5) we get,

(2.6) $-K\cdot D\leqq-\lambda-\tau-\sigma-n_{2}-n_{1}-r_{3}-2r_{4}-e_{1}$ .
Now applying (1.3) with $Y=X,$ $C=D$ , we obtain,

(2.7) $0 \leqq 4\beta_{2}-b_{0}-3b_{2}-4-\lambda-\tau-\sigma-n_{2}-n_{1}-r_{3}-2r_{4}-e_{1}+\frac{1}{4}N^{2}$ .

Now note that $\beta_{2}’’=\beta_{2}(X’)=\beta_{2}(X)-n_{1}-n_{2}$ . All the quantities in (2.7), ex-
cept possibly $(1/4)N^{2}$ , are integers. So we can rewrite the above as

(2.8) $3(b_{2}-\beta_{2})+b_{0}+\lambda+\sigma+\tau+e_{1}+r_{3}+2r_{4}\leqq\beta_{2}’’-5$ .
Since $X’’$ is a minimal surface with $q(X’’)=0=p_{g}(X’’)$ , we should have $\beta_{2}’’\leqq 10$ .
Further, if $X’’$ is of general type, then $\beta_{2}’’\leqq 9$ , and hence we get

(2.9) $3(b_{2}-\beta_{2})+b_{0}+\lambda+\sigma+\tau+e_{1}+r_{3}+2r_{4}\leqq 4$ .

These are the auxiliary inequalities mentioned in the introduction. Finally,

2.10. LEMMA. (i) Each term on the left hand side of (2.8) is non-negative.
(ii) If there is an equality in (2.8) then

$K\cdot D\geqq 4\beta_{2}-b_{0}-3b_{2}-5$ .

PROOF. (i) $b_{2}-\beta_{2}$ is non-negative because the cohomology classes of the
components of $D$ generate $H^{2}(X, Z)$ . Each $m_{t.i}\geqq 2$ and there are at least $n_{2}$

singular points, and hence we see that $\tau$ is non-negative. $X’’$ is minimal and
birationally non-ruled, so $\lambda$ is non-negative. Other terms are non-negative by
definition.

(ii) Equality in (2.8) means we have

$0=4\beta_{2}-b_{0}-3b_{2}-5-\lambda-\tau-\sigma-n_{2}-n_{1}-r_{3}-2r_{4}-e_{1}$

$\geqq 4\beta_{2}-b_{0}-3b_{2}-5-K\cdot D$

and hence the result.

\S 3. Interpretation of terms in (2.8).

3.1. LEMMA. (i) To each $(-1)$-curve $E_{l}’$ in $S$ there exist $D_{i}’\subset D’$ such that
$E_{i}’\cdot D_{i}’\geqq 2$ and some point $x_{i}\in E_{i}’\cap D_{i}’$ such that either $b_{2}(\pi_{1}^{-1}(x_{i}))\geqq 2$ and $\pi_{1}^{-1}(x_{i})$

contains a curve $L_{i}\in R_{3}\cup R_{4}$ or $\pi_{1}^{-1}(x_{i})=\{L_{i}\}$ for some $(-1)$-curve $L_{i}$ which is
not in D. In particular if $p=number$ of $(-1)$-curves in $S$ , then $p\leqq n_{1}$ .
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(ii) $\tau=0\Rightarrow allm_{t.i}’ s$ are equal to 2.
(iii) $\sigma=0\Rightarrow \mathcal{E}_{2}=S$ and $\mathcal{E}_{2}$ is a disjoint union of $(-1)$-curves, and hence $n_{2}=$

$p\leqq n_{1}$ . Similarly $\sigma=1\Rightarrow either\mathcal{E}_{2}-D’=\{E_{1}’\}$ and $S$ is a disjoint union of $(-1)-$

curves, or, $\mathcal{E}_{2}=S$ conststs of $dis_{j}$ oint union of some $(-1)$ -curves and $E_{1}’\cup E_{2}’$ , with
$E_{1}^{l2}=-2,$ $E_{2}^{\prime 2}=-1$ and $E_{1}’\cdot E_{2}’=1$ .

PROOF. (i) Let $E_{i}’$ be any $(-1)$-curve in $S$ . By definition of $\mathcal{E}_{2}$ , there
exists $D_{i}’\subset D’$ with $D_{i}’\cdot E_{i}’\geqq 2$ . Since $D$ is NC and $E_{\ell}’\subset D’$ , it follows that for
all $x\in D_{i}’\cap E_{i}’$ such that $(D_{i}’\cdot E_{i}’)_{x}\geqq 2$ we have the said property for $\pi_{1}^{-1}(x_{i})$ . If
$(D_{i}’\cdot E_{i}’)_{x}=1$ for all $x\in D_{i}’\cap E_{i}’$ then $D_{i}’\cup E_{i}’$ is not simply connected. Since $D$ is
simply connected, it follows that for some $x_{i}\in D_{i}’\cap E_{i}’$ , we have $(D_{i}’\cdot E_{i}’)_{x}\geqq 2$ and
so we are done.

(ii) By definition, $2n_{2}+ \tau=\sum m_{t.i}\geqq 2n_{2}$ . Since $m_{t.i}’ s$ are at least $n_{2}$ in num-
ber, the claim follows.

(iii) $\sigma=n_{2}-\sum_{E’\in S}(E^{\prime 2}+2)$ . Since $b_{2}(S)\leqq n_{2}$ and $E^{r2}\leqq-1$ for each $E’\in S$ ,
$\sigma=0$ implies that $E^{\prime 2}=-1$ for all $E’\in S$ and $b_{2}(S)=n_{2}$ . Hence $\mathcal{E}_{2}=S$ and $\mathcal{E}_{2}$ is
a disjoint union of $(-1)$-curves. If $\sigma=1$ then either $b_{2}(S)=n_{2}-1$ or $b_{2}(S)=n_{2}$ .
In the former case, we further have $E^{\prime 2}=-1$ for all $E’\in S$ as before. In the
latter case $\mathcal{E}_{2}=S$ and all except one curve, say $E_{1}’$ in $S$ are $(-1)$-curves and
$E_{1}^{;2}=-2$ . Clearly all the $(-1)$-curves are disjoint and $E_{1}’\cdot E_{2}’=1$ for one of these
$(-1)$-curves $E_{2}’$ . And then it is clear that $E_{1}’$ is disjoint from other $(-1)$-curves.

3.2. LEMMA. Suppose $\lambda\geqq 2$ . Then $b_{2}=\beta_{2}$ and hence $D$ is unimodular; also
$r_{4}=0$ .

PROOF. By (2.8) we have

$3(b_{2}-\beta_{2})+b_{0}+\lambda+\sigma+\tau+e_{1}+r_{3}+2r_{4}\leqq 5$ .

Since $b_{0}\geqq 1$ and $\lambda\geqq 2$ by assumption, $b_{2}=\beta_{2}$ follows. Now suppose $r_{4}\geqq 1$ . Then
$r_{4}=1,$ $e_{1}=0,$ $r_{3}=0,$ $b_{0}=1,$ $\sigma=0,$ $\beta_{2}’’=10$ . Let $R_{4}=\{L_{1}\}$ . Then since $e_{1}=0,$ $L_{1}\subset D$ .
Since $r_{3}=0$ and $D$ is MNC, it follows that $L_{1}$ is the only $(-1)$-curve on X. $L_{1}$

meets at least four other components say $D_{1},$ $D_{2},$ $D_{3},$ $D_{4}$ of $D$ . If $\varphi_{1}$ : $Xarrow\varphi_{1}(X)$

contracts $L_{1}$ , then $\varphi_{1}(D_{i}),$ $i=1,2,3,4$ , meet other $\varphi_{1}(D_{j})$ transversally. Since
$r_{3}=0$ and $R_{4}=\{L_{1}\}$ $\varphi_{1}(D_{i})$ are not $(-1)$-curves. It follows that $\varphi_{1}(X)=X’$ . Now
since $\sigma=0$ , by 3.1 it follows that $n_{2}=0$ and hence $X’=X’’$ , $b_{2}=\beta_{2}=11$ . Now
consider $C=D-L_{1}$ . Then $b_{0}(C)\geqq 4,$ $b_{1}(C)=0,$ $b_{2}(C)=10$ . Since we have an
equality in (2.8), now we have $K\cdot D\geqq 5$ (by 2.10 (ii)). Hence $K\cdot C=K\cdot D+1\geqq 6$ .
Thus $M(X, C)\leqq 44-4-4-30-6=0$ , contradicting (1.8). Hence $r_{4}=0$ as claimed.

\S 4. Some lemmas about $\pm K$ being effective.

In this section we prove a somewhat general result which will be useful in
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dealing with many cases.

4.1. LEMMA. Let $Y$ be a smooth projective surface with $q(Y)=0$ and $C=$

$\bigcup_{i\geq 0}C_{i}$ a reduced, connected curve on Y. Suppose that there is a canomcal dimsor
$K=\Sigma_{i\geq 0}\alpha_{i}C_{i}$ supp0rted on $C$ and the connected comp0nents of $\bigcup_{i\geq 1}C_{i}$ can be con-
tracted to rational singular points on a normal pr0jective surface $W$ by a morphism
$\psi:Yarrow W$. Assume further that either (a) $\psi$ is a minimal resolution of $\alpha ngulanties$

of $W$ or (b) $C$ is MNC. Then $K$ or $-K$ is effective, $i.e.,$ $\alpha_{0}\geqq 0$ implies $\alpha_{i}\geqq 0$ ,

for all $i$ , and $\alpha_{0}\leqq 0$ implies $\alpha_{i}\leqq 0$ .

PROOF. (a) $\psi$ is birational and $W$ is normal. Hence by the projection
formula, for any line bundle $X$ on $W,$ $\psi_{*}\psi^{*}X\approx \mathcal{L}$ . Hence $\psi^{*}:$ Pic $Warrow PicY$ is
injective. Since $q(Y)=0$ , Pic $Y$ is finitely generated and so Pic $W$ is also finitely
generated. It follows that $H^{1}(W, \mathcal{O}_{W})=(0)$ . Since $W$ has only rational singulari-
ties, $\chi(Y, \mathcal{O}_{Y})=x(W, \mathcal{O}_{W})$ (see [A]).

This implies that $\psi^{*}:$ $H^{2}(W, \mathcal{O}_{W})arrow\sim H^{2}(Y, \mathcal{O}_{Y})$ . By duality, dim $H^{0}(Y, K_{Y})=$

dim $H^{0}(W, K_{W})$ . Given a regular 2-form $\omega$ on $Y,$ $\omega$ can be thought of as a
rational 2-form on $W$ , which is clearly regular on $W$ . We thus get an injective
homomorphism $H^{0}(Y, K_{Y})arrow H^{0}(W, K_{W})$ which is then surjective also.

We consider the rational 2-form $\omega$ with divisor $K$ on $Y$ . Suppose $\alpha_{0}\geqq 0$ .
Then the divisor of $\omega$ on $W$ is $\alpha_{0}\psi(C_{0})\geqq 0$ . By the arguments above, $\omega$ is also
regular on $Y,$ $i$ . $e.,$

$\alpha_{i}\geqq 0$ for all $i$ .
Now suppose $\alpha_{0}\leqq 0$ . Let $\Lambda=\Sigma_{i\geqq 1}\alpha_{i}C_{i}$ and assume first that $\bigcup_{i\geq 1}C_{i}$ is con-

nected. The intersection form on $\bigcup_{i\geqq 1}C_{i}$ is negative definite and by assump-
tion, $C’\leqq-2$ for $i\geqq 1$ . Each $C_{i}\approx P^{1}$ and hence $K\cdot C_{i}\geqq 0$ for $i\geqq 1$ .

Now $\Lambda\cdot C_{i}=K\cdot C_{i}-\alpha_{0}C_{0}\cdot C_{i}\geqq 0$ for $i\geqq 1$ . Hence $\Lambda\cdot C_{i}\geqq 0$ for all $i\geqq 1$ . It is
easy to see from this that $\alpha_{i}\leqq 0$ for $i\geqq 1$ as required (see 5.3).

In general, if $\bigcup_{i\geq 1}C_{i}$ is not connected, we argue with each connected com-
ponent and deduce the same conclusion.

(b) This follows easily from (a). We factor $\psi$ as $\psi_{1}$ : $Yarrow Y_{1}$ and $\psi_{2}$ : $Y_{1}arrow W$

where $\psi_{2}$ is the minimal resolution of singularities of $W$ . The divisor of $\omega$ on
$Y_{1}$ will have the required property. Now analysing the effect of a blowing-up,
on the canonical divisor and using the fact that $C$ is MNC, we get the re-
quired result.

REMARK. The above lemma is valid even without the assumption $q(Y)=0$ .
We do not, however, use this more general result in the paper.

4.2. LEMMA. Assume that $X’$ is of general type. Then there are at least
two comp0nents $D_{t_{1}}’’,$ $D_{t_{2}}’’$ with $K’\cdot D_{t_{i}}’’>0$ . In partjcular, $\lambda\geqq 2$ and hence $b_{2}=\beta_{2}$ ,
$r_{4}=0,$ $\sigma+\tau+r_{3}+e_{1}\leqq 1$ .

PROOF. For large $n,$ $|nK’’|$ defines a birational morphism $\psi:X’arrow W$ onto
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a normal projective surface, which contracts all $(-2)$-curves on $X’’$ , to finitely
many rational double points and $X’’$ is the minimal resolution of singularities of
$W$ . Since components of $D’’$ generate Pic $X’’$ , there is a canonical divisor $K’’$

supported on $D’’$ . Note that for any curve $C$ on $X’’,$ $K’’\cdot C\geqq 0$ $andK’’\cdot C=0$ iff
$C$ is a $(-2)$-curve. Thus if there is at most one curve $D_{t}’’$ with $K’\cdot D_{t}’’>0$ ,
then by Lemma 4.1 above, either $K’$ or -K’m is effective. Then either $p_{g}(X’)$

$\neq 0$ or $|nK’’|=\emptyset$ for all $n>0$ . This contradiction proves the first part of the
assertion and also that $\lambda\geqq 2$ . Rest of the conclusion of 4.2 follow by 3.2.

The following technical extensions of 4.1 will be needed in \S 7, and also
later, in the elliptic case.

4.3. LEMMA. Let $Y$ be a smooth, projectjve, mimmal surface with $q(Y)=0$ .
Let $C$ be one of the following configurations of smooth rational curves on $Y$ :

$C_{t}$

(1) (2) (3)

with $\{-C_{2}^{2}, -C_{3}^{2}\}=\{2,3\}$ or {3, 3} and $-C_{4}^{2}=2$ or 3, $C_{2}\cdot C_{3}=2p$ for some point
$p,$ $C_{1}\cdot C_{2}=1,$ $C_{1}\cdot C_{3}=0(C_{1}\cdot C_{4}=0$ and either $C_{2}\cdot C_{4}=0$ and $C_{3}\cdot C_{4}=1$ or $C_{2}\cdot C_{4}=1$

and $C_{3}\cdot C_{4}=0$ as the case may be). Supp0se $0\neq K_{Y}\sim\Sigma t_{i}C_{i}+\Lambda(t_{i}\in Z)$ for some
divisor $\Lambda$ such that Supp $(\Lambda)\cap C_{i}=\emptyset$ for $i\geqq 2,$ $C_{1}\not\subset Supp\Lambda$ , and $C_{1}$ intersects each
connected comp0nent of $Supp\Lambda$ . Further supp0se that $Supp\Lambda$ can be contracted to
a finite number of rational srngularities on a normal surface. Then $K_{Y}$ or $-K_{Y}$

is effective.
PROOF. We shall show that $t_{1}>0$ implies all $t_{i}(i=2,3,4)$ are nonnegative

and $t_{1}\leqq 0$ implies all $t_{i}(i=2,3,4)$ are nonpositive. Then as in the proof of 4.1,
it would follow that $K_{Y}$ or $-K_{Y}$ is effective.

So let $a_{i}=-C_{i}^{2}$ . By computing $K_{Y}\cdot C_{i}$ and using adjunction formula we
obtain the following relations:

Figure (1).

$a_{3}-2=-a_{3}t_{3}+2t_{2}$

$\Rightarrow\{$

$a_{2}-2=2t_{3}-a_{2}t_{2}+t_{1}$

$t_{3}=(2t_{2}-a_{3}+2)/a_{3}$

$t_{1}= \frac{(a_{2}a_{3}-4)}{a_{3}}(t_{2}+1)$

and so for the three different values of $(a_{2}, a_{3})=(2,3),$ $(3,2)$ and $(3, 3)$ we obtain
$t_{1}=2/3\cdot(t_{2}+1),$ $t_{2}+1$ , and $5/3\cdot(t_{2}+1)$ respectively. Note that $t_{i}\in Z$ and hence
our assertion follows, in this case.
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Figure (2).

$a_{2}-2= 2t_{3}-a_{2}t_{2}+t_{1}a_{3}-2=t_{4}-a_{3}t_{3}+2t_{2}a_{4}-2=-a_{4}t_{4}+t_{3})\Rightarrow\downarrow t_{1}=\frac{a_{2}a_{3}a_{4}-a_{2}a_{3}-4a_{4}+4}{2}+\frac{a_{2}a_{3}a_{4}-a_{2}-4a_{4}}{2}t_{4}\int_{r_{2}=\frac{a_{3}a_{4}-a_{3}-2}{2}+\frac{(a_{3}a_{4}-1)}{2}t_{4}}^{t_{3}=a_{4}-2+a_{4}t_{4}}$

and for the six different values of $(a_{2}, a_{3}, a_{4})=(2,3,2),$ $(2,3,3),$ $(3,2,2),$ $(3,2,3)$ ,
(3, 3, 2) and (3, 3, 3) we have $t_{1}=1+t_{4},2+2t_{4},$ $(2+t_{4})/2,$ $(4+3t_{4})/2,$ $(5+7t_{4})/2$ and
$5+6t_{4}$ . Thus, again note that $t_{i}\in Z$ to obtain the assertion above, in this case
too.

Figure (3).

$a_{3}-2=-a_{3}t_{3}+2t_{2}$

$a_{4}-2=-a_{4}t_{4}+t_{2}$

$\Rightarrow\{$

$a_{2}-2=t_{4}+2t_{3}-a_{2}t_{2}+t_{1}$

$t_{4}=(t_{2}-a_{4}+2)/a_{4}$

$t_{3}=(2t_{2}-a_{3}+2)/a_{3}$

$t_{1}= \frac{(a_{2}a_{3}a_{4}-4a_{4}-a_{3})}{a_{3}a_{4}}t_{2}+\frac{a_{2}a_{3}a_{4}+a_{3}a_{4}-4a_{4}-2a_{3}}{a_{3}a_{4}}$

and again for the above six values of $(a_{2}, a_{3}, a_{4})$ we obtain

$t_{1}=(t_{2}+4)/6,$ $(t_{2}+3)/3,$ $(t_{2}+2)/2,$ $(2t_{2}+4)/3,$ $(7t_{2}+10)/6$ and $(4t_{2}+6)/3$ ,

and the conclusion of the lemma follows.

4.4. LEMMA. With the same hypothesjs as in 4.3 except that now let $C$ be
one of the following two curves:

$C_{1}$

(1) (2)

where $C_{2}$ is a rational curve with one ordinary cusp, $C’=-1,$ $C_{1}$ and $C_{3}$ are
smooth rational curves, $C_{3}^{2}=-2$ or $-3$ . Then $K_{Y}$ or $-K_{Y}$ is effective.

PROOF. Argue exactly as above with the following equations now:
Figure (1). $t_{1}=t_{2}+1$ .
Figure (2).

$a_{3}-2=-a_{3}t_{3}+t_{2}\}\Rightarrow\{t_{1}=((a_{3}-1)t_{2}+(2a_{3}-2))/a_{3}t_{3}=(t_{2}-a_{3}+2)/a_{3}$

$1=t_{3}-t_{2}+t_{1}$

and hence $t_{1}=t_{2}/2$ or $t_{1}=(2t_{2}+4)/3$ .
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\S 5. Small trees that are “rational”.

5.1. Let $C$ be NC on a smooth complex surface. Associated to $C$ , is its
dual weighted graph $\Gamma(C)$ . In what follows, we will identify $C$ with $\Gamma(C)$ .
For instance, we say $C$ (or $\Gamma(C)$ ) is negative definite, by which we mean the
intersection form of $C$ is negative definite. For an abstract weighted graph $\Gamma$,

with vertices $\{u\}$ and weights $\Omega_{u}\in Z,$ $u\in\Gamma$ , we may visualize $\Gamma$ as the dual
graph of a curve $C$ , which is NC on a smooth complex surface. Then geometric
operations like blowing-up and blowing-down on $\Gamma$ make sense. For instance
a graph $\Gamma$ is minimal if every vertex $u\in\Gamma$ with $\Omega_{u}=-1$ is joined to at least
three other vertices.

5.2. We shall now recall some results from [A]. Let $C$ be a connected
curve on a smooth surface, such that the intersection form on the components
of $C$ is negative definite. An effective divisor $Z$ supported on $C$ is called the
fundamental cycle of $C$ , if $Z$ is the smallest nonzero divisor with the property:
$Z\cdot C_{i}\leqq 0$ for all components $C_{i}$ of $C$ . By Theorem 3 of [A], $C$ contracts to a
rational singular point on a normal surface if and only if the arithmetic genus
$p_{a}(Z)=0$ . If this happens, we say $C$ is “rational”. (Thus by our convention
an abstract weighted graph $\Gamma$ is rational if $\Gamma=\Gamma(C)$ for some rational $C.$ )

We have:

5.3. LEMMA. Let $C$ be a connected curve with negative defimte intersection
form. (i) If $Z’$ is a nonzero dimsor supp0rted on $C$ having the property: $Z’\cdot C_{i}$

$\leqq 0$ for each comp0nent $C_{i}$ of $C$ , then $Z’$ is effective. (ii) If $C$ is “rational”, then
any connected curve $C’$ contained in $C$ is also “rational”.

PROOF. (i) This is easy (see the proof of Proposition 2 in [A]).

(ii) This is a direct consequence of Proposition 1 in [A], which says that
$C$ is “rational” if and only if every positive divisor $Z’$ supported on $C$ has
$p_{a}(Z’)\leqq 0$ .

5.4. LEMMA. Let $\Gamma$ be a connected tree of smooth rational curves ( $\Gamma$ is NC
by assumption) with all weights $\leqq-2$ and having one of the following configurations:

$*-*-*-*$
$*-*-*\infty_{1}*$

$\infty_{1}\ovalbox{\tt\small REJECT}$

,

Then $\Gamma$ is rational.

PROOF. Since all weights are $\leqq-2,$ $\Gamma$ is negative definite. Let $\Gamma’$ be the
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tree obtained by replacing all the weights by $-2$ in $\Gamma$ . Then $\Gamma’$ corresponds
to the minimal resolution of singularity of a rational double point. Now clearly,
$\Gamma$ can be thought of as a subtree of a suitable blown-up $\tilde{\Gamma}’$ of $\Gamma’$ . Hence by
1.1 (ii) above, $\Gamma$ is “rational”.

\S 6. Some lemmas about tips and branches.

6.1. LEMMA. Let $T$ be a weighted tree with ummodular intersection form.
For any vertex $v_{0}\in T$, let $T-\{v_{0}\}=\perp\S T$ . Then the discriminants $d(T_{j})(i$ . $e.$ ,

the modulus of the determinant of the intersection matrix of $T_{j}$) are pairwjse
coprjme.

REMARK. $T_{j}$ are called branches of $T$ at $v_{0}$ . Note that one of the $d(T_{j})s$

may be equal to zero. But then the assertion of the lemma implies that all
other $d(T_{j})$ are equal to 1.

PROOF. For any weighted tree $\Gamma$ , let $Z(\Gamma)$ be the free abelian group on
the vertex set of $\Gamma$ and let $R(\Gamma)$ be the set of rows of the intersection matrix
of $\Gamma$ . Then $R(\Gamma)$ is identified with a subset of $Z(\Gamma)$ in an obvious way. Also,
$d(\Gamma)\neq 0$ if and only if the quotient group $Z(\Gamma)/(R(\Gamma))$ is a finite group, and
then the order of this group is equal to $d(\Gamma)$ .

In particular, since $d(T)=1,$ $R(T)$ generates the whole group $Z(T)$ . Let
$\varphi:Z(T)arrow Z(T)/(v_{0})\cong\oplus Z(T_{j})$ be the canonical morphism. Then we have $\varphi(R(T))$

$=JL_{j}R(T_{j})\perp\{\varphi(R_{0})\}$ where $R_{0}$ is the row corresponding to the vertex $v_{0}$ . It
follows that $\oplus_{j}Z(T_{j})/(R(T_{j}))$ is a cyclic group generated by the image of
$(\varphi(R_{0}))$ . Hence $Z(T_{j})/(R(T_{j}))$ are all cyclic groups of order pairwise coprime.
The conclusion of the lemma follows.

6.2. LEMMA. Let $T$ be a ummodular tree with all weights $\leqq-2$ . Then
$\#(T)\geqq 6$ .

PROOF. Clearly $T$ cannot be linear. Thus, $\#(T)\leqq 5$ forces $T$ to have one
of the following configurations:

$\nwarrow\nearrow I$

In each of these cases, with all weights $\leqq-2$ one directly computes and sees
that $T$ cannot be unimodular.

By a tip $C_{0}$ of $C$ we mean a component of $C$ such that $C_{0}\cdot(C-C_{0})=1$ . In
the language of trees a tip is a free vertex. We have:
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6.3. LEMMA. Let $C$ be MNC such that its dual graph $T$ is a unimodular tree,
with all weights $\Omega_{v}\leqq-1$ . Then

(i) for any two tips $v_{1},$ $v_{2}$ joined to a single vertex $v_{0}$ in $T,$ $(\Omega_{v_{1}}, \Omega_{v_{2}})=1$ ,
(ii) if $v_{1},$

$\cdots$ , $v_{k}$ are tips joined to a srngle vertex $v_{0}$ in $T$, then $\Sigma_{i=1}^{k}\Omega_{v_{i}}\leqq$

$-\theta_{k}$ , where $\theta_{k}=2+3+5+\cdots+p_{k}$ is the sum of first $k$ prime numbers.

PROOF. (i) Since $C$ is MNC, it follows that for any tip $v_{i}$ in $T\Omega_{v_{i}}\leqq-2$ .
Now apply (2.1), and note $d(\{v_{i}\})=|\Omega_{v_{i}}|$ .

(ii) follows from (i).

6.4. LEMMA. Let $\Gamma$ be a ummodular tree, $v_{0}\in\Gamma$ be a vertex, $\Gamma_{1}$ be a branch
of $\Gamma$ at $v_{0},$

$u_{0}\in\Gamma_{1}$ be the vertex $j\alpha ned$ to $v_{0}$ in $\Gamma$ .
(a) Suppose $\Gamma_{1}$ is not “rational”, $\#(\Gamma_{1})=5$ and $\Omega_{u}\leqq-2$ for all $u\in\Gamma_{1}$ . Then

$\exists three$ vertices $u_{1},$ $u_{2},$
$u_{3}\in\Gamma_{1}$ which are tips of $\Gamma$ and such that $\Sigma_{i=1}^{3}\Omega_{u_{i}}\leqq-10$ .

(b) Suppose $\Gamma_{1}$ is not “rational”, $\#(\Gamma_{1})=6,$ $\Omega_{u_{0}}\leqq-2$ and the weight set
$\Omega(\Gamma_{1}-\{u_{0}\})$ is either $\{-2, -2, -2, -2, -2\}$ or $\{-2, -2, -2, -2, -3\}$ . Then
$\Gamma_{1}$ is the following tree:

$-2$ $-2$ $-2$

$-2$ $-3$

PROOF. (a) By 5.4, $\Gamma_{1}$ has the configuration

$*-L\downarrow$

Thus no matter where the vertex $u_{0}$ is located at least three of the vertices say
$u_{1},$ $u_{2},$ $u_{3}$ of $\Gamma_{1}$ are going to be tips of $\Gamma$ . Now the conclusion of (a) follows
from 6.3.

(b) By 5.4, $\Gamma_{1}$ should have one of the following configurations:

(1) (2) (3)
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In (1), no matter where $u_{0}$ is located, we get at least four vertices of $\Gamma_{1}$ as
tips of $\Gamma$ . The weights at these vertices are pairwise coprime by 6.1, which is
impossible. In (2), by the same argument, $\Gamma_{1}$ is forced to be

$u_{0}$

$u_{1}u_{2}\infty*\mathfrak{s}_{u,}$

$-2$ $-2$ $|-2-2$

$-3^{*}u_{5}$

$u_{1}$ $u_{2}$ $u_{5}$

But then both of the branches $*-*$ and $*$ at $u_{3}$ , have discriminant $=3$ ,
$-2$ $-2$ $-3$

contradicting 6.1. In (3), again by the same argument, it follows that $u_{0}$ has to
be one of tips of $\Gamma_{1}$ and then the weights have to be as claimed in the lemma.

\S 7. Proof of Theorem completed.

7.1. We have to show that $X$ is not of general type. So, assuming on the
contrary, we have $\beta_{2}(X’)\leqq 9$ . Since Pic $X$ is generated by components of $D$ ,
there is a canonical divisor supported on $D$ . This fact will be used implicitly
whenever we want to apply results of \S 4. By 4.2 and 3.2 we have $\lambda\geqq 2,$ $b_{2}=\beta_{2}$ ,
$r_{4}=0$ and $\sigma+\tau+r_{3}+e_{1}\leqq 1$ .

So we first consider the case $e_{1}=1$ . We then have equality in 2.8 and hence
by 2.10, we have $K\cdot D\geqq\beta_{2}-6$ . Take $C=D\cup\{L_{1}\}$ where $\{L_{1}\}=\mathcal{E}_{1}-D$ . Then
since $r_{3}=0$ we have $L_{1}\in R_{2}$ and hence $b_{1}(C)\leqq 1$ . $M(X, C)\leqq 4\beta_{2}+1-1-4-3\beta_{2}-$

$3-(\beta_{2}-7)=0$ . Since $D$ is unimodular, it is not linear. Hence $C$ has tips and so
by 1.7, $0\leqq M(X, C)-1=-1$ which is absurd.

Thus from now on we will assume that $e_{1}=0$ , so that $\sigma+\tau+r_{3}\leqq 1$ .
7.2. Consider the case when $r_{3}=0$ . Since $D$ is MNC, $r_{3}=r_{4}=e_{1}=0$ , it fol-

lows that $D$ is free from $(-1)$-curves and $n_{1}=0$ . By 3.1 ($(i)$ and (iii)), it fol-
lows that $n_{2}\leqq 1$ and hence $\beta_{2}\leqq 10$ . Since $\beta_{2}=b_{2}$ , each connected component of
$D$ is unimodular, and hence by 6.2, has at least 6 components. It follows that
$D$ is connected. Let $T$ be the dual tree of $D$ . Then $\exists$ a vertex $v_{0}\in T$ such that
each connected component of $T-\{v_{0}\}$ has at most 5 vertices. By 4.1 at least
one of these components say $\Gamma_{1}$ is not “rational”. By 5.4, $\#(\Gamma_{1})\geqq 5$ and hence
$\#(\Gamma_{1})=5$ . If $u_{0}\in\Gamma_{1}$ is joined to $v_{0}$ in $T$ then by 6.4 (a), we have $u_{1},$ $u_{2},$ $u_{3}\in\Gamma_{1}$

with $\Sigma_{i\subset 1}^{3}\Omega_{u_{i}}\leqq-10$ . Now let $T’=T-\Gamma_{1}$ . Then since $\Gamma_{1}-\{u_{0}\}$ has all its branches
“rational” and $T-\{u_{0}\}=T’\lrcorner L(\Gamma_{1}-\{u_{0}\})$ . It follows from 4.1 that $T’$ is not
“rational”. Since $\#(T’)\leqq 5$ , we obtain $\#(T’)=5$ and $\exists v_{1},$

$v_{2},$ $v_{3}\in T’$ such that
$\sum_{i=1}^{3}\Omega_{v_{i}}\leqq-10$ , as before. But then one easily checks that $K\cdot D\geqq 8$ which con-
tradicts (1.3).
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7.3. Thus from now on, we shall assume $r_{3}=1$ , so that $b_{0}=1,$ $\sigma+\tau=0,$ $\lambda=2$ ,
$\beta_{2}’’=9$ . (As before since we have equality in 2.8, we have $K\cdot D\geqq\beta_{2}-6$ and
hence $K\cdot D=\beta_{2}-6$). Since $e_{1}=0,$ $\mathcal{E}_{1}\subset D$ and since $\sigma=0,$ $\mathcal{E}_{2}=S\subset D’$ (by 3.1).

Hence $\mathcal{E}\subset D$ since $r_{3}=1,$ $(r_{4}=0)$ it follows that there is a unique $(-1)$-curve $L_{0}$

on $X$ and $\{L_{0}\}=R_{3}$ . Let $L_{1},$ $L_{2}$ and $L_{3}$ be the components of $D$ that meet $L_{0}$ .
We shall consider three subcases according as $\#(\mathcal{E})=1,2$ or $\geqq 3$ .

7.4. First consider the subcase when $\#(\mathcal{E})=1,$ $i$ . $e.,$ $\mathcal{E}=\{L_{0}\}$ . It follows that
$L_{i}^{2}\leqq-3fori=1,2,3$ . Let $T$ be the dual graph of $D$ and $v_{i}\in T$ be the vertices
corresponding to $L_{i}$ in $T$ . Then $T-\{v_{0}\}$ has precisely three branches $T_{1},$ $T_{2},$ $T_{s}$ ,
say. One of these, say, $T_{1}$ is not “rational” and is free from $(-1)$-curves. So
$\#(T_{1})\geqq 5$ . Now if $T’=T_{2}\cup T_{3}\cup\{v_{0}\}$ , it is easily seen that $T’$ is rational. Hence
as before $T_{1}-\{v_{1}\}$ should have a branch $\Gamma_{1}$ which is not “rational”. If $\#(\Gamma_{1})$

$=5$ , using 6.4 (a) we easily conclude that $\lambda\geqq 4$ , which is absurd. So $\#(\Gamma_{1})=6$ .
But now, notice that not all $L_{i}^{2}=-3,$ $i=1,2,3$ , for then after blowing down $L_{0}$

we obtain three $(-2)$-curves passing through the same point on a minimal sur-
face of general type, which is absurd. Thus at least one $L_{i}^{2}\leqq-4$ . So in $\Gamma_{1}$

we can have at most one $(-3)$-curve (since $\lambda=2$); all other weights being $-2$ .
Thus by 6.4 (b), we have the following two possible configurations for $T$ :

$u_{1}$

$v_{2}$ $v_{0}$

$\nu_{t}u_{0}|*$
$u_{3}$ $u_{s}$

$*-***|\begin{array}{l}\infty-l\end{array}|\mathfrak{s}^{-*}$

$v_{3}$
$u_{2}$ $u_{4}$

(1)

$V_{3}$ $u_{3}$ $u_{4}$

(2)

In (1), we should have $(\Omega_{u_{4}}, \Omega_{u_{5}})=1$ and $(\Omega_{u_{1}}, \Omega_{u_{2}})=1$ which is impossible since
all weights in $\Gamma_{1}$ , except perhaps one, are $-2$ . By the same reason, from con-
figuration (2) we obtain that $T$ should look like:

$-4$ $-1$ $-3$ $-2$ $-2$ $-2$ $-3$

$*-I^{-*-}|$
$-3$ $-2$ $-2$

But then $d(T)\neq\pm 1$ , contradicting the unimodularity of $T$ .

7.5. Now consider the case when $\#(\mathcal{E})=2$ . This happens if and only if one
of $L_{i}^{2}’ s$ , say, $L_{3}^{2}=-2$ and $L_{1}^{2}\leqq-4,$ $L_{2}^{2}\leqq-4$ . After blowing-down $L_{0}$ and $L_{3}$ ,

the images $\{L_{1}^{J2}, L_{2^{2}}’\}$ of $\{L_{1}, L_{2}\}$ are smooth rational curves tangentially meet-
ing in a single point on $X’=X’$ (a minimal surface of general type). Hence both
$L_{i^{2}}’$ cannot be equal to $-2$ . Hence $K’\cdot L_{i}’>0$ for some $i=1,2$ . By 4.2, there
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are at least two components of $D’$ such that $D_{s}’\cdot K’>0$ . Since $\lambda=2$ it follows
that there are precisely two components $\{D_{1}’, D_{2}’\}$ such that $D_{i}’\cdot K’>0$ , (and hence
$D_{i}’\cdot K’=1)$ . Also one of the $L_{i}’$ belongs to $\{D_{1}’, D_{2}’\}$ .

Since $r_{3}=1$ and $r_{4}=0,$ $L_{3}$ is a tip of $D$ . Taking $T,$ $T_{i}$ and $\Gamma_{1}$ as in 7.4 we
infer as before, that $7\geqq\#(\Gamma_{1})\geqq 6$ . $Letu_{0}\in\Gamma_{1}$ be the vertex joined to $v_{1}(v_{1}rightarrow L_{1})$ .
We claim that $\Gamma_{1}-\{u_{0}\}$ has a branch $\Gamma_{2}$ which is not “rational”, assume on the
contrary. On $X’$ , we have a situation as in 4.3 (1) or 4.3 (2) according as $\#(\Gamma_{1})$

$=7$ or 6 (with the correspondence $u_{0}rightarrow C_{1}$ , $L_{1}’rightarrow C_{2}$ , $L_{2}’rightarrow C_{3}$). Hence $\pm K$ is
effective, which is absurd. Hence the claim.

Now the possibility of $\#(\Gamma_{2})\leqq 5$ is ruled out exactly as before, by 6.4 (a).

Hence $\#(\Gamma_{2})=6$ . Now by repeated application of 6.4 (b) and 6.3 (i) we obtain
$\Gamma_{1}$ as

$-2$ $-2$ $-2$ $-2$ $-2$

$u_{0}*-*-*1_{*}\ulcorner^{*}$

$-2$ $-3$

Since $(\Omega_{v_{2}}, \Omega_{v_{3}})=1$ by 6.3, it follows that $\Omega_{v_{2}}=-5$ and $\Omega_{v_{1}}=-4$ . Hence $T$ looks
like

But then $d(T)\neq 1$ .

7.6. Finally consider the case when $\#(\mathcal{E})\geqq 3$ . This happens if and only if
$L_{3}^{2}=-2$ , and one of the $L_{1}^{2}$ or $L_{2}^{2}$ is $-3$ , say, $L_{2}^{2}=-3$ . After blowing down $L_{0}$

and $L_{3}$ it follows that we obtain $X’$ . The image $L_{2}’$ of $L_{2}$ is now a $(-1)$-curve
meeting $L_{1}$ tangentialy in a single point. Hence $L_{2}’\in \mathcal{E}_{2}$ . By 3.1, $\mathcal{E}_{2}=S$ is a
disjoint union of $(-1)$-curves and hence it follows that $\mathcal{E}_{2}=\{L_{2}’\}$ . Thus after
blowing down $L_{2}’$ we obtain the minimal surface $X’’$ ; $\#(\mathcal{E})=3;\beta_{2}=12;K\cdot D=6$ .
The image $L_{1}’’$ of $L_{1}$ on $X’’$ is a cuspidal curve $L_{1}’’\cdot K’’>0$ . By 4.2, it follows
that there is one more component $D_{1}’’$ of $D’$ such that $D_{1}’’\cdot K’>0$ . Since $\lambda=2$ ,
we have $D_{1}’’\cdot K’=1=L_{1}’’\cdot K’’$ and $D_{t}’’\cdot K’’=0$ for all other components of $D’’$ .
Hence $L_{1}^{\prime;2}=-1,$ $(L_{1}^{2}=-7)$ , $D_{1}^{\prime\prime 2}=-3$ , and $D_{t}^{\prime\prime 2}=-2$ for all other components
of $D’’$ .

Clearly $L_{3}$ is a tip of $D(r_{3}=1, r_{4}=0)$ . Since $K\cdot D=6$ , it follows that $L_{2}$ is
also a tip of $D$ . Thus if $T,$ $T_{i}$ and $\Gamma_{1}$ are as in 7.4, arguing similarly, we
conclude that $\#(\Gamma_{1})\geqq 6$ . Suppose $\#(\Gamma_{1})=6$ . Then again by 6.4 (b) one sees that
$\Gamma_{1}$ is like:
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$-2$ $-2$ $-2$ $-2$

$u_{01\underline{I}_{3}^{-*}}*-*--2*$

It follows that $T$ looks like:

$-2$ $-1$ $-7$ $-2$ $-2$ $-2$ $-2$

$\infty_{f-2-3^{-*}}-3*||\infty|*^{-2**}$

or

$-2$

neither of which is unimodular. So we may assume that $\#(\Gamma_{1})\geqq 7$ . Again if
$u_{0}\in\Gamma_{1}$ is the vertex joined to $L_{1}$ then $\Gamma_{1}-\{u_{0}\}$ should have a branch $\Gamma_{2}$ which
is not rational (by 4.4). Hence as before $\#(\Gamma_{2})=6$ and $T$ itself looks like:

$-2$ $-1$ $-7$ $-2$ $-2$ $-2$ $-2$ $-2$

$*-*\ulcorner I\overline{u_{0}}\downarrow 1r$

$-3$ $-2$ $-2$ $-3$

which is not unimodular. Thus $\#(\Gamma_{1})=8$ . As before $\Gamma_{1}-\{u_{0}\}$ has a branch $\Gamma_{2}$

which is not rational and then $\#(\Gamma_{2})\geqq 6$ . If $\#(\Gamma_{2})=6$ , then $T$ looks like:

$-2$ $-1$ $-7$ $-2$ $-2$ $-2$ $-2$ $-2$

$*-*-**-*-*-*-*1^{\overline{u_{0}}}|^{u_{1}}*\downarrow\downarrow$

$-3$ $-2$ $-2$ $-3$

which is not unimodular. Hence $\#(\Gamma_{2})=7$ .
We now claim that $T$ has one of the following two configurations and com-

pute $K$. In the diagrams below the numbers in the bracket indicate the coeffi-
cient of the corresponding curve in a linear equivalence expression for $K$, which
shows that in each case $K$ is effective. This contradicts the assumption $p_{g}=0$

and so completes the proof of the theorem:
$-2$ $-1$ $-7$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$

$(5\overline{3)}****\ovalbox{\tt\small REJECT}*(35)*(8)|^{\overline{(106)(}1\overline{7)(1}8)(19)(20)}1_{-3}^{(21)(1\overline{4)(}7)}$

$-3$

(4)

$\lfloor_{-2}$

(A)
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Let $\Gamma_{1}’$ be the tree obtained from $\Gamma_{1}$ by changing the weight at $u_{0}$ to $\Omega_{u_{0}}+1$ .
Then, from the corresponding properties of $T$ , it is easily seen that $\Gamma_{1}’$ is
unimodular and has one positive eigenvalue. It then follows that $\Omega_{u_{0}}’=-1$ .
(For otherwise, $\Omega_{u_{0}}’=-2$ in which case $\Omega_{u_{0}}=-3$ and hence $\Omega_{w}=-2$ for all
$w\in\Gamma_{2}$ . Hence $\Gamma_{1}’$ will be of even type. By a well known result, the signature
of the intersection form of $\Gamma_{1}’$ is divisible by 8. But $\#(\Gamma_{1}’)=8$ and $\Gamma_{1}’$ has pre-
cisely one positive eigenvalue.) $\Gamma_{2}$ is identified with $\Gamma_{1}’-\{u_{0}\}$ , and the weight
set of $\Gamma_{2}$ is $\{-2, -2, -2, -2, -2, -2, -3\}$ . Let $u_{1}$ be the vertex of $\Gamma_{2}$ joined
to $u_{0}\in\Gamma_{1}’$ . Since $\Gamma_{2}$ is not rational, it has one of the following configurations:

$+$ $*-+$
(4) (5)

$\infty_{I_{1}^{-arrow-*}}*$

(7) (8)

We apply 6.1 repeatedly. Thus the possibilities (1), (2) and (4) are quickly
ruled out. In (3), first we see that $\Gamma_{2}$ should be like:

$u_{1}*-2$

$-2$ $u|_{-2}-2-2-2$
$*-*-*\infty*$

$1_{-3}$
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$-2$ $-2$ $-2$ $-2$

and then the two branches $*$ and $*-*-*$ at $u$ have both even discrim-
inants.

In (5), first we are forced to take one of the tips as $u_{1}$ and then $\Gamma_{2}$ has
only the following two possibilities:

$u_{\iota*}-2$

$-2$ $-3$ $|_{-2}-2-2$

$*-*\neg^{-*-*}$

$*-2$

$-3$

$-2u_{1}\mathfrak{s}_{-2-2}^{-2}-2$

$\infty_{\mathfrak{s}^{-*-*}}$

$*-2$

with $d(\Gamma_{1}’)=17$ or 23 respectively.
In (6) again one of the tip should be $u_{1}$ and so $\Gamma_{1}$ is forced to be

$-2$ $-2$ $-2$ $-2$ $-2$

$u_{1}*--*-*-*||$
$*-2$ $*-3$

with $d(\Gamma_{1}’)=6$ .
In (7), (upto symmetry) there are only two possible places for the weight

$-3$ , yielding the two configurations:

$-2$ $-2$ $-2$ $-2$ $-2$

$\overline{V^{*-\ovalbox{\tt\small REJECT}},u_{\iota_{*}}\prime}||^{-2}*-3$

$-2$ $-2$ $-2$ $-2$ $-2$

$*\triangleright\backslash ..-\#-i\infty u_{I}$

$\mathfrak{s}^{-3}$

$*-2$ .
In each case $u_{1}$ is forced to be one of the vertices indicated by the arrow,

yielding in all, 4 possibilities for $\Gamma_{1}’$ . Amongst these, we see only one of them
is unimodular, viz. :

$-1$ $-2$ $-2$ $-2$ $-2$ $-2$

$u_{0}u_{1}\infty**\overline{\iota_{-3}}$

$*|_{-2}$

This in turn yields the configuration (A) for $T$ . Finally consider the case (8).

There are only five possibilities for the location of the $(-3)$-curve. The loca-
tion of $u_{1}$ is also decided by the same criteria (viz. 6.1) except in the last one:
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$-2$ $-2$ $-2$ $-2$ $-3$ $-2$ $-2$ $-2$ $-3$ $-2$

$u_{1}-*-r$ $u_{1}*-\infty*-*$
$*|$ $*|$ $*|$ $*|$

$-2$ $-2$ $-2$ $-2$

(i) (ii)

$-2$ $-3$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$

$u_{1}\infty_{1\rfloor}r*$ $n_{1}^{-*-*}$
$-2$ $-2$ $-3$ $-2$

(iv) (v)

In (i), (ii) and (iv) one checks that $d(\Gamma_{1}’)=11,9$ , and 6 respectively. In (v) one
checks that no matter which vertex is $u_{1},$

$\Gamma_{1}’$ is not unimodular. In (iii) we do
obtain a unimodular configuration for $\Gamma_{1}’$ which yields (B) for $T$ as required.
This completes the proof of the theorem.
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