On the rationality of complex homology 2-cells: II

By R. V. Gurjar and A. R. Shastri

(Received Sept. 14, 1987)

§ 8. Introduction.

The purpose of this paper is to prove:
8.1. Theorem. Let X be an irreducible, smooth projective surface/C, with the geometric genus $p_{g}(X)=0$. Let D be a reduced (not necessarily connected) curve on X with at worst ordinary double point singularities. Suppose each connected component of Supp D is simply connected and the irreducible components of D generate the divisor class group $\operatorname{Pic}(X)$. Then X is rational.

In [G-S] we showed that such a surface X cannot be a surface of general type. Thus 8.1 follows from:
8.2. Theorem. Let X and D be as in 8.1. Assume further that X is an elliptic surface. Then X is rational.

We will refer to the paper [G-S] by Part I. As already indicated in Part I, one easily deduces from 8.1, that any complex homology 2 -cell is rational, thus answering affirmatively a question of Van de Ven. (For other consequences of 8.1 see Part I.) The reader is assumed to be familiar with Part I of this paper, the notations and conventions of which we continue to use here also. We shall now briefly outline the proof of 8.2 here.
8.3. Recall that (in Part I), we begin with the assumption that X is not rational (or, equivalently, that $|n K| \neq \varnothing$ for some $n>0$) so that $K+D$ has Zariski decomposition: $K+D=P+N$. Without loss of generality we also assume that there are no (-1)-curves E on X such that (i) $E \cdot D=1$ or (ii) $E \cdot D=2$ and E meets two different connected components of D. We then apply Miyaoka's inequality to (X, D). Then, by studying the blowing-down process $\pi: X \rightarrow X^{\prime \prime}$, where $X^{\prime \prime}$ is the minimal model for the function field of X, we obtain the auxiliary inequality

$$
\begin{equation*}
3\left(b_{2}-\beta_{2}\right)+b_{0}+\lambda+\sigma+\tau+e_{1}+r_{3}+2 r_{4} \leqq \beta_{2}^{\prime \prime}-5 \tag{2.8}
\end{equation*}
$$

where each term on the left hand side is nonnegative.
8.4. We now assume that X is an elliptic surface, $\varphi: X \rightarrow \boldsymbol{P}^{1}$, and arrive at a sequence of contradictions thereby proving 8.2. Now $\beta_{2}^{\prime \prime}$, on the right hand side of (2.8) is the second betti number of $X^{\prime \prime}$, which is a minimal elliptic surface, with $p_{g}\left(X^{\prime \prime}\right)=0=q\left(X^{\prime \prime}\right)$. Hence $\beta_{2}^{\prime \prime}=10$. (Note that if X is of general type then $\beta_{2}^{\prime \prime} \leqq 9$. So there is an increase in the right hand side of (2.8), as compared with the general type case and this contributes to the enormous increase in our task here.) Except for 4.2, all the results in §1-§6 (of Part I) hold here also. Our first aim is to prove the analogue of 4.2 here also, viz., to show that $\lambda \geqq 2$. This is achieved in $\S 9$ by showing that D has at least two horizontal components with respect to φ. Once we show that $\lambda \geqq 2$, by 3.2 , we obtain that $b_{2}=\beta_{2}, D$ is unimodular, $r_{4}=0$, and $\sigma+\tau+e_{1}+r_{3} \leqq 2$.

In $\S 12$, we show that $e_{1}=0$ and in $\S 13$ we will show that $r_{3} \geqq 1$. In $\S 14$, we show that $\left(r_{3}, \sigma\right) \neq(1,1)$. In $\S 15$, we show that $r_{3} \geqq 2$. Since, any way $r_{3} \leqq 2$, in $\S 16$ and $\S 17$ we show that even the assumption $r_{3}=2$ leads to a contradiction.

In each of these cases we first get hold of the geometry of $D \cup \mathcal{E}$ (where \mathcal{E} is the exceptional set for $\left.\pi: X \rightarrow X^{\prime \prime}\right)$. In $\S 12-\S 14$, often, we apply Miyaoka's inequality to the curve $D \cup \mathcal{E}$, to arrive at a contradiction. Note that at the end of $\S 14$, we have $\sigma=0, e_{1}=0, r_{3} \geqq 1$, from which it follows that $\mathcal{E} \subset D$. Thus in $\S 15-\S 17$ we apply Miyaoka's inequality to a suitable subset of D. This is rather fruitful only if we have equality in (2.8). Further, we need to estimate the N^{2}-term in the Zariski decomposition. For this purpose we use results of [F] which we have collected in $\S 10$ in a manner suitable for our purpose. The unimodularity of D and the fact that $\pm K$ is not effective are heavily used. In §11, we have collected various technical lemmas, similar to those in $\S 5$ and $\S 6$, which enable us to use these two properties.

§ 9. Number of horizontal components.

9.0. Let X and D be as in 8.2. We assume X is not rational, so that $|n K| \neq \varnothing$ for some $n>0$. Since X is simply connected (see [G-S] p. 3), we have an elliptic fibration $\varphi: X \rightarrow \boldsymbol{P}^{1}$. Let $\pi: X \rightarrow X^{\prime \prime}$ be the composite of contraction of (-1 -curves where $X^{\prime \prime}$ is the minimal model for the function field of X. It follows easily that φ defines the minimal elliptic fibration $\varphi^{\prime \prime}: X^{\prime \prime} \rightarrow \boldsymbol{P}^{1}, \varphi=$ $\varphi^{\prime \prime} \circ \pi$. An irreducible curve C on X is called vertical if C is contained in a fibre of φ; otherwise it is called horizontal. Our main aim here is to show that D has at least two horizontal components, equivalently, $D^{\prime \prime}=\varphi^{\prime \prime}(D)$ has at least two horizontal components with respect to $\varphi^{\prime \prime}$. On the way, we also determine multiplicities of the singular fibres of $\varphi^{\prime \prime}$.

Note that components of D generate $\operatorname{Pic} X$ and hence D should have at least one horizontal component. We shall first prove:
9.1. Lemma. There are exactly two multiple singular fibres of $\varphi^{\prime \prime}$ (and hence, of φ), say $m_{1} P_{1}, m_{2} P_{2}$ (respectively, $m_{1} F_{1}, m_{2} F_{2}$) with $\left\{m_{1}, m_{2}\right\}=\{2,3\}$ or $\{2,5\}$. Further, if $K^{\prime \prime} \cdot H^{\prime \prime} \leqq 2$ for some horizontal component $H^{\prime \prime}$, then $\left\{m_{1}, m_{2}\right\}$ $=\{2,3\}$.

PRoof. Let $\left\{m_{i} P_{i}\right\}_{1 \leq i \leq r}$ be the multiple fibres of $\varphi^{\prime \prime}$. By the simply connectivity of $X^{\prime \prime}$ it follows that $r \leqq 2$ and m_{1} and m_{2} are coprime (see Proposition 2 of [K]). Since $p_{g}=0=q$, we have the canonical bundle formula

$$
K^{\prime \prime}=\varphi^{\prime \prime-1}\left(O_{P_{1}}(-1)\right) \otimes\left[P_{1}\right]^{\left(m_{1}-1\right)} \otimes \cdots \otimes\left[P_{r}\right]^{\left(m_{r}-1\right)} .
$$

Thus if $r \leqq 1$, it follows that $\left|n K^{\prime \prime}\right|=\varnothing$ for all n and hence $|n K|=\varnothing$ for all n, contradicting our basic assumption. Hence $r=2$.

Now if P denotes a general fibre of $\varphi^{\prime \prime}$, we have the linear equivalence

$$
P \sim m_{1} P_{1} \sim m_{2} P_{2}
$$

and hence

$$
K^{\prime \prime} \sim\left(m_{2}-1\right) P_{2}-P_{1} \sim\left(m_{1}-1\right) P_{1}-P_{2} .
$$

Thus $K^{\prime \prime}$ is numerically equivalent to the \boldsymbol{Q}-divisor $m P$ where $m=\left(m_{1} m_{2}-m_{1}-\right.$ $\left.m_{2}\right) / m_{1} m_{2}$. Now let $H^{\prime \prime}$ be a horizontal component of $D^{\prime \prime}$. Then $1 \leqq K^{\prime \prime} \cdot H^{\prime \prime}=$ $m\left(P \cdot H^{\prime \prime}\right)$. Since m_{1} and m_{2} are coprime it follows that $m_{1} m_{2}-m_{1}-m_{2}$ divides $K^{\prime \prime} \cdot H^{\prime \prime}$. On the other hand we have, by (2.8), $\lambda \leqq 4$ (since $b_{0} \geqq 1$) and hence $K^{\prime \prime} \cdot H^{\prime \prime} \leqq 4$. Hence $\left\{m_{1}, m_{2}\right\}=\{2,3\}$ or $\{2,5\}$, and if $K^{\prime \prime} \cdot H^{\prime \prime} \leqq 2$ for some $H^{\prime \prime}$, then $\left\{m_{1}, m_{2}\right\}=\{2,3\}$, as claimed.
9.2. Lemma. Suppose $\beta_{2}(X)=b_{2}(D)$. Then $H_{1}(X-D, \boldsymbol{Z})=(0)$ and consequently no fibre of φ is completely contained in D.

Proof. Since components of D generate Pic $X, \beta_{2}(X)=b_{2}(D)$ implies that components of D form a free basis for Pic X and hence $H^{2}(X, \boldsymbol{Z}) \rightarrow H^{2}(D ; \boldsymbol{Z})$ is an isomorphism. From the cohomology exact sequence of (X, D), we get $H^{3}(X, D ; \boldsymbol{Z})=(0)$. Hence, by duality, $H_{1}(X-D ; \boldsymbol{Z})=(0)$.

Now suppose F_{0} is a fibre of φ such that $F_{0} \subset D$. Then, since D is simply connected, F_{0} is simply connected, and so, in particular, $F_{0} \neq m_{i} F_{i}$, where $m_{1} F_{1}$ and $m_{2} F_{2}$ are the multiple fibres of φ. Let $p_{i}=\varphi\left(F_{i}\right)$ and let $f: \Delta \rightarrow \boldsymbol{P}^{1}$ be a cyclic covering, ramified on p_{0} and p_{1} with ramification index $m_{1}(\geqq 2)$. After normalization of $X \times{ }_{P 1} U$, we obtain a ramified cyclic covering $\tilde{f}: \tilde{X} \rightarrow X$ with ramification locus contained in F_{0} and hence an m_{1}-fold cyclic, unramified covering of $X-D$. This contradicts the fact that $H_{1}(X-D, \boldsymbol{Z})=(0)$. Hence no fibre of φ is completely contained in D. This completes the proof of the lemma.
9.3. Lemma. $D^{\prime \prime}$ (and hence D) has at least two horizontal components. In particular, $\lambda \geqq 2,\left\{m_{1}, m_{2}\right\}=\{2,3\}$ and $6 \mid\left(P \cdot H^{\prime \prime}\right)$ for any horizontal component $H^{\prime \prime}$
and any general fibre P of $\varphi^{\prime \prime}$. Further, if there are only two horizontal components, then exactly one component from each fibre of φ is not contained in D.

Proof. Assume that $D^{\prime \prime}$ has only one horizontal component, $H^{\prime \prime}$. We first claim that $\varphi^{\prime \prime}$ has no fibres of type $m \mathrm{I}_{0}$, with $m>1$. Suppose $m_{1} P_{1}$ is such a fibre. Then $P_{1} \sim \sum_{i} \alpha_{i} D_{i}^{\prime \prime}+\alpha H^{\prime \prime}$, where $D_{i}^{\prime \prime} \neq H^{\prime \prime}$ are other components of $D^{\prime \prime}$ (which are vertical). Intersecting P_{1} with a general fibre, we see that $\alpha=0$. Since each component of $D^{\prime \prime}$ is rational, P_{1} is not contained in $D^{\prime \prime}$. On the other hand, linear equivalence relations between fibre components of $\varphi^{\prime \prime}$ are all generated by relations of the type $P \sim P^{\prime}$ for any two scheme-theoretic fibres of $\varphi^{\prime \prime}$. Hence in any such relation P_{1} should occur in multiples of m_{1}, which contradicts the relation, $P_{1} \sim \sum_{i} \alpha_{i} D_{i}^{\prime \prime}$, above.

Now let S_{1}, \cdots, S_{k} (respectively, T_{1}, \cdots, T_{l}) denote the simply connected (respectively, not simply-connected) singular fibres of φ. By the above observation, it follows that $\chi_{\text {top }}\left(T_{j}\right)=b_{2}\left(T_{j}\right)$ and hence we have

$$
\begin{equation*}
\left.\beta_{2}{ }^{\prime} X\right)+2=\chi_{\mathrm{top}}(X)=\sum_{i=1}^{k}\left(b_{2}\left(S_{i}\right)+1\right)+\sum_{j=1}^{l} b_{2}\left(T_{j}\right) . \tag{9.4}
\end{equation*}
$$

Since, by simply-connectivity of D, none of the T_{i} is completely contained in D, we get

$$
\begin{equation*}
b_{2}(D) \leqq \sum_{i=1}^{k} b_{2}\left(S_{i}\right)+\sum_{j=1}^{l}\left(b_{2}\left(T_{j}\right)-1\right)+1 . \tag{9.5}
\end{equation*}
$$

Together with (9.4), this yields $k+l \leqq 3+\beta_{2}(X)-b_{2}(D)$. If $k=0$, then clearly no fibre of φ is contained in D. However, by 9.1 , it follows that $l \geqq 2$. Since $\beta_{2}(X) \leqq b_{2}(D)$, it follows that $k \leqq 1$, and if $k=1$ then $\beta_{2}(X)=b_{2}(D)$. Thus if $k \neq 0$, we can appeal to 9.2 to conclude that no fibre of φ is contained in D. But then we have

$$
b_{2}(D) \leqq \sum_{i=1}^{k}\left(b_{2}\left(S_{i}\right)-1\right)+\sum_{j=1}^{l}\left(b_{2}\left(T_{j}\right)-1\right)+1<\operatorname{rank}(\operatorname{Pic} X)
$$

which is absurd.
Hence $D^{\prime \prime}$ has at least two horizontal components, and hence $\lambda=\Sigma_{t} D_{t}^{\prime \prime} \cdot K^{\prime \prime}$ $\geqq 2$. Now by (2.8) we have $\lambda \leqq 4$, and hence $K^{\prime \prime} \cdot H_{i}^{\prime \prime} \leqq 2$ for some horizontal component. Hence by 9.1, $\left\{m_{1}, m_{2}\right\}=\{2,3\}, K^{\prime \prime} \cdot H_{i}^{\prime \prime}=(1 / 6) \cdot\left(P \cdot H_{i}^{\prime \prime}\right)$ and hence $6 \mid P \cdot H_{i}^{\prime \prime}$. By (2.8) it now follows that $b_{2}=\beta_{2}$ and hence by 9.2 , no fibre of φ is completely contained in D.

Finally let there be exactly two horizontal components. Then we have

$$
b_{2}(D) \leqq \sum_{i=1}^{k}\left(b_{2}\left(S_{i}\right)-1\right)+\sum_{j=1}^{l}\left(b_{2}\left(T_{j}\right)-1\right)+2=\operatorname{rank} \operatorname{Pic}(X) \leqq b_{2}(D) .
$$

Hence equality holds everywhere. Thus exactly one component from each fibre of φ is missing from D. This completes the proof of the lemma.
9.6. Remark. Note that, unlike $D, D^{\prime \prime}$ may contain a fibre of $\varphi^{\prime \prime}$. The following lemma gives some idea of such a situation and will be very useful later. We use Kodaira's list of singular fibres of an elliptic fibration. For any fibre P and a component C of D let $\mu(C)$ denote the multiplicity of C in P.
9.7. Lemma. Suppose P is a fibre of $\varphi^{\prime \prime}$ contained in $D^{\prime \prime}$ and is not of type II*. Assume that
(i) there is at most one point $x \in P$ which is worse than an ordinary double point singularity of $D^{\prime \prime}$ and
(ii) if x exists, then P is of type $m \mathrm{I}_{1}$, II, III or IV with $x \in P$ being the singularity of P and at most one horizontal component of $D^{\prime \prime}$ passes through x.

Then $b_{1}\left(D^{\prime \prime}\right) \geqq 2$.
Proof. First assume x exists. By 9.3, there is a horizontal component $H^{\prime \prime}$ of $D^{\prime \prime}$ not passing through x. If P is of type $m \mathrm{I}_{1}$, then $m=2$ or $3,6 \mid\left(P \cdot H^{\prime \prime}\right)$ and hence $P \cap H^{\prime \prime}$ consists of at least two points. Since $b_{1}\left(m \mathrm{I}_{1}\right)=1$, we have $b_{1}\left(D^{\prime \prime}\right) \geqq b_{1}\left(P \cup H^{\prime \prime}\right) \geqq 2$. If P is of type II, III or IV, then it follows that $P \cap H^{\prime \prime}$ consists of at least six points and hence $b_{1}\left(D^{\prime \prime}\right) \geqq b_{1}\left(P \cup H^{\prime \prime}\right) \geqq 5$.

Next assume that x does not exist. (Clearly P is not of type $m \mathrm{I}_{0}$). Hence P is of type $m \mathrm{I}_{b},(m=2$ or $3, b \geqq 1)$, I_{b}^{*}, I^{*} or I^{*}. Hence for every component C of $P, \mu(C) \leqq 4, P \cap H_{i}^{\prime \prime}$ consists of points which are all ordinary double points of $D^{\prime \prime}$. Hence it follows that $b_{1}\left(P \cup H_{i}^{\prime \prime}\right) \geqq 1$ for each horizontal component of $D^{\prime \prime}$. Hence $b_{1}\left(D^{\prime \prime}\right) \geqq b_{1}\left(P \cup H_{1}^{\prime \prime} \cup H_{2}^{\prime \prime}\right) \geqq 2$. This completes the proof of the lemma.
9.8. Lemma. Suppose $\beta_{2}(X)=b_{2}(D)$ and there are precisely two horizontal components of D. Let F_{0} be a fibre of φ different from the multiple fibres $m_{1} F_{1}$ and $m_{2} F_{2}$, and let C_{0} be the component of F_{0} not contained in D. Then the multiplicity $\mu\left(C_{0}\right)$ of C_{0} in F_{0} is not equal to m_{1} or m_{2}.

Proof. If not, say $\mu\left(C_{0}\right)=m_{1}$. Then as in 9.2 , we can construct an m_{1}-fold unramified cyclic cover of V which is absurd.
9.9. Lemma. Let Y be a normal, projective surface/C having exactly one singular point y. Suppose $\tilde{Y} \xrightarrow{\pi} Y$ is a minimal resolution of singularity. Assume further the following conditions:
i) $\mathcal{O}_{Y, y}$ is a rational singularity
ii) $\mathcal{O}_{Y, y}$ is a unique factorization domain and
iii) $\quad p_{g}(\tilde{Y})=0=q(\tilde{Y})$.

Then locally analytically, the singularity at y is E_{8}-rational double point, i.e., given by $\left\{z_{1}^{2}+z_{2}^{3}+z_{3}^{5}=0\right\}$.

Proof. There exists an affine neighbourhood U of y such that $\Gamma\left(U, O_{Y}\right)$ is a U.F.D. Since $p_{g}(\tilde{Y})=0$, any topological 2 -cycle is algebraic. Let $\pi^{-1}(y)$
$=\bigcup_{i=1}^{r} L_{i}$ where L_{i} are the irreducible components. We can then find divisors $\Delta_{1}, \cdots, \Delta_{s}$ supported on $\tilde{Y}-\pi^{-1}(U)$ such that $L_{1}, \cdots, L_{r}, \Delta_{1}, \cdots, \Delta_{s}$ form a free basis of $H^{2}(\tilde{Y}, \boldsymbol{R})$. Therefore the intersection matrix of these divisors can be assumed to be unimodular. Since the sets $L_{1} \cup \cdots \cup L_{r}$ and $\Delta_{1} \cup \cdots \cup \Delta_{s}$ are disjoint, it follows that the intersection matrix $\left(L_{i} \cdot L_{j}\right)$ is unimodular. Since the singularity of y is rational, this implies that analytically the singularity is the E_{8}-rational double point, by results of Brieskorn [B].

§ 10. Estimating N^{2}.

10.0. Here we briefly recall and modify certain results and terminologies from $\S 3$ and $\S 6$ of [F] which will help us to estimate the term N^{2}. Let Y be a smooth projective surface and C be a reduced curve on Y. For our purpose we shall assume that all components of C are smooth rational curves. Hence, we shall drop the word 'rational' from Fujita's terminology. We shall also assume that C is minimal with normal crossings (MNC). For any curve Γ on Y, let $Q(\Gamma)$ denote the subspace of Pic $Y \otimes \boldsymbol{Q}$ generated by components of Γ.
10.1. For any component C_{0} of C the branching number is given by $\beta\left(C_{0}\right)$ $=C_{0} \cdot\left(C-C_{0}\right) . \quad C_{0}$ is called a tip of C if $\beta\left(C_{0}\right)=1 . \quad$ A sequence Γ of components $\left\{C_{1}, \cdots, C_{r}\right\}, r \geqq 1$, is called a twig of D if $\beta\left(C_{1}\right)=1, \beta\left(C_{j}\right)=2$ and $C_{j-1} \cdot C_{j}=1$ for $2 \leqq j \leqq r$. We denote Γ by $\left[a_{1}, \cdots, a_{r}\right]$ where $a_{i}=-C_{i}^{2} . \quad \Gamma$ is a maximal twig if there is a (unique) component C_{0} of C such that $C_{r} \cdot C_{0}=1$ and $\beta\left(C_{0}\right)$ $\geqq 3$. Then C_{0} is called the branching component of Γ. For any twig $\Gamma, \bar{\Gamma}$ denotes the curve $C_{2} \cup \cdots \cup C_{r}(\bar{\Gamma}=\varnothing$ if $r=1)$, and $e(\Gamma)=d(\bar{\Gamma}) / d(\Gamma)$ where $d(-)$ denotes the discriminant, $(d(\phi)=1$, by convention). A sequence Γ is called a club if $\beta\left(C_{1}\right)=\beta\left(C_{r}\right)=1, \beta\left(C_{j}\right)=2,2 \leqq j \leqq r-1$ and $C_{j} \cdot C_{j+1}=1,1 \leqq j \leqq r-1$.
10.2. A connected component Λ of C is called an abnormal (rational) club if
(i) Λ has a unique component C_{0} with $\beta\left(C_{0}\right)=3$,
(ii) Λ has three maximal twigs $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ with C_{0} as their branching component,
(iii) Λ is negative definite, and
(iv) $d\left(\Gamma_{1}\right)^{-1}+d\left(\Gamma_{2}\right)^{-1}+d\left(\Gamma_{3}\right)^{-1}>1$.

By 6.19 of [F] it follows that an abnormal club Λ can be contracted to a rational singularity, i.e. Λ is 'rational' according to our Definition 5.2.
10.3. Assume now that $K+C$ is pseudo effective, so that, by 6.13 , of [F], all (rational) clubs and maximal twigs of C are negative definite (contractible). If Γ is a maximal twig of C, then $\operatorname{Bk}(\Gamma)$ (bark of Γ) is the element $N_{1} \in \boldsymbol{Q}(\Gamma)$ such that $N_{1} \cdot C_{1}=-1, N_{1} \cdot C_{j}=0$ for $j \geqq 2$ (equivalently, $N_{1} \cdot C_{i}=(K+C) \cdot C_{i}$ for $1 \leqq i \leqq r)$. If Γ is a club of C then $\operatorname{Bk}(\Gamma)$ is an element $N_{2} \in \boldsymbol{Q}(\Gamma)$ such that
$N_{2} \cdot C_{1}=N_{2} \cdot C_{r}=-1$ and $N_{2} \cdot C_{j}=0,2 \leqq j \leqq r-1$ (equivalently, $N_{2} \cdot C_{i}=(K+C) \cdot C_{i} \forall C_{i}$ in Γ). For an isolated club $\Gamma=\left\{C_{1}\right\}$, we have $\operatorname{Bk}(\Gamma)=2\left(-C_{1}^{2}\right)^{-1} C_{1}$. For any connected component Λ of C we define $\operatorname{Bk}(\Lambda)=\sum_{i} \operatorname{Bk} \Gamma_{i}$ where Γ_{i} are all maximal twigs and clubs of Λ. We define $\operatorname{Bk}(C)=\Sigma \operatorname{Bk}\left(\Lambda_{j}\right)$ where Λ_{j} are all connected components of C.

For an abnormal club Λ of C we $\operatorname{define~}^{\operatorname{Bk}^{*}(\Lambda) \text { as the element } N \in \boldsymbol{Q}(\Lambda), ~(h)}$ such that $N \cdot L=(K+C) \cdot L=(K+\Lambda) \cdot L$ for every component L of Λ. If Λ is a connected component which is not an abnormal club of C then we take $\mathrm{Bk}^{*}(\Lambda)$ $=\operatorname{Bk}(\Lambda)$. Finally we define $\mathrm{Bk}^{*}(C)=\Sigma \mathrm{Bk}^{*}\left(\Lambda_{j}\right)$ where Λ_{j} are all the connected components of C.

We introduce the notation $\mathrm{bk}(\Lambda)$ (respectively $\left.\mathrm{bk}^{*}(\Lambda)\right)$ for the rational number $(\operatorname{Bk}(\Lambda)) \cdot(\operatorname{Bk}(\Lambda))$ (respectively, $\left.\left(\operatorname{Bk}^{*}(\Lambda)\right) \cdot\left(\operatorname{Bk}^{*}(\Lambda)\right)\right)$. Then clearly $\mathrm{bk}(C)$ $=\sum_{i} \mathrm{bk}\left(\Gamma_{i}\right)$ where Γ_{i} are all clubs and maximal twigs of C. We have
10.4. Lemma. Let C be as in 10.0 and 10.3 , and $\Gamma=\left[a_{1}, \cdots, a_{r}\right], r \geqq 1$ be a twig of C.
(i) If Γ is a maximal twig of C, then $\mathrm{bk}(\Gamma)=-e(\Gamma)$. In particular, $\mathrm{bk}(\Gamma) \leqq-1 / a_{1}$.
(ii) If Γ is a club of C then $\operatorname{bk}(\Gamma) \leqq-\left(1 / a_{1}+1 / a_{r}\right)$.
(iii) If Γ is a club of C with $r=1,2$ or 3 then $\operatorname{bk}(\Gamma)=-4 / a_{1}, \quad-\left(a_{1}+a_{2}+2\right)$ $/\left(a_{1} a_{2}-1\right)$ or $-a_{2}\left(a_{1}+a_{3}\right) /\left(a_{1} a_{2} a_{3}-a_{1}-a_{3}\right)$, respectively.
(iv) If $\left\{L_{1}, \cdots, L_{k}\right\}$ is a set of tips of C, then $\operatorname{bk}(C) \leqq \sum_{i=1}^{k} 1 /\left(L_{i}^{2}\right)$.
(v) For any abnormal club Λ of C we have $\mathrm{bk}^{*} \Lambda<\mathrm{bk}(\Lambda)$. Hence $\mathrm{bk}^{*}(C)$ $<\operatorname{bk}(C)$.

Proof. (i) That $\operatorname{bk}(\boldsymbol{\Gamma})=-e(\boldsymbol{\Gamma})$ is proved in 6.16 of [F]. Since $d(\Gamma)=$ $a_{1} d(\bar{\Gamma})-d(\bar{\Gamma})$ it follows that

$$
\operatorname{bk}(\Gamma)=-e(\Gamma)=-d(\bar{\Gamma}) /\left(a_{1} d(\bar{\Gamma})-d(\bar{\Gamma})\right) \leqq-d(\bar{\Gamma}) / a_{1} d(\bar{\Gamma})=-1 / a_{1} .
$$

(ii) If $r_{1}=1$, then $\mathrm{bk}(\Gamma)=-4 / a_{1}$ and so we are done. In general, let $N_{1}=$ $\Sigma \lambda_{i} C_{i}, N_{2}=\Sigma \mu_{i} C_{i} \in \boldsymbol{Q}(\Gamma)$ be defined as in 10.3. Then $N_{2}=\operatorname{Bk}(\Gamma)$ whereas N_{1} has the numerical property of $\operatorname{Bk}(\Gamma)$ if Γ were a maximal twig with a_{1} as its tip. Hence by 6.16 of [F], $\lambda_{1}=-N_{1}^{2} \geqq 1 / a_{1}$ by (i) above. On the other hand we have $\left(N_{2}-N_{1}\right) \cdot C_{i} \leqq 0$ for every component C_{i} of Γ and hence $N_{2} \geqq N_{1}$ (by 5.3). In particular $\mu_{1} \geqq \lambda_{1} \geqq 1 / a_{1}$. By symmetry, we get $\mu_{r} \geqq 1 / a_{r}$. Now $\operatorname{bk}(\Gamma)=N_{2} \cdot N_{2}$ $=-\left(\mu_{1}+\mu_{r}\right) \leqq-\left(1 / a_{1}+1 / a_{r}\right)$.
(iii) Compute directly.
(iv) Follows easily from (i) and (ii) above.
(v) Let Λ be an abnormal club of C as in $10.2, N=\mathrm{Bk}^{*} \Lambda$, and let $N_{i}=$ $\operatorname{Bk}\left(\Gamma_{i}\right), i=1,2,3$. Let $\theta=N-\left(N_{1}+N_{2}+N_{3}\right)$. Then we have $\theta \cdot L=0$ for every component of $\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$, and $\theta \cdot C_{0}=(K+C) \cdot C_{0}-\left(d\left(\Gamma_{1}\right)^{-1}+d\left(\Gamma_{2}\right)^{-1}+d\left(\Gamma_{3}\right)^{-1}\right)<0$,
by 6.16 of [F]. Hence $\theta>0$ (by 5.3). Now $N^{2}=N_{1}^{2}+N_{2}^{2}+N_{3}^{2}+\theta^{2}$ and $\theta^{2}=$ $\theta \cdot\left(\lambda C_{0}\right)$ where $\lambda \geqq 0$ is the coefficient of C_{0} in N. Since $\theta \cdot C_{0}<0$, it follows that $\theta^{2}<0$. Hence $\mathrm{bk}^{*}(\Lambda)=N^{2}<N_{1}^{2}+N_{2}^{2}+N_{3}^{2}=\mathrm{bk}(\Lambda)$. Hence $\mathrm{bk}^{*}(C)<\mathrm{bk}(C)$. This completes the proof of the lemma.

Finally the following lemma will enable us to use the above estimates in our situation.
10.5. Lemma. Suppose C is a union of trees of rational curves on a smooth projective surface Y, C is MNC and all (-1)-curves on Y are contained in C. For any set E_{1}, \cdots, E_{r} of (-1)-curves, $r \geqq 0$, let \underline{C} be the reduced curve $\underline{C}=$ $C-\left(E_{1}+\cdots+E_{r}\right)$. Assume that $\left|n K_{Y}\right| \neq \varnothing$ for some $n>0$, and $K_{Y}+\underline{C}=\underline{P}+\underline{N}$ is the Zariski decomposition. Then $\underline{N}=\mathrm{Bk}^{*}(\underline{C})$. In particular $\underline{N}^{2} \leqq \mathrm{bk}(\underline{C})$.

Proof. By 6.20 of [F], if $\underline{N} \neq \mathrm{Bk}^{*}(\underline{C})$ then there exists an exceptional curve E on Y, not contained in \underline{C}, such that one of the following holds:
(i) $\underline{C} \cdot E=0$.
(ii) $\underline{C} \cdot E=1$ and E meets a component of $\mathrm{Bk}^{*}(\underline{C})$.
(iii) $\underline{C} \cdot E>1$ and E meets precisely two components of D, one of which is a tip of a (rational) club of D.
Note that the word "precisely" in (iii) is not there in [F], though from the proof of 6.20 , this is obvious. Now, since C is MNC, every exceptional curve E_{i} not in \underline{C} meets at least three components of \underline{C}. Hence $\underline{N}=\mathrm{Bk}^{*}(\underline{C})$. That $\underline{N}^{2} \leqq \mathrm{bk}(\underline{C})$ follows from 10.4 (v) above. This completes the proof of the lemma.

§ 11. Some technical lemmas.

11.0. Here we collect a number of technical results similar to those in $\S 4$, $\S 5$ and $\S 6$. The first one below, is analogous to 4.3 and will be used in conjunction with 4.1.
11.1. Lemma. Let Y be a smooth projective surface, C be a curve on Y, with $C=\sum_{i=0}^{k} C_{i}$, where either (a) C_{i} are smooth rational curves pairwise intersecting transversally as shown in (a) Figure 1, or (b) C_{i} are smooth rational curves, $C_{1} \cdot C_{2}=2, C_{0} \cdot C_{1}=C_{0} \cdot C_{2}=1$ or (c) C_{0} is a smooth rational curve; C_{1} is a rational curve with an ordinary cusp; $C_{0} \cdot C_{1}=2$. Suppose, in each of these cases, we have a canonical divisor

$$
K_{Y}=\sum_{i=0}^{k} t_{i} C_{i}+\Lambda, \quad t_{i} \in \boldsymbol{Z}
$$

for some divisor Λ with the property $\operatorname{supp}(\Lambda) \cap C_{i}=\varnothing, i \geqq 1$, and $C_{0} \not \subset \operatorname{supp}(\Lambda)$. Set $a_{i}=-C_{i}^{2}$. Then:
(a) In Figure $1(\mathrm{a})$, let $\left(a_{1}, a_{2}, a_{3}\right)$ be any of the six triples $(2,2,3),(3,2,3)$,
$(4,2,3),(2,2,4),(3,2,4)$ or $(2,3,4)$. Then $t_{0}>0\left(r e s p . t_{0} \leqq 0\right)$ implies $t_{1}>0, t_{2}>0$, $t_{3}>0$ (resp. $\left.t_{1}<0, t_{2}<0, t_{3}<0\right)$.
(b) In Figure 1 (b) if $\left(a_{1}, a_{2}\right)=(2,3)$, then $t_{0}>0$ (respectively, $t_{0} \leqq 0$) implies $t_{1}>0$ and $t_{2}>0$ (respectively $t_{1} \leqq 0$ and $t_{2} \leqq 0$).
(c) In Figure 1 (c) if $C_{1}^{2}=-1$, then $t_{0}>0$ (respectively $t_{0} \leqq 0$), implies $t_{1}>0$ (respectively $t_{1}<0$).

(a)

(b)

(c)

Figure 1.
Proof. (a) Compute $K_{Y} \cdot C_{i}$ and use adjunction formula to obtain the equations:

$$
\left\{\begin{array}{l}
a_{1}-2=t_{0}+t_{2}+t_{3}-a_{1} t_{1} \\
a_{2}-2=t_{1}+t_{3}-a_{2} t_{2} \\
a_{3}-2=t_{1}+t_{2}-a_{3} t_{3} .
\end{array}\right.
$$

These, in turn, yield

$$
\begin{aligned}
& \left(a_{2} a_{3}-1\right) t_{2}=\left(a_{3}+1\right) t_{1}-\left(a_{2} a_{3}-a_{3}-2\right) \\
& \left(a_{2} a_{3}-1\right) t_{3}=\left(a_{2}+1\right) t_{1}-\left(a_{2} a_{3}-a_{2}-2\right) \\
& \left(a_{2} a_{3}-1\right) t_{0}=\left(a_{1} a_{2} a_{3}-a_{1}-a_{2}-a_{3}-2\right) t_{1}+\left(a_{1} a_{2} a_{3}-a_{1}-a_{2}-a_{3}-2\right)
\end{aligned}
$$

Using the fact that t_{i} are all integers, we easily check the assertion of (a) for any of the triples in the statement of (a).
(b) In Figure $1(\mathrm{~b})$, note that $C_{1} \cdot C_{2}=2$ and so we obtain

$$
\left\{\begin{array}{l}
0=-2 t_{1}+2 t_{2}+t_{0} \\
1=-3 t_{2}+2 t_{1}+t_{0}
\end{array}\right.
$$

and hence $t_{1}=\left(5 t_{0}-2\right) / 2 ; t_{2}=2 t_{0}-1$, and the conclusion follows easily.
(c) Here again, the adjunction formula yields $C_{1} \cdot K_{Y}=1=2 t_{0}-t_{1}$ so that $2 t_{0}=1+t_{1}$ and again the conclusion follows easily.

The next lemma helps us to compute the discriminant of certain weighted trees. The idea used here occurs in [R].
11.2. Lemma. (a) Suppose Γ is a weighted tree, $u_{0} \in \Gamma$ is a vertex such that $\Gamma-\left\{u_{0}\right\}$ is negative (or positive) definite. Then Γ can be diagonalized in such a way that if p / q is the diagonal entry at u_{0} with p, q coprime, then
$d(\Gamma)(:=|\operatorname{det}(\Gamma)|)=|p|$.
(b) Suppose Λ is a tree, $v_{0}, u_{0} \in \Lambda$ are any two adjacent vertices, Γ is the branch of Λ at v_{0} containing $u_{0}, \Gamma^{\prime}=\Lambda-\Gamma$ is the branch at u_{0} containing v_{0}. Suppose both Γ and Γ^{\prime} can be diagonalized as in (a) above with diagonal entries at u_{0} and v_{0} being p / q and p^{\prime} / q^{\prime} respectively. Suppose that $p^{\prime} \neq 0$ (or $p \neq 0$). Then $d(\Lambda)=\left|p p^{\prime}-q q^{\prime}\right|$.

Proof. (a) We induct on the number of vertices of Γ. Let $\Gamma-\left\{u_{0}\right\}=$ $\Gamma_{1} \Perp \cdots \Perp \Gamma_{k}, k \geqq 1$, with $u_{i} \in \Gamma_{i}$, being joined to u_{0} in Γ. Then each Γ_{i} can be diagonalized in such a way that if p_{i} / q_{i} is the entry at u_{i}, then $d\left(\Gamma_{i}\right)=\left|p_{i}\right|$. By the definiteness, $p_{i} \neq 0$. Hence we can further diagonalize the whole of Γ by taking the diagonal entry at u_{0} as $\Omega_{u_{0}}-\sum_{i=1}^{k}\left(q_{i} / p_{i}\right)=p / q$, say, where $q=$ $p_{1} \cdots p_{k}$. Thus $d(\Gamma)=|\operatorname{det}(\Gamma)|=\left|(p / q) d\left(\Gamma_{1}\right) \cdots d\left(\Gamma_{k}\right)\right|=|p|$ as claimed.
(b) Since $p^{\prime} \neq 0$, using the given diagonalization of Γ and Γ^{\prime} we can further diagonalize Λ, by changing the entry at u_{0} to $p / q-q^{\prime} / p^{\prime}=\left(p p^{\prime}-q q^{\prime}\right) / p^{\prime} q$. If $\Gamma_{1}, \cdots, \Gamma_{k}$ are the branches of Γ at u_{0}, then we have $|p|=d(\Gamma)=\mid(p / q) d\left(\Gamma_{1}\right)$ $\cdots d\left(\Gamma_{k}\right) \mid \quad$ and hence $|q|=d\left(\Gamma_{1}\right) \cdots d\left(\Gamma_{k}\right)$. Hence $d(\Lambda)=d\left(\Gamma_{1}\right) \cdots d\left(\Gamma_{k}\right)$. $\left(\left|p p^{\prime}-q q^{\prime}\right| / p^{\prime} q\right) \cdot d\left(\Gamma^{\prime}\right)=\left|p p^{\prime}-q q^{\prime}\right|$ as required.
11.3. Lemma. Let Γ be a unimodular tree with all weights $\leqq-1, v \in \Gamma$ be a vertex, Γ_{1} be a branch of Γ at v, with $w \in \Gamma_{1}$ joined to v in Γ. Suppose Γ_{1} satisfies the following conditions:
(i) $\#\left(\Gamma_{1}\right)=6, \Omega_{w} \leqq-2$;
(ii) The weight-set $\Omega\left(\Gamma_{1}-\{w\}\right)$ of $\Gamma_{1}-\{w\}$, is one of the following four sets: $\{-2,-2,-2,-2,-2\},\{-3,-2,-2,-2,-2\},\{-3,-3,-2,-2,-2\}$ or $\{-4,-2,-2,-2,-2\}$.
(iii) Γ_{1} is not rational (see 5.2).

Then we have:
(a) Γ_{1} is one of the trees listed in Figure 2.
(b) Γ_{1} is negative definite and we can diagonalize Γ_{1} as in $11.2(\mathrm{a})$ so that if p / q is the entry at w then $|p|=\left|\operatorname{det} \Gamma_{1}\right|=d\left(\Gamma_{1}\right)$.
(c) For $\Omega_{w}=-2, p / q$ takes the values, $-16 / 23,-4 / 17,-4 / 9,-27 / 26$, $-32 / 23,-13 / 17,-13 / 42$ and for $\Omega_{w}=-3, p / q$ takes the values $-39 / 23,-21 / 17$, $-13 / 9,-53 / 26,-55 / 23,-40 / 17,-55 / 42$ respectively. And,
(d) If $\left\{\Lambda_{i}\right\}$ are the maximal twigs of Γ_{1}, not containing w, then $\sum_{i} \operatorname{bk}\left(\Lambda_{i}\right)$ $\leqq-7 / 6$.

Figure 2.

(a)

(b)

(c)

Figure 3.
Proof. Since Γ_{1} is nonrational, by 5.4 , it follows that Γ_{1} should have one of the configurations shown in Figure 3. By 6.3 (i) configuration (a) is ruled out easily. For the same reason, in (b) it follows that the tip u must be same as w, i.e. $u=w$. And then if $v_{1} \in \Gamma_{1}$ is the branch point, the twigs of Γ at v_{1} (which are the twigs of Γ_{1} at v_{1} not containing w) should have coprime discriminants. Thus it is easily seen that Γ_{1} should be either (i) or (ii) of Figure 2.

Finally, in (c) of Figure 3, upto symmetry there are two choices for the location of w, viz., $w=u_{1}$ or $w=u_{2}$. The first choice gives precisely the four possibilities (iii)-(vi) for Γ_{1} and the second choice precisely the last one in Figure 2. This proves statement (a). Statements (b), (c) and (d) are directly checked.
11.4. Lemma. Let Γ be a unimodular tree $v \in \Gamma$ be a vertex at which Γ_{1} is a branch of Γ with $w \in \Gamma_{1}$ being joined to v in Γ. Suppose Γ_{1} satisfies the following conditions:
(i) $\#\left(\Gamma_{1}\right)=7$.
(ii) $\Omega_{w} \leqq-2$ and $\Omega\left(\Gamma_{1}-\{w\}\right)=\{-2,-2,-2,-2,-2,-2\}$ or $\{-3,-2,-2$, $-2,-2,-2\}$ and
(iii) Γ_{1} is not rational.

Then we have;
(a) Γ_{1} is one of the trees listed in Figure 4.A and Figure 4.B.
(b) $\Gamma_{1}-\{w\}$ is negative definite and we can diagonalize Γ_{1}, as in 11.2 (a), so that if p / q is the entry at w, then $d\left(\Gamma_{1}\right)=|p|$.
(c) For $\Omega_{w}=-2, p / q$ takes the values $-3 / 7,-12 / 13,-3 / 22,+4 / 7,-4 / 13$, $-20 / 21,-16 / 13,+1 / 7,+1 / 30,+1 / 42,+1 / 18,+1 / 4,+1 / 10,+4 / 3,16 / 7,4 / 13$ and for $\Omega_{w}=-3, p / q$ takes the values $-10 / 7,-25 / 13,-25 / 22,-3 / 7,-17 / 13$, $-41 / 21,-29 / 13,-6 / 7,-29 / 30,-41 / 42,-17 / 18,-3 / 4,-9 / 10,+1 / 3,+9 / 7$, -9/13 respectively.
(d) If $\left\{\Lambda_{i}\right\}$ are maximal twigs of Γ_{1} not containing w, then $\sum_{i} \operatorname{bk}\left(\Lambda_{i}\right) \leqq$ $-16 / 15$.

Figure 4.A.

Figure 4.B.
Proof. We argue exactly as in 11.3. By 5.4 , first of all we see that the non-rationality of Γ_{1} implies that Γ_{1} has one of the configurations (a)-(h) in Figure 5. We then employ 6.1 repeatedly, taking these configurations, one by one, first to determine the possible locations for w, and then with each such location of w, the possible weights at other vertices.

Figure 5.
The configurations (a), (b) and (d) are quickly ruled out. Configuration (c) is ruled out as follows: Upto symmetry, we may assume that $w=u$. Then the two isolated twigs of Γ_{1} at v_{1} should have weights -2 and -3 respectively.

This forces the third twig at v_{1} to be $[2,2,2]$ with discriminant even. This contradicts 6.1. Configuration (e) gives the possibilities (15) and (16) of Figure 4. In (f), we first see that w should be one of the four tips, which are symmetrical and hence we may assume $w=u_{1}$. Then it follows that $\left\{\Omega_{u_{3}}, \Omega_{u_{4}}\right\}=$ $\{-2,-3\}$, and all other weights are -2 . But now at v_{1}, Γ has two branches, viz. $\left\{u_{2}\right\}$ and $\left\{v_{2}, v_{3}, u_{3}, u_{4}\right\}$ with even discriminants, contradicting 6.1. Thus configuration (f) is also ruled out.

Consider now, the configuration (g). There are, upto symmetry, three different possible locations for w. The possibility $w=v_{1}$ is ruled out easily. The other two possibilities precisely yield the first three configurations in Figure 4.

Finally, consider the configuration (h). If $\Omega\left(\Gamma_{1}-\{w\}\right)=\{-2,-2,-2,-2$, $-2,-2\}$, then upto symmetry there is a unique choice for w, viz., $w=u$. This then yields configuration (14) of Figure 4. Now let $\Omega(\Gamma-\{w\})=\{-3,-2,-2$, $-2,-2,-2\}$. Then upto symmetry, there are six different locations for w. If $w=u$, then the (-3)-curve can be located in six different places. Five of these are listed in (4)-(8), and the sixth one is ruled out easily. For the remaining five locations of w, it is easily seen that the location of (-3)-curve is uniquely determined, giving the trees (9)-(13). This proves statement (a).

Statements (b), (c) and (d) are directly checked. This completes the proof of Lemma 11.4.
§ 12. The case $e_{1} \geqq 1$.
12.0. Returning to the proof of 8.2 , note that we have $\lambda \geqq 2$ (by 9.3), and hence $r_{4}=0, D$ is unimodular, $b_{2}=\beta_{2}$ (by 3.2), and $r_{3}+e_{1}+\sigma+\tau \leqq 2$, by (2.8). By (1.3) we now obtain $K \cdot D \leqq \beta_{2}-6=b_{2}-6$. In this section we shall dispose off the case when $e_{1} \geqq 1$. However, we shall first prove:
12.1. Lemma. Suppose D is unimodular and has no (-1)-curves. Then $b_{2}=$ $b_{2}(D) \geqq 12$.

Proof. Assume on the contrary that, $b_{2} \leqq 11$. Since D is unimodular, each connected component of D is also unimodular. Hence, by 6.2 , it follows that D is connected. Let T be the dual tree of $D ; v_{0} \in T$ be a vertex such that all branches of T at v_{0} have less than six vertices. By 4.1, at least one of them, say T_{1}, is not rational. Hence by $5.4, \#\left(T_{1}\right)=5$, and by $6.4(\mathrm{a})$, there exist $u_{1}, u_{2}, u_{3} \in T_{1}$ which are tips of T such that $\sum_{i=1}^{3} \Omega_{u_{i}} \leqq-10$. It follows that $\Sigma_{u \in T_{1}} \Omega_{u} \leqq-14$. Let $u_{4} \in T_{1}$ be the vertex joined to v_{0} in T. Again, by 4.1, $T-u_{4}$ should have a branch Γ which is non-rational. Since $\#\left(T_{1}-\left\{u_{4}\right\}\right)=4$, it follows that Γ is disjoint from $T_{1}-\left\{u_{4}\right\}$. Clearly $\#(\Gamma) \leqq 6$. Since $\Sigma_{u \in T_{1}} \Omega_{u} \leqq$ -14 , and $K \cdot D \leqq 5$, it follows that all components in Γ are (-2)-curves except
perhaps one which may be a (-3)-curve. Hence by 6.4 , it follows that $\#(\Gamma)=6$, and T should be the tree shown in Figure 6. But then one easily checks that T is not unimodular. This contradiction completes the proof of the lemma.

Figure 6. $d=149$.
12.2. We now claim that $e_{1} \leqq 1$. Assume the contrary that $e_{1}=2$. Then we have $r_{3}=0$ and an equality in (2.8). Hence, by $2.10, K \cdot D=\beta_{2}-6$. Let L_{1}, L_{2} be the two components of $\mathcal{E}_{1}-D$. Then $L_{i} \subseteq R_{2}$ since $r_{3}=0=r_{4}$. We claim that $L_{1} \cap L_{2}=\varnothing$. For, if $L_{1} \cap L_{2} \neq \varnothing$, then, we may assume $L_{1}^{2}=-1$, say, so that $L_{1} \cdot L_{2}=1, \quad L_{2}^{2} \leqq-2$. Since components of D generate Pic $X, L_{2} \cdot D \geqq 1$. Clearly $L_{1} \cdot D=2$. Hence it follows that $\beta\left(L_{2}\right) \geqq 3$ contradicting the observation that $L_{2} \subseteq R_{2}$. So $L_{1} \cap L_{2}=\varnothing$. Now it follows easily that for the curve $C=$ $D \cup L_{1} \cup L_{2}$, we have $b_{1}(C) \leqq 2, K \cdot C \geqq K \cdot D-2=\beta_{2}-8$, and $b_{2}(C)=b_{2}(D)+2=\beta_{2}+2$. Hence

$$
M(X, C) \leqq 4 \beta_{2}+2-1-4-3\left(\beta_{2}+2\right)-\left(\beta_{2}-8\right)=-1
$$

contradicting (1.6). Hence $e_{1} \leqq 1$ as claimed.
For the rest of the section we shall assume that $e_{1}=1$ and hence $b_{0}+\lambda+\sigma$ $+\tau+r_{3} \leqq 4$. Let L_{0} be the unique component of $\mathcal{E}_{1}-D$.
12.3. Suppose first that $L_{0} \subseteq R_{3}$. Then $r_{3} \geqq 1$ and hence $r_{3}=1, b_{0}=1, \lambda=2$, $\sigma+\tau=0$ and we have equality in (2.8). Hence by $2.10, K \cdot D=\beta_{2}-6$. Let D_{1}, D_{2}, D_{3} be the three distinct components of D such that $L_{0} \cdot D_{i}=1$. Suppose first that all the three points $L_{0} \cap D_{i}$ are distinct. Then we claim that $D_{i}^{2} \leqq-3$, for $i=1,2,3$. If not, say, $D_{1}^{2}=-2$. Then, it follows that $D_{1} \subseteq \mathcal{E}_{1}$ and hence $D_{1} \subseteq R_{2}$. This means that D_{1} is an isolated component of D and hence $1=b_{0} \geqq 2$ which is absurd. It follows that after blowing down L_{0}, we obtain the surface X^{\prime}. Indeed we claim that $X^{\prime}=X^{\prime \prime}$. For, first of all $\sigma=0$ implies, by 3.1 , that $\mathcal{E}_{2} \cong D^{\prime}$ has at most one component. Clearly this should be one of $D_{1}^{\prime}, D_{2}^{\prime}$ or D_{3}^{\prime}. But we have just seen that $D_{i}^{2} \leqq-3$ and hence $D_{i}^{\prime 2} \leqq-2$. Hence $X^{\prime}=X^{\prime \prime}$. In particular, it follows that $\beta_{2}=11$ and D has no (-1)-curves. By the lemma above, this contradicts the unimodularity of D.

Hence the three points $L_{0} \cap D_{i}, i=1,2,3$, cannot be all distinct. Since D is $N C$ all the three points cannot coincide. Hence it must be the case that $L_{0} \cap D_{1}$ $=L_{0} \cap D_{2} \neq L_{0} \cap D_{3}$, say. But then for $C=D \cup L_{0}$, we have $b_{1}(C)=1, b_{2}(C)=\beta_{2}+1$, $K \cdot C=K \cdot D-1=\beta_{2}-7$ and hence

$$
M(X, C)=4 \beta_{2}+1-1-4-3\left(\beta_{2}+1\right)-\left(\beta_{2}-7\right)=0 .
$$

We now note that C has tips (since D is not linear) and hence by 1.4 , and 1.6 , we have a contradiction.

Thus, we have shown that $L_{0} \subseteq R_{2}$.
12.4. Now let D_{1} and D_{2} be the components of D such that $D_{i} \cdot L_{0}=1$. We shall first show that $L_{0} \cap D_{1} \neq L_{0} \cap D_{2}$. For, if $L_{0} \cap D_{1}=L_{0} \cap D_{2}$, then for $C=$ $D \cup L_{0}, b_{1}(C)=0, b_{2}(C)=\beta_{2}+1$, and $K \cdot C=K \cdot D-1 \geqq \beta_{2}-8$ by 2.6 and hence

$$
M(X, C) \leqq 4 \beta_{2}-1-4-3\left(\beta_{2}+1\right)-\left(\beta_{2}-8\right)=0
$$

which again leads to a contradiction as above. Hence $L_{0} \cap D_{1} \neq L_{0} \cap D_{2}$. Here again, if $K \cdot D \geqq \beta_{2}-6$, then, as above we will have $M(X, C) \leqq 0$ which leads to a contradiction. So we assume that $K \cdot D \leqq \beta_{2}-7$. If $b_{0}=1$, from (2.10) we see that there is no equality in (2.8) and hence $\sigma+\tau+r_{3}=0$. If $b_{0}>1$, we get $b_{0}+\lambda+\sigma+\tau+r_{3} \leqq 4$. Thus $b_{0}=2, \lambda=2, r_{3}=0, \sigma=0$ and $\tau=0$. Now by 3.1, it follows that $n_{2} \leqq 1$, and $\mathcal{E}_{2} \cong D^{\prime}$.
12.5. Suppose $n_{2}=1$. Let $\mathcal{E}_{2}=\left\{E_{1}^{\prime}\right\}, E_{1}^{\prime 2}=-1$. Since $\tau=0$, there should exist $\left\{D_{i}^{\prime}\right\}_{1 \leq i s s}$, in D^{\prime}, such that $E_{1}^{\prime} \cdot D_{1}^{\prime}=2, E_{1}^{\prime} \cdot D_{i}^{\prime}=1,2 \leqq i \leqq s$. Clearly, after blowing down E_{1}^{\prime}, we obtain the minimal surface $X^{\prime \prime}$. So one can easily see that $K^{\prime} \cdot D^{\prime}$ $=s+\lambda=s+2$ and hence

$$
M\left(X^{\prime}, D^{\prime}\right) \leqq 44+1-b_{0}-4-36-(s+2)=3-s-b_{0} .
$$

Further, since D is not linear, it follows that D^{\prime} has tips. Hence $M\left(X^{\prime}, D^{\prime}\right)>0$, by 1.6, and 1.4. Hence $s=1, b_{0}=1$. Note that E_{1}^{\prime} should meet D_{1}^{\prime} in two distinct points (otherwise $r_{3}>0$).

Thus on $X^{\prime \prime}$, all components of $D^{\prime \prime}$ are smooth except $D_{1}^{\prime \prime}$ which has a node at $\pi_{2}\left(E_{1}^{\prime}\right)=x$, and all the singularities of $D^{\prime \prime}$ are ordinary double point singularities. By 3.1 (i), it follows that $L_{0} \subseteq \pi^{-1}(x)$. So if F is the singular fibre of φ, containing L_{0} it follows that $F-L_{0} \subseteq D$, by 9.3. Hence, the fibre P of $\varphi^{\prime \prime}$, through x is contained in $D^{\prime \prime}$. Since no other component of $D^{\prime \prime}$ passes through x, we conclude that $P_{\text {red }}=D_{1}^{\prime \prime}$. But now we can appeal to 9.7 to conclude that $b_{1}\left(D^{\prime \prime}\right)$ $\geqq 2$ which is absurd, since $\left.b_{1} D^{\prime \prime}\right)=b_{1}\left(D^{\prime}\right)=1$. Thus we have shown that $n_{2}=0$, i. e., $X^{\prime \prime}=X^{\prime}$.
12.6. It follows that D^{\prime} is $\mathrm{NC}, b_{1}\left(D^{\prime}\right)=b_{1}\left(D \cup L_{0}\right)=1, b_{2}\left(D^{\prime}\right)=11, \lambda=2$. Let now $\pi_{1}\left(L_{0}\right)=x \in X^{\prime}$. Then by 9.3, it follows that the fibre P through x of $\varphi^{\prime \prime}\left(=\varphi^{\prime}\right)$ is contained in $D^{\prime \prime}=D^{\prime}$. Since $b_{1}\left(D^{\prime \prime}\right)=1$, by 9.7 , we conclude that P is of type II*. Further more, if $H_{1}^{\prime \prime}$ and $H_{2}^{\prime \prime}$ are the two horizontal components, then since $\lambda=2$, we have $H_{i}^{\prime \prime} \cdot K^{\prime \prime}=1, i=1,2$. Hence $H_{i}^{\prime \prime} \cdot P=6$. Again, using the fact that $D^{\prime}=D^{\prime \prime}$ is NC and $b_{1}\left(D^{\prime \prime}\right)=1$, we infer that one of the horizontal

Figure 7. The fibre $P=I I^{*}$.

(c)

(e)

(g)

Figure 8.
components say $H_{1}^{\prime \prime}$ meets $D_{0}^{\prime \prime}$ transversely, where $D_{0}^{\prime \prime}$ is the component of P with $\mu\left(D_{0}^{\prime \prime}\right)=6$. The other component $H_{2}^{\prime \prime}$ will meet two (not necessarily distinct) components $D_{i}^{\prime \prime}$ and $D_{j}^{\prime \prime}$ of P transversely, so that $\mu\left(D_{i}^{\prime \prime}\right)+\mu\left(D_{j}^{\prime \prime}\right)=6$. This yields eight possible configuration for the dual graph of D^{\prime}, as shown in Figure 8. Consider the configuration (a). It follows that if D_{0} is the proper transform of $D_{0}^{\prime \prime}$ on X, then D has two branches [3] and [2,2] at D_{0} both having discriminant 3 . This contradicts 6.1. Thus configuration (a) is ruled out. Exactly for the same reason, (b), (c), (d) and (e) are also ruled out. In (f), D will have two branches [3] and [2,2,2,2,2] at D_{0} with discriminants 3 and 6 respectively. This again contradicts 6.1 . In (g) and (h), we consider the curve $C=$ $D^{\prime \prime}-D_{0}^{\prime \prime}$. Then $b_{0}(C)=3, b_{1}(C)=0, b_{2}(C)=10, K \cdot C=2$, and so

$$
M\left(X^{\prime \prime}, C\right)=40-3-4-30-2=1
$$

If T_{1}, T_{2} and T_{3} denote the components of C, then by $10.4, \mathrm{bk}(C)=\Sigma \mathrm{bk}\left(T_{i}\right)$ $<-2-4 / 3-(1 / 2+1 / 2+1 / 2)<-4$. Hence by 1.6 and 10.5 , we have,

$$
0 \leqq M\left(X^{\prime \prime}, C\right)+\frac{1}{4} N^{2} \leqq 1+\mathrm{bk}(C)<1-1=0
$$

which is absurd.
This proves that $e_{1}=0$.
§ 13. The case $r_{3}=0$.
13.0. We shall now dispose of the case $r_{3}=0$. Since D is MNC, $r_{3}=r_{4}=$ $e_{1}=0$ implies that $n_{1}=0$, i. e., $X=X^{\prime}$, and D is free from (-1)-curves. By 12.1, it follows that $\beta_{2}=b_{2} \geqq 12$ and hence $n_{2} \geqq 2$. Hence, by 3.1, it follows that $\sigma \geqq 2$ and hence $\sigma=2$, and $n_{2}=2$. Let $\mathcal{E}_{2}=\left\{E_{1}^{\prime}, E_{2}^{\prime}\right\}$.
13.1. Suppose $E_{1}^{\prime} \cap E_{2}^{\prime}=\varnothing$. Then, it follows that $E_{1}^{\prime 2}=E_{2}^{\prime 2}=-1$. Since $\tau=0$ (and $n=2$), $m_{t, i}=2$ for all (t, i). Hence both E_{i}^{\prime} are outside D. Also it follows that there exist $\left\{D_{i, j}^{\prime}\right\}_{1 \leqq j \leq s_{i}} \cong D^{\prime}$ such that $E_{i}^{\prime} \cdot D_{i, 1}^{\prime}=2, E_{i}^{\prime} \cdot D_{i, j}^{\prime}=1,2 \leqq j \leqq s_{i}, s_{i} \geqq 1$, for $i=1,2$. Note that for a fixed $i, D_{i, j}^{\prime}$ are distinct. Now, there is an equality in (2.8) and hence $K \cdot D=\beta_{2}-6=6$. On the other hand using the fact that $\lambda=2$, one also computes easily that $K \cdot D=s_{1}+s_{2}+4$. Hence $s_{1}=s_{2}=1$. Now for the curve $C=D^{\prime} \cup E_{1}^{\prime} \cup E_{2}^{\prime}$, we have $b_{0}(C)=1, \quad b_{1}(C) \leqq 2, \quad b_{2}(C)=b_{2}\left(D^{\prime}\right)+2=14$ and $K \cdot C=4$. Hence,

$$
M\left(X^{\prime}, C^{\prime}\right) \leqq 48+2-1-4-42-4=-1
$$

contradicting (1.6).
13.2. Hence $E_{1}^{\prime} \cap E_{2}^{\prime} \neq \varnothing$ and we may assume that $E_{1}^{\prime 2}=-1, E_{1}^{\prime} \cdot E_{2}^{\prime}=1, E_{2}^{\prime 2}=$ -2. Again by 3.1, $E_{i}^{\prime} \not \subset D^{\prime}$, and there exist components $\left\{D_{i, j}^{\prime}\right\}$ of D^{\prime} such that $E_{1}^{\prime} \cdot D_{1,1}^{\prime}=2, \quad E_{1}^{\prime} \cdot D_{1, j}^{\prime}=1,2 \leqq j \leqq s_{1}, \quad\left(s_{1} \geqq 1\right)$, and $E_{2}^{\prime} \cdot D_{2, j}^{\prime}=1$, for $1 \leqq j \leqq s_{2}, \quad s_{2} \geqq 0$.

Now for the curve $C=D^{\prime} \cup E_{1}^{\prime} \cup E_{2}^{\prime}$, it follows that, $b_{0}(C)=1, b_{1}(C) \leqq s_{1}+s_{2}, b_{2}(C)$ $=14$, and $K \cdot C=2 s_{1}+s_{2}+3$. Hence,

$$
M\left(X^{\prime}, C\right) \leqq 48+s_{1}+s_{2}-1-4-42-\left(2 s_{1}+s_{2}+3\right)<0
$$

contradicting (1.6).
Thus, we have shown that $r_{3} \geqq 1$.
$\S 14$. The case $r_{3}=1=\sigma$.
14.0. So far we have proved that $r_{4}=e_{1}=0$ and $r_{3} \geqq 1$. Hence $\sigma \leqq 1$. In this section we shall show that $\sigma=0$. Assuming that $\sigma=1$, we have $r_{3}=1$, $b_{0}=1, \lambda=2, \tau=0, b_{2}=\beta_{2}, K \cdot D=\beta_{2}-6$, etc. from (2.8). Let L_{0} be the unique (-1)-curve in R_{3}. Note that since $e_{1}=0,\left\{L_{0}\right\}=R_{3} \subset D$. Let L_{1}, L_{2}, L_{3} be the three components of D such that $L_{0} \cdot L_{i}=1$.
14.1. Suppose $L_{i}^{2} \leqq-3, i=1,2,3$. Then, it follows that after blowing-down L_{0}, we obtain X^{\prime}. Now $\sigma=1$ implies, by 3.1, that $\mathcal{E}_{2}=\left\{E^{\prime}\right\}$ is not contained in D, and there exist components $\left\{D_{i}^{\prime}\right\}$ of D^{\prime} such that $E^{\prime} \cdot D_{1}^{\prime}=2$, and $E_{1}^{\prime} \cdot D_{j}^{\prime}=1$, $2 \leqq j \leqq s, s \geqq 1$. It follows that $\beta_{2}\left(X^{\prime}\right)=11=b_{2}\left(D^{\prime}\right)$. Since $\lambda=2$, one easily computes that $K^{\prime} \cdot D^{\prime}=s+3, K \cdot D=s+5=\beta_{2}-6=6$. Hence, $s=1$. Take $C^{\prime}=D^{\prime} \cup E^{\prime}$. Then $K^{\prime} \cdot C^{\prime}=3, b_{1}\left(C^{\prime}\right) \leqq 1$, and hence

$$
M\left(X^{\prime}, C^{\prime}\right) \leqq 44+1-1-4-36-3=1
$$

Now consider the (nontrivial) contraction $\varphi_{1}: X \rightarrow X^{\prime}$. After blowing up at $E^{\prime} \cap D_{1}^{\prime}$ if necessary, we obtain a contraction $\alpha: \tilde{X} \rightarrow X$ such that $\tilde{C}=\alpha^{-1}(C)$ is NC. Then $M(\tilde{X}, \tilde{C}) \leqq M(X, C)$. And as in the proof of 1.7 we see that $M(X, C)$ $\leqq M\left(X^{\prime}, C^{\prime}\right)-1 \leqq 0$. Hence $M(\tilde{X}, \tilde{C}) \leqq 0$. On the other hand since C has tips so does \tilde{C}. Hence by (1.4) and (1.6) $M(\tilde{X}, \tilde{C})>0$, which is absurd.

Thus, it follows that $L_{i}^{2}=-2$, for some $i=1,2,3$, say $L_{3}^{2}=-2$. Since $r_{3}=1$, it follows that $L_{3} \subseteq R_{2}$ and hence L_{3} should be a tip of D. Clearly $L_{1}^{2} \leqq-3$, and $L_{2}^{2} \leqq-3$.
14.2. Now, suppose that $L_{1}^{2} \leqq-4, L_{2}^{2} \leqq-4$. Then, it follows that after blowing down L_{0} and then L_{3}, we obtain X^{\prime}. Now arguing exactly as in 14.1, we obtain $\left\{E_{1}^{\prime}\right\}=\mathcal{E}_{2}, E_{1}^{\prime} \not \subset D^{\prime}$ etc., and for $C^{\prime}=D^{\prime} \cup E_{1}^{\prime}, M\left(X^{\prime}, C^{\prime}\right) \leqq 1$ which leads to a contradiction, as above. Hence we may assume that $L_{2}^{2}=-3$, so that the image L_{2}^{\prime} of L_{2} on X^{\prime}, is a (-1)-curve. Note that $L_{1}^{\prime} \cdot L_{2}^{\prime}=2, L_{1}^{\prime} \cap L_{2}^{\prime}=\{x\}$, say. By 3.1, it follows that \mathcal{E}_{2} consists of one more component, besides L_{2}^{\prime}, say, $\mathcal{E}_{2}=\left\{E_{1}^{\prime}, L_{2}^{\prime}\right\}$ and we must have one of the following two cases:
(a) E_{1}^{\prime} and L_{2}^{\prime} are disjoint, $E_{1}^{\prime 2}=-1$, and $E_{1}^{\prime} \not \subset D^{\prime}$, or
(b) $E_{1}^{\prime} \cdot L_{2}^{\prime}=1, E_{1}^{\prime 2}=-2$, and $E_{1}^{\prime} \subset D^{\prime}$.
14.3. Consider the case (a) above. It follows that there exist components $\left\{D_{i, j}^{\prime}\right\}_{1 \leq j \leq s_{1}}$ of D^{\prime} with $E_{1}^{\prime} \cdot D_{1,1}^{\prime}=2, E_{1}^{\prime} \cdot D_{1, j}^{\prime}=1,2 \leqq j \leqq s_{1}, s_{1} \geqq 1$. Let $\left\{D_{2, j}^{\prime}\right\}_{1 \leqq j \leq s_{2}}$, be the components of D^{\prime}, such that $L_{2}^{\prime} \cdot D_{2, j}^{\prime}=1$. (Clearly $D_{2, j}^{\prime} \neq L_{1}^{\prime}$.) Then one easily computes that $K^{\prime} \cdot D^{\prime}=2+\left(s_{1}-1\right)+2+s_{2}+2-1=s_{1}+s_{2}+4$. Again take $C^{\prime}=D^{\prime} \cup E_{1}^{\prime}$. Then $K^{\prime} \cdot C^{\prime}=K^{\prime} \cdot D^{\prime}-1=s_{1}+s_{2}+3, b_{1}\left(C^{\prime}\right) \leqq s_{1}$ and hence $M\left(X^{\prime}, C^{\prime}\right)$ $=48+s_{1}-1-4-39-\left(s_{1}+s_{2}+3\right)=1-s_{2} \leqq 1$. This again leads to a contradiction as in 14.1, using the fact that C^{\prime} has tips.
14.4. Consider the case (b). Let now, $\left\{D_{1, j}^{\prime}\right\}$ and $\left\{D_{2, j}^{\prime}\right\}$ be components of D^{\prime} such that $D_{2, j}^{\prime} \cdot L_{2}^{\prime}=1, D_{2, j}^{\prime} \neq E_{1}^{\prime}, 1 \leqq j \leqq s_{2}, s_{2} \geqq 0 . \quad D_{1, j}^{\prime} \cdot E_{1}^{\prime}=1, D_{1, j}^{\prime} \neq L_{2}^{\prime}, 1 \leqq j \leqq$ $\leqq s_{1}, s_{1} \geqq 0$. Again, one easily, computes that $K \cdot D=s_{1}+2 s_{2}+8=\beta_{2}-6=8$, and hence $s_{1}=0=s_{2}$. In particular, it follows that E_{1}, the proper transform of E_{1}^{\prime} on X is a (-2)-curve and is a tip of D, and L_{2} intersects only E_{1} and L_{0}. Thus the curve $C=D-\left\{L_{0}\right\}$ has three connected components T_{1}, T_{2}, T_{3} say, where $T_{3}=\left\{L_{3}\right\}=[2]$, and $T_{2}=\left\{L_{2} \cup E_{1}\right\}=[2,3]$. On the other hand we have:

$$
M(X, C)=56-3-4-39-9=1
$$

Hence, by 10.5 , and $1.6, \mathrm{bk}(C) \geqq-4$. On the other hand $\mathrm{bk}(C)=\Sigma \mathrm{bk}\left(T_{i}\right)=$ $\mathrm{bk}\left(T_{1}\right)-7 / 5-2$. We shall presently show that $\mathrm{bk}\left(T_{1}\right)<-3 / 5$ which leads to a contradiction.

As before, by 4.1, it follows that T_{1} is non-rational, and hence has at least three tips. One easily sees that $L_{1}^{\prime \prime}$ is horizontal and so $L_{1}^{\prime \prime} \cdot K^{\prime \prime}>0$. Since there is another horizontal component in $D^{\prime \prime}$, say, $L_{4}^{\prime \prime}$, it follows that $L_{1}^{\prime \prime} \cdot K^{\prime \prime}=L_{4}^{\prime \prime} \cdot K^{\prime \prime}$ $=1(\lambda=2)$. It follows that $L_{1}^{2}=-9$ and $L_{4}^{2}=-3$, and all other components of T_{1} are (-2)-curves. Hence by $10.4, \mathrm{bk}\left(T_{1}\right) \leqq-(1 / 9+1 / 3+1 / 2)<-3 / 5$ as required.

This completes the proof of the claim $\sigma=0$.
14.5. Remark. At this stage, it is not hard to see that there are only finitely many possibilities for the dual graph T of D.
§ 15. The case $r_{3}=1$.
15.0. To sum-up, so far, we have proved that $r_{4}=e_{1}=\sigma=0$ and $r_{3} \geqq 1$. Of course, $3 \geqq \lambda \geqq 2, b_{2}=\beta_{2}, b_{0} \geqq 1, b_{0}+r_{3}+\tau+\lambda \leqq 5$. In this section we shall dispose off the case $r_{3}=1$. So, assume now that $r_{3}=1$, so that $b_{0}+\tau+\lambda \leqq 4$. Since $\sigma=0$, by 3.1, there is a unique (-1)-curve L_{0} on $X,\left\{L_{0}\right\}=R_{3} \subset D$ and there are precisely three components of D which meet L_{0}, say, $L_{i} \cdot L_{0}=1, i=1,2,3$.

Again, by 3.1, it follows that either $\mathcal{E}_{2}=\varnothing$ or $\mathcal{E}_{2}=\left\{E_{1}^{\prime}\right\} \subset D^{\prime}$. In 15.1-15.4 we shall show that \mathcal{E}_{1} has at least two components. Equivalently, we will show that one of the $L_{i}, i=1,2,3$, is a (-2 -curve. Then in $15.5-15.9$ we will show that $\mathcal{E}_{2} \neq \varnothing$ and in the rest of the section we investigate the case when $\mathcal{E}_{2} \neq \varnothing$.

For a tree Γ of smooth rational curves let us introduce the notation:

$$
\lambda(\Gamma):=-\sum_{C \in \Gamma}\left(C^{2}+2\right)=\sum_{C \in \Gamma}(C \cdot K)
$$

15.1. So, assume that $L_{i}^{2} \leqq-3$ for $i=1,2,3$. It follows that after blowingdown L_{0}, we obtain the surface $X^{\prime}=X^{\prime \prime}$, (using 3.1). Since $b_{1}\left(D^{\prime}\right)=b_{1}(D)=0$, it follows from 9.7 (or otherwise) that not all L_{i} are (-3)-curves, $i=1,2,3$. (For, if so, $L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}$ will be a full fibre of $\varphi^{\prime \prime}$ contained in $D^{\prime \prime}$.) Thus $L_{i}^{2} \leqq-4$ for some $i=1,2,3$.
15.2. Let now T_{1}, T_{2}, T_{3} be the branches of T at L_{0}, with $L_{i} \in T_{i}, i=$ $1,2,3$. As argued in 12.1, it follows from 4.1 that one of the T_{i} say T_{1}, is non-rational. Since $\lambda \leqq 3$, it follows, from 5.4 and 6.4 that $\#\left(T_{1}\right) \geqq 6$. Since $\#(T)=b_{2}(D)=11$, one easily checks that $T_{2} \cup\left\{L_{0}\right\} \cup T_{3}$ is rational. Hence, again by 4.1, it follows that $T_{1}-\left\{L_{1}\right\}$ should have a branch Γ_{1} which is non-rational, and then again $\#\left(\Gamma_{1}\right) \geqq 6$. Since $L_{i}^{2} \leqq-4$ for some i, it follows that $\lambda\left(\Gamma_{1}\right) \leqq 2$.
15.3. Suppose $\#\left(\Gamma_{1}\right)=6$. By Lemma 11.3, it follows that Γ_{1} is one of the trees in Figure 2 where w is the vertex joined to L_{1}, in T_{1}. Using 6.1, we list the possibilities for $\Gamma_{1}^{\prime}=T-\Gamma_{1}$ in Figure 9 . We see that these trees can be diagonalized in such a way that if p^{\prime} / q^{\prime} is the entry at L_{1} then $d\left(\Gamma_{1}^{\prime}\right)=\left|p^{\prime}\right|$, and p^{\prime} / q^{\prime} has values $-3 / 8,-11 / 8,-11 / 13,-6 / 13,-1 / 7,-1 / 4,-4 / 7,-8 / 7$, $-5 / 4,-1 / 10,-4 / 15,-11 / 10$ and $-5 / 14$. With p / q given by Lemma 11.3 , using 11.2 , we see that $d(T)=\left|\not p^{\prime}-q q^{\prime}\right| \neq 1$, for any of these values.

Figure 9.
15.4. Thus we have shown that $\#\left(\Gamma_{1}\right) \geqq 7$. Indeed $\#\left(\Gamma_{1}\right)=7$, $\#\left(T_{1}\right)=8$, so that $\#\left(T_{2}\right)=\#\left(T_{3}\right)=1$. We can now apply 11.1 (a) with $Y=X^{\prime}, C_{i}=L_{i}^{\prime}, i \geqq 1$ and C_{0} as the image of the curve dual to $w \in \Gamma_{1}$. Since $\lambda \leqq 3$, one easily sees that the triple $\left(a_{1}, a_{2}, a_{3}\right)=\left(-L_{1}^{\prime 2},-L_{2}^{\prime 2},-L_{3}^{\prime 2}\right)$ is one of the six triples mentioned in 11.1(a). Since K^{\prime} is supported on D^{\prime}, this leads to a contradiction by 11.4.

Thus as claimed in 15.0, one of the L_{i} is a (-2)-curve, say, $L_{3}^{2}=-2$. Then clearly $L_{1}^{2} \leqq-3 ; L_{2}^{2} \leqq-3$. We shall now show (in 15.5-15.9) either L_{1} or L_{2} is a (-3)-curve.
15.5. Suppose that $L_{1}^{2} \leqq-4, L_{2}^{2} \leqq-4$. Clearly, $R_{3}=\left\{L_{0}\right\}$, and so $T_{3}=\left\{L_{3}\right\}$ $=[2]$. After blowing-down L_{0} and L_{3} we obtain the surface $X^{\prime}=X^{\prime \prime}$. So $b_{2}=$ 12. As before, using 9.7, we see that not both L_{1} and L_{2} are (-4)-curves. By 4.1, either T_{1} or T_{2}, say T_{1} is non-rational, and again by 5.4 and 6.4 , $\#\left(T_{1}\right)$ $\geqq 6$, so that $\#\left(T_{2} \cup\left\{L_{0}, L_{3}\right\}\right) \leqq 6$. So one easily sees that $T_{2} \cup\left\{L_{0}, L_{3}\right\}$ is rational and hence, again by 4.1, $T_{1}-\left\{L_{1}\right\}$ should have a branch Γ_{1} which is non-rational and as before $\#\left(\Gamma_{1}\right) \geqq 6$. Let $u_{0} \in \Gamma_{1}$ be the vertex joined to L_{1} in T. Since $L_{1}^{\prime \prime 2}+L_{2}^{\prime \prime 2} \leqq-5$, it follows that $\lambda\left(\Gamma_{1}\right) \leqq \lambda-1$.
15.6. Suppose further that $\lambda=3$. Then we have $K \cdot D=12-6=6$. Hence, for $C=D-\left\{L_{0}\right\}$, we have $K \cdot C=7, b_{0}(C)=3, b_{1}(C)=0, b_{2}(C)=11$. Hence $M(X, C)$ $=48-3-4-33-7=1$. By 1.6 and 10.5 , it follows that $\operatorname{bk}(C) \geqq-4$. On the other hand $\operatorname{bk}(C)=\operatorname{bk}\left(T_{1}\right)+\operatorname{bk}\left(T_{2}\right)-2$. Below, we shall show in 15.7, that $\mathrm{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)<-2$ which is absurd, thus proving that $\lambda=2$.
15.7. Clearly, $\left\{-L_{1}^{\prime \prime 2},-L_{2}^{\prime \prime 2}\right\}=\{2,3\},\{3,3\},\{2,4\} .\left(\lambda\left(\Gamma_{1}\right)>0\right.$, for otherwise Γ_{1} will be contained in a fibre of $\varphi^{\prime \prime}$, hence rational. Thus $\left\{-L_{1}^{\prime \prime 2},-L_{2}^{\prime \prime 2}\right\} \neq$ $\{3,4\}$.) Accordingly, $\left\{-L_{1}^{2},-L_{2}^{2}\right\}=\{4,5\},\{5,5\},\{4,6\}$. Thus it follows that the weight set $\Omega\left(T_{1} \cup T_{2}\right)$ is one of the following:

$$
\begin{aligned}
& \{-5,-4,-3,-3,-2,-2,-2,-2,-2,-2\} \\
& \{-5,-4,-4,-2,-2,-2,-2,-2,-2,-2\} \\
& \{-5,-5,-3,-2,-2,-2,-2,-2,-2,-2\} \text { or } \\
& \{-4,-6,-3,-2,-2,-2,-2,-2,-2,-2\}
\end{aligned}
$$

Suppose $T_{1} \cup T_{2}$ has at least six tips. Then by 10.4 it follows that $\operatorname{bk}\left(T_{1} \cup T_{2}\right) \leqq-\sum_{i=1}^{6}\left(1 / a_{i}\right)$, for some $\left\{a_{1}, \cdots, a_{6}\right\} \subset \Omega\left(T_{1} \cup T_{2}\right)$, which is easily seen to be less than -2 . So we may assume that $T_{1} \cup T_{2}$ has fewer than six tips.

Suppose $\#\left(\Gamma_{1}\right)=6$. Then by 11.3 , it follows that T_{1} has at least 4 tips. Hence $t_{2}=\#\left(T_{2}\right)=1$. This means $T_{2}=[5], \operatorname{bk}\left(T_{2}\right)=-4 / 5$. And it is easily checked that $\operatorname{bk}\left(\Gamma_{1}\right)<-6 / 5$ as desired. So we may assume that $\#\left(\Gamma_{1}\right) \geqq 7$.

Suppose $\lambda\left(\Gamma_{1}\right) \leqq 1$. If $t_{2}=2$ then by 11.4, it follows that $T_{1} \cup T_{2}$ has at least six tips, except in the case (1) or (2) of 11.4. In these two cases we directly check that $d(T) \neq \pm 1$, for various possibilities of T. If $t_{2}=1$, then $T_{2}=[5]$ and one easily verifies that $\mathrm{bk}\left(T_{1}\right)<-6 / 5$. Hence $\lambda\left(\Gamma_{1}\right)=2$.

Now let $t_{2} \neq 1$. Since $\lambda\left(\Gamma_{1}\right)=2$ it follows that $\left\{-L_{1}^{\prime \prime 2},-L_{2}^{\prime \prime 2}\right\}=\{2,3\}$ and hence we can apply $4.3(2)$ with $L_{2}^{\prime \prime}=C_{3}, \quad L_{1}^{\prime \prime}=C_{2}$, to conclude that $\Gamma_{1}-\left\{u_{0}\right\}$ should have branch Γ_{2} which is not rational, where $u_{0} \in \Gamma_{1}$ is the vertex joined L_{1} in $T_{1} ; \#\left(\Gamma_{2}\right) \geqq 6$, and hence $\#\left(\Gamma_{2}\right)=6$. Again, by Lemma 11.3, it follows that ($T_{1} \cup T_{2}$) has at least six tips. Hence we must have $t_{2}=1$.

It follows that $T_{2}=\left\{L_{2}\right\}=[5]$, so that $\operatorname{bk}\left(T_{2}\right)=-4 / 5$. Thus we have to show that $\operatorname{bk}\left(T_{1}\right)<-6 / 5$. Looking at $\Omega\left(T_{1}\right)$, this is obvious if T_{1} has at least four tips. Thus, since T_{1} is non-rational, we have to consider the case when T_{1} has precisely three tips. Let $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ be its maximal twigs. Since $T_{1}-\left\{L_{1}\right\}$ is also nonrational, we may assume that $L_{1} \in \Lambda_{1}$. Further, if Λ_{2} and Λ_{3} consist of only (-2 -curves then by 6.1 , it follows that $\#\left(\Lambda_{2}\right)+\#\left(\Lambda_{3}\right) \geqq 3$ and hence $\mathrm{bk}\left(\Lambda_{2}\right)+\mathrm{bk}\left(\Lambda_{3}\right) \leqq-(1 / 2+2 / 3)$ so that $\mathrm{bk}\left(T_{1}\right) \leqq-(1 / 2+2 / 3+1 / 6)<-6 / 5$. So we may assume that Λ_{2} has a (-3) or (-4)-curve. In particular, it follows that $L_{1}^{2} \neq-6$, i. e. $L_{1}^{\prime \prime 2}=-2$ or -3 .

Thus we apply 4.3 (1) with $Y=X^{\prime \prime}, C_{3}=L_{2}^{\prime \prime}$ and $C_{2}=L_{1}^{\prime \prime}$. Along with 4.1, this implies that $\Gamma_{2}=T_{1}-\left\{L_{1}, u_{0}\right\}$ is nonrational where u_{0} is the vertex joined to L_{1}, in T_{1}. Note that $\#\left(\Gamma_{2}\right)=7$ and hence by 5.4 it follows that T_{1} itself has the configuration as shown in Figure 10. Further if $L_{1}^{2}=-5$, then $\lambda\left(\Gamma_{2}\right) \leqq 1$ and so, by $11.4 \Gamma_{2}$ is (1) or (2) of Figure 4. Hence $\operatorname{bk}\left(\Lambda_{2}\right)+\operatorname{bk}\left(\Lambda_{3}\right) \leqq-16 / 15$ and hence $\operatorname{bk}\left(T_{1}\right) \leqq-16 / 15-1 / 5<-6 / 5$. Finally, if $L_{1}^{2}=-4$, then it follows that $\Lambda_{2}=[4,2],[3,3]$ or $[3,2]$, and hence $\Lambda_{3}=[2,2]$ always (using 6.1). But then $\mathrm{bk}\left(T_{1}\right) \leqq-(1 / 4+2 / 7+2 / 3)<-6 / 5$ as desired, in 15.6.

Figure 10.
15.8. Thus we have $\lambda=2$, and so $\lambda\left(\Gamma_{1}\right) \leqq 1$. Suppose, now that $\#\left(\Gamma_{1}\right)=6$. Then by 11.3, Γ_{1} should be as in (iii) of Figure 2, with $u_{0}=w, \Omega_{w}=-2 . d\left(\Gamma_{1}\right)$ $=4$, and $\lambda\left(\Gamma_{1}\right)=1$. Hence we have $\left\{L_{1}^{\prime \prime 2}, L_{2}^{\prime \prime 2}\right\}=\{-2,-3\}$, i.e. $\left\{L_{1}^{2}, L_{2}^{2}\right\}=$ $\{-4,-5\}, L_{0}^{2}=-1$ and all other components of $\Gamma_{1}^{\prime}=T-\Gamma_{1}$ are (-2)-curves. Also, since $d\left(\Gamma_{1}\right)=4$, by 6.1, all other branches of T at L_{1} should have odd discriminants. Using 6.1, at other vertices of T also, it follows that the only possibility for T is the one shown in Figure 11. But one easily checks that even this tree is not unimodular. Hence $\#\left(\Gamma_{1}\right) \geqq 7$.

Figure 11.
15.9. We now apply 4.3, with $Y=X^{\prime \prime}, C_{1}$ as the component dual to $u_{0} \in \Gamma_{1}$, $C_{2}=L_{1}^{\prime \prime}$ and $C_{3}=L_{2}^{\prime \prime}$. It follows that $\Gamma_{1}-\left\{u_{0}\right\}$ has a branch Γ_{2} which is nonrational, $\#\left(\Gamma_{2}\right) \geqq 6$. Let $u_{1} \in \Gamma_{2}$ be the vertex joined to u_{0}. If $\#\left(\Gamma_{2}\right)=6$, then Γ_{2} is as in (iii) of Figure 2 with $u_{1}=w, \Omega_{w}=-2, d\left(\Gamma_{2}\right)=4$. Arguing as in 15.8 it follows that $\Gamma_{2}^{\prime}=T-\Gamma_{2}$ is one of the configurations shown in Figure 12. We can diagonalize each of these tree, with the diagonal entry p^{\prime} / q^{\prime} at u_{0} taking the values $1 / 1,+1 / 2$ and $+4 / 1$ respectively, where as the diagonal entry p / q at $u_{1}=w$, for Γ_{2} is $-4 / 9$. Hence $d(T)=\left|\not p^{\prime}-q q^{\prime}\right| \neq 1$, which proves that $\#\left(\Gamma_{2}\right) \geqq 7$.

Figure 12.
Thus $\#\left(\Gamma_{2}\right)=7 ; \#\left(T_{1}\right)=9$, so that L_{2}, L_{3} are tips of T and hence by 6.1, L_{2}^{2} is odd and so $L_{2}^{2}=-5$. Lemma 11.4 gives various possibilities for Γ_{2} with $w=u_{1}$. Since Γ_{2} is non-rational, $\lambda\left(\Gamma_{2}\right)>0$ and hence $\lambda\left(\Gamma_{2}\right)=1$. Then Γ_{2}^{\prime} should be the tree in Figure 13. We can diagonalize this with diagonal entry p^{\prime} / q^{\prime}, at u_{0} given by $p^{\prime} / q^{\prime}=-1 / 2$. Using the value of p / q from 11.4 , we see that $d(T)=\left|p p^{\prime}-q q^{\prime}\right| \neq 1$, for any of the values of p / q. This contradiction, then proves that either $L_{1}^{2}=-3$ or $L_{2}^{2}=-3$, as claimed in 15.4.

Figure 13.
15.10. Thus in the remaining paragraphs we shall assume that $L_{2}^{2}=-3$. It follows that after blowing down L_{0}, L_{3} and L_{2} successively, we obtain $X^{\prime \prime}$. The image $L_{1}^{\prime \prime}$ of L_{1} is a rational curve with a cusp; $L_{1}^{\prime \prime 2}+L_{1}^{\prime \prime} \cdot K^{\prime \prime}=0$. We claim that either $\lambda=3$ and L_{2} is a tip of D or $\lambda=2$ and L_{2} is linear in D (i. e., L_{2}
meets at most two components of D). For if L_{2} meets s components of D, then one easily computes that $K \cdot D=\lambda+s+3$. On the other hand $K \cdot D \leqq \beta_{2}-6=7$ and $K \cdot D=\beta_{2}-6$ if $\lambda=3$ (by 2.8 and 2.10). Hence $s \leqq 4-\lambda$ which proves the claim.

In particular, through the cusp of $L_{1}^{\prime \prime}$ there passes at most one other component of $D^{\prime \prime}$. Hence by 9.7 , we conclude that $L_{1}^{\prime \prime}$ is horizontal ; $L_{1}^{\prime \prime} \cdot K^{\prime \prime}=1$ or 2. Accordingly, $L_{1}^{2}=-7$ or -8 . In 15.11, below we shall dispose off, the case $\lambda=3$.
15.11. Assume now that $\lambda=3$. As seen above, L_{2} is a tip of D. We now apply (1.3) to $C=D-\left\{L_{0}\right\}$. Letting T_{1}, T_{2}, T_{3} denote the three branches of C, as before, this yields; $-4 \leqq \operatorname{bk}(C) \leqq \operatorname{bk}\left(T_{1}\right)-4 / 3-2$, and hence $\operatorname{bk}\left(T_{1}\right) \geqq-2 / 3$.

On the other hand, it follows that $L_{1}^{\prime \prime}$ is horizontal. Since $\lambda=3$ and there is at least one more horizontal component of $D^{\prime \prime}$, which is of course a smooth rational curve, it follows that the weight set $\Omega\left(T_{1}\right)$ is one of the following :

$$
\begin{aligned}
& \{-8,-3,-2,-2,-2,-2,-2,-2,-2,-2\} \\
& \{-7,-4,-2,-2,-2,-2,-2,-2,-2,-2\} \text { or } \\
& \{-7,-3,-3,-2,-2,-2,-2,-2,-2,-2\}
\end{aligned}
$$

Moreover T_{1} is non-rational and hence it has at least three tips. Hence, as seen before, $\operatorname{bk}\left(T_{1}\right)<-2 / 3$. This contradiction shows that $\lambda=2$.
15.12. So, from now on, we have $\lambda=2$. In $15.12-15.14$, we shall show that L_{2} is a tip of D. Assuming the contrary, as seen in 15.10, it follows that L_{2} will meet another component, say $L_{4}, L_{2} \cdot L_{4}=1$, and $L_{4}^{2}=-3$ or $-4 ; L_{1}^{2}=-7$ (because there is one more horizontal curve) $K \cdot D=\lambda+s+3=7$. Hence for $C=$ $D-\left\{L_{0}\right\}$, by (1.3), we obtain, $\operatorname{bk}(C) \geqq-4$. We shall show that $\operatorname{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)$ <-2 thereby arriving at a contradiction and proving that L_{2} is a tip.

Note that the weight set

$$
\begin{aligned}
\Omega\left(T_{1} \cup T_{2}\right)= & \{-7,-4,-3,-2,-2,-2,-2,-2,-2,-2,-2\} \text { or } \\
& \{-7,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2\} .
\end{aligned}
$$

Hence, if $T_{1} \cup T_{2}$ has more than five tips then clearly $\mathrm{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)<-2$ (by 10.4). So we shall assume that $T_{1} \cup T_{2}$ has at most five tips and hence at least one of them is linear. On the other hand, at least one of them is non-rational and hence $T_{1} \cup T_{2}$ has at least four tips.
15.13. Assume first that T_{2} is linear. Then T_{2} has two tips and so T_{1} has three tips, $T_{1}-\left\{L_{1}\right\}$ has a non-rational branch Γ_{1} and hence Γ_{1} also has three tips. By 11.3, it follows that $\#\left(\Gamma_{1}\right) \geqq 7$, and if $\#\left(\Gamma_{1}\right)=7$ then by 11.4, it is either (1) or (2) of Figure 4, with $w \in \Gamma_{1}$ being the vertex joined to L_{1} and
$\lambda\left(\Gamma_{1}\right)=1$. It follows that $T_{2}=[3,3,2]$ and hence $\operatorname{bk}\left(T_{2}\right)=-15 / 13$, by 10.4. By 11.4, we have $\operatorname{bk}\left(T_{1}\right) \leqq-16 / 15$ and hence $\operatorname{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)<-2$ as required. Thus $\#\left(T_{1}\right)=8$. Again T_{1} should have a (-3)-curve and so $T_{2}=[3,3], d\left(T_{2}\right)=8$. This contradicts 6.1.
15.14. It follows that T_{1} is linear. Note that $\Gamma_{1}=T_{2}-L_{2}$ is connected. It should be non-rational and as usual we must have $\#\left(\Gamma_{1}\right) \geqq 6$. Suppose $\#\left(\Gamma_{1}\right)=6$, so that $\#\left(T_{2}\right)=7$. By 11.3 and $10.4, \operatorname{bk}\left(T_{2}\right) \leqq-7 / 6-1 / 3=-3 / 2$. On the other hand, $\#\left(T_{1}\right)=4$, and $T_{1}-\left\{L_{1}\right\}$ consists of (-2)-curves only i.e. $T_{1}=[7,2,2,2]$. Hence $\operatorname{bk}\left(T_{1}\right) \leqq-(1 / 7+1 / 2)=-9 / 14$. Thus $\mathrm{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)<-2$. Suppose now that $\#\left(\Gamma_{1}\right)=7$. By 11.4 it follows that $\operatorname{bk}\left(T_{2}\right) \leqq-(16 / 15+1 / 3)=-7 / 5$. Also $\#\left(T_{1}\right)=3, d\left(T_{1}\right)$ is odd and so $T_{1}=[7,3,2]$, or $[7,2,2]$. Hence $\operatorname{bk}\left(T_{1}\right) \leqq-9 / 14$ so that $\mathrm{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)<-2$.

Now suppose $\#\left(\Gamma_{1}\right)=8$. Then it follows that $T_{1}=[7,2]$ (since if $T_{1}=[7,3]$ then $d\left(T_{1}\right)$ is even). Hence $\operatorname{bk}\left(T_{1}\right)=-11 / 13$. Note that L_{4} is not a tip of T_{2}. Hence one of the tips of T_{2} is a (-2 -curve. Hence $\operatorname{bk}\left(T_{2}\right) \leqq-(1 / 3+1 / 3+1 / 2)$ $=-7 / 6$ and again we have $\operatorname{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)<-2$.

So finally let $\#\left(\Gamma_{1}\right)=9$, so that $T_{1}=[7] ; \operatorname{bk}\left(T_{1}\right)=-4 / 7$. We have to show that $\mathrm{bk}\left(T_{2}\right)<-10 / 7$. We can now apply 11.1 (c), with $Y=X^{\prime \prime}, C_{0}=L_{4}^{\prime \prime}$, and $C_{1}=L_{1}^{\prime \prime}$. Combined with 4.1, this implies $\Gamma_{1}-\left\{L_{4}\right\}$ is non-rational. Also if T_{2} has four tips then clearly $\mathrm{bk}\left(T_{2}\right) \leqq-(1 / 3+1 / 3+1 / 2+1 / 2)=-5 / 3<-10 / 7$. So T_{2} has only 3 tips. Consequently $\Gamma_{1}-\left\{L_{4}\right\}$ has three tips. By $5.4, \Gamma_{1}-\left\{L_{4}\right\}$ has one of the two configurations in Figure 14. Consequently, T_{2} itself has one of the configurations shown in Figure 15. Note that $L_{4}^{2}=-3$, for otherwise $L_{4}^{2}=-4$ and $\Gamma_{1}-\left\{L_{4}\right\}$ will consist of only (-2)-curves. The rest of the weights are determined by using 6.1.

Figure 14.
Let Λ_{1}, Λ_{2} and Λ_{3} be the three maximal twigs of T_{2}, with $L_{2} \in \Lambda_{3}$. Then $\operatorname{bk}\left(T_{2}\right)=\sum_{i=1}^{3} \mathrm{bk}\left(\Lambda_{i}\right)$. Now consider Figure $15(\mathrm{i})$, in which $\Lambda_{3}=[3,3,2,2,2]$, $\Lambda_{2}=[2,2]$ and $\Lambda_{1}=[2,3]$ or $[3,2]$. Hence $\operatorname{bk}\left(T_{2}\right) \leqq-(2 / 5+2 / 3+9 / 23)<-10 / 7$ as required. In Figure 15 (ii), if Λ_{1} and Λ_{2} consist of only (-2)-curves then $\mathrm{bk}\left(\Lambda_{1}\right)+\mathrm{bk}\left(\Lambda_{2}\right) \leqq-(3 / 4+2 / 3)$ where as $\mathrm{bk}\left(\Lambda_{3}\right) \leqq-1 / 3$. Hence $\mathrm{bk}\left(T_{2}\right)<-10 / 7$ as required. So we may assume that, say Λ_{1} has a (-3)-curve. Then $\Lambda_{3}=$ $[3,3,2,2], \operatorname{bk}\left(\Lambda_{3}\right)=-7 / 18$. One easily checks that $\operatorname{bk}\left(\Lambda_{1}\right)+\operatorname{bk}\left(\Lambda_{2}\right) \leqq-(2 / 5+3 / 4)$

Figure 15.
or $\leqq-(3 / 7+2 / 3)$ and hence again $\operatorname{bk}\left(T_{2}\right)<-10 / 7$.
In Figure 15 (iv), $\operatorname{bk}\left(\Lambda_{3}\right)=-5 / 13, \operatorname{bk}\left(\Lambda_{2}\right)=-3 / 4$ and $\operatorname{bk}\left(\Lambda_{1}\right) \leqq-3 / 7$ and hence $\mathrm{bk}\left(T_{2}\right)<-10 / 7$. Finally in Figure 15 (iii), one checks that $\mathrm{bk}\left(T_{2}\right)<-10 / 7$ unless $\Lambda_{1}=[3,2,2], \Lambda_{2}=[2]$. In this last case one directly computes $d(T)$ and sees that T is not unimodular.

Thus the claim in 15.12 that L_{2} is a tip has been proved.
15.15. As before, we have a branch Γ_{1} of $T_{1}-\left\{L_{1}\right\}$ which is non-rational and $\#\left(\Gamma_{1}\right) \geqq 6 ; \lambda\left(\Gamma_{1}\right) \leqq 1$. If $\#\left(\Gamma_{1}\right)=6$, by $11.3, \Gamma_{1}$ is the tree (iii) in Figure 2, with $d\left(\Gamma_{1}\right)=4 ; \lambda\left(\Gamma_{1}\right)=1$. Another branch of T at L_{1} is $L_{0} \cup L_{3} \cup L_{2}$, and the rest consists of three (-2 -curves, all contained in T_{1}. Thus it is easily seen that there will be one more branch of T at L_{1} with even discriminant which contradicts 6.1.

Hence $\#\left(\Gamma_{1}\right) \geqq 7$. Suppose $\#\left(\Gamma_{1}\right)=7$. Then by 11.4 , the possibilities for Γ_{1} are given in Figure 4, with $w \in \Gamma_{1}$ being the vertex joined to L_{1}. If $\lambda\left(\Gamma_{1}\right) \leqq 1$, it follows that $\Gamma_{1}^{\prime}=T-\Gamma_{1}$ is as shown in Figure 16, (using 6.1) which can be diagonalized with diagonal entry at $L_{1}=-1 / 3=\left(p^{\prime} / q^{\prime}\right)$. With the values of p / q given by 11.4 , we see that $\left|p p^{\prime}-q q^{\prime}\right| \neq 1$ for any of these possibilities. If $\lambda\left(\Gamma_{1}\right)$

Figure 16.
$=0$, then Γ_{1} is the unique configuration (14) of Figure 4 and it is easily verified that $d(T) \neq 1$.
15.16. Hence $\#\left(\Gamma_{1}\right) \geqq 8$. We can now apply Lemma 4.4, to conclude that $\Gamma_{1}-\left\{u_{0}\right\}$ should have a branch Γ_{2} which is non-rational where u_{0} is the vertex of Γ_{1} joined to L_{1}. Let $u_{1} \in \Gamma_{2}$ be the vertex joined to u_{0}. As before, $\#\left(\Gamma_{2}\right)$ $\geqq 6$, and if $\#\left(\Gamma_{2}\right)=6$, then Γ_{2} is the configuration (iii) of Figure 2 with $u_{1}=w$, $\Omega_{w}=-2$, and $p / q=-4 / 9$. Also $\Gamma_{2}^{\prime}=T-\Gamma_{2}$ is one of the configurations shown in Figure 17. Neither of these possibilities yields a unimodular T and hence $\#\left(T_{2}\right) \geqq 7$.

Figure 17.
15.17. Suppose $\#\left(\Gamma_{2}\right)=7$. Then 11.4 gives the possibilities for Γ_{2} with $w=u_{1}$ etc. as before whereas one easily sees that $\Gamma_{2}^{\prime}=T-\Gamma_{2}$ is one of the configurations shown in Figure 18 (again using $\lambda\left(\Gamma_{2}\right)=1$), with the diagonal entry p^{\prime} / q^{\prime} at u_{0} taking the values $p^{\prime} / q^{\prime}=0 / 1,-1 / 2$ respectively. One easily checks that none of these yield $\left|p p^{\prime}-q q^{\prime}\right|=1$ and so $\#\left(\Gamma_{2}\right) \geqq 8$.

Figure 18.
15.18. Hence $\#\left(\Gamma_{2}\right)=8$. Note that L_{1} is a horizontal component and so we shall also denote it by H_{1}. Since Γ_{2} is non-rational, it follows that Γ_{2} contains the other horizontal component $H_{2}, \lambda\left(\Gamma_{2}\right)=1$. In particular, $\Omega_{u_{0}}=-2$.

We first claim that all connected components of $\Gamma_{2}-\left\{u_{1}\right\}$ are rational. This is obvious, if each of them has less than 6 vertices. Now suppose Γ_{3} is a branch of $\Gamma_{2}-\left\{u_{1}\right\}$ with $\#\left(\Gamma_{3}\right) \geqq 6$. If $\#\left(\Gamma_{3}\right)=6$, then Γ_{3} is not rational would imply, by 11.3, that Γ_{3} is as in (iii) of Figure 2 with $\Omega_{w}=-2$ and hence T itself will be as shown in Figure 19 which is clearly not unimodular.

Figure 19.
When $\#\left(\Gamma_{3}\right)=7$, the non-rationality of Γ_{3} implies, by 11.4 , that Γ_{3} is one of the trees shown in Figure 4. Again not all curves in Γ_{3} are (-2)-curves and so $\lambda\left(\Gamma_{3}\right)=1$. Hence it follows that $\Gamma_{3}^{\prime}=T-\Gamma_{3}$ is as shown in Figure 20 with p^{\prime} / q^{\prime} at u_{1} equal to -1 . With p / q at w for Γ_{3} being given by 11.4 (c),

Figure 20.
we see that $\left|p p^{\prime}-q q^{\prime}\right|=1$ if and only if $(|p+q|=1$ and hence) $p / q=-12 / 13$, $-20 / 21$ or $-3 / 4$. In the last mentioned case, it turns out that $\lambda\left(\Gamma_{3}\right)=2$ and so we are left with only the first two cases, when T itself has configuration as shown in Figure 21 (a) and (b). In each case, a direct computation shows that K is effective. In Figure 21, the numbers in bracket give the respective coefficients for the canonical divisor. Thus, we have shown that all branches of $\Gamma_{2}-\left\{u_{1}\right\}$ are rational.

(b)

Figure 21.
15.19. Consider the linear equivalence

$$
K^{\prime \prime} \sim \mu_{1} H_{1}^{\prime \prime}+\mu_{2} H_{2}^{\prime \prime}+\Sigma \lambda_{i} C_{i}^{\prime \prime}
$$

on $X^{\prime \prime}$, where $C_{0}^{\prime \prime}$ and $H_{1}^{\prime \prime}$ are the components corresponding to u_{0} and L_{1}. All
the $C_{i}^{\prime \prime}$ are (-2)-curves and vertical. $H_{1}^{\prime \prime}$ is a rational curve with a cusp, $\left(H_{1}^{\prime \prime}\right)^{2}=-1$, so that $K^{\prime \prime} \cdot H_{1}^{\prime \prime}=1 . \quad H_{2}^{\prime \prime}$ is a (-3)-curve and $K^{\prime \prime} \cdot H_{2}^{\prime \prime}=+1$. Hence it follows that $\mu_{1}=-\mu_{2}$, and hence $\mu_{2} \neq 0$. Intersecting with $H_{1}^{\prime \prime}$ and $C_{0}^{\prime \prime}$ we obtain

$$
\begin{aligned}
& K \cdot H_{1}^{\prime \prime}=1=-\mu_{1}+\lambda_{0} \\
& K \cdot C_{0}^{\prime \prime}=0=\mu_{1}-2 \lambda_{0}+\lambda_{1}
\end{aligned}
$$

and hence

$$
\left.\begin{array}{l}
\lambda_{0}=\mu_{1}+1 \\
\lambda_{1}=\mu_{1}+2
\end{array}\right\}
$$

As in the proof of 4.1 , since all branches of $\Gamma_{2}-\left\{u_{1}\right\}$ are rational, it follows that if $\lambda_{1} \leqq 0$ then $\mu_{2} \leqq 0$ and $\lambda_{i} \leqq 0$ for all $i \geqq 1$ and $\lambda_{1} \geqq 0$ then $\mu_{2} \geqq 0$ and $\lambda_{i} \geqq 0$ for all $i \geqq 1$.

Thus, if $\lambda_{1} \leqq 0$ it follows that $-K$ is effective. Suppose $\lambda_{1}>0, \lambda_{0} \geqq 0$ and $\mu_{1} \geqq-1$. Hence either K is effective or $\mu_{1}=-1$. Thus we have obtained a linear equivalence

$$
K^{\prime \prime} \sim H_{2}^{\prime \prime}-H_{1}^{\prime \prime}+Z
$$

where Z is supported on the vertical components of $D^{\prime \prime}$. Now blow-down all the vertical components of $D^{\prime \prime}$ to finitely many rational double-points on a normal projective surface Y, and let $\pi: X^{\prime \prime} \rightarrow Y$ be the contraction. Since $D^{\prime \prime}$ is a tree, it follows that $\pi\left(H_{1}^{\prime \prime}\right) \cap \pi\left(H_{2}^{\prime \prime}\right)=\left\{y_{0}\right\}$, a singleton set and y_{0} is a singularity of Y. We claim y_{0} is the only singularity of Y. For if $y \neq y_{0}$ is any other singularity of Y, then $y \in \pi\left(H_{2}^{\prime \prime}\right)$ and $\pi\left(H_{1}^{\prime \prime}\right)$ does not pass through y. On the other hand $K_{Y} \sim \pi\left(H_{2}^{\prime \prime}\right)-\pi\left(H_{1}^{\prime \prime}\right)$ and K_{Y} is locally principal on Y. Since every divisor on Y is linearly equivalent to an integral combination of $\pi\left(H_{1}^{\prime \prime}\right)$ and $\pi\left(H_{2}^{\prime \prime}\right)$, it follows that $\mathcal{O}_{Y, y}$ is a unique factorization domain. By Lemma 9.9, y is an E_{8}-singularity, which is not possible since π contracts, in all, eight curves only.

Thus we have shown that y_{0} is the only singularity of Y, i.e., all the eight vertical components of $D^{\prime \prime}$ form a connected curve, and both $H_{1}^{\prime \prime}$ and $H_{2}^{\prime \prime}$ are tips of $D^{\prime \prime}$.
15.20. Let F_{0} be the fibre of $\varphi^{\prime \prime}$ containing $\pi^{-1}\left(y_{0}\right)$. From Kodaira's list of possible singular fibres of $\varphi^{\prime \prime}$, we see that F_{0} is of one of the three types: $m \mathrm{I}_{9}, \mathrm{I}_{4}^{*}$ or II^{*}. In the first two cases, it follows that $\pi^{-1}\left(y_{0}\right)$ has configuration A_{8} and D_{8} respectively. If F_{0} is of type Π^{*}, then by 9.8 , it follows that the component of F_{0}, not contained in $D^{\prime \prime}$ should occur with multiplicity 1 and hence $\pi^{-1}\left(y_{0}\right)$ is actually the configuration E_{8}.

We can now list all possibilities for the configuration of $D^{\prime \prime}$. Using the unimodularity of $D^{\prime \prime}$, only two possibilities, as shown in Figure 22, may occur.

Figure 22.
In both the cases one easily computes and checks that K is effective; this completely disposes off the case $r_{3}=1$.
§ 16. The case $r_{3}=2$ and the two components meet.
16.0. So far, we have proved that $r_{4}=e_{1}=\sigma=0, r_{3}=2$ and hence $b_{0}=1$, $\lambda=2, \tau=0$ and D is unimodular. In this section we shall show that the two components of R_{3} do not meet. So, we assume that the two components meet, and denote them by L_{0} and L_{3}. We can further assume that $L_{0}^{2}=-1$. If follows that $L_{0} \cdot L_{3}=1 ; L_{3}^{2}=-2$. Let L_{1}, L_{2} be the other two components of D such that $L_{0} \cdot L_{1}=L_{0} \cdot L_{2}=1$. It follows that there is precisely one component $L_{4}\left(\neq L_{0}\right)$ such that $L_{3} \cdot L_{4}=1, L_{1}^{2} \leqq-3 ; L_{2}^{2} \leqq-3$. Also since there is equality in 2.8, we have $K \cdot D=\beta_{2}-6$. Setting $C=D-\left\{L_{0}\right\}$, it follows that $M(X, C)=1$ and hence $\mathrm{bk}(C) \geqq-4$. In the sequel, we shall show that $\mathrm{bk}(C)<-4$ thus arriving at a contradiction and thereby showing that the two components of R_{3} do not meet. In this, often we use the unimodularity of T.
16.1. Blow-down L_{0} and L_{3} to obtain a surface X_{1}. We shall assume in 16.1-16.3 that X_{1} is minimal, (i.e., $X_{1}=X^{\prime}=X^{\prime \prime}$) and show that $\operatorname{bk}(C)<-4$. By 9.7, it follows that $\left(L_{1}^{\prime \prime 2}, L_{2}^{\prime \prime 2}\right) \neq(-2,-2)$. Since $\lambda=2$, and there are two horizontal components, $\left\{L_{1}^{\prime \prime 2}, L_{2}^{\prime \prime 2}\right\}=\{-3,-3\}$ or $\{-2,-3\}$, so that $\left\{L_{1}^{2}, L_{2}^{2}\right\}=$ $\{-5,-5\}$ or $\{-4,-5\}$. Also $L_{4}^{2}=-3$ or -4 . Setting $T-\left\{L_{0}\right\}=T_{1} \Perp T_{2} \Perp T_{3}$, with $L_{i} \in T_{i}, i=1,2,3$, it follows, by 4.1 , as usual, that at least one of the T_{i} is non-rational.
16.2. Suppose T_{3} is non-rational. Then, as seen before, it follows that $\#\left(T_{3}\right) \geqq 6$ and so $\#\left(T_{1} \cup T_{2} \cup\left\{L_{0}\right\}\right) \leqq 6$. Hence $T_{1} \cup T_{2} \cup\left\{L_{0}\right\}$ is easily seen to be rational, using 5.4 and 6.1. Hence it follows that $\Gamma_{1}=T_{3}-\left\{L_{3}\right\}$ is itself nonrational ; \#($\left.\Gamma_{1}\right) \geqq 6 ; \lambda\left(\Gamma_{1}-\left\{L_{4}\right\}\right) \leqq 1$.

If $\#\left(\Gamma_{1}\right)=6$, then by $11.3, \Gamma_{1}$ is (iii) of Figure 2 with $w=L_{4}, \Omega_{w}=-3$. It
follows that $\left\{L_{1}^{2}, L_{2}^{2}\right\}=\{-4,-5\}$. Keeping in mind 6.1 we obtain only two possibilities for T as shown in Figure 23. But neither of these is unimodular. Hence $\#\left(\Gamma_{1}\right) \geqq 7$.

Figure 23.
If $\#\left(\Gamma_{1}\right)=7$, then 11.4 gives all possibilities for Γ_{1} with $w=L_{4}$. It follows that except perhaps for (14) of Figure 4 (i.e. when $\lambda\left(\Gamma_{1}-\left\{L_{4}\right\}\right)=0$), $\Omega_{w}=-3$ and $\left\{L_{1}^{2}, L_{2}^{2}\right\}=\{-4,-5\}$, and in (14), we may even have $\Omega_{w}=-4$ and $\left\{L_{1}^{2}, L_{2}^{2}\right\}$ $=\{-4,-5\}$ or $\Omega_{w}=-3$ and $\left\{L_{1}^{2}, L_{2}^{2}\right\}=\{-5,-5\}$. Thus, we list up the configurations for $\Gamma_{1}^{\prime}=T-\Gamma_{1}$ in Figure 24. We can diagonalize each of these with diagonal entry p^{\prime} / q^{\prime} at L_{3} taking values $-2 / 9,-1 / 18,-7 / 26$, respectively. With p / q at L_{4} given by 11.4 we see that $\left|p p^{\prime}-q q^{\prime}\right| \neq 1$ for any of these values and hence by $11.2 d(T) \neq 1$. Hence $\#\left(\Gamma_{1}\right) \geqq 8$.

Figure 24.
In fact $\#\left(\Gamma_{1}\right)=8, \#\left(T_{3}\right)=9$, so that both L_{1} and L_{2} are tips of T. In particular it follows that $\left\{L_{1}^{2}, L_{2}^{2}\right\}=\{-4,-5\}$, by 6.1. We can now apply 11.1 (b) with $Y=X_{1}, C_{1}=L_{1}^{\prime \prime}, C_{2}=L_{2}^{\prime \prime}$, and $C_{0}=L_{4}^{\prime \prime}$. Along with 4.1, this yields that $\Gamma_{1}-\left\{L_{4}\right\}$, has a branch Γ_{2} which is non-rational.

Now, if $\#\left(\Gamma_{2}\right)=6$, then Γ_{2} is as in (iii) of Figure 2 with $d\left(\Gamma_{2}\right)=4$ and there is a tip of T which is joined to L_{4} and which is a (-2)-curve, contradicting 6.1. Hence $\#\left(\Gamma_{2}\right)=7$. Since $\lambda\left(\Gamma_{2}\right)=1, \Gamma_{2}$ is determined by 11.4 , whereas $\Gamma_{2}^{\prime}=$ $T-\Gamma_{2}$ is the configuration in Figure 25 with the diagonal entry p^{\prime} / q^{\prime} at L_{4} being $+5 / 2$. With the value of p / q at $w \in \Gamma_{2}$ given by 11.4 , we see that $\left|p p^{\prime}-q q^{\prime}\right|=1$ if and only if T is the configuration shown in Figure 26. But then one easily sees that

Figure 25.

Figure 26.

$$
\mathrm{bk}(C)=\mathrm{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)+\mathrm{bk}\left(T_{3}\right)=-(1+4 / 5+8 / 13+1 / 2+1 / 2+2 / 3)<-4
$$

as claimed.
16.3. We may now assume that T_{1} is non-rational ; (the case T_{2} being nonrational is similar). As before, one first concludes that $T_{1}-\left\{L_{1}\right\}$ has a branch Γ_{1} which is non-rational, $\#\left(\Gamma_{1}\right) \geqq 6 ; \lambda\left(\Gamma_{1}\right) \leqq 1$. Further, if $\#\left(\Gamma_{1}\right)=6$, then Γ_{1} is as in (iii), Figure 2. Clearly $\#\left(T_{1}\right) \leqq 8$. If $\#\left(T_{1}\right)=8$, then it follows that there is a (-2)-curve in T, which is a tip of T and is joined to L_{1}, contradicting 6.1, since $d\left(\Gamma_{1}\right)$ is even. If $\#\left(T_{1}\right)=7$ one easily determines that $\Gamma_{1}^{\prime}=T-\Gamma_{1}$ is one of the trees shown in Figure 27 with p^{\prime} / q^{\prime} at L_{1} taking values $15 / 4,13 / 8$ and $12 / 7$ respectively. With p / q at $w \in \Gamma_{1}$ equal to $-4 / 9$, we see that $\left|p p^{\prime}-q q^{\prime}\right| \neq 1$ and hence $\#\left(\Gamma_{1}\right) \geqq 7$.

Figure 27.
Indeed $\#\left(\Gamma_{1}\right)=7, \lambda\left(\Gamma_{1}\right) \geqq 1$ and it is given by 11.4, where as Γ_{1}^{\prime} is now given by Figure 28 with p^{\prime} / q^{\prime} at L_{1} taking the value $5 / 3$. Again, with p / q being given by 11.4 , we see that $\left|p p^{\prime}-q q^{\prime}\right|=1$ if and only if $p^{\prime} / q^{\prime}=5 / 3$, and $p / q=4 / 7$. This yields the unique possibility for T as shown in Figure 29. But then again one easily computes that $\mathrm{bk}(C)<-4$, as claimed in 16.1.

Figure 28.

Figure 29.
16.4. Thus we can now assume that X_{1} is not minımal. It follows that one of the images of L_{1}, L_{2} and L_{4} is a (-1)-curve on X_{1}. Indeed, we claim that the image of L_{4} is exceptional. For, suppose that the image of L_{1} is exceptional. Then, (since $\sigma=0$), clearly $X_{1}=X^{\prime}$, and $\left\{L_{1}^{\prime}\right\}=\mathcal{E}_{2}$, so that after
blowing down L_{1}^{\prime}, we obtain the minimal surface $X^{\prime \prime} . L_{2}^{\prime \prime}$ is a cuspidal curve on $X^{\prime \prime}$. One easily computes that $K \cdot D \geqq 8$ whereas we know that $K \cdot D=\beta_{2}-6$ $=7$, which is absurd. The case when the image of L_{2} is exceptional on X_{1} is symmetrical. Hence the image of L_{4} is exceptional on X_{1}.
16.5. Blow-down L_{0}, L_{3} and L_{4} successively, to obtain a surface X_{2}. Then clearly $X_{2}=X^{\prime}$. Indeed we claim $X_{2}=X^{\prime}=X^{\prime \prime}$. For, to begin with since L_{4} is in R_{2}, L_{4} is a tip of $D . L_{1}^{\prime}$ and L_{2}^{\prime} meet in a single point x, such that $L_{1}^{\prime} \cdot L_{2}^{\prime}$ $=3$, and through x, no other component of D^{\prime} passes. Hence, if at all X^{\prime} is not minimal, then either L_{1}^{\prime} or L_{2}^{\prime} is exceptional on X_{1}^{\prime}. But then we see that $\tau>0$ which contradicts our earlier observation that $\tau=0$. Hence $X_{2}=X^{\prime}=X^{\prime \prime}$. In particular, $\beta_{2}=13$. Clearly at least, one of $\left\{L_{1}^{\prime \prime}, L_{2}^{\prime \prime}\right\}$ is horizontal and hence $\left\{L_{1}^{\prime \prime 2}, L_{1}^{\prime \prime 2}\right\}=\{-2,-3\}$ or $\{-3,-3\}$, so that $\left\{L_{1}^{2}, L_{2}^{2}\right\}=\{-5,-6\}$ or $\{-6,-6\}$, $L_{3}^{2}=-2, L_{4}^{2}=-2 ; T_{3}=[2,2], d\left(T_{3}\right)=3$.

As before, it follows that T_{1} or T_{2} is non-rational; say, T_{1} is non-rational; $\#\left(T_{1}\right) \geqq 6$. And then $T_{1}-\left\{L_{1}\right\}$ itself has a branch Γ_{1} which is non-rational; $\#\left(\Gamma_{1}\right) \geqq 6, \quad \lambda\left(\Gamma_{1}\right)=1$.
16.6. If $\#\left(\Gamma_{1}\right)=6$, then by $11.3, \Gamma_{1}$ is (iii) of Figure 2, with $\lambda\left(\Gamma_{1}\right)=1$ and hence $\left\{L_{1}^{2}, L_{2}^{2}\right\}=\{-5,-6\}$. It follows that $\operatorname{bk}\left(T_{1}\right) \leqq-(1 / 6+4 / 3)=-3 / 2$, and $\mathrm{bk}\left(T_{2}\right) \leqq-(1 / 6+1 / 2)=-2 / 3$. Since $\mathrm{bk}\left(T_{3}\right)=-2$, we have shown that $\mathrm{bk}(C)<-4$ as required.

If $\#\left(\Gamma_{1}\right)=7$, then by 11.4 , we have $\operatorname{bk}\left(T_{1}\right) \leqq-(1 / 6+16 / 15)$. Now $\#\left(T_{2}\right)=1$, or 2 , so that $T_{2}=[5],[5,2]$, or $[6,2] .\left(T_{2} \neq[6]\right.$, by 6.1), and hence $\operatorname{bk}\left(T_{2}\right) \leqq$ $-4 / 5$ and hence again we obtain $\mathrm{bk}(C)<-4$.
16.7. Finally suppose $\#\left(\Gamma_{1}\right)=8$. Then $\#\left(T_{2}\right)=1$ and hence $T_{2}=[5], L_{1}^{2}=$ $-6, \Omega\left(T_{1}\right)=\{-6,-3,-2,-2,-2,-2,-2,-2,-2\}$. We should now show that $\mathrm{bk}\left(T_{1}\right)<-6 / 5$. This is clear if T_{1} has more than three tips. Hence we may assume that T_{1} has precisely three tips. (Clearly L_{1} is one of them.) Let $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ be the three maximal twigs of T_{1} with $L_{1} \in \Lambda_{1}$. Since Γ_{1} is nonrational it follows that T_{1} should have one of the configurations shown in Figure 30.

In (i) we may assume that $\Lambda_{2}=[2,2]$. Then $\Lambda_{3}=[2,3]$ or $[3,2]$ and $\Lambda_{1}=$ [6, 2, 2, 2]. Hence

$$
\mathrm{bk}\left(T_{1}\right)=\mathrm{bk}\left(\Lambda_{1}\right)+\mathrm{bk}\left(\Lambda_{2}\right)+\mathrm{bk}\left(\Lambda_{3}\right) \leqq-(4 / 21+2 / 3+2 / 5)=-44 / 35<-6 / 5 .
$$

In (ii), if Λ_{2} (or Λ_{3}) is [2,2,2] then clearly $\operatorname{bk}\left(T_{1}\right) \leqq-(1 / 6+1 / 3+3 / 4)<-6 / 5$. So, we may assume that Λ_{2} has a (-3)-curve and hence $\Lambda_{1}=[6,2,2], \Lambda_{3}=$ $[2,2]$, and $\Lambda_{2}=[2,2,3],[2,3,2]$ or $[3,2,2]$. So, in any case $\operatorname{bk}\left(T_{1}\right) \leqq$ $-(3 / 16+2 / 3+3 / 7)<-6 / 5$. In (iii) we may assume that $\Lambda_{2}=[2,2,2]$ and so we are done. In (iv), if $\Lambda_{2}=[2,2,2]$ we are done. So we may assume that $\Lambda_{3}=$

Figure 30.
[2], $\Lambda_{1}=[6,2,2,2]$ and $\Lambda_{2}=[2,2,3],[2,3,2]$ or $[3,2,2]$. In the first two cases $\mathrm{bk}\left(\Lambda_{2}\right) \leqq-5 / 8$ and so $\mathrm{bk}\left(T_{1}\right) \leqq-(4 / 21+5 / 8+1 / 2)<-6 / 5$. In the third case, we do not get $\operatorname{bk}\left(T_{1}\right)<-6 / 5$ as needed. However, the tree T is now as shown in Figure 31. One easily checks that this is not unimodular and so this case does not exist. Thus we have shown that $\mathrm{bk}(C)<-4$, in all cases, and hence the two components of R_{3} are disjoint, as claimed in 16.0.

Figure 31. $d=16$.

§ 17. Completion of the proof of the Theorem 8.2.

17.0. So far, we have proved that $r_{4}=e_{1}=\sigma=\tau=0, b_{0}=1, \lambda=2, D$ is unimodular, $K \cdot D=\beta_{2}-6, r_{3}=2$ and the two components of R_{3} are disjoint. We shall denote these two components by $L_{1,0}$ and $L_{2,0}$. Now for the curve $C=$ $D-L_{0,1}-L_{0,2}$ we have $b_{0}(C)=5, b_{1}(C)=0, b_{2}(C)=\beta_{2}-2$, and $K \cdot C=\beta_{2}-4$. Hence by 1.3 and $10.5, \mathrm{bk}(C) \geqq-4$. As before, here also, we shall estimate $\mathrm{bk}(C)$ directly, and show that $\operatorname{bk}(C)<-4$, which will complete the proof of the theorem.

Let now, $\left\{L_{i, j}\right\}_{1 \leq j \leq 3}$ be the other components of D meeting $L_{i, 0}$, i.e., $L_{i, 0}$. $L_{i, j}=1(i=1,2)$, and $L_{1}=\bigcup_{j=0}^{3} L_{1, j}$ and $L_{2}=\bigcup_{j=0}^{3} L_{2, j}$. Since D is simply connected, it follows that $L_{1} \cap L_{2}$ is either empty or a single point or an irreducible curve. In the last case we shall choose the labeling so that $L_{1} \cap L_{2}=L_{1,1}=L_{2,1}$.

Thus $L_{1,1} \neq L_{2,1}$ means $L_{1, j} \neq L_{2, k}$ for any j and k. Let $C=T_{1} \Perp T_{2} \Perp T_{3} \Perp T_{4} \Perp T_{5}$, $\#\left(T_{s}\right)=t_{s}$. Then $\mathrm{bk}(C)=\sum_{s=1}^{5} \mathrm{bk}\left(T_{s}\right)$.
17.1. Let X_{1} be the surface obtained by contracting $L_{1,0}$ and $L_{2,0}$. Assume, first that X_{1} is minimal, $X_{1}=X^{\prime}=X^{\prime \prime}$. Then, $\beta_{2}=12, L_{i, j}^{2} \leqq-3,1 \leqq j \leqq 3$. We shall make two subcases, viz., (i) $L_{1,1}=L_{2,1}$, (ii) $L_{1,1} \neq L_{2,1}$.

Consider the case $L_{1,1}=L_{2,1}$. Then, it follows that $L_{1,1}^{2}=-4$ or -5 . Then using 9.7, it follows that the dual graph of the curve $L=L_{1} \cup L_{2}$ is one of the three trees shown in Figure 32. Note also that the five components of $L-L_{1,0}$ $-L_{2,0}$ belong to distinct T_{s}. In (a) and (b) all components of $D-L$ are (-2)curves whereas in (c), $D-L$ has one (-3)-curve and all other (-2)-curves.

Figure 32.
Thus if $t_{s} \leqq 2$, then $\mathrm{bk}\left(T_{s}\right) \leqq-1$ unless $T_{s}=[5]$ or [5,3]. Hence, if $t_{s} \leqq 2$ for more than three $s \in\{1,2,3,4,5\}$, say $t_{s} \leqq 2$ for $s \leqq 4$, then clearly $\sum_{s=1}^{4} \mathrm{bk}\left(T_{s}\right)$ $\leqq-(1+1+1+5 / 7)$. On the other hand $\operatorname{bk}\left(T_{5}\right)<-1 / 2$ and hence $\sum_{s=1}^{5} \mathrm{bk}\left(T_{s}\right)$ <-4.

So we may assume $t_{1} \geqq 3$, and $t_{2} \geqq 3$. Since $\Sigma t_{s}=10$, it follows that $t_{1}+t_{2} \leqq 7$ and $t_{3}+t_{4}+t_{5} \leqq 4$. Here again $\mathrm{bk}\left(T_{1}\right)+\mathrm{bk}\left(T_{2}\right)<-1$ and so if $T_{s} \neq[5]$ or $[5,3]$ for any $s=3,4,5$, then we are done. So assume that $T_{5}=[5]$ or $[5,3]$. Then it follows that $\Omega\left(T_{1} \cup T_{2}\right)$ does not contain -5 and so it follows that $\operatorname{bk}\left(T_{1}\right)+$ $\mathrm{bk}\left(T_{2}\right)<-(1 / 4+1 / 2+1 / 3+1 / 2)$, (by 10.4 , (iii)) and hence $\sum_{s=1}^{5} \mathrm{bk}\left(T_{s}\right)<-(1 / 4+1 / 2$ $+1 / 3+1 / 2+1+1+5 / 7)<-4$ as required.
17.2. Now consider the case $L_{1,1} \neq L_{2,1}$. Now using 9.7, we conclude that $\Omega\left(L_{1}\right)=\Omega\left(L_{2}\right)=\{-1,-3,-3,-4\} \quad$ and $\quad \Omega(C)=\{-4,-4,-3,-3,-3,-3,-2$, $-2,-2,-2\}$. Note that there is a unique branch T_{s} of C say, T_{1} which meets both $L_{1,0}, L_{2,0}$, and $t_{1} \geqq 2$. Now if $t_{s} \leqq 2$, then $\operatorname{bk}\left(T_{s}\right) \leqq-1$ and hence as in 17.1, we may assume, that $t_{s} \geqq 3$ for at least two $s \in\{1,2,3,4,5\}$. So let $t_{2} \geqq 3$. Further if t_{3}, t_{4} or t_{5}, say, $t_{3} \geqq 3$, then $t_{4}=t_{5}=1, t_{1}=2, t_{2}=t_{3}=3$. Clearly $T_{1}=$ $[4,4],[4,3]$ or $[3,3]$ and hence $\operatorname{bk}\left(T_{1}\right) \leqq-10 / 15$. Also $\operatorname{bk}\left(T_{2}\right) \leqq-(1 / 4+1 / 2)$, $\mathrm{bk}\left(T_{3}\right) \leqq-(1 / 4+1 / 2)$ where as $\mathrm{bk}\left(T_{4}\right) \leqq-1, \mathrm{bk}\left(T_{5}\right) \leqq-1$, and hence $\Sigma \mathrm{bk}\left(T_{s}\right)<-4$. Finally, consider the case where $t_{s} \leqq 2$ for $s=3,4,5$. Then $\operatorname{bk}\left(T_{s}\right) \leqq-1$ and in any case $\mathrm{bk}\left(T_{1}\right)<-1 / 2, \mathrm{bk}\left(T_{2}\right)<-1 / 2$ so that $\Sigma \mathrm{bk}\left(T_{i}\right)<-4$.

Thus we have shown that $\mathrm{bk}(C)<-4$ if X_{1} is minimal.
17.3. Now suppose X_{1} is not minimal so that $L_{i, j}^{2}=-2$ at least for one
(i, j). Since $r_{4}=0$, if $L_{1,1}=L_{2,1}$ then $L_{1,1}$ is never in \mathcal{E}_{1} and so we may assume that $L_{1,2}^{2}=-2$. Contract the image of $L_{1,2}$ on X_{1}, to obtain a surface X_{2}. We shall now assume that X_{2} is minimal, i.e. $X_{2}=X^{\prime}=X^{\prime \prime}$, and show that $\mathrm{bk}(C)$ <-4.

It follows that $\beta_{2}=13$, and $L_{1,2}$ is a tip of D as $r_{3}=2$. As before we now make two subcases (i) $L_{1,1}=L_{2,1}$ and (ii) $L_{1,1} \neq L_{2,1}$.
17.4. Suppose $L_{1,1}=L_{2,1}$. It follows that L has one of the configurations shown in Figure 33, with $D-L$ consisting of (-2)-curves in (a), (b) and (c), and having one (-3)-curve and other (-2)-curves in (d).

Figure 33.
We set $T_{5}=\left\{L_{1,2}\right\}=[2]$, so that $\operatorname{bk}\left(T_{2}\right)=-2$. Thus we have to show that $\sum_{s=1}^{4} \mathrm{bk}\left(T_{s}\right)<-2$. If $t_{s}=1$, then clearly $\mathrm{bk}\left(T_{s}\right) \leqq-4 / 6$. If $T_{s} \geqq 2$, then by 10.4, it easily follows that $\operatorname{bk}\left(T_{s}\right) \leqq-(1 / 6+1 / 3)=-1 / 2$ and, for at least one of the $s, \operatorname{bk}\left(T_{s}\right)<-1 / 2$. Hence $\sum_{s=1}^{4} \mathrm{bk}\left(T_{s}\right)<-2$ as required.
17.5. Now consider the case $L_{1,1} \neq L_{2,1}$. As before, it follows that $\Omega\left(L_{1}\right)$ $=\{-5,-4,-2,-1\}$ and $\Omega\left(L_{2}\right)=\{-4,-3,-3,-1\}$. So that $\Omega(C)$ is $\{-5,-4$, $-4,-3,-3,-2,-2,-2,-2,-2,-2\}$. Taking $T_{5}=\left\{L_{1,2}\right\}$, here also we have to show that $\sum_{s=1}^{4} \mathrm{bk}\left(T_{s}\right)<-2$. As in 17.2, there is a unique T_{s}, say T_{1}, which meets both $L_{1,0}$ and $L_{2,0}$. Then for T_{2}, T_{3}, T_{4}, it easily follows that $\mathrm{bk}\left(T_{s}\right) \leqq$ $-(1 / 5+1 / 2)=-7 / 10$. Hence $\sum_{s=1}^{4} \mathrm{bk}\left(T_{s}\right)<-2$ as required.
17.6. We may now assume that X_{2} is not minimal. This means that the image of $L_{1,1}, L_{1,3}$ or one of $L_{2, j}$ on X_{2} is a (-1)-curve. However, using the fact that $K \cdot D=\beta_{2}-6$, we can see that if $L_{1,1}=L_{2,1}$ then its image on X_{2} cannot be a (-1)-curve (for, the contraction of the image of $L_{1,1}$ gives $X^{\prime \prime}$ by 3.1, $K \cdot D=8$. This is a contradiction). So we may assume that $L_{1,3}$ is a (-1)curve or $L_{2,2}$ is a (-1)-curve. In the latter case, i.e. if $L_{2,2}$ is a (-1)-curve then it follows (by $r_{4}=0$) that $L_{2,2}$ is a tip of $D, L_{2,2}^{2}=-2$, and hence clearly $\mathrm{bk}(C)<\mathrm{bk}\left(\left\{L_{1,2}\right\}\right)+\mathrm{bk}\left(\left\{L_{2,2}\right\}\right)=-4$. So we may assume that $L_{2, j}^{2} \leqq-3$.

Hence, the image of $L_{1,3}$ on X_{2} is a (-1)-curve. Again using the fact $K \cdot D=\beta_{2}-6$, it follows that $L_{1,3}$ is also a tip of D as above, $L_{1,3}^{2}=-3$. Thus taking $T_{4}=\left\{L_{1,3}\right\}$, we have to show that $\sum_{s=1}^{3} \mathrm{bk}\left(T_{s}\right)<-2 / 3$.

Contract the image of $L_{1,3}$ on X_{2} to obtain a surface X_{3}. It is easily seen that X_{3} is minimal by 3.1, i. e. $X_{3}=X^{\prime \prime}$. Suppose $L_{1,1} \in T_{1}$. Then it follows easily that for any component D_{i} of T_{2} or T_{3}, we have $D_{i}^{2} \geq-4$ and hence $\mathrm{bk}\left(T_{2}\right) \leqq-1 / 2, \mathrm{bk}\left(T_{3}\right) \leqq-1 / 2$ proving thereby that $\sum_{s=1}^{3} \mathrm{bk}\left(T_{s}\right)<-2 / 3$ as required.

This completes the proof of 8.2.

References

[B] E. Brieskorn, Rationale Singularitäten Komplexer Flachen, Invent. Math., 4 (1968), 336-358.
[F] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. of Tokyo, 29 (1982).
[G-S] R.V. Gurjar and A.R. Shastri, On the rationality of complex homology 2-cells: I, J. Math. Soc. Japan, 41 (1989), 37-56.
[K] K. Kodaira, On homotopy K-3 surfaces. Essays on topology and related topics, Volume dedicated to Georges de Rham, Springer, 1970, pp. 58-69.
[R] C.P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. Math., 94 (1971), 69-88.

R. V. Gurjar
A. R. Shastri
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005
India

