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1. Introduction.

The theory of one-dimensional diffusion processes (ODDPs for brief) was
extensively developed in $1950’ s$ by many mathematicians headed by W. Feller,
K. It\^o, E. B. Dynkin, H. P. McKean and so on (see the references of [9] for the
literatures). An ODDP is a strong Markov process with continuous sample
paths, and it is determined by the strictly increasing continuous scale function
$s$ and the positive speed measure $dm$ on an interval in the real line. The posi-
tivity of $dm$ was soon relaxed to nonnegativity, and appeared the notion of
generalized diffusion processes (GDPs) or gap processes. A GDP is a strong
Markov process with right continuous sample paths, which may jump only to
the nearest neighbours in the support of $dm$ , and it is determined by a strictly
increasing continuous scale function $s$ and a nonnegative speed measure $dm$ .
The set of ODDPs or GDPs forms an effective and beautifuI class from both
probabilistic and analytic points of view. However, in the recent development
of their application, there appeared a one-dimensional Markov process corre-
sponding to the scale function with jumps and the Lebesgue speed measure (see

[7] and [12]). In our introductory lecture [13], we tried to define the class of
those processes by means of the expression $s^{-1}\circ B(t^{-1}(t))$ , where $B$ is a Brownian
motion and $f$ is a random time change function. But it remained to reveal the
behavior of the process on the flats of $s$ , when they exist.

In this paper, we first define and construct the one-dimensional Markov
process corresponding to a non-decreasing scale function $s$ and a nonnegative speed
measure $dm$ , which we call a bi-generalized diffusion process (BGDP). The
obtained process neither is strong Markov nor has right continuous sample
paths in general anymore. Actually, there are ’chaotic’ ponds, where the sample
paths are absolutely jumbled, but after identifying each such pond as one point,
the sample paths are quite tame; they are right continuous and jump only to
the nearest neighbours in the support of $dm$ . This situation is realized by our
auxiliary GDP $Y$ given in the following sections, which, I believe, is the same
as Ray-Knight process; it is right continuous strong Markov process and the state
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space is obtained by identifying the ’non-separable’ points and splitting the
points at which the strong Markov property fails (see [16], [20], [24]).

Our next objective is to give limit theorems for a sequence of BGDPs.
Since the sample paths of our process are not right continuous in general, we
can expect no general limit theorems of $J_{1}$-convergence, so that we give those
of finite dimensional distributions. Aside from some additional assumptions, we
can almost conclude that the finite dimensional distributions of BGDPs converge
to those of a BGDP if the associate scale functions and speed measures con-
verge to the corresponding ones. Our result is a generalization of Golosov’s
one in [7] (including a small correction), which is concerned with the case of
Lebesgue speed measure $dm$ (see also [1] for the results concerning with multi-
dimensional case).

Actually, our original motivation was to give a unified prospect for the
limit theorems for ODDPs in various areas of applications. This is verified at
least for three topics, the metastable behavior in statistical physics, asymptotic
behavior of a one-dimensional diffusion process in a Wiener medium and discrete
approximation of a diffusion process of gene frequency (see [15], [2] and [6]
respectively). From this aspect, one would easily recognize that all the above
three applications are the same kind of problems, that is the one proposed and
extensively studied by A. D. Ventsel and M. L. Freidlin [23]. Our study in Sec-
tion 7 asserts that, as far as the state space is one-dimensional, their problem
is reduced to a general convergence theorem.

The moment problem has been one of the most interesting and important
subjects in the classical analysis. Further, the class of GDPs includes birth and
death processes, and our class of BGDPs contains birth and death processes
with more general boundary conditions such as to correspond to non-strong
Markov processes. This enables us to study another type of the Stieltjes mo-
ment problems than those dealt with by S. Karlin and J. L. McGregor [11] (see

Section 4 below).

Finally, we note that there naturally arise two open problems of mathe-
matical interest: the characterization of our BGDPs and the behavior of sample
paths in the convergence theorems.

The arrangement of this paper is as follows. In the next Section 2, we
give our definition of BGDPs and their analytic construction in the exactly
standard way. In Section 3, we give a realization of sample paths, and show
that the class of our BGDPs includes Ikeda’s example, which covers all types
of continuous $MarKOV$ processes violating strong Markov property at a single
point. Section 4 is devoted to the study of the Stieltjes moment problem asso-
ciated to the birth and death processes with the new type of boundary condi-
tions. We give general theorems for the convergence of finite dimensional
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distributions of a sequence of BGDPs in Sections 5 and 6. In Section 5, we are
concerned with the vague convergence, whereas, in Section 6, we proceed to
the weak convergence. Section 7 is for examples of application of our limit
theorems in Sections 5 and 6 to the three topics in applied mathematics. We
add Appendix for the formulas on change of variables and integration by parts

in the case where the integrating measures are induced by discontinuous non-
decreasing functions.

ACKNOWLEDGEMENT. The author would like to thank Prof. N. Ikeda for
his valuable suggestions, and Prof. M. Tomisaki who has read through the
original manuscript and pointed out various mistakes.

2. Definition and analytical construction.

Let $\overline{R}=[-\infty, +\infty]$ and $\mathcal{M}$ be the totality of monotone non-decreasing func-
tions $\varphi$ from $\overline{R}$ into $\overline{R}$ . For each $\varphi\in \mathcal{M}$ , we set

$l_{1}( \varphi)=\inf\{x\in\overline{R}:\varphi(x)>-\infty\}$ , $1_{2}(\varphi)=\sup\{x\in\overline{R}:\varphi(x)<+\infty\}$ ,

$Q(\varphi)=(l_{1}(\varphi), l_{2}(\varphi))$ , $\overline{Q}(\varphi)=[l_{1}(\varphi), l_{2}(\varphi)]$ ,

Spt $(\varphi)=$ { $x\in R:\varphi(x_{1})<\varphi(x_{2})$ for every $x_{1}<x<x_{2}$ },

$J(\varphi)=\{x\in Q(\varphi):\Delta_{\varphi}(x)>0\}\cup$ { $l_{i}(\varphi)$ : lim $|\varphi(x)|<+\infty$ or $|l_{i}(\varphi)|<+\infty$ },
$xarrow l_{i}.x\in Q(\varphi)$

where $\Delta_{\varphi}(x)=\varphi(x+)-\varphi(x-)\equiv\lim_{y}\downarrow x\varphi(x)-\lim_{y}\uparrow x\varphi(x)$ (set inf $\emptyset=+\infty$ and
$\sup\emptyset=-\infty$ by convention). The right continuous inverse function of $\varphi\in \mathcal{M}$ is
denoted by $\varphi^{-1}$ ;

$\varphi^{-1}(\xi)=\sup\{x\in\overline{R}:\varphi(x)\leqq\xi\}$ .

Then it also belongs to the space $\mathcal{M}_{+}$ , where

$\mathcal{M}_{\pm}=$ { $\varphi\in \mathcal{M}:\varphi(x)=\varphi(x\pm)$ for all $x\in R$ }.

Sometimes the same symbol $\varphi$ is used for the measure induced by $\varphi$ .
Now fix a pair $(s, m)\in \mathcal{M}\cross \mathcal{M}_{+}$ and set $l_{1}=l_{1}(s)l_{1}(m),$ $l_{2}=l_{2}(s)\wedge l_{2}(m)$ , where

$a\vee b[a\wedge b]$ stands for the maximum [resp. minimum] of $a$ and $b$ . Throughout,
we assume
(2.1) $l_{1},$ $l_{2}\not\in J(s)\cap J(m)$ , $Q(s)\cap Spt(m)\neq\emptyset$ , $Q(m)\cap Spt(s)\neq\emptyset$ .
Put

(2.2) $\tilde{m}(\xi)=\{m(-\infty)\sup\{m(x):s(x)\leqq\xi\}$

, if $\{$ $\}\neq\emptyset$ ,

if $\{$ $\}=\emptyset$ ,

which clearly belongs to $\mathcal{M}_{+}$ . With this notation, the last two relations in
(2.1) exclude the cases $\overline{m}=constant$ and $l_{1}=\tilde{l}_{2}\sim$ respectively, where $t_{i}=l_{i}(\tilde{m}),$ $i=1,2$ .
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Notice that $\tilde{m}=m\circ s^{-1}$ if $s\in \mathcal{M}_{-}$ or $J(s)\cap J(m)=\emptyset$ . We next set $Q=Q(s, m)=$
$(l_{1},1_{2})$ and put

$D(Q, s)=\{u:u$ is a complex valued function on $Q$ such that
$u(x)=u(y)$ whenever $s(x)=s(y)$ },

$BD(Q, s)=B(Q)\cap D(Q, s)$ , where $B(Q)$ is the space of all bounded measurable

functions on $Q$ . Also, we use the convention $\int_{(a,b\ddagger}=-\int_{(b}a3$ whenever $b<a$ , and

fix an $a\in(l_{1}, l_{2})$ through this section. The space $D(Q, s, m)$ is the set of all
functions $u$ which satisfy the relation

$u(x)=A_{1}+A_{2}s(x)+ \int_{(a,x3}(s(x)-s(y))f(y)dm(y)$ , $x\in Q$ ,

for some constants $A_{1},$ $A_{2}$ and some locally bounded $f$ . For each such $u$ , we
set

$u^{+}(x)=A_{2}+ \int_{(a,x3}f(y)dm(y)$ .

Notice that it necessarily holds that $A_{1}=u(a)-s(a)u^{+}(a)$ and $A_{2}=u^{+}(a)$ .

DEFINITION 2.1. The domain $\mathcal{D}(\mathcal{G}_{s.m})$ is the set of all those functions $u\in$

$BD(Q, s)$ which satisfy the following three conditions.
(i) There exist two constants $A_{1},$ $A_{2}$ and a function $f\in B(Q)$ such that

(2.3) $u(x)=A_{1}+A_{2}s(x)+ \int_{(a,xJ}(s(x)-s(y))f(y)dm(y)$ , $x\in Q$ .
(ii) For $i=1,2$ , if

(2.4) $|l_{i}(m)-a|\leqq|l_{i}(s)-a|$ and $\lim_{xarrow l_{i},x\in Q}|s(x)|<+\infty$ ,

then $\lim_{xarrow l_{i}.x\in Q}u(x)=0$ .
(iii) For $i=1,2$ , if

(2.5) $|l_{i}(s)-a|<|l_{i}(m)-a|$ and lim $|s(x)|<+\infty$ ,
$xarrow l_{i},$ $x\in Q$

then $\lim_{xarrow l_{i}.x\in Q}u^{+}(x)=0$ .

For each $u\in \mathcal{D}(\mathcal{G}_{s,m})$ , we denote the function $f$ in (2.3) by $\mathcal{G}_{s.m}u$ . Note
that a function $u\in \mathcal{D}(\mathcal{G}_{s.m})$ does not uniquely determine $\mathcal{G}_{s,m}u$ in general (this

phenomenon already appears in generalized diffusion processes, where $\mathcal{G}_{s.m}u$ is
uniquely determined as an element of $L_{1oc}^{1}(Q, m))$ .

In the followings, we add the state $l_{i}$ to the state space $Q$ in the case
where $(2.5)_{i}$ holds, and denote it by $Q$ again.

Let $Y$ be a generalized diffusion process (GDP for brief) with the natural
scaIe $\xi$ and the speed measure $\tilde{m}$ . It is well known that $Y$ is a strong Markov



Bi-generalized diffusion processes 217

process on the state space $\tilde{Q}=Q(\overline{m})=(l_{1}\sim, l_{2})$ and it has a right continuous ver-
sion. We denote the transition density function of $Yw$ . $r$ . $t$ . the speed measure
$\overline{m}$ by $q(t, \xi, \eta)$ . Then the corresponding Green function is given by

(2.6) $H( \alpha, \xi, \eta)=\Phi(\xi, \eta)+\int_{0}^{+\infty}e^{-\alpha t}q(t, \xi, \eta)dt$ , $\alpha>0$ , $\xi,$ $\eta\in\tilde{Q}$ ,

where the correction function $\Phi(\xi, \eta)$ is defined in (2.17) below (see [19; Lemma
1]). Also we set

(2.7) $T_{t}f(x)= \int_{Q}q(t, s(x),$ $s(y))f(y)dm(y)$ , $f\in B(Q),$ $x\in Q$ ,

(2.8) $G_{\alpha}f(x)= \int_{Q}H(\alpha, s(x),$ $s(y))f(y)dm(y)$ , $f\in B(Q),$ $x\in Q$ .

It is then clear that $T_{t}(B(Q))\subset BD(Q, s)$ and $G_{\alpha}(B(Q))\subset BD(Q, s)$ . Further, we
have the following

PROPOSITION 2.1. Let $(s, m)\in \mathcal{M}\cross \mathcal{M}_{+}$ satisfy the conditions (2.1). Then

(2.9) $0\leqq T_{t}f\leqq 1$ , $t>0$ , whenever $0\leqq f\leqq 1$ ,

(2.10) $T_{t}T_{s}=T_{t+s}$ , $t,$ $s>0$ ,

(2.11) $0\leqq G_{\alpha}f\leqq 1/\alpha$ , $\alpha>0$ , whenever $0\leqq f\leqq 1$ ,

(2.12) $G_{\alpha}-G_{\beta}+(\alpha-\beta)G_{\alpha}G_{\beta}=0$ , $\alpha,$ $\beta>0$ .

Further, $T_{t}f(x)$ is continuous in $t>0$ for each $f\in B(Q)$ and $x\in Q$ .
The proof of Proposition 2.1 is easy. Indeed, one has only to apply Lemma

A. 1 carefully and make use of the properties for $q(t, \xi, \eta)$ and $H(\alpha, \xi, \eta)$ . The
details are omitted (see also Proof of Lemma 2.1 below).

Due to (2.9) and (2.10), there exists a unique Markov process $X$ on $Q$ cor-
responding to the semigroup $T_{t}$ . We call it a bi-generalized diffusion prOcess
(BGDP for brief) corresponding to $(s, m)$ .

The next theorem justiPes this definition:

THEOREM 2.1. Let $(s, m)\in \mathcal{M}\cross \mathcal{M}_{+}$ satisfy the conditions (2.1). Then, for
each $\alpha>0$ and $f\in B(Q)$ with $\lim_{xarrow l_{i}.x\in Q}f(x)=0$ , the equation

(2.13) $(\alpha 1-\mathcal{G}_{s.m})u=f$

has a unique solution $u=G_{\alpha}f$ in $\mathcal{D}(\mathcal{G}_{s,m})$ . Further, it holds that

(2.14) $G_{a}f(x)= \int_{0}^{\infty}e^{-\alpha t}T_{t}f(x)dt$ , $\alpha>0,$ $x\in Q$ .

In order to prove Theorem 2.1, we first review the construction of $q(t_{z}\xi, \eta)$

and $H(\alpha, \xi, \eta)$ .
Fix an $\tilde{a}\in\tilde{Q}$ and let $v_{i}(\xi, \alpha),$ $i=1,2,$ $\xi\in\tilde{Q},$ $\alpha>0$ be the positive solutions

of the integral equation
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(2.15) $v( \xi)=1+B_{2}(\xi-a)+\alpha\int_{(\overline{a},\xi I}(\xi-\eta)v(\eta)d\tilde{m}(\eta)$ , $\xi\in\tilde{Q}$ ,

such that $v_{1}(\xi, \alpha)$ $[v_{2}(\xi, \alpha)]$ is increasing [resp. decreasing] and satisfies
$\lim_{\xiarrow l_{i}.\xi\in\tilde{Q}}\sim v_{i}(\xi, \alpha)=0$ whenever $|\tilde{l}_{i}-\tilde{a}|<+\infty$ (see [17] and [19]). As before,
we set, for such a $v$ ,

$D_{\xi}^{+}v( \xi)=B_{2}+\alpha\int_{(\overline{a},\xi 3}v(\eta)d\tilde{m}(\eta)$ , $\xi\in\tilde{Q}$ .

It is then well known that the Wronskian $W(v_{1}, v_{2})(\xi)$ of $v_{1}(\xi, \alpha)$ and $v_{2}(\xi, \alpha)$ is
constant;

$W(v_{1}, v_{2})(\xi):=D_{\xi}^{+}v_{1}(\xi, \alpha)v_{2}(\xi, \alpha)-v_{1}(\xi, \alpha)D_{\xi}^{+}v_{2}(\xi, \alpha)=1/h(\alpha)$ , $\xi\in\tilde{Q}$ .
Now the Green function $H(\alpha, \xi, \eta)$ of the GDP $Y$ is defined by

(2.16) $H(\alpha, \xi, \eta)=H(\alpha, \eta, \xi)=h(\alpha)v_{1}(\xi, \alpha)v_{2}(\eta, \alpha)$ , $\alpha>0,$ $\xi\leqq\eta,$ $\xi,$ $\eta\in\tilde{Q}$ .

The function $q(t, \xi, \eta)$ is then given by (2.6) with the help of the correction
function $\Phi(\xi, \eta)$ , which we now define. Let $I_{k},$ $k=1,2,$ $\cdots$ be the disjoint open
intervals such that $\tilde{Q}\backslash Spt(\tilde{m})=\bigcup_{k=1}^{\infty}I_{k}$ and the end points (if exist) belong to
Spt $(m)\cup\{l_{1}, l_{2}\}$ . For each $\xi,$ $\eta\in\tilde{Q}$ with $\xi\leqq\eta$ , we set

(2.17) $\Phi(\xi, \eta)=\Phi(\eta, \xi)=\{\begin{array}{ll}\xi_{2}-\eta, -\infty=\xi_{1}<\xi_{2}<+\infty,(\xi-\xi_{1})(\xi_{2}-\eta)/(\xi_{2}-\xi_{1}), -\infty<\xi_{1}<\xi_{2}<+\infty, \xi-\xi_{1}, -\infty<\xi_{1}<\xi_{2}=+\infty,\end{array}$

if $\xi,$ $\eta\in I_{k}=(\xi_{1}, \xi_{2})$ for some $I_{k}\neq\emptyset$ , and $=0$ otherwise.
For the later use, we give here three remarks and one convention.
(i) $\tilde{l}_{i}=(-1)^{i}\cdot\infty$ in the case of $(2.5)_{i}$ , and $\tilde{l}_{i}=\lim_{xarrow l_{i}.x\in Q}s(x)$ otherwise.
(ii) $s(Q)\subset(f_{1}\tilde{l}_{2})$ excePt for the case where $(2.4)_{i}$ holds for some $i=1,2$ .
(iii) In the case of $l_{i}\in s(Q)\sim$ , the boundary $\tilde{l}_{i}$ for the GDP $Y$ is finite and

regular with the absorbing boundary condition. Hence, it holds that
$\lim\etaarrow f_{i\cdot\eta\in\tilde{Q}q(t,\xi},$ $\eta$ ) $=0$ .

CONVENTION. In the case where $i_{i}$ is finite, we set $q(t, \xi, \eta)=q(t, \eta, \xi)=0$ ,
$H( \alpha, \eta, \eta)=\lim_{\zetaarrow t_{t^{\zeta\in\tilde{Q}}}}.H(\alpha, \zeta, \zeta)$ and $v_{j}( \eta, \alpha)=\lim_{\zetaarrow l_{i}.\zeta\in\tilde{Q}}v_{j}(\zeta, \alpha)$ , for each $\xi\in\tilde{Q}$ ,
$\eta\in[i_{i},$ $(-1)^{i}\infty)$ and $j=1,2$ , where [ $f_{1}-\infty)$ is read as $(-\infty,\tilde{l}_{1}$ ] (admitting the
Poxibility that they take the values $\pm\infty$ ).

LEMMA 2.1. Let $u_{i}(x, \alpha)=v_{i}(s(x), \alpha),$ $x\in Q,$ $i=1,2$ . Then it holds that

(2.18) $u_{i}(x, \alpha)=u_{i}(a, \alpha)+u_{i}^{+}(a, \alpha)(s(x)-s(a))$

$+ \alpha\int_{(a,x3}(s(x)-s(y))u_{i}(y, \alpha)dm(y)$ , $x\in Q$ .

Further, if $(2.4)_{i}$ holds, then
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(2.19) $\lim_{xarrow l_{i}x\in Q}u_{i}(x, \alpha)=0$ ,

and, if $(2.5)_{t}$ holds, then

(2.20) $\lim_{xarrow l_{i},x\in Q}u_{i}^{+}(x, \alpha)=0$ .

PROOF. We will first prove (2.18).

Suppose that $s(x)\neq\overline{l}_{j},$ $j=1,2$ . It is then clear from (2.15) and Lemma A. 1
that the function $u(x)=u_{i}(x, \alpha)$ satisfies

$u(x)=1+B_{2}(s(x)-a)+ \alpha\int_{S^{-1}((\overline{a},s(x)3)}(s(x)-s(y))u(y)dm(y)$ ,

where $\int_{S^{-1}((x,yI)}=-\int_{S^{-1}((y}xj$

)
whenever $y<x$ . Noting that $s(x)-s(y)=0$ for all

$y\in s^{-1}(\{s(x)\})$ , we have

(2.21) $\int_{s^{-1}((\tilde{a},s(x)1)}(s(x)-s(y))u(y)dm(y)$

$=C_{1}+C_{2}s(x)+ \int_{(\alpha.xI}(s(x)-s(y))u(y)dm(y)$ ,

for some constants $C_{1}$ and $C_{2}$ . This proves (2.18) in this case.
Suppose next that $s(x)=l_{2}\sim$ . This can occur only when $(2.4)_{2}$ holds. On the

other hand, we have

$\lim_{\xi\uparrow f_{2}}\int_{s^{-1}((\overline{a},\xi J)}(\xi-s(y))u(y)dm(y)$

$=\{\begin{array}{ll}C_{1}+C_{2}s(x)+\int_{(ar_{2}I}(\tilde{l}_{2}-s(y))u(y)dm(y), if s(r_{2})<\overline{l}_{2},C_{1}+C_{2}s(x)+\int_{(\alpha,r_{2})}(l_{2}-s(y))u(y)dm(y)\sim, if s(r_{2})=l_{2}\sim,\end{array}$

where $r_{2}= \lim_{b\uparrow t_{2}}s^{-1}(b)$ . Hence we obtain (2.18) by the same reason as in the
above case.

The proof of (2.18) for the case where $s(x)=l_{1}\sim$ is similar and will be omitted.
We will next prove (2.19) assuming $(2.4)_{i}$ . Note that, in this case, $l_{i}=l_{i}(m)$ ,

$\tilde{l}_{i}=\lim_{xarrow l_{i}.x\in Q}s(x)$ and $\tilde{l}_{i}$ is finite. Hence $v_{i}(l_{i}\sim, \alpha)=0$ by our assumption, whence
(2.19) follows.

The proof of (2.20) is similar. Indeed, assuming $(2.5)_{i}$ , we have $l_{i}=l_{i}(s)$ ,
$t_{i}=(-1)^{i}\cdot\infty$ and $l_{i}\not\in J(m)$ by (2.1). Further, setting $\tilde{r}_{i}=\lim_{xarrow l_{\ell}.x\in Q}s(x)$ , one has
$\tilde{m}(\xi)=\tilde{m}(\tilde{r}_{i})$ for all $\xi\in[\tilde{r}_{i},$ $(-1)^{i}\cdot\infty)$ , where $[\tilde{r}_{1}, -\infty$ ) is read as $(-\infty,\tilde{r}_{1}$ ].

Hence due to the arguments for GDPs, we have $D_{\xi}^{+}v_{i}(\xi, \alpha)=0$ for all $\xi\in$

[ $\tilde{r}_{i},$ $(-1)^{i}\cdot\infty)$ . Thus we obtain (2.20) by making use of Lemma A.l. $q$ . $e$ . $d$ .

COROLLARY 2.2. The Wronskian $W(u_{1}, u_{2})(x)$ of $u_{1}(x, \alpha)$ and $u_{2}(x, \alpha)$ is
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constant;

(2.22) $W(u_{1}, u_{2})(x):=u_{1}^{+}(x, \alpha)u_{2}(x, \alpha)-u_{1}(x, \alpha)u_{2}^{+}(x, \alpha)=1/h(\alpha)$ , $x\in Q$ .

PROOF. We will prove (2.22) only for $a<x$ and $\tilde{a}<s(x)$ . Suppose first that
$s(x)<l_{2}\sim$ . It then follows from (2.15) and Lemma A.1 that

$D_{\xi}^{+}v_{i}(s(x), \alpha)=D_{\xi}^{+}v_{i}(a, \alpha)+\alpha\int_{s^{-1}((\overline{a},s(x)3)}v_{i}(s(y), \alpha)dm(y)$ .

Hence
$u_{i}^{+}(x, \alpha)=D_{\xi}^{+}v_{i}(s(x), \alpha)-\alpha v_{i}(s(x), \alpha)m(s^{-1}((a, s(x)])\backslash (-\infty, x])$ ,

so that $W(u_{1}, u_{2})(x)=W(v_{1}, v_{2})(s(x))=1/h(\alpha)$ .
On the other hand, if $s(x)=l_{2}\sim$ , then, as in the Proof of Lemma 2.1, we have

$D_{\xi}^{+}v_{i}(l_{2}\sim, \alpha)=\{u_{i}^{+}(r_{2}-,\alpha)u_{i}^{+}(r_{2},\alpha),$

if $s(r_{2})<\tilde{l}_{2}$ ,

if $s(r_{2})=\tilde{l}_{2}$ .

Hence, we can easily obtain (2.22).

The proof of (2.22) for the case where $x\leqq a$ or $s(x)\leqq\tilde{a}$ is similar and will
be omitted. $q$ . $e$ . $d$ .

PROOF OF THEOREM 2.1. We first note that

$\int_{(a.xI}(s(x)-s(y))f(y)dm(y)=\int_{(a,xI}^{\#}\int_{(a,y3}f(z)dm(z)ds(y)-\Delta_{s}^{+}(x)\int_{(a,x3}f(z)dm(z)$ ,

for $x\in Q$ by Lemma A.2. Hence

(2.23) $u(x)=u(a)+ \int_{(a,x3}^{\#}u^{+}(y)ds(y)-(\Delta_{s}^{+}(x)u^{+}(x)-\Delta_{s}^{+}(a)u^{+}(a))$ ,

for each $u\in D(Q, s, m)$ . This also implies that $\Delta_{u}^{\pm}(x)=\Delta_{s}^{\pm}(x)u^{+}(x\pm)$ and, for
each function $g$ of bounded variation,

(2.24) $\int_{(a,x3}^{\#}g(y)u^{+}(y)ds(y)=\int_{(a,x3}^{\#}g(y)du(y)$ .

We will first show (2.13). It follows from (2.8) and (2.16) that

$\frac{1}{h(\alpha)}\int_{(a,y\ddagger}\alpha G_{\alpha}f(z)dm(z)=\frac{1}{h(\alpha)}\int_{(a.y)}f(w)dm(w)$

$+u_{2}^{+}(y)g_{1}(y)-u_{2}^{+}(a)g_{1}(a)+u_{1}^{+}(y)g_{2}(y)-u_{1}^{+}(a)g_{2}(a)$ ,

where we denote as $u_{i}(x)=u_{i}(x, \alpha)$ and

$g_{1}(y)= \int_{(t_{1},yJ}u_{1}(w)f(w)dm(w)$ , $g_{2}(y)= \int_{(y,l_{2})}u_{2}(w)f(w)dm(w)$ .

Further, by Lemma A.2 and (2.24),
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$i_{(a,x3}^{\#}g_{1}(y)u_{2}^{+}(y)ds(y)-\Delta_{s}^{+}(x)u_{2}^{+}(x)g_{1}(x)$

$=u_{2}(x)g_{1}(x)-u_{2}(a)g_{1}(a)- \int_{(a.x3}u_{1}(w)u_{2}(w)f(w)dm(w)$ ,

$\int_{(a.x3}^{\#}g_{2}(y)u_{1}^{+}(y)ds(y)-\Delta_{s}^{+}(x)u_{1}^{+}(x)g_{2}(x)$

$=u_{1}(x)g_{2}(x)-u_{1}(a)g_{2}(a)+ \int_{(a,xj}u_{1}(w)u_{2}(w)f(w)dm(w)$ .

Hence we have (2.3) with $f$ replaced by $\alpha G_{\alpha}f-f$ .
On the other hand, we know that $\alpha G_{\alpha}f-f$ belongs to $B(Q)$ by the well

known property for GDP and (2.8). Hence it follows that $u\in \mathcal{D}(\mathcal{G}_{s,m})$ and $\mathcal{G}_{s,m}u$

$=\alpha G_{\alpha}f-f$ . The proof of the first assertion is finished.
The uniqueness of the solution of (2.13) in $\mathcal{D}(\mathcal{G}_{s.m})$ is clear by the usual

arguments.
For the proof of (2.14), it suffices to show

(2.25) $\int_{Q}\Phi(s(x), s(y))f(y)dm(y)=0$ , $x\in Q$ .

But this is clear, since Spt $(m)\cap Q\subset(s^{-1}(Spt(\overline{m}))\cup(J(s)\backslash J(m)))\cap Q$ and $\Phi(\xi, \eta)=0$

for $\eta\in Spt(\tilde{m})$ . $q$ . $e.d$ .

3. Sample paths.

In this section, we give a realization of sample paths for the BGDPs given
in Section 2.

Let $B$ be a Brownian motion with $B(O)=0$ , and denote the first hitting time
for the state $\xi$ and the local time of the process $B+s(x)$ by $\sigma_{\xi}(B+s(x))$ and
$L(u, \xi)=L(u, \xi;B+s(x))$ respectively (with the convention $\sigma_{\pm\infty}(B+s(x))=+\infty$ ).

Let also $\mathfrak{f}(u)=\int_{Q(\dot{m})}L(u, \xi)d\overline{m}(\xi)$ and $f^{-1}(t)=\sup\{u:f(u)\leqq t\}(\sup\emptyset=0)$ . Then the

GDP $Y$ defined in Section 2 is given by $Y(t)=B(\mathfrak{f}^{-1}(t))+s(x),$ $t<e_{\Delta}$ , where $e_{\Delta}=$

$f(\sigma r_{1}(B+s(x))\Lambda\sigma f_{2}(B+s(x)))$ . Notice that, given an $s\in \mathcal{M}$ , the GDP $Y$ is uni-
quely determined by the value of $m$ on a neighbourhood of Spt $(s)\cap Q$ . To be
more precise, let $\mathcal{M}(s, m)=\{\mu\in \mathcal{M}_{+};$ $\mu(x)=m(x)+c,$ $\mu(x-)=m(x-)+c$ for all
$x\in Spt(s)$ , for some constant $c$ }. Then all the $(s, \mu)$ with $\mu\in \mathcal{M}(s, m)$ deter-
mine the same GDP $Y$.

For each $\xi\in\overline{R}$ , denote $Q_{\xi}=s^{-1}(\{\xi\})$ and let $\mathcal{B}(Q_{\xi})$ be the topological Borel
field on $Q_{\xi}$ . For all $\xi\in J(s^{-1})$ with $0<m(Q_{\xi})<+\infty$ , we define a stationary process
$(X_{\xi}, P)$ on $Q_{\xi}$ such that

$P(X_{\xi}(t)\in E)=m(E)/m(Q_{\xi})$ , $E\in \mathcal{B}(Q_{\xi}),$ $t\geqq 0$ ,
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and tbat the system $\{X_{\xi}(t);t\geqq 0\}$ is independent of each other, $i$ . $e.,$ $X_{\xi}(t_{1}),$ $X_{\xi}(t_{2})$ ,

, $X_{\xi}(t_{n})$ are independent for all $t_{1}<t_{2}<\cdots<t_{n}$ . For $\xi\in J(s^{-1})$ with $m(Q_{\xi})=0$ or
$+\infty$ , we define $X_{\xi}(t)\equiv s^{-1}(\xi)$ if $\xi\in\tilde{Q}$ , and $\equiv l_{t}$ if $\xi=\tilde{l}_{i}$ . Let now { $B,$ $X_{\xi}$ : $\xi\in$

$J(s^{-1})\}$ be a system of independent processes on the probability space $(\Omega, \mathcal{F}, P)$

such that $X_{\xi}$ is a stationary process with the same law as that of the above $X_{\xi}$

(we use the same symbol). Also, we set $\mathfrak{Z}=\{t\in[0, e_{\Delta}):Y(t)\in J(s^{-1})\}$ . Then
the sample paths of our BGDP $X$ are realized by the formula

$X(t;x)=\{X_{\xi}(t)s^{-1}(Y(t))$
,

Indeed, we have the following

if $t\not\in \mathfrak{Z},$ $t<e_{\Delta}$ ,

if $t\in \mathfrak{Z}$ and $Y(t)=\xi$ .

THEOREM 3.1. Let $(s, m)\in \mathcal{M}\cross \mathcal{M}_{+}$ satisfy the conditions (2.1). Then, the
prOcess $(X(t;x), e_{\Delta}, P)$ defined above correspOnds to the semigroup $T_{t},$ $\iota.e.$ , for
any $0<t_{1}<t_{2}<\cdots<t_{N}$ and $f_{1},$ $f_{2},$ $\cdots$ , $f_{N}\in B(Q)$ , it holds that

(3.1) $E[f_{1}(X(t_{1} ; x))f_{2}(X(t_{2} ; x))\cdots f_{N}(X(t_{N} ; x)) : t_{N}<e_{\Delta}]$

$=T_{\tau_{1}}(f_{1}T_{\tau_{2}}(\cdots(f_{\tau_{N-1}}T_{\tau_{N}}f_{N})\cdots))(x)$ , $x\in Q$ ,

where $\tau_{1}=t_{1}$ and $\tau_{k}=t_{k}-t_{k-1}$ for $2\leqq k\leqq N$.

The proof is straightforward. Indeed, we have only divide the expectation
according as that $X(t_{k})$ , $k=1,2,$ $\cdots$ , $N$ belong to $\mathfrak{Z}$ or not, and make use of
Lemma A. 1 and Corollary A. 1. The details are omitted.

The assertion 2) of the following Corollary is a slight generalization of that
in [12].

COROLLARY 3.1. Let the assumpti0n of Theorem 3.1 be satisfied.
1) If $s$ is strictly increasing in $x\in Q(s)$ , then $X(t;x),$ $t\in[0, e_{\Delta}$ ), is right

continuous and has left limit.
2) If $s$ and $m$ are stnctly increasing in $x\in Q(s)$ , then $X(t;x)$ is continuous

in $t\in[0, e_{\Delta}$ ).

PROOF. 1) Assuming that $s$ is strictly increasing in $x\in Q(s)$ , we have
$s(Q)\subset\tilde{Q}$ and $e_{\Delta}$ is the first leaving time of $Y(t)$ from $\tilde{Q}$ . Further, it holds that
$J(s^{-1})\cap\tilde{Q}=\emptyset$ , so that $\mathfrak{Z}=\emptyset a.s$ . Since $s^{-1}$ is continuous on $\tilde{Q}$ and $Y(t),$ $r\in$

$[0, e_{\Delta})$ is right continuous and has left limit, so is and does $X(t;x)=s^{-1}(Y(t))$ .
2) In this case, $\tilde{m}$ is strictly increasing in $\xi\in\tilde{Q}\cap Spt(s^{-1})$ . Noticing the

relation $s^{-1}(\xi)=x,$ $\xi\in[s(x-), s(x+)]$ for this case, we see that $X(t;x)=s^{-1}(Y(t))$

is continuous. $q.e.d$ .

The following example shows that the assertions in Corollary 3.1 fail with-
out the assumptions.
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EXAMPLE 3.1. Let $s(x)=x$ for $x\leqq 0,$ $=0$ for $0<x\leqq 1,$ $=x-1$ for $1\leqq x$ , and
$m(x)=2x$ for all $x\in\overline{R}$ . It then follows that $\tilde{m}(\xi)=2\xi$ , for $\xi<0,$ $=2(1+\xi)$ , for

$\xi\geqq 0$ , and so $Y(t)=B(f^{-1}(t))+s(x)$ , where $f(u)=2L(u, 0)+\int_{R\backslash \{0\}}L(u, \xi)2d\xi=$

$2L(u, O)+u$ . Further, $J(s^{-1})=\{0\},$ $e_{\Delta}=+\infty$ , and $\mathfrak{Z}=\{r\geqq 0:Y(t)=0\}$ . Since $f$ is
a homeomorphism on $R$ , we then have $\mathfrak{Z}=f(\mathfrak{Z}(B))$ , where $\mathfrak{Z}(B)=\{t\geqq 0:B(t)+s(x)$

$=0\}$ . Similarly, letting $\mathfrak{Z}_{\pm}=\{t\geqq 0:\pm Y(t)>0\}$ and $\mathfrak{Z}_{\pm}(B)=\{t\geqq 0:\pm(B(t)+s(x))>0\}$ ,

we also have $\mathfrak{Z}_{\pm}=f(\mathfrak{Z}_{\pm}(B))$ .
On the other hand, it is well known that, for each $\epsilon>0$ ,

$\#(\mathfrak{Z}_{+}(B)\cap(\sigma_{0}(B+s(x)), \sigma_{0}(B+s(x))+\epsilon))$

$=\#(\mathfrak{Z}_{-}(B)\cap(\sigma_{0}(B+s(x)), \sigma_{0}(B+s(x))+\epsilon))=+\infty$ , $a$ . $s$ .
Let $\sigma_{\xi}$ be the first hitting time of $Y(t)$ for the state $\xi$ . Then $\sigma_{0}=f(\sigma_{0}(B+s(x)))$ ,

and it follows that

$\#(\mathfrak{Z}_{+}\cap(\sigma_{0}, \sigma_{0}+\epsilon))=\#(\mathfrak{Z}_{-}\cap(\sigma_{0}, \sigma_{0}+\epsilon))=+\infty$ , $a.s$ .

Noting that $X(t;x)\geqq 1$ , for $t\in \mathfrak{Z}_{+}$ , and $X(t;x)<0$ , for $t\in \mathfrak{Z}_{-}$ , we see that the
variation of $X(t;x)$ on $(\sigma_{0}, \sigma_{0}+\epsilon)$ is infinite with probability 1. Thus it neither
is right continuous nor has left limit.

We next show that Ikeda’s example given in [9; \S 5.8] is already a typical
example of our BGDPs. It covers all kinds of motions of Markov processes
with local property, which behaves by the law of one-dimensional Brownian
motion off the origin and violates the strong Markov property at the origin.

EXAMPLE 3.2 (Ikeda’s example). Let $s(x)=x$ for $x<0,$ $=p$ for $x=0,$ $=x+1$

for $0<x$ , and $m(x)=2x$ for $x<0,$ $=2x+q$ for $x\geqq 0$ , where $P$ and $q$ are con-
stants such that $0\leqq p\leqq 1$ and $q>0$ . It then follows that $\overline{m}(\xi)=2\xi$ for $\xi<0,$ $=0$

for $0\leqq\xi<p,$ $=q$ for $p\leqq\xi<1,$ $=2(\xi-1)+q$ for $\xi\geqq 1$ . Hence, $Y(t)=B(f^{-1}(t))+s(x)$ ,

where $f(u)=2\int_{R\backslash (0,1)}L(u, \xi)d\xi+qL(u, p)$ , and $X(t;x)=s^{-1}\circ Y(t)$ . Notice that $Y(t)$

is a GDP on $(R\backslash (O, 1))\cup\{p\}$ and it is continuous at $t$ for which $t\in R\backslash [0,1]$ .
Further the operation $s^{-1}$ identifies the points $0,$ $P$ and 1, so that the sample
path $X(t;x)$ is continuous (see Corollary 3.1). The proof of violating strong
Markov property is very similar to that in [9; \S 5.8]. Indeed, one can easily
check that the value $E$ exp $(-\sigma_{0+}(X))$ is different from $0$ and 1, if the process
starts at $x=0$ , where $\sigma_{x}(X)$ is the first hitting time of the process $X$ for the
state $x$ and $\sigma_{0+}(X)=\lim_{x\downarrow 0}\sigma_{x}(X)$ .

The relation (2.3) in this case is reduced to

$u(x)=u(0)+u^{+}(0)(x-p)-(x-p)q \mathcal{G}u(0)-\int_{x}^{0}(x-y)\mathcal{G}u(y)2dy$ , $x<0$ ,
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$u(x)=u(0)+u^{+}(0)(x+1-p)+ \int_{0}^{x}(x-y)\mathcal{G}u(y)2dy$ , $x>0$ ,

where we choose $a=0$ and denote $\mathcal{G}=\mathcal{G}_{s,m}$ . Hence

$\mathcal{D}(\mathcal{G})=\{u:u$ is $C^{2}$ on $R\backslash \{0\}$ , has the limits $u(O\pm),$ $u’(O\pm)$ and
satisfies $(1-p)u’(O+)=u(O+)-u(O),$ $pu’(O-)=u(O)-u(O-)$ },

$\mathcal{G}u(x)=d^{2}u(x)/2dx^{2}$ , for $x\neq 0$ ,
$\mathcal{G}u(O)=q^{-1}\{u’(O+)-u’(O-)\}$ .

The behavior of sample paths is as follows. Suppose first that $p(1-p)\neq 0$ .
Then, the generator at $x=0$ is reduced to

$\mathcal{G}u(O)=\{qP(1-P)\}^{-1}\{pu(O+)+(1-p)u(O-)-u(O)\}$ .

Thus the sample path starting at $x\neq 0$ behaves as a Brownian motion (reflected

at $0$) until the time $t(\sigma_{p}(B+s(x)))$ . From that time it stays at $0$ for exponential
random time with parameter $1/qP(1-P)$ , and after the stay it behaves as a
reflecting barrier Brownian motion on $[0, +\infty$ ) or as that on $(-\infty, 0$] starting
at $0$ with probabilities $P$ and $1-P$ respectively for a random time $f(\sigma_{p}(B+1))$

and $t(\sigma_{p}(B))$ respectively. It then stays for exponential random time again and
repeats the above procedure.

Suppose next that $p=0$ . Then, the generator at $0$ is reduced to $\mathcal{G}u(O)=$

$q^{-1}\{u(O+)-u’(O-)-u(O)\}$ . Thus a sample path starting at $x>0$ behaves as a
Brownian motion (reflected at $0$) until the time $f(\sigma_{0}(B+x+1))$ . From that time
it behaves as $B(\uparrow^{-1}(\cdot))$ for a random time $f(\sigma_{1}(B))$ (notice that $B(f^{-1}(\cdot))$ restricted
on $(-\infty, -\epsilon$ ] behaves as a Brownian motion restricted on $(-\infty, -\epsilon$] for each
$\epsilon>0)$ . It then behaves again as a Brownian motion (on $[0,$ $+\infty$ ) reflected at $0$ )

starting at $0$ until the time $f(\sigma_{0}(B+1))$ and so on.
The behavior for the case of $p=1$ is just the symmetry.

We finally note that the precise example given in [9; \S 5.8] is obtained by
putting $p=0$ and reforming $m$ so that $m(x)=0$ for $x<0$ .

4. BGDP and Stieltjes moment problem.

In their paper [11], Karlin and McGregor revealed the close relation be-
tween birth and death processes (B&D processes for brief) and the classical
Stieltjes moment problems. Since B&D processes are regarded as GDPs as
Feller pointed out in [5], moment problems come upon our stage, and our gen-
eralization to BGDPs makes it possible for us to generalize the results in [11].
Actually, N. Ikeda already done this by the truncation method in his private
note of about 30 years ago.

Let $X$ be a B&D process with the transition matrix
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$A=|-\beta_{0}..\beta_{0}.00\ldots.\delta_{2}\ldots...-(\delta_{2}.+.\beta_{2}.)..\beta_{2}.0\delta_{1}..-.(.\delta_{1}+\beta_{1}).\ldots\ldots.\beta_{1}....0.\cdot\cdot.\cdot.\cdot.\cdot.\cdot..\cdot..\cdot\cdot$

.

$]$

where $\beta_{0},$ $\beta_{1},$ $\cdots$ and $\delta_{1},$ $\delta_{2},$ $\cdots$ are positive constants (the boundary condition at
$+\infty$ , if necessary, will be given later). Let also

$\mu_{0}=1$ , $\mu_{n}=\beta_{0}\beta_{1}\cdots\beta_{n-1}/\delta_{1}\delta_{2}\cdots\delta_{n}$ , for $n\geqq 1$ ,
$\rho_{0}=1/\beta_{0}$ , $\rho_{n}=\delta_{1}\delta_{2}\cdots\delta_{n}/\beta_{0}\beta_{1}\cdots\beta_{n}$ , for $n\geqq 1$ .

As is noted in [11], there corresponds the following moment problem. Given
the recurrence relations

$-\lambda Q_{0}(\lambda)=-\beta_{0}Q_{0}(\lambda)+\beta_{0}Q_{1}(\lambda)$ ,
$-\lambda Q_{n}(\lambda)=\delta_{n}Q_{n- 1}(\lambda)-(\delta_{n}+\beta_{n})Q_{n}(\lambda)+\beta_{n}Q_{n+1}(\lambda)$ , for $n\geqq 1$ ,

together with the normalizing condition $Q_{0}(\lambda)\equiv 1$ , we have a unique solution
$\{Q_{n}\}_{n=0}^{\infty}$ . The solution $Q_{n}$ is a polynomial in $\lambda$ of order $n$ , and the Stieltjes
moment problem for our case is to find a nonnegative measure $\Psi$ on $\mathcal{B}([0, +\infty))$

such that

$\int_{I0.+\infty)}Q_{i}(\lambda)Q_{j}(\lambda)\Psi(d\lambda)=\delta_{ij}/\mu_{i}$ , $i,$ $j=0,1,2,$ $\cdots$

where $\delta_{ij}$ is Kronecker’s delta.
We assume $\Sigma_{i=0}^{\infty}\rho_{i}<+\infty$ and $m_{\infty};=\Sigma_{i=0}^{\infty}\mu_{i}<+\infty$ . This assumption is equi-

valent to that the Stieltjes moment problem has more than one solutions $\Psi$

([11]). Further, in this case, we have the limits $Q_{\infty}( \lambda)=\lim_{narrow\infty}Q_{n}(\lambda)$ and $H_{\infty}(\lambda)$

$= \lim_{narrow\infty}H_{n}(\lambda)$ , where

$H_{0}(\lambda)\equiv 0$ and $H_{n}(\lambda)=(Q_{n+1}(\lambda)-Q_{n}(\lambda))/\rho_{n}$ for $n\geqq 1$

(ibid.). In order to specify $\Psi$ uniquely, we introduce an additional condition
that the support of $\Psi$ is included in the set of solutions of the equation

(4.1) $(a-b\lambda)Q_{\infty}(\lambda)+(1-c\lambda)H_{\infty}(\lambda)=0$ ,

where $a,$
$b$ and $c$ are nonnegative constants satisfying $b- ac>0$ . Soon later, it

will be seen that all the solutions of (4.1) are nonnegative. Notice that the
relation (4.1) corresponds to the (limit of) quasiorthogonal polynomials in the
truncation method utilized in [11].

THEOREM 4.1. The Stieltjes moment Problem for $\{Q_{n}\}_{n=0}^{\infty}$ and $\{\mu_{n}\}_{n=0}^{\infty}$ has
a unique solution $\Psi$ which is suppOrted on the set of solutions of (4.1). Further,
the system of the functions $\{Q_{n}(\lambda)\}_{n=0}^{\infty}\cup\{Q_{\infty}(\lambda)/(1-c\lambda)\}$ is a complete orthogonal
basis in the sPace $L^{2}([0, +\infty);\Psi)$ .
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REMARK 4.1. We will show in the following that the class of the problems
with this condition corresponds to that of B&D processes with local property,
but I can not clarify its significance in the theory of moment problems. The
class of the problems treated by Karlin and McGregor [11] is that for the case
$c=0$ , and correspond to strong Markov B&D processes. N. Ikeda treated the
class for the general case $c\geqq 0$ (and $a=0$ ) long ago.

Assume first that $a>0$ and $c>0$ , and let $p=b^{2}/(b-ac),$ $q=c/b,$ $r=ab/(b-ac)$ .
Following [5], let also

$x_{0}>0$ , $x_{n}=x_{0}+\rho_{0}+p_{1}+\cdots+\rho_{n- 1}$ for $n\geqq 1$ , $x_{\infty}= \lim_{narrow\infty}x_{n}$ ,

$s(x)=x$ for $x<x_{\infty},$ $=x_{\infty}+q$ for $x=x_{\infty},$ $=x_{\infty}+q+(1/r)$ for $x_{\infty}<x,$ $m(x)=\Sigma_{x\leqq x}\mu_{i}$

for $x<x_{\infty},$ $=m_{\infty}+p+x$ for $x_{\infty}\leqq x$ . It then follows that the generator $\mathcal{G}=\mathcal{G}_{s.m}$

of the corresponding BGDP satisfies

$\mathcal{G}u(x_{0})=-\beta_{0}u(x_{0})+\beta_{0}u(x_{1})$ ,

$\mathcal{G}u(x_{n})=\delta_{n}u(x_{n- 1})-(\delta_{n}+\beta_{n})u(x_{n})+\beta_{n}u(x_{n+1})$ , for $n\geqq 1$ ,
$p\mathcal{G}u(x_{\infty})=\{u(x_{\infty}-)-u(x_{\infty})\}/q-ru(x_{\infty})$

(see [5] and the arguments in Example 3.2). Thus our BGDP $X$ is a B&D pro-
cess with the transition matrix $A$ violating the strong Markov property at $x_{\infty}$ .
Notice that the last formula amounts to setting boundary condition at $x_{\infty}$ . The
transformed speed measure function $\tilde{m}$ is given by $\tilde{m}(\xi)=m(\xi)$ for $\xi<x_{\infty}$ , $=m_{\infty}$

for $x_{\infty}\leqq\xi<x_{\infty}+q,$ $=m_{\infty}+p$ for $x_{\infty}+q\leqq\xi<x_{\infty}+q+(1/r),$ $=+\infty$ for $\xi\geqq x_{\infty}+q+(1/r)$ .
In view of the shape of $\tilde{m}$ , the GDP $Y$ corresponds the one on the interval
$(0, x_{\infty}+q+(1/r))$ with the reflecting boundary condition at $0$ and the absorbing
boundary condition at $x_{\infty}+q+(1/r)$ . Hence, due to the general theory for GDPs,
we have the eigenfunction expansion

$q(t, \xi, \eta)=\sum_{v=0}^{\infty}$ exp $\{-\lambda_{\nu}t\}\psi(\xi;-\lambda_{\nu})\psi(\eta ; -\lambda_{\nu})\sigma_{\nu}$ , $\xi,$ $\eta\in R,$ $t>0$ ,

where $\psi(\xi;\alpha)$ is a solution of the equation

(4.2) $\psi(\xi)=1+\alpha\int_{(0.\xi 3}(\xi-\eta)\psi(\eta)d\tilde{m}(\eta)$ , $\xi\in R$ ,

$\sigma_{\nu}=\{\int_{R}|\psi(\xi;-\lambda_{v})|^{2}d\tilde{m}(\xi)\}^{-1}$ and $0\leqq\lambda_{0}<\lambda_{1}\leqq\lambda_{2}\leqq\cdots$ are the solution of the equation

\langle 4.3) $-\lambda P\psi(x_{\infty}+q;-\lambda)+\{\psi(x_{\infty}+q;-\lambda)-\psi(x_{\infty} ; -\lambda)\}/q+r\psi(x_{\infty}+q;-\lambda)=0$ .
The transition density $p(t, x, y)$ and the Green function $G(\alpha, x, y)$ of the B&D
process $X$ is now given by

$p( r, x, y)=\sum_{\nu=0}^{\infty}$ exp $\{-\lambda_{\nu}t\}\varphi(x;-\lambda_{u})\varphi(y;-\lambda_{\nu})\sigma_{\nu}$ , $x,$ $y\in(-\infty, x_{\infty}),$ $t>0$ ,
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$G( \alpha, x, y)=\sum_{\nu=0}^{\infty}(\lambda_{\nu}+\alpha)^{-1}\varphi(x ; -\lambda_{\nu})\varphi(y ; -\lambda_{\nu})\sigma_{\nu}+\Phi(s(x), s(y))$ ,

$x,$ $y\in(-\infty, x_{\infty}),$ $\alpha>0$ ,

where $\varphi(x;\alpha)=\psi(s(x);\alpha)$ , especially, $\varphi(x_{n} ; -\lambda)=\psi(x_{n} ; -\lambda)$ for $n=0,1,2,$ $\cdots$ and
$\varphi(x_{\infty} ; -\lambda)=\psi(x_{\infty}+q;-\lambda)$ . Due to the general theory for GDPs, we also have

(4.4) $G( \alpha, 0,0)=x_{0}+\sum_{\nu=0}^{\infty}\frac{\sigma_{\nu}}{\lambda_{\nu}+\alpha}=x_{0}+\sum_{n=1}^{\infty}\frac{\rho_{n-1}}{\varphi(x_{n-1};\alpha)\varphi(x_{n};\alpha)}$

$+ \frac{q(1+q(p\alpha+r))}{\varphi(x_{\infty}-;\alpha)\{\varphi(x_{\infty};\alpha)(1+q(p\alpha+r))-\varphi(x_{\infty}-;\alpha)\}}$ , $\alpha>0$ .

We finally note that all the above arguments are valid also for the case of
$c=0$ with the convention of $\{u(x_{\infty})-u(x_{\infty}-)\}/q=u^{+}(x_{\infty}-)$ and $\{\psi(x_{\infty}+q;-\lambda)$

$-\psi(x_{\infty} ; -\lambda)\}/q=D_{\xi}^{+}\psi(x_{\infty}-;-\lambda)$ .
PROOF OF THEOREM 4.1. Assume first that $a>0$ . It then follows from (4.2)

and the definition of $\varphi$ that

$\varphi(x_{0} ; -\lambda)=1$ , $-\lambda\varphi(x_{0} ; -\lambda)=-\beta_{0}\varphi(x_{0} ; -\lambda)+\beta_{0}\varphi(x_{1} ; -\lambda)$ ,
$-\lambda\varphi(x_{n} ; -\lambda)=\delta_{n}\varphi(x_{n-1} ; -\lambda)-(\delta_{n}+\beta_{n})\varphi(x_{n} ; -\lambda)+\beta_{n}\varphi(x_{n+1} ; -\lambda)$

for $n\geqq 1$ .
Further, (4.3) is transformed to

(4.3) $-\lambda p\varphi(x_{\infty} ; -\lambda)+\varphi^{+}(x_{\infty}-;-\lambda)+r\varphi(x_{\infty} ; -\lambda)=0$ .
Thus it follows that $Q_{n}(\lambda)=\varphi(x_{n} ; -\lambda),$ $n=0,1,2,$ $\cdots$ , $Q_{\infty}(\lambda)=\varphi(x_{\infty}-;-\lambda),$ $H_{\infty}(\lambda)$

$=\varphi^{+}(x_{\infty}-;-\lambda)$ , and $\varphi(x_{\infty} ; -\lambda)=Q_{\infty}(\lambda)+qH_{\infty}(\lambda)$ by (4.2). Hence the relation (4.3)

is reduced to (4.1). On the other hand, (4.3) in turn is rewritten as $\varphi(x_{\infty} ; -\lambda)$

$=Q_{\infty}(\lambda)(b-ac)/b(1-c\lambda)$ . The solution measure $\Psi$ of the moment problem is now
given by $\Psi(E)=\Sigma_{\nu=0}^{\infty}\sigma_{\nu}1_{E}(\lambda_{\nu}),$ $E\in \mathcal{B}(R)$ , where $\sigma_{\nu}=t\Sigma_{n=0}^{\infty}|Q_{n}(\lambda_{\nu})|^{2}\mu_{n}+p|Q_{\infty}(\lambda_{\nu})$

$(b-ac)/b(1-c\lambda_{\nu})|^{2}\}^{-1}$ . It is also easy to see that the system of the functions
$\{Q_{n}(\lambda)\}_{n\Leftarrow 0}^{\infty}\cup\{Q_{\infty}(\lambda)/(1-c\lambda)\}$ is a complete orthogonal basis in the space
$L^{2}([0, +\infty);\Psi)$ . Finally, (4.4) is rewritten as

(4.4) $\sum_{\nu=0}^{\infty}\frac{\sigma_{\nu}}{\lambda_{\nu}+\alpha}=\sum_{n=1}^{\infty}\frac{\rho_{n-1}}{Q_{n-1}(-\alpha)Q_{n}(-\alpha)}$

$+ \frac{1+c\alpha}{Q_{\infty}(-\alpha)\{(a+b\alpha)Q_{\infty}(-\alpha)+(1+c\alpha)H_{\infty}(-\alpha)\}}$ ,

for all $\alpha>0$ , which proves the uniqueness of $\Psi$ .
The result for the case of $a=0$ is obtained from the above by letting $a\downarrow 0$ .

$q.\wedge\vee\cdot d$ .

5. Limit theorem for a sequence of BGDPs I.

In this .ection, we will give a vague convergence theorem of finite dimen-
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sional distributions for a sequence of BGDPs. The space of the test functions
in this section is $C_{0}(Q)$ , the space of all continuous functions on $Q$ with com-
pact support. In the following, we let $(s_{n}, m_{n})\in \mathcal{M}\cross \mathcal{M}_{+},$ $n=1,2,$ $\cdots$ , $(s, m)\in$

$\mathcal{M}\cross \mathcal{M}_{+}$ and denote the corresponding semigroups by $T_{t}^{(n)}$ . The associate
measures and the transition densities are denoted by $\tilde{m}_{n}$ and $q_{n}(t, \xi, \eta)$ respec-
tively. Further, we assume that $a\in Q\backslash (J(s)\cup J(m))$ and $\tilde{a}\in\tilde{Q}\backslash J(\tilde{m})$ .

THEOREM 5.1. Assume that $J(s)\cap J(m)\cap Q=\emptyset$ ,

(5.1) $\lim_{narrow\infty}s_{n}(x)=s(x)$ , $x\in R\backslash J(s)$ , $\lim_{narrow\infty}m_{n}(x)=m(x)$ , $x\in R\backslash J(m)$ .

Then, for every $t_{1},$ $t_{2},$ $\cdots$ , $t_{N}>0$ and $f_{1},$ $f_{2},$ $\cdots$ , $f_{N}\in C_{0}(Q)$ , it holds that

(5.2) $\lim_{narrow\infty}T_{t_{1}}^{(n)}(f_{1}T_{t_{2}}^{(n)}(\cdots(f_{N-1}T_{t_{N}}^{(n)}f_{N})\cdots))(x)=T_{t_{1}}(f_{1}T_{t_{2}}(\cdots(f_{N-1}T_{t_{N}}f_{N}) ))(x)$ ,

for all $x\in Q$ with $\lim_{narrow\infty}s_{n}(x)=s(x)$ .
Notice that the condition (5.1) implies $\varlimsup_{narrow\infty}\tilde{l}_{1}^{(n)}\leqq\tilde{l}_{1}$ and $\varliminf_{narrow\infty}l_{2}^{(n)}\geqq\tilde{l}_{2}\sim$ , where

$l_{i}^{(n)}\sim=l_{i}(\tilde{m}_{n})$ . Actually, we have more;

LEMMA 5.1. The assumptions of Theorem 5.1 imply

(5.3) $\lim_{narrow\infty}\tilde{m}_{n}(\xi)=\tilde{m}(\xi)$ , $\xi\in R\backslash J(\tilde{m})$ .

PROOF. We can first show that

$\lim_{narrow\infty}s_{n}^{-1}(\xi)=s^{-1}(\xi)$ , $\xi\in Q(s^{-1})\backslash J(s^{-1})$ ,

and then the formula (5.3) for $\xi\in Q(s^{-1})\backslash J(s^{-1})$ with $s^{-1}(\xi)\in Q(m)\backslash J(m)$ . This
with the monotone non-decreasing property of $\tilde{m}_{n}$ and $\tilde{m}$ proves (5.3). The
details are omitted. $q$ . $e$ . $d$ .

PROPOSITION 5.1. SuPpose that (5.3) holds. Then the transition density
$q_{n}(t, \xi, \eta)$ converges to $q(t, \xi, \eta)$ uniformly in the wide sense in $(t, \xi, \eta)\in(0, +\infty)$

$\cross\tilde{Q}\cross\tilde{Q}$ as $narrow\infty$ .
We will be concerned with the proof of Proposition 5.1 for a while. We

first supply a little more facts on GDPs than those in Section 2. Let $\psi_{i}(\xi, \alpha)$ ,
$i=1,2,$ $\xi\in\tilde{Q},$ $\alpha\in C$ be the solutions of the integral equations

$\psi_{1}(\xi, \alpha)=1+\alpha\int_{(\overline{a}.\xi 1}(\xi-\eta)\psi_{1}(\eta, \alpha)d\tilde{m}(\eta)$ ,

$\psi_{2}(\xi, \alpha)=\xi-\tilde{a}+\alpha\int_{(\overline{a}.\xi j}(\xi-\eta)\psi_{2}(\eta, \alpha)d\tilde{m}(\eta)$ .
Then,

$|\psi_{1}(\xi, \alpha)|\leqq\cosh\{(2|\alpha(\xi-\tilde{a})(\tilde{m}(\xi)-\tilde{m}(\overline{a}))|)^{1/2}\}$ ,
(5.4)

$|\psi_{2}(\xi, \alpha)|\leqq|\xi-a$ lcosh $\{(2|\alpha(\xi-a)(\tilde{m}(\xi)-\tilde{m}(a))|)^{1/2}\}$ .
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and, for each $\alpha>0$ , there exist the limits

(5.5)
$h_{1}( \alpha)=-\lim_{\sim,\xi\downarrow l_{1}}\psi_{2}(\xi, \alpha)/\psi_{1}(\xi, \alpha)$ , $h_{2}( \alpha)=\lim_{\xi\uparrow f_{2}}\psi_{2}(\xi, \alpha)/\psi_{1}(\xi, \alpha)$ .

In the above, we use the usual convention $1/+\infty=0,$ $(\pm A)/0=\pm\infty,$ $+\infty\pm A=$

$+\infty$ and $-\infty\pm A=-\infty$ for a positive $A$ . Actually, $h_{i}(\alpha)$ , $i=1,2$ are analy-
tically continued to the domain $C\backslash (-\infty, 0$ ] and (5.5) is valid there. Define the
functions $h(\alpha),$ $h_{ij}(\alpha),$ $i,$ $j=1,2,$ $\alpha\in C\backslash (-\infty, 0$], by

$1/h(\alpha)=1/h_{1}(\alpha)+1/h_{2}(\alpha)$ ,
$h_{11}(\alpha)=h(\alpha)$ , $h_{22}(\alpha)=-(h_{1}(\alpha)+h_{2}(\alpha))^{-1}$ ,

$h_{12}(\alpha)=h_{21}(\alpha)=-h(\alpha)/h_{2}(\alpha)$ .

Then the $\alpha$-harmonic functions $v_{i}(x, \alpha)$ in (2.15) are given by

$v_{i}(\xi, \alpha)=\psi_{1}(\xi, \alpha)+(-1)^{i+1}\psi_{2}(\xi, \alpha)/h_{i}(\alpha)$ , $i=1,2$ .

The functions $h_{ij},$ $i,$ $j=1,2$ are also analytic in $a\in C\backslash (-\infty, 0$] and we define
the spectral measures $\sigma_{ij}(d\lambda),$ $i,$ $j=1,2$ by

$\sigma_{ij}([\lambda_{1}, \lambda_{2}])=\lim_{\epsilon\downarrow 0}\frac{1}{\pi}\int_{\lambda_{1}}^{\lambda_{2}}\mathcal{I}/nh_{if}(-\lambda-\sqrt{-1}\epsilon)d\lambda$ ,

for all continuity points $\lambda_{1}<\lambda_{2}$ of $\sigma_{ij}$ . The matrix valued measure $[\sigma_{ij}]_{i_{J}=1.2}$

is symmetric and nonnegative definite, and the transition density $q(t, \xi, \eta)$ and
the Green function $H(\alpha, \xi, \eta)$ are given by the relations

(5.6) $q(t, \xi, \eta)=\sum_{i,j=1.2}\int_{\zeta 0\infty)}e^{-\lambda}{}^{t}\psi_{i}(\xi, -\lambda)\psi_{j}(\eta, -\lambda)\sigma_{ij}(d\lambda)$ , $t>0,$ $\xi,$ $\eta\in\tilde{Q}$ ,

(5.7) $H( \alpha, \xi, \eta)=\Phi(\xi, \eta)+\sum_{i.j=1.2}\int_{I0.\infty)}(\lambda+a)^{-1}\psi_{i}(\xi, -\lambda)\psi_{j}(\eta, -\lambda)\sigma_{ij}(d\lambda)$ ,

$\xi,$ $\eta\in\tilde{Q}$ .

We then have from formulas (5.6) and (5.7) together with [19; Lemma 2] that

(5.8) $q(t, \xi, \eta)\leqq t^{-1}H(1/t, \xi, \xi)^{1/2}H(1/t, \eta, \eta)^{1/2}$

$\leqq t^{-1}(h(1/t)+|\xi-a|)^{1/2}(h(1/t)+|\eta-\tilde{a}|)^{1/2}$ , $t>0$ , $\xi,$ $\eta\in\tilde{Q}$ .

The corresponding items for $(s_{n}, m_{n})\in \mathcal{M}\cross \mathcal{M}_{+}$ are denoted as $H_{n}(\alpha, \xi, \eta),$ $\sigma_{iJ}^{(n)}$

and so on.
We owe to S. Kotani the following proof of the assertion 5) of the next

lemma, which is simpler than our original one.

LEMMA 5.2. Supp0se that (5.3) holds. Then, the following assertions hold.
1) For each $i=1,2$ , it holds that $\lim_{narrow\infty}\psi_{i}^{(n)}(\xi, a)=\psi_{i}(\xi, a)$ uniformly in the

wide sense in $\xi\in\tilde{Q}$ and $\alpha\in C$ .
2) For each $\alpha\in C\backslash (-\infty, 0$], $\lim_{narrow\infty}h_{i}^{(n)}(\alpha)=h_{i}(a),$ $i=1,2$ .
3) For each $\alpha\in C\backslash (-\infty, 0$] and $i=1,2$ , it holds that $\lim_{narrow\infty}v_{i}^{(n)}(\xi, \alpha)=v_{i}(\xi, \alpha)$
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uniformly in the wide sense in $\xi\in\tilde{Q}$ .
4) For each $a\in C\backslash (-\infty, 0$], it holds that $\lim_{narrow\infty}H_{n}(a, \xi, \eta)=H(a,$ $\xi,$ $\eta 1$ uni-

formly in the wide sense $\xi,$ $\eta\in\tilde{Q}$ .
5) For each $t>0$ and $\xi,$ $\eta\in\tilde{Q},$ $\lim_{narrow\infty}q_{n}(t, \xi, \eta)=q(t, \xi, \eta)$ .

PROOF. The assertions through 1) to 4) are well known. To see 5), we note

that, by virtue of (5.6), the matrix $Q(t, \xi, \eta)=(qq((tt,’\xi\eta, \xi\xi))qq((tt, \xi\eta,\eta\eta)))$ is nonnegative

definite and its derivative $\partial Q(t, \xi, \eta)/\partial t$ is nonpositive definite for all $t>0$ and
$\xi,$ $\eta\in\tilde{Q}$ . Hence, the assertion 4) together with the continuity theorem of Laplace
transformation for matrix valued functions proves 5). $q$ . $e$ . $d$ .

LEMMA 5.3. SuppOse that (5.3) holds. Then, it holds that

(5.9) $\lim_{narrow\infty}\int_{\zeta 0,\infty)}f(\lambda)\sigma j_{J^{n)}}(d\lambda)=\int_{\subset 0,\infty)}f(\lambda)\sigma_{ij}(d\lambda)$ ,

for all $f\in C([0, +\infty))$ with sup $\lambda\in\ddagger 0.+\infty$ ) $|f(\lambda)|(1+\lambda^{3})<+\infty$ .
PROOF. We first note that

$h( \alpha)=h(+\infty)+\int_{\ddagger 0.+\infty)}(\lambda+\alpha)^{-1}\sigma_{11}(d\lambda)$ ,
(5.10)

$\{\alpha(h_{1}(\alpha)+h_{2}(\alpha))\}^{-1}=\{a(h_{1}(0+)+h_{2}(0+))\}^{-1}+\int_{(0.+\infty)}\{\lambda(\lambda+a)\}^{-1}\sigma_{22}(d\lambda)$ ,

for all $\alpha\in C\backslash (-\infty, 0$], and that $h_{1}(0+)+h_{2}(0+)=\tilde{l}_{2}-\tilde{l}_{1}$ (see [10; pp. 13-14 and
p. 18]). It then follows that $\sigma_{11}([0, \lambda])\leqq h(1)(1+\lambda)$ and $\int_{(0.\lambda J}\lambda^{-1}\sigma_{22}(d\lambda)\leqq\{h_{1}(1)+$

$h_{2}(1)\}^{-1}(1+\lambda)$ . Further, it holds that $|\sigma_{12}|(E)=|\sigma_{21}|(E)\leqq(\sigma_{11}(E)+\sigma_{22}(E))/2,$ $E\in$

$\mathcal{B}([0, +\infty))$ . Hence, for each subsequence of the sequence $\{(\sigma_{ij}^{(n)})_{i.j=1}^{2}\}_{n\Leftarrow 1}^{\infty}$ of
matrix valued signed measures, we can find its subsequence (denoted by the
same symbol $\{(\sigma_{12}^{(n)})_{i,j=1}^{2}\}_{n=1}^{\infty})$ and a matrix $(\sigma_{ij}^{*})_{i,j=1}^{2}$ of signed measures such that
$\lim_{narrow\infty}\sigma_{ij}^{(n)}=\sigma_{ij}^{*},$ $i,$ $j=1,2$ , vaguely.

On the other hand, (5.10) also implies the inequalities $\int_{IK.+\infty)}(1+\lambda^{3})^{-1}\sigma_{11}(d\lambda)$

$\leqq h(1)(1+K)/(1+K^{3})$ and $\int_{\zeta K.+\infty)}(1+\lambda^{3})^{-1}\sigma_{22}(d\lambda)\leqq\{h_{1}(1)+h_{2}(1)\}^{-1}(1+K)/(1+K^{2})$

for $K^{}\geqq 1$ . Hence, putting

$e_{n}(\xi, \eta, d\lambda)=L^{2}\urcorner\psi_{i}^{(n)}(\xi i,j=1-\lambda)\psi_{i}^{(n)}(\eta, -\lambda)\sigma_{ij}^{(n)}(d\lambda)$ ,

$\mathfrak{e}^{*}(\xi, \eta, d\lambda)=\sum_{i,j=1}^{2}\psi_{i}(\xi, -\lambda)\dot{\varphi}_{i}(\eta, -\lambda)\sigma\beta_{j}(d\lambda)$ ,

$\mathfrak{e}(\xi, \eta, d\lambda)=\sum_{\ell.f=1}^{2}\psi_{i}(\xi, -\lambda)\psi_{i}(\eta, -\lambda)\sigma_{ij}(d\lambda)$ ,

we have

$\lim_{\etaarrow\infty}\int_{r0}\dashv\sim)e^{-\lambda}{}^{t}c_{n}(\xi, \eta, d\lambda)=\int_{\ddagger 0}+\infty)e^{-\lambda t}\mathfrak{e}^{*}(\xi, \eta, d\lambda)$ ,
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with the aid of (5.4) and Lemma 5.2. Combining this with (5.6) and Lemma
5.2, we obtain

$\int_{\zeta 0,+\infty)}e^{-\lambda}{}^{t}e^{*}(\xi, \eta, d\lambda)=\int_{\mathfrak{c}0}+\infty)e^{-\lambda}{}^{t}e(\xi, \eta, d\lambda)$ , $t>0$ , $\xi,$ $\eta\in\tilde{Q}$ .

This implies $\sigma_{lj}^{*}=\sigma_{ij}$ , proving the assertion of Lemma. $q$ . $e$ . $d$ .

The assertion of Proposition 5.1 is now clear from Lemma 5.3 together
with (5.4) and (5.6).

Due to Convention just before Lemma 2.1, we also have

LEMMA 5.4. SuppOse that (5.3) holds and that $\tilde{l}_{i}$ is finite. Then, for each
$t>0$ and $compac\iota$ set $K\subset\tilde{Q}$ it holds that

(5.11)
$\lim_{\delta\downarrow 0}\varlimsup_{narrow\infty\xi\in K,\eta}\sup_{\in If_{t^{-\delta}}f_{i+\delta 1}},q_{n}(t, \xi, \eta)=0$ .

PROOF. We first note that the boundary $\tilde{l}_{i}$ is not entrance by our conven-
tions for GDP. Hence it holds that $v_{i}(\tilde{l}_{i}, a)=0$ .

Let $i=2$ for simplicity and $\alpha>0$ . Due to tbe inequality $v_{2}(\xi_{1}, a)-v_{2}(\xi_{2}, a)$

$\leqq(-D_{\xi}^{+}v_{2}(\xi_{1}, \alpha))(\xi_{2}-\xi_{1}),\tilde{l}_{1}<\xi_{1}\leqq\xi_{2}\leqq\tilde{l}_{2}$ , we then have $H(a, \xi, \xi)\leqq|l_{2}-\xi\sim|$ . Take
an $\epsilon>0$ and a $\xi_{0}\in(\tilde{l}_{2}-\epsilon, l_{2})\sim$ . It then follows from Lemma 5.2 that
$\varlimsup_{narrow\infty}H_{n}(\alpha, \xi_{0}, \xi_{0})\leqq\epsilon$ , and from the relation $|H_{n}(a, \xi, \xi)-H_{n}(\alpha, \eta, \eta)|\leqq|\xi-\eta|$

that $\varlimsup_{narrow\infty}\sup_{\eta\in[f_{2}-\epsilon.l_{2}+\epsilon]}H_{n}(\alpha, \eta, \eta)\leqq 3\epsilon$ . This implies $\lim_{\delta\downarrow 0}\varlimsup_{narrow\infty}\sup_{\eta-\delta.t_{2}+\delta l}\in If_{2}$

$H_{n}(\alpha, \eta, \eta)=0$ . We now have (5.11) from (5.8). $q$ . $e.d$ .

PROOF OF THEOREM 5.1. We will only show that, for each $t>0$ and
$f\in C_{0}(Q)$ ,

(5.12) $\lim_{narrow\infty}T_{l}^{(n)}f(x)=T_{t}f(x)$ for all $x\in Q$ with $\lim_{narrow\infty}s_{n}(x)=s(x)$ .

Case 1. If $f\in C_{0}(Q)$ and $s(Spt(f))\subset\tilde{Q}$ , then (5.12) is a direct consequence
of Proposition 5.1 and our assumption $J(s)\cap J(m)\cap Q=\emptyset$ .

Case 2. Suppose that $l_{i}\in s(Spt(f))\sim$ . As is noted in Section 2, this can occur
only when $(2.4)_{i}$ holds, and $\tilde{l}_{t}$ is finite and $\varliminf_{narrow\infty}|\tilde{l}_{i}^{(n)}-a|\geqq|\tilde{l}_{i}-\tilde{a}|$ . Hence we
obtain (5.12) from Lemma 5.4 and the argument in Case 1. $q$ . $e$ . $d$ .

6. Limit theorem for a sequence of BGDPs II.

Theorem 5.1 in the previous section does not assure the convergence of (finite

dimensional) distribution functions, since we have assumed $f_{k}\in C_{0}(Q)$ . In this
section, we will discuss on this subject. For simplicity we only deal with the
intervals $(b, l_{2})$ for $b\in(l_{1}, l_{2})$ and denote the law of $(X(\cdot, x),$ $P$ ) by $(X(\cdot), P_{x})$ .
As before, we fix an $a\in(l_{1}, l_{2})\backslash (J(s)\cup J(m))$ .

THEOREM 6.1. In addition to the assumptjOns of Theorem 5.1, assume that
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(6.1) $\int_{(a_{0},l_{2})}(m(x)-m(a_{0}))ds(x)=+\infty$ for some $a_{0}\in Q$ or $l_{2}(s^{\backslash })<l,(\prime\prime l)$ .

Then it holds that

(6.2) lim $P_{x}^{(n)}(X(t_{1})>a_{1}, \cdots , X(t_{N})>a_{N}, t_{N}<e_{\Delta})$

$narrow\infty$

$=P_{x}(X(t_{1})>a_{1}, \cdots , X(t_{N})>a_{N}, t_{N}<e_{\Delta})$ ,

for every $0<t_{1}<t_{2}<\cdots<t_{N},$ $a_{1},$ $a_{2},$
$\cdots$ , $a_{N}\in Q\backslash J(m)$ and $x\in Q$ with $\lim_{narrow\infty}s_{n}(x)$

$=s(x)$ .
Before proceeding to the proof of Theorem 6.1, we prepare two formulas

and introduce a dual process. It is well known that, for a fixed $c\in[t_{1},\tilde{l}_{2}]$ ,

there exists a continuous nonnegative function $q_{c}(t, \xi)$ in $(0, +\infty)\cross(c, l_{2})\sim$ such
that

$v_{2}( \xi, \alpha)/v_{2}(c, \alpha)=\Psi_{c}(\xi)+\int_{0}^{+\infty}e^{-\alpha t}q_{c}(t, \xi)dt$ , $\alpha>0$ , $\xi\in(c,\tilde{l}_{2})$ ,

where $\Psi_{c}(\xi)$ is the correction function given in [19; (3.20)]. We then have

(6.3) $q(t, \xi, \eta)=t_{0}^{t}q(t-\tau, \xi, c)q_{c}(\tau, \eta)d\tau+q(t, \xi, c)\Psi_{c}(\eta)+\Phi(\xi, c)q_{c}(t, \eta)$ ,

$\xi<c<\eta$

(see [19; (3.21)]). The function $q_{c}(t, \xi)$ in $(0, +\infty)\cross(\grave{l}_{1}, c)$ is also defined in the
similar way with the function $v_{2}(\xi, \alpha)$ replaced by $v_{1}(\xi, \alpha)$ , and it satisfies the
corresponding formula to (6.3). Let next $h_{1.C}^{r}(a)=-\psi_{2}(c, a)/\psi_{1}(c, \alpha),$ $h_{2.c}^{r}(a)=$

$h_{2}(a)$ and the corresponding items defined in Sections 2 and 5 by $v_{i,c}(\xi, a)$ ,
$q_{c}(t, \xi, \eta),$ $H_{c}(\alpha, \xi, \eta)$ , where the base point is taken as $\tilde{a}\in(c,\tilde{l}_{2})\backslash J(\tilde{m})$ . We
then have

$H(\alpha, \xi, \eta)=H_{c}(\alpha, \xi, \eta)+h(a)v_{1}(c, \alpha)v_{2}(\xi, \alpha)v_{2}(\eta, a)/v_{2}(c, \alpha)$ ,
$\alpha>0$ , $\xi,$ $\eta\in(c,\tilde{l}_{2})$ ,

which implies

(6.4) $q(t, \xi, \eta)=q_{c}(t, \xi, \eta)+\int_{0}^{t}q(t-\tau, \xi, c)q_{c}(\tau, \eta)d\tau+q(t, \xi, c)\Psi_{c}(\eta)$

$+\Phi(\xi, c)q_{c}(t, \eta)$ , $\xi,$ $\eta\in(c, l_{2})\sim$ .

The corresponding formula for $\xi,$ $\eta\in(\tilde{l}_{1}, c)$ is similar.
Let next $\tilde{m}_{c}(\xi)=\overline{m}(\xi)$ for $\xi>c$ and $=-\infty$ for $\xi\leqq c$ , and $q_{c}^{*}(t, \xi, \eta)$ be the

transition density function for the GDP corresponding to the speed measure $d\xi$

and the scale function $\tilde{m}_{c}$ . Then it is easy to see that

(6.5) $-D_{\xi}^{+}v_{1,C}(\xi, a)D_{\xi}^{+}v_{2}(\eta, \alpha)/aD_{\xi}^{+}v_{1.C}(c, \alpha)v_{2}(c, \alpha)$

$=!_{0}^{\infty}e^{-\alpha}{}^{t}q_{c}^{*}(t,$ $\xi,$ $\eta^{1}dt=\int_{0}^{\infty}e^{-at}q_{c}^{*}(t, \eta, \xi)dt,$ $a>0$ , $c<\xi\leqq\eta<\tilde{l}_{2}$ .
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PROOF OF THEOREM 6.1. We will only show that, for each $t>0,$ $a_{1}\in Q\backslash J(m)$

and $x\in Q$ with $\lim_{narrow\infty}s_{n}(x)=s(x),$ $\lim_{narrow\infty}P_{x}^{(n)}(X(t)>a_{1}, t<e_{\Delta})=P_{x}(X(t)>a_{1}, t<e_{\Delta})$ .
By Theorem 5.1, it is enough to show that

(6.6) $\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}P_{x}^{(n)}(X(t)>b, t<e_{\Delta})=0$ .

Notice first that $\varliminf_{narrow\infty}l_{2}(s_{n})\geqq l_{2}$ by the assumptions. Also, for simplicity, set
$u_{i}(y, a)= \lim_{z\uparrow l_{2}}u_{i}(z, a),$ $u_{i}^{+}(y, a)= \lim_{z\uparrow l_{2}}u_{i}^{\vdash}(z, \alpha)$ for all $y\in[l_{2}, +\infty]$ and $i=1,2$

(admitting the possibility that they take values $\pm\infty$ ). It then follows that
$u_{2}^{+}(l_{2}, \alpha)=0$ , since either $(2.5)_{2}$ holds or the boundary 12 is non-exit in Feller’s
classification (cf. [9; \S 4.6]). Hence we have $\lim_{b\dagger l_{2}}\varlimsup_{narrow\infty}|u_{2}^{(n)+}(b, a)|=0$ , by
the same reason as for Lemma 5.2. This with the relation

(6.7) $u_{2}^{+}(l_{2}, a)-u_{2}^{+}(b, a)=a\downarrow_{(b,l_{2})}u_{2}(y, a)dm(y)$ , $b<l_{2}$ ,

implies

(6.8) $\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}\downarrow_{(b.l_{2}^{(n)})}^{\wedge}\iota_{2}^{(n)}$) $(s_{n}(y), a)dm_{n}(y)=0$ .

Suppose first that $\tilde{m}((\xi, l_{2}))>0$ for each $\xi\in\tilde{Q}$ . Then, due to Lemma 5.1, we
can find a $c\in(s(x),\tilde{1}_{2})$ and an $n_{1}\in N$ such that the set $(s_{n}(x), c)\cap Spt(\tilde{m}_{n})$ con-
tains more than two points and $c<\tilde{l}_{2}^{(n)}$ for all $n\geqq n_{1}$ . On the other hand, (6.3)

implies

$T_{t}1_{(b.l_{2})}(x)= \int_{0}^{t}q(t-\tau, s(x),$ $c$ ) $\int_{(b,l_{2})}q_{c}(\tau, s(y))dm(y)d\tau$ , $c<s(b)\leqq l_{2}\sim$ .

Combining now the arguments in [18; p. 538] with [19; Lemma 4], we obtain
$\sup_{n\geq n_{2}.0\leqq\tau\leqq t}q_{n}(\tau, s_{n}(x),$ $c$ ) $<+\infty$ for some $n_{2}\in N$. This with (6.8) proves (6.6).

Suppose next that $\tilde{m}((\xi_{0}, l_{2}^{\sim}))=0$ for some $\xi_{0}\in\tilde{Q}$ . In this case, we have $\tilde{l}_{2}=$

$+\infty$ by (6.1). Hence, we can find a $c>\xi_{0}$ such that $s_{n}(x)<c<l_{2}^{(n)}\sim$ for all suf-
ficiently large $n$ . Let now $A_{n}=s_{n}^{-1}((-\infty, c$ ]) and make the decomposition

$T_{t}^{(n)}1_{(b.l_{2})}^{(n)}(x)= \int_{(b.l_{2}^{(n)})\cap A_{n}}q_{n}(t, s_{n}(x),$ $s_{n}(y))dm_{n}(y)$

$+ \int_{(b,\iota_{2}^{(n)})\backslash A_{n}}q_{n}(t, s_{n}(x),$ $s_{n}(y))dm_{n}(y)=:I+II$ .

In view of (5.8), we have $\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}I=0$ . On the other hand, (6.3) implies

II $= \int_{0}^{2}\prime\prime q_{n}(t-\tau, s_{n}(x),$ $c$ ) $\int_{(b,\iota_{2}^{(n)})\backslash A_{n}}q_{n,c}(\tau, s_{n}(y))dm_{n}(y)d\tau$

$+|_{/2}^{\wedge\dot{c}}q_{\eta}(t-\tau, s_{n}(x),$ $c$ ) $\int_{(b,l_{2}^{(n)})\backslash A_{n}}q_{n.c}(\tau, s_{n}(y))dm_{n}(y)d\tau$

$+ \Phi(s_{n}(x), c)\int_{(b.l_{2}^{(n)})\backslash A_{n}}q_{n.c}(t, s_{n}(y))dm_{n}(y)=:III+IV+V$ .

Noting that $\varlimsup_{narrow\infty}\sup_{\iota/2\leqq\tau\leqq t}q_{n}(\tau, s_{n}(x),$ $c$ ) $<+\infty$ , we obtain $\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}III=0$ by
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the same way as in the above. Further, it is not hard to see

$\int_{(b,l_{2}^{(n)})\backslash A_{n}}q_{n.c}(\tau, s_{n}(y))dm_{n}(y)\leqq\int_{(c.)}f_{2}^{(n)}q_{n,c}(\tau, \xi)d\overline{m}_{n}(\xi)$

$\leqq q_{n.c}^{*}(\tau, c, c)\leqq-D_{\xi}^{+}v_{2}^{(n)}(c, 1/\tau)/v_{2}^{(n)}(c, 1/\tau)$ ,

which implies

(6.9) $\lim_{b\uparrow l_{2}}\overline{narrow\infty t/2\leqq\tau\leqq t}\sup\int_{(b,l_{2})\backslash A_{n}}(n)q_{n,c}(\tau, s_{n}(y))dm_{n}(y)=0$ .

But $\varlimsup_{narrow\infty}(\int_{0}^{t/2}q_{n}(\tau, s_{n}(x),$ $c$ )$d\tau+\Phi(s_{n}(x), c))<+\infty$ . Thus, we obtain $\lim_{b\uparrow l_{2}}$

$\varlimsup_{narrow\infty}(IV+V)=0$ , proving (6.6) for this case. $q$ . $e$ . $d$ .

In the case where (6.1) fails, we need some additional conditions to get
(6.2). Indeed, we have the following

COROLLARY 6.1. SuPpose that (6.1) fails but lim $narrow\infty l_{2}^{(n)}=l_{2},$ $l_{2}(m_{n})\leqq l_{2}(s_{n})$ and

(6.10) $\lim_{narrow\infty}\int_{(a,\iota_{2}^{(n)})}(m_{n}(x)-m_{n}(a))ds_{n}(x)=\int_{(a.l_{2})}(m(x)-m(a))ds(x)$ .
Assume further that $\lim_{narrow\infty}s_{n}(l_{2}^{(n)}-)=s(l_{2}-)<+\infty$ . Then we obtain (6.2).

PROOF. Note first that, under the assumptions, $l_{2}(m)\leqq l_{2}(s)$ and

(6.11) $u_{1}(x_{1}, a)+(s(x_{2})-s(x_{1}))u_{1}^{+}(x_{1}, a)\leqq u_{1}(x_{2}, a)$

$\leqq\{u_{1}(x_{1}, a)+(s(x_{2})-s(x_{1}))u_{1}^{+}(x_{1}, a)\}\exp\{a\int_{(x_{1},x_{2}1}(m(y)-m(x_{1}))ds(y)\}$ ,

$a\leqq x_{1}<x_{2}<l_{2},$ $a>0$ .

We then obtain $\varlimsup_{narrow\infty}u_{1}^{(n)}(l_{2}^{(n)}, a)<+\infty$ and $\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}\{u_{1}^{(n)}(l_{2}^{(n)}, a)-u_{1}^{(n)}(b, a)\}$

$=0$ . Hence, using the formula $u_{1}^{+}(b, \alpha)u_{2}(b, a)\leqq-u_{2}^{+}(b, a)(u_{1}(l_{2}, \alpha)-u_{1}(b, \alpha))$ , we
have $\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}u_{1}^{(n)+}(b, \alpha)u_{2}^{(n)}(b, \alpha)=0$ . This with Corollary 2.2 implies
$\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}\{u_{2}^{(n)+}(l_{2}^{(n)}, a)-u_{2}^{(n)+}(b, \alpha)\}=0$ . We thus obtain (6.8) in this case
too.

Suppose first that $s(x)<l_{2}\sim$ . Then we can repeat the argument in the proof
of Theorem 6.1 to obtain (6.6), exploiting the decomposition

$T_{t}^{(n)}1_{(b,l_{2}^{(n)})}(x)= \int_{0}^{\iota/2}q_{n,c}(t-\tau, s_{n}(x))\int_{(b,l_{2}^{(n)})}q_{n}(t, c, s_{n}(y))dm_{n}(y)d\tau$

$+ \int_{t/2}^{t}q_{n,c}(t-\tau, s_{n}(x))\int_{(b.\iota_{2}^{(n)})}q_{n}(t, c, s_{n}(y))dm_{n}(y)d\tau$

$+ \Psi_{c}(s_{n}(x))\int_{(b.\iota_{2}^{(n)})}q_{n}(t, c, s_{n}(y))dm_{n}(y)$

and making use of the estimate

$T_{t}^{(n)}1_{(b,l_{2}^{(n)}})(x)\leqq T_{t}^{(n)}1(x)\leqq\{1-v_{1}^{(n)}(s_{n}(x), a)/v_{1}^{(n)}(l_{2}\sim, a)\}/(1-e^{-\alpha t})$ .

The details are omitted.
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Suppose next that $s(x)=\tilde{l}_{2}$ . In this case, we have $\lim_{narrow\infty}s_{n}(x)=\tilde{l}_{2}$ and (6.6)
by the above method. $q$ . $e$ . $d$ .

REMARK 6.1. Under the assumptions of Theorem 5.1, the condition
$\lim_{narrow\infty}s_{n}(l_{2}^{(n)}-)=s(l_{2}-)<+\infty$ is automatically satisfied provided $l_{2}(s)<l_{z}(n\tau)$ .
Thus that condition is necessary only when $l_{2}(s)=l_{2}(m)=+\infty$ .

The condition (6.10) is almost necessary for (6.2). Indeed, in view of the
inequality

$u_{1}(x_{1}, \alpha)\{1+\alpha\int_{(x_{1}}^{\#}x_{2}j(m(y)-m(x_{1}))ds(y)-\alpha(s(x_{2}+)-s(x_{2}))(m(x_{2})-m(x_{1}))\}$

$\leqq u_{1}(x_{2}, a)$ , $a\leqq x_{1}<x_{2}<l_{2}$ ,

and (6.11), we can find a sequence $(s_{n}, m_{n})\in \mathcal{M}\cross \mathcal{M}_{+},$ $n=1,2,3,$ $\cdots$ and $(s, m)$

$\in \mathcal{M}\cross \mathcal{M}_{+}$ (violating the condition (6.10)) such that $\int_{(a.l_{2})}(m(x)-m(a))ds(x)<+\infty$

and $\lim_{narrow\infty}u_{1}^{(n)}(l_{2}^{(n)}, \alpha)>u_{1}(l_{2}, \alpha)$ . It then follows from the formulas in the
proof of Corollary 6.1 and Lemma 5.2 that $\lim_{narrow\infty}u_{2}^{(n)+}(l_{2}^{(n)}, a)<u_{2}^{+}(l_{2}, a)$ . This
with the relation (6.7) and Lemma 5.2 causes the violation of (6.8). Thus the
formula (6.2) fails in this case.

The above argument poses a doubt on the assertion of the convergence in
$L_{1}(R^{N})$ of the density functions in [7; Theorem 2]. In order to avoid those
uncomfortable conditions, we introduce the stopped processes (actually, it is not
hard to believe that A. O. Golosov imagined the stopped processes by his modi-
fication of $s(x))$ . Let $T_{t}f$ be the semigroup defined by

(6.12) $\int_{0}^{+\infty}e^{-\alpha t}T_{t}^{\cdot}f(x)dt=\int_{Q}H(\alpha, s(x),$ $s(y))f(y)dm(y)$

$+f(l_{1})v_{2}(s(x), \alpha)/\alpha v_{2}(\overline{l}_{1}, \alpha)+f(l_{2})v_{1}(s(x), a)/av_{1}(l_{2}\sim, a)$ ,

for $x\in\overline{Q},$ $t>0$ and $f\in B(\overline{Q})$ . Then we have a unique Markov process $(X^{\cdot}(t), P_{x})$

on $\overline{Q}$ corresponding to $T_{t}^{\cdot}$ . To realize the sample paths in the same fashion as

in Section 3, we let $f(u)=\int_{R}L(u, \xi)d\tilde{m}(\xi)$ and define $X(t;x)$ by the same way

as in Section 3 using $f$ in place of $f$ (with the convention $s^{-1}(l_{i})=l_{i}$ )
$\sim$

. Denoting
$(X (. ; x), P)$ by $(X(\cdot), P_{x})$ , we obtain the desired process.

THEOREM 6.2. Under the assumptjOns of Theorem 5.1 and that $\tilde{m}(\tilde{Q})>0$ , it
holds that

(6.13) $\lim_{narrow\infty}P_{x}^{(n)}(X(t_{1})>a_{1}, \cdots , X(t_{N})>a_{N})=P_{x}(X^{\cdot}(t_{1})>a_{1}, \cdots , X(t_{N})>a_{N})$ ,

for every $0<t_{1}<t_{2}<\ldots<t_{N},$ $a_{1},$ $a_{2},$ $\cdots$ , $a_{N}\in Q\backslash J(m)$ and $x\in Q$ with $\lim_{narrow\infty}s_{n}(x)$

$=s(x)$ .

PROOF. We will also show that $\lim_{narrow\infty}P_{z}^{(n)}(X^{\cdot}(t)>a_{1})=P_{x}(X(t)>a_{1})$ for
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each $t>0,$ $a_{1}\in Q\backslash J(m)$ and $x\in Q$ with $\lim_{narrow\infty}s_{n}(x)=s(x)$ . Further, we may

assume that $l_{2}(m)\leqq l_{2}(s)$ and $\int_{(a,l_{2})}(m(x)-m(a))ds(x)<+\infty$ . Hence it holds that

$u_{2}(l_{2}, a)=0$ , whence $\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}u_{2}^{(n)}(b, \alpha)=0$ . We first assume that $s(a_{1})<\tilde{l}_{2}$ .
It then follows from (6.3), (6.4) and (6.12) that

(6.14) $P_{x}^{(n)}(X^{\cdot}(t)>a_{1})= \int_{(a_{1},b)}q_{n.s_{n}(b)}(t, s_{n}(x),$ $s_{n}(y))dm_{n}(y)$

$+ \int_{0}^{t}\int_{(a_{1}.\iota_{2}^{(n)})}q_{n}(t-\tau, s_{n}(b),$ $s_{n}(y))dm_{n}(y)q_{n.s_{n}(b)}(\tau, s_{n}(x))d\tau$

$+ \int_{(a_{1},\iota_{2}^{(n)})}q_{n}(t, s_{n}(b),$ $s_{n}(y))dm_{n}(y)\Psi_{n}.\circ(\tau n^{Cb)}s_{n}(x))$

$+ \{\int_{0}^{t}q_{n},f_{2}^{(n)(\tau},$ $s_{n}(x))d\tau+\Psi_{n}.f_{2}^{tn})(s_{n}(x))\}$

$=:I+II+III+IV$ ,

with the convention $\Psi_{c}(c)=1$ and $q_{c}(t, \xi, c)=q_{c}(t, c)=0$ for $t>0$ . Further, it is
clear that

$II+III+IV=\int_{0}^{t}\{1-P_{b}^{(n)}(X^{\cdot}(t-\tau)\leqq a_{1})\}q_{n.s_{n}(b)}(\tau, s_{n}(x))d\tau$

$+(1-P_{b}^{(n)}(X(t)\leqq a_{1}))\Psi_{n.s_{n}(b)}(s_{n}(x))$ , $b\in(x, l_{2})$ .

Since $\sup_{0<\tau\leqq}{}_{t}P_{b}^{(n)}(X^{\cdot}(\tau)\leqq a_{1})\leqq eu_{2}^{(n)}(b, 1/t)/u_{2}^{(n)}(a_{1},1/t)$ , we first have
$\lim_{b\uparrow l_{2}}\varlimsup_{narrow\infty}\sup_{0<\tau\leqq}{}_{t}P_{b}^{(n)}(X^{\cdot}(t)\leqq a_{1})=0$ . Further, due to Corollary 6.1, $\lim_{narrow\infty}I$

$= \int_{(a_{1},b)}q_{s(b)}(t, s(x),$ $s(y))dm(y)$ and $\lim_{narrow\infty}\{\int_{0}^{t}q_{n.s_{n}(b)}(\tau, s_{n}(x))d\tau+\Psi_{n.s_{n}(b)}(s_{n}(x))\}$

$= \int_{0}^{t}q_{s(b)}(\tau, s(x))d\tau+\Psi_{s(b)}(s(x))$ for $b\in(x, l_{2})\backslash (J(s)\cup(J(m))$ . Thus we obtain the
desired assertion.

In the case of $s(a_{1})=l_{2}\sim$ , we have $l_{1}<s(a_{1})\sim$ . Hence by all the above argu-
ments, we have $\lim_{narrow\infty}P_{x}^{(n)}(X^{\cdot}(t)\leqq a_{1})=P_{x}(X(t)\leqq a_{1})$ . This proves the desired
assertion. $q$ . $e$ . $d$ .

REMARK 6.2. The assertion of Theorem 6.2 is also valid for $\tilde{m}(\tilde{Q})=0$ under
the assumptions of Theorem 6.1 or of Corollary 6.1.

7. Application of limit theorems.

In this section, we give three examples which are direct applications of
Theorems 6.1 and 6.2 in the previous section.

EXAMPLE 7.1 (Metastable behavior of [14]). Let $G(x)$ be a $C^{1}$ function on
$R$ such that, for some $M_{1}<S<M_{2},$ $G$ is strictly decreasing on $(-\infty, M_{1}$] $\cup[S, M_{2}]$ ,
strictly increasing on $[M_{1}, S]\cup[M_{2}, +\infty$ ), $G(M_{1})>G(M_{2})$ and that $\lim$

}
$x|arrow\infty^{G(x)}$

$=+\infty$ . Let also $X^{E}(t)$ be the solution of the stochastic differential equation
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(7.1) $dX_{t}=\epsilon^{1/2}dW_{t}-G’(X_{t})dt$ , $X_{0}=x_{0}$ ,

where $W$ is a standard Wiener process on $R$ and $\epsilon$ is a positive constant. For

each $a,$ $b\in R$ , we set $I_{\pm}^{\epsilon}(a, b)= \int_{a}^{b}\exp\{\pm 2G(y)/\epsilon\}dy$ . Fix now a $\delta\in(0, (S-M_{1})$

A $(M_{2}-S))$ and consider the scaled process $X_{\epsilon}(t)=X^{\epsilon}(\lambda_{\epsilon}t)$ with $\lambda_{\epsilon}=2I_{-}^{\epsilon}(M_{1}-\delta$ ,
$M_{1}+\delta)I_{+}^{\epsilon}(S-\delta, S+\delta)/\epsilon$ . Then the generator of the process $X_{\epsilon}$ is given by

(7.2) $\mathcal{G}_{\epsilon}=\theta_{\epsilon}\{d^{2}/d_{X^{2}}-(2G’(x)/\epsilon)d/dx\}$ ,

where $\theta_{\epsilon}=I_{-}^{\epsilon}(M_{1}-\delta, M_{1}+\delta)I_{+}^{\epsilon}(S-\delta, S+\delta)$ . We denote $S_{1}= \min\{x;G(x)=G(S)\}$ ,
$S_{2}= \max\{x;G(x)=G(S)\}$ and $M_{3}= \min\{x\neq M_{1} : G(x)=G(M_{1})\}$ , and treat the
process separately according as the regions of its starting position $x_{0}$ . The
height $H=G(S)-G(M_{1})$ plays an important role in the following.

Case 1. Suppose that $x_{0}\leqq S_{1}$ . Take, in this case, an $x_{1}<x_{0}$ such that
$G(x_{1})-G(x_{0})<H$ and let $x_{2}= \min\{x;G(x_{1})-G(x)=H\},$ $x_{3}= \max\{x;G(x)=G(x_{1})\}$ .
It is then clear that $x_{1}<x_{0}<x_{2}<M_{1}<S<M_{3}<M_{2}<x_{3}$ . We now define the
associate pair $(s_{\epsilon}, m_{\epsilon})\in \mathcal{M}\cross \mathcal{M}_{+}$ by $s_{\epsilon}(x)=I_{+}^{\epsilon}(x_{0}, x)$ exp $\{-2G(x_{1})/\epsilon\}$ and $m_{\epsilon}(x)$

$=I_{-}^{\epsilon}(x_{0}, x)\exp\{2G(x_{1})/\epsilon\}/\theta_{\epsilon}$ . Then, by a simple computation, we obtain (5.1)

with $s(x)=-\infty$ for $x<x_{1},$ $=0$ for $x_{1}\leqq x\leqq x_{3},$ $=+\infty$ for $x_{3}<x$ , and $m(x)=0$

for $x<x_{2},$ $=+\infty$ for $x\geqq x_{2}$ . Hence, by virtue of Theorem 6.1, we have

(7.3) $\lim_{\epsilon\downarrow 0}P_{x_{0}}(X_{\epsilon}(t_{1})<a_{1}, \cdots , X_{\epsilon}(t_{N})<a_{N})=0$ ,

for every $0<t_{1}<t_{2}<\cdots<t_{N}$ and $a_{1},$ $a_{2},$
$\cdots$ , $a_{N}\in(x_{1}, x_{2})$ . Thus, as $\epsilon\downarrow 0$ , the

process $X_{\epsilon}(t)$ starting at $x_{0}$ hits $a_{2}$ very soon and it scarcely comes back to the
interval $(-\infty, a_{1})$ for every $x_{0}<a_{1}<a_{2}<x_{2}$ .

Case 2. Suppose that $S_{1}<x_{0}<M_{3}$ . In this case, we define the associate
pair $(s_{\epsilon}, m_{\epsilon})\in \mathcal{M}\cross \mathcal{M}_{+}$ by $s_{\epsilon}(x)=I_{+}^{\epsilon}(M_{1}, x)/I_{+}^{\epsilon}(S-\delta, S+\delta)$ and $m_{\text{\’{e}}}(x)=I_{-}^{\epsilon}(S_{1}, x)/$

$I_{-}^{\epsilon}(M_{1}-\delta, M_{1}+\delta)$ . Then we have (5.1) with $s(x)=-\infty$ for $x<S_{1},$ $=0$ for
$S_{1}\leqq x\leqq S,$ $=1$ for $S<x\leqq S_{2},$ $=+\infty$ for $S_{2}<x$ , and $m(x)=0$ for $x<M_{1},$ $=1$ for
$M_{1}\leqq x<M_{3},$ $=+\infty$ for $x\geqq M_{3}$ . Hence, by virtue of Theorem 6.1, we see that,
if $S_{1}<x_{0}<S$ , then

(7.4) $\lim_{\epsilon\downarrow 0}P_{x_{0}}(X_{\epsilon}(t_{1})<a_{1}, \cdots , X_{\epsilon}(i_{N})<a_{N})=\exp\{-t_{N}\}\prod_{k\Rightarrow 1}^{N}1_{(-\infty,a_{k}3}(M_{1})$

for every $0<t_{1}<t_{2}<\ldots<t_{N}$ and $a_{1},$ $a_{2},$
$\cdots$ , $a_{N}\in(S_{1}, M_{3})\backslash \{M_{1}\}$ and, if $S<x_{0}<M_{3}$ ,

then (7.3) holds for all $0\leq t_{1}<t_{2}<\cdots<t_{N}$ and $a_{1},$ $a_{2},$ $\cdots$ , $a_{N}\in(S_{1}, M_{3})$ . Thus,
as $\epsilon\downarrow 0$ , the process $X_{\text{\’{e}}}(t)$ starting at $x_{0}\in(S_{1}, S)$ hits $M_{1}$ very soon, where it
stays for an exponential holding time and then it goes to $a_{2}$ and it scarcely
comes back to the interval $(-\infty, a_{1})$ for every $S<a_{1}<a_{2}<M_{3}$ . Further, if it
starts at $x_{0}\in(S, M_{3})$ then it hits $a_{2}$ very soon and scarcely comes back.

Case 3. Suppose that $M_{3}\leqq x_{0}\leqq M_{2}$ . If $G(x_{0})-G(M_{2})\geqq H$, then taking an
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$x_{1}\in(S, x_{0})$ such that $G(x_{1})-G(x_{0})<H$ and setting $x_{2}= \min\{x;G(x_{1})-G(x)=H\}$ ,

we can reduce the argument to that in Case 1.
Thus we assume that $G(x_{0})-G(M_{2})<H$. Set in this case $x_{2}= \max\{x:G(x)$

$-G(M_{2})=H\},$ $x_{1}= \max\{x\neq x_{2} ; G(x)-G(M_{2})=H\}$ . It is then clear that $S<x_{1}<$

$x_{0}\leqq M_{2}<x_{2}$ . Let now $s_{\epsilon}(x)=I_{+}^{\epsilon}(x_{0}, x)I_{-}^{\epsilon}(M_{2}-\delta, M_{2}+\delta)/\theta_{\epsilon}$ and $m_{\epsilon}(x)=I_{-}^{\epsilon}(x_{0}, x)/$

$I_{-}^{\epsilon}(M_{2}-\delta, M_{2}+\delta)$ . Then we have (5.1) with $s(x)=-\infty$ for $x<x_{1},$ $=0$ for
$x_{1}\leqq x\leqq x_{2},$ $=+\infty$ for $x_{2}<x$ , and $m(x)=0$ for $x<M_{2},$ $=1$ for $x\geqq M_{2}$ . Hence,
by virtue of Theorem 6.1, we see that

(7.5) $\lim_{\epsilon\downarrow 0}P_{x_{0}}(X_{\epsilon}(t_{1})<a_{1}, \cdots , X_{\epsilon}(t_{N})<a_{N})=$ $\prod_{k=1}^{N}1_{(-\infty.a_{k}j}(M_{2})$

for every $0<t_{1}<t_{2}<\cdots<t_{N}$ and $a_{1},$ $a_{2},$ $\cdots$ , $a_{N}\in(x_{1}, x_{2})\backslash \{M_{2}\}$ . Thus, as $\epsilon\downarrow 0$ ,

the process $X_{\epsilon}(t)$ starting at $x_{0}\in(x_{1}, x_{2})$ hits $M_{2}$ very soon, where it stays
forever with very high probability.

The case $x_{0}>M_{2}$ can be treated in the exactly same way.
Finally, we note that, since the process $X_{\epsilon}$ is a usual diffusion process,

one can easily glue together the processes in the above cases as is done in
[14]. The limit process is as follows. If it starts at $x_{0}\in(-\infty, S)$ , then it
hits $M_{1}$ instantaneously, where it stays for an exponential holding time and then
it jumps to the trap state $M_{2}$ . If it starts at $x_{0}\in(S, +\infty)$ , then it hits the
trap state $M_{2}$ instantaneously. Suppose finally it starts at $S$ and the limit
$p= \lim_{\text{\’{e}}\downarrow 0}I_{+}^{\epsilon}(S-\delta, S)/I_{+}^{\epsilon}(S-\delta, S+\delta)$ exits. Then it jumps to $M_{1}$ and to the trap
state $M_{2}$ instantaneously with probabilities $1-p$ and $p$ respectively (note that,
for the limit process in Case 2, $s(S)=p$ and the density function $q(t, \xi, \eta)$ of
the GDP $Y$ is linear in $\xi\in(s(S-), s(S+)))$ .

EXAMPLE 7.2 (Diffusion process in Wiener medium of [2]). After scaling
the Wiener medium, one can reduce the study of the diffusion process in a
Wiener medium of [2] to that of the solution $X^{\gamma}(t)$ of the stochastic differential
equation

(7.6) $dX_{t}=dB_{t}-(\gamma/2)W’(X_{t})dt$ , $X_{0}=x_{0}$ ,

where $B$ and $W$ are standard Wiener processes on $R$ which are independent of
each other, $\gamma$ is a positive constant which will be let to go to $+\infty$ later, and
$W’$ is the derivative of $W$ symbolically understood (see [2]). Thus the problem
is reduced to the same type of that in Example 7.1, and we can deal with it
by our method (note that, in Example 7.1, we do not need the derivative of $G$ ,

since all the effective functionals of $G$ for the argument are $I_{\pm}^{\Xi}(a, b)$ and the
values of $G$ itself). It is well known that $\varlimsup_{xarrow\pm\infty}W(x)=\varlimsup_{xarrow\pm\infty}(-W(x))=+\infty$

and, for each $0<a<b$ , the maximum $\max_{a\leqq x\leqq b}W(x)$ and the minimum
min $a\leqq x\leqq bW(x)$ are attained by single points $S$ and $M$ respectively with proba-
bility 1. Further, for each $x_{0}\in R$ , we have $x_{0}\neq S,$ $M$ with Probability 1. Thus,
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we may use all the above properties (see [2]).

Let now $x^{+}= \inf\{y>x;W(y)=W(x)\},$ $x^{-}= \sup\{y<x;W(y)=W(x)\}$ , with the
conventions inf $\emptyset=+\infty,$ $\sup\emptyset=-\infty$ , and let $BT_{1}=\{x$ ; there exist $y^{+}$ and $y^{-}$

such that $y^{\pm}\in(x, x^{\pm})$ and $W(y^{\pm})-W(x)\geqq 1$ }, where $(a, b)=(a\wedge b, ab)$ . We fur-
ther set $b_{1}^{+}(x_{0})= \min BT_{1}\cap[x_{0}, +\infty),$ $b_{1}^{-}(x_{0})= \max BT_{1}\cap(-\infty, x_{0})$ and let $\max\{W(x)$ :
$x\in[b_{1}^{-}(x_{0}), b_{1}^{+}(x_{0})]\}=W(S)$ for a unique $S\in[b_{1}^{-}(x_{0}), b_{1}^{+}(x_{0})]\backslash \{x_{0}\}$ . Finally, we define
$b_{1}=b_{1}(x_{0})$ by $b_{1}=b_{1}^{-}(x_{0})$ if $b_{1}^{-}(x_{0})<x_{0}<S,$ $=b_{1}^{+}(x_{0})$ if $S<x_{0}<b_{1}^{+}(x_{0})$ . Further, due
to the symmetry of the argument, we may assume $S<x_{0}<b_{1}^{+}(x_{0})$ , that is $b_{1}=$

$b_{1}^{+}(x_{0})$ . As in Example 7.1, we set $I_{\pm}^{\gamma}(a, b)= \int_{a}^{b}\exp\{\pm\gamma W(y)\}dy$ for each $a,$ $b\in R$ ,

and $X_{\gamma}(t)=X^{\gamma}(te^{\gamma}),$ $t\geqq 0$ .
Case 1. Suppose first that $W(b_{1})+1<W(S_{1})$ , where $\max_{x\in[x_{0}.b_{1}]}W(x)=W(S_{1})$ ,

$S_{1}\in[x_{0}, b_{1}]$ . If $W(x_{0})\geqq W(S_{1})$ , then we can employ the argument in Example

7.1 to obtain

(7.7) $\lim_{\gammaarrow\infty}P_{x_{0}}(X_{\gamma}(t_{1})<a_{1}, \cdots X_{\gamma}(t_{N})<a_{N})=0$ ,

for every $0<t_{1}<t_{2}<\cdots<t_{N}$ and $a_{1},$ $a_{2},$
$\cdots$ , $a_{N}\in(x_{0}, x_{1})$ , where $x_{1}= \min\{x>x_{0}$ :

$W(x)=W(x_{0})-1\}$ .
Thus we assume $W(x_{0})<W(S_{1})$ . In this case, let $x_{1}= \sup\{x<S_{1}$ : $W(x)<$

$W(S_{1})-1\},$ $x_{2}= \sup\{x<S_{1} : W(x)>W(S_{1})\},$ $x_{3}= \inf\{x>S_{1} : W(x)<W(S_{1})-1\}$ , and
$x_{4}= \inf\{x>S_{1} : W(x)>W(S_{1})\}$ . It is then clear that $x_{1}<x_{2}<x_{0}<S_{1}<x_{3}<b_{1}<x_{4}$

and $W([x_{2}, x_{3}])\subset[W(S_{1})-1, W(S_{1})]$ . We assume that $W(x)<W(S_{1})$ for all $x\in$

$(x_{2}, S_{1})$ and $W(x)>W(x_{3})$ for all $x\in(x_{1}, x_{3})$ (it is easy to see that the following
arguments work well without these assumptions with a slight modification, or
one can even take a version of $W$ , which satisfy these assumptions). Take
now a $\delta\in(0, (S_{1}-x_{2})\Lambda(b_{1}-S_{1}))$ and set $s_{\gamma}(x)=I_{+}^{\gamma}(x_{0}, x)/I_{+}^{\gamma}(S_{1}-\delta, S_{1}+\delta),$ $m_{\gamma}(x)=$

$2I_{-}^{\gamma}(x_{0}, x)I_{+}^{\gamma}(S_{1}-\delta, S_{1}+\delta)/e^{\gamma}$ . Then, we have (5.1) with $s(x)=-\infty$ for $x\leqq x_{2},$ $=0$

for $x_{2}<x\leqq S_{1},$ $=1$ for $S_{1}<x\leqq x_{4},$ $=+\infty$ for $x>x_{4}$ , and $m(x)=-\infty$ for $x<x_{1}$ ,
$=0$ for $x_{1}\leqq x<x_{3},$ $=+\infty$ for $x\geqq x_{3}$ . Hence, by virtue of Theorem 6.1, we
obtain (7.7) for every $0<t_{1}<t_{2}<\cdots<t_{N}$ and $a_{1},$ $a_{2},$

$\cdots$ , $a_{N}\in(x_{0}, x_{3})$ .

Case 2. Suppose next that $W(b_{1})+1\not\in W((x_{0}, b_{1}))$ . In this case, setting $x_{1}=$

max $\{x<b_{1} : W(x)=W(b_{1})+1\},$ $x_{2}= \min\{x>b_{1} : W(x)=W(b_{1})+1\}$ , we have $x_{1}<x_{0}$

$<x_{2}$ . Take then a $\delta\in(0, (b_{1}-x_{1})\Lambda(x_{2}-b_{1}))$ and set $s_{\gamma}(x)=I_{+}^{\gamma}(x_{0}, x)I_{-}^{\gamma}(b_{1}-\delta$ ,
$b_{1}+\delta)/e^{\gamma}$ and $m_{\gamma}(x)=2I_{-}^{\gamma}(x_{0}, x)/I_{-}^{\gamma}(b_{1}-\delta, b_{1}+\delta)$ . Then, in the exactly same way
as in Example 7.1, we have

(7.8) $\lim_{\gammaarrow\infty}P_{x_{0}}(X_{\gamma}(t_{1})<a_{1}, \cdots , X_{\gamma}(t_{N})<a_{N})=\prod_{k=1}^{N}1_{(-\infty,a_{k}3}(b_{1})$

for every $0<t_{1}<t_{2}<\cdots<t_{N}$ and $a_{1},$ $a_{2},$
$\cdots$ , $a_{N}\in(x_{1}, x_{2})\backslash \{b_{1}\}$ .

Finally, we note that, by gluing together with the processes in Cases 1 and
2, one sees that the limit process of $X_{\gamma}$ starting at an $x_{0}$ hits the trap state
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$b_{1}(x_{0})$ instantaneously, and this gives enough information for the results in [2].

REMARK 7.1. It is announced in a couple of symposiums that K. Kawazu,
Y. Tamura and H. Tanaka extended the results in [2] to those in the self-
similar or even asymptotically self-similar random media and obtained further
properties (see [20] and also its References for the literatures on this subject).

Notice that, in their models, it fails the assumption that every local minimum
and local maximum of the media function are attained by single points. But, as
far as the first primitive convergence theorem of the above type, one can easily
apply the above method to those models.

EXAMPLE 7.3 (Gene frequency model in [6]). Let us consider the diffusion
process $X^{\text{\’{e}}}$ on $(0,1)$ with the generator

(7.9) $\mathcal{G}_{\epsilon}=\{x(1-x)/2\}d^{2}/dx^{2}+\{a_{\epsilon}x(1-x)(1-2x)+\theta_{\epsilon}(1-2x)\}d/dx$ ,

where $a_{\epsilon}$ and $\theta_{\text{\’{e}}}$ are positive constants corresponding to the selection rate and
the mutation rate respectively. The boundaries $0$ and 1 are both entrance and
non-exit if $\theta_{\epsilon}\geqq 1/2$ , and regular if $0<\theta_{\epsilon}<1/2$ . In the latter case, the reflection
boundary conditions are set implicitly. Further, in the following, we let $a_{\epsilon}arrow+\infty$

and $\theta_{\epsilon}arrow 0$ so that $\lim_{\epsilon\downarrow 0}\{\log(1/\theta_{\epsilon})\}/\alpha_{\epsilon}=0$ . Thus we may assume $\theta_{\epsilon}\in(0,1/2)$ , and set

$I_{-}^{\Xi}(a, b)= \int_{a}^{b}\{y(1-y)\}^{-2\theta_{\epsilon}}e^{-2\alpha_{\epsilon}y(1-y)}dy$ ,

$I_{+}^{\xi}(a, b)=2 \int_{a}^{b}\{y(1-y)\}^{-1+2\theta_{\epsilon}}e^{2\alpha_{\epsilon}y(1-y)}dy$ ,

for each $a,$ $b\in[0,1]$ . Define then the associate pair $(s^{s}, m^{\epsilon})\in \mathcal{M}\cross \mathcal{M}_{+}$ by $s^{\epsilon}(x)$

$=0$ for $x<0,$ $=I_{-}^{\epsilon}(O, x)$ for $0\leqq x\leqq 1,$ $=I_{-}^{\epsilon}(O, 1)$ for $x>1$ , and $m^{\epsilon}(x)=0$ for $x<0$ ,
$=I_{+}^{\epsilon}(0, x)$ for $0\leqq x\leqq 1,$ $=If(0,1)$ for $x>1$ .

Set now $X_{\epsilon}(t)=X^{\epsilon}(\lambda_{\epsilon}t)$ with $\lambda_{\epsilon}=I_{-}^{\epsilon}(O, 1)I_{+}^{\epsilon}(0,1)$ and $s_{\epsilon}(x)=s^{\epsilon}(x)/I_{-}^{s}(0,1),$ $m_{\text{\’{e}}}(x)$

$=m^{\epsilon}(x)/I_{+}^{\epsilon}(0,1)$ . Then we have (5.1) with $s(x)=0$ for $x\leqq 0,$ $=1/2$ for $0<x<1$ ,
$=1$ for $x\geqq 1$ and $m(x)=0$ for $x<1/2,$ $=1$ for $x\geqq 1/2$ . Hence, by virtue of The-
orem 6.2, we obtain

(7.10) $\lim_{\epsilon\downarrow 0}P_{x}(X_{\epsilon}(t_{1})<a_{1},$
$\cdots$ , $a_{k}I(1/2)$ , $x\in[0,1]$ ,’

$X_{\epsilon}(t_{N})<a_{N})= \prod_{k=1}^{N}1_{(-\infty}$

for every $0<t_{1}<t_{2}<\cdots<t_{N}$ and $a_{1},$ $a_{2},$
$\cdots$ , $a_{N}\in(0,1)\backslash \{1/2\}$ . Notice further that

$I_{-}^{\epsilon}(O, 1)\sim\exp\{(2\theta_{\epsilon}-1)\log a_{\epsilon}\}$ and $I_{+}^{\epsilon}(0,1)\sim 4\sqrt{2\pi}$ exp $\{a_{\epsilon}/2-(\log a_{\epsilon})/2\}$ so that $\lambda_{\epsilon}\sim$

$4\sqrt{2\pi}$ exp $\{a_{\epsilon}/2+(2\theta_{\epsilon}-3)(\log a_{\epsilon})/2\}$ as $\epsilon\downarrow 0$ . We also notice that we are prepar-
ing a systematic study on this subject in [8].

A. Appendix.

In this section, we will summarize some formulas on change of variables
and integration by parts for the integration with respect to the measures induced
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by discontinuous non-decreasing functions. We continue to exploit the notation
in Section 2. Especially, $\tilde{m}$ is that given in Section 2 and $\tilde{Q}=Q(\tilde{m})$ . Although
we do not assume that our functions $s$ and $f$ are either right continuous or left
continuous, the obtained formulas are just natural extensions of those in [3].

We thus omit the proof.

LEMMA A.1. SuppOse that $v$ is a function in $L^{1}(\tilde{Q},\tilde{m})$ . Then, for each $b_{1}$ ,
$b_{2}\in\tilde{Q}$ such that $b_{1}<b_{2}$ , it holds that

(A.1) $J_{s^{-1}((b_{1},b_{2}\ddagger)}v(s(x))dm(x)=\int_{(b_{1},b_{2}1}v(\xi)d\tilde{m}(\xi)$ .

COROLLARY A.l. Let $v$ and $f$ be bounded Borel functions in $\tilde{Q}$ . Then, for
each $b_{1},$

$b_{2}\in\tilde{Q}$ such that $b_{1}<b_{2}$ , it holds that

(A.2) $\int_{(s^{-1}((b_{1},b_{2}3\backslash J(s^{-1}))}v(s(x))f(s^{-1}\circ s(x))dm(x)=\int_{(b_{1},b_{2}3\backslash J(s^{-1})}v(\xi)f(s^{-1}(\xi))d\tilde{m}(\xi)$ .

Let $f$ and $g$ be two functions of bounded variation on $R$ . For each interval
$I$, we define an integral

$\int_{I}^{\#}g(x)df(x)=\int_{I\backslash J(f)}g(x)df(x)+\sum_{x\in J(f)\cap I}\{g(x+)\Delta_{f}^{+}(x)+g(x-)\Delta_{f}^{-}(x)\}$ ,

where $\Delta_{f}^{+}(x)=f(x+)-f(x)$ and $\Delta_{f}^{-}(x)=f(x)-f(x-)$ . Notice that $\int_{I}^{\#}g(x)df(x)$

$= \int_{I}g(x)df(x)$ if $J(f)\cap J(g)=\emptyset$ , but $\int_{R}^{*}1_{I}(x)g(x)df(x)\neq\int_{I}^{*}g(x)df(x)$ in general.

LEMMA A.2 (Integration by parts). SuPpose that $f$ and $g$ are of bounded
variation on $[a, b]$ , and that $g$ is right continuous. Then it holds that

(A.3) $\int_{(a,bj}f(x)dg(x)=(fg)(b+)-(fg)(a+)-\int_{(a.b\supset}^{\#}g(x)df(x)$ .
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