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\S 8. Introduction.

The purpose of this paper is to prove:

8.1. THEOREM. Let $X$ be an irreducible, smooth projective $surface/C$ , with
the geometric genus $p_{g}(X)=0$ . Let $D$ be a reduced (not necessarily connected)

curve on $X$ with at worst ordinary double Point singularities. SuppOse each con-
nected component of Supp $D$ is simply connected and the irreducible compOnents of
$D$ generate the divisor class group Pic (X). Then $X$ is rational.

In [G-S] we showed that such a surface $X$ cannot be a surface of general
type. Thus 8.1 follows from:

8.2. THEOREM. Let $X$ and $D$ be as in 8.1. Assume further that $X$ is an
elliptic surface. Then $X$ is rational.

We will refer to the paper [G-S] by Part I. As already indicated in Part
I, one easily deduces from 8.1, that any complex homology 2-cell is rational,
thus answering affirmatively a question of Van de Ven. (For other consequences
of 8.1 see Part I.) The reader is assumed to be familiar with Part I of this
paper, the notations and conventions of which we continue to use here also.
We shall now briefly outline the proof of 8.2 here.

8.3. Recall that (in Part I), we begin with the assumption that $X$ is not
rational (or, equivalently, that $|nK|\neq\emptyset$ for some $n>0$ ) so that $K+D$ has Zariski
decomposition: $K+D=P+N$. Without loss of generality we also assume that
there are no $(-1)$-curves $E$ on $X$ such that (i) $E\cdot D=1$ or (ii) $E\cdot D=2$ and $E$

meets two different connected components of $D$ . We then aPply Miyaoka’s in-
equality to (X, $D$). Then, by studying the blowing-down process $\pi;Xarrow X’’$ ,
where $X’$ is the minimal model for the function field of $X$ , we obtain the auxi-
liary inequality

(2.8) $3(b_{2}-\beta_{2})+b_{0}+\lambda+\sigma+\tau+e_{1}+r_{3}+2r_{4}\leqq\beta_{2}’’-5$

where each term on the left hand side is nonnegative.
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8.4. We now assume that $X$ is an elliptic surface, $\varphi:Xarrow P^{1}$ , and arrive at
a sequence of contradictions thereby proving 8.2. Now $\beta_{2}’’$ , on the right hand
side of (2.8) is the second betti number of $X’’$ , which is a minimal elliptic sur-
face, with $P_{g}(X’’)=0=q(X$“

$)$ . Hence $\beta_{2}’’=10$ . (Note that if $X$ is of general
type then $\beta_{2}’’\leqq 9$ . So there is an increase in the right hand side of (2.8), as
compared with the general type case and this contributes to the enormous in-
crease in our task here.) Except for 4.2, all the results in \S 1-\S 6 (of Part I)

hold here also. Our first aim is to prove the analogue of 4.2 here also, viz., to
show that $\lambda\geqq 2$ . This is achieved in \S 9 by showing that $D$ has at least two
horizontal components with respect to $\varphi$ . Once we show that $\lambda\geqq 2$ , by 3.2, we
obtain that $b_{2}=\beta_{2},$ $D$ is unimodular, $r_{4}=0$ , and $\sigma+\tau+e_{1}+r_{3}\leqq 2$ .

In \S 12, we show that $e_{1}=0$ and in \S 13 we will show that $r_{3}\geqq 1$ . In \S 14,

we show that $(r_{3}, \sigma)\neq(1,1)$ . In \S 15, we show that $r_{3}\geqq 2$ . Since, any way
$r_{3}\leqq 2$ , in \S 16 and \S 17 we show that even the assumption $r_{3}=2$ leads to a con-
tradiction.

In each of these cases we first get hold of the geometry of $D\cup \mathcal{E}$ (where $\mathcal{E}$

is the exceptional set for $\pi:Xarrow X’’$ ). In \S 12-\S 14, often, we apply Miyaoka’s
inequality to the curve $D\cup \mathcal{E}$ , to arrive at a contradiction. Note that at the
end of \S 14, we have $\sigma=0$ , $e_{1}=0$ , $r_{3}\geqq 1$ , from which it follows that $\mathcal{E}\subset D$ .
Thus in \S 15-\S 17 we apply Miyaoka’s inequality to a suitable subset of $D$ . This
is rather fruitful only if we have equality in (2.8). Further, we need to esti-
mate the $N^{2}$-term in the Zariski decomposition. For this purpose we use results
of [F] which we have collected in \S 10 in a manner suitable for our purpose.
The unimodularity of $D$ and the fact that $\pm K$ is not effective are heavily used.
In \S 11, we have collected various technical lemmas, similar to those in \S 5 and
\S 6, which enable us to use these two properties.

\S 9. Number of horizontal components.

9.0. Let $X$ and $D$ be as in 8.2. We assume $X$ is not rational, so that
$|nK|\neq\emptyset$ for some $n>0$ . Since $X$ is simply connected (see [G-S] p. 3), we
have an elliptic fibration $\varphi:Xarrow P^{1}$ . Let $\pi:Xarrow X’’$ be the composite of contrac-
tion of $(-1)$-curves where $X’’$ is the minimal model for the function field of $X$ .
It follows easily that $\varphi$ defines the minimal elliptic fibration $\varphi’$ : $X’’arrow P^{1},$ $\varphi=$

$\varphi’’\circ\pi$ . An irreducible curve $C$ on $X$ is called vertical if $C$ is contained in a
fibre of $\varphi$ ; otherwise it is called horizontal. Our main aim here is to show
that $D$ has at least two horizontal components, equivalently, $D’=\varphi’’(D)$ has at
least two horizontal components with respect to $\varphi’’$ . On the way, we also
determine multiplicities of the singular fibres of $\varphi’’$ .

Note that components of $D$ generate Pic $X$ and hence $D$ sbould have at
least one $h_{3}rizonta1$ component. We shall first prove:
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9.1. LEMMA. There are exactly two multiple singular fibres of $\varphi’$ (and

hence, of $\varphi$), say $m_{1}P_{1},$ $m_{2}P_{2}$ (respectively, $m_{1}F_{1},$ $m_{2}F_{2}$ ) with $\{m_{1}, m_{2}\}=\{2,3\}$ or
{2, 5}. Further, if $K’\cdot H’\leqq 2$ for some horizontal comp0nent $H’$ , then $\{m_{1}, m_{2}\}$

$=\{2,3\}$ .

PROOF. Let $\{m{}_{i}P_{i}\}_{1\leqq i\leqq r}$ be the multiple fibres of $\varphi’’$ . By the simply con-
nectivity of $X’’$ it follows that $r\leqq 2$ and $m_{1}$ and $m_{2}$ are coprime (see Proposition
2 of [K]). Since $p_{g}=0=q$ , we have the canonical bundle formula

$K’=\varphi^{r- 1}(\mathcal{O}_{P^{1}}(-1))\otimes[P_{1}]^{(m_{1}- 1)}\otimes\cdots\otimes[P_{r}]^{(m_{r}- 1)}$ .
Thus if $r\leqq 1$ , it follows that $|nK’’|=\emptyset$ for all $n$ and hence $|nK|=\emptyset$ for all $n$ ,
contradicting our basic assumption. Hence $r=2$ .

Now if $P$ denotes a general fibre of $\varphi’’$ , we have the linear equivalence

$P\sim m_{1}P_{1}\sim m_{2}P_{2}$

and hence
$K’’\sim(m_{2}-1)P_{2}-P_{1}\sim(m_{1}-1)P_{1}-P_{2}$ .

Thus $K’$ is numerically equivalent to the Q-divisor $mP$ where $m=(m_{1}m_{2}-m_{1}-$

$m_{2})/m_{1}m_{2}$ . Now let $H’’$ be a horizontal component of $D’’$ . Then $1\leqq K’’\cdot H’’=$

$m(P\cdot H’’)$ . Since $m_{1}$ and $m_{2}$ are coprime it follows that $m_{1}m_{2}-m_{1}-m_{2}$ divides
$K’’\cdot H’’$ . On the other hand we have, by (2.8), $\lambda\leqq 4$ (since $b_{0}\geqq 1$ ) and hence
$K’’\cdot H’’\leqq 4$ . Hence $\{m_{1}, m_{2}\}=\{2,3\}$ or {2, 5}, and if $K’’\cdot H’’\leqq 2$ for some $H’’$ ,

then $\{m_{1}, m_{2}\}=\{2,3\}$ , as claimed.

9.2. LEMMA. SuPpose $\beta_{2}(X)=b_{2}(D)$ . Then $H_{1}(X-D, Z)=(O)$ and consequently
no fibre of $\varphi$ is comPletely contained in $D$ .

PROOF. Since components of $D$ generate Pic $X,$ $\beta_{2}(X)=b_{2}(D)$ implies that
components of $D$ form a free basis for Pic $X$ and hence $H^{2}(X, Z)arrow H^{2}(D;Z)$

is an isomorphism. From the cohomology exact sequence of (X, $D$), we get
$H^{3}(X, D;Z)=(O)$ . Hence, by duality, $H_{1}(X-D;Z)=(O)$ .

Now suppose $F_{0}$ is a fibre of $\varphi$ such that $F_{0}\subset D$ . Then, since $D$ is simply
connected, $F_{0}$ is simply connected, and so, in particular, $F_{0}\neq m_{t}F_{i}$ , where $m_{1}F_{1}$

and $m_{2}F_{2}$ are the multiple fibres of $\varphi$ . Let $p_{i}=\varphi(F_{i})$ and let $f$ : $\Deltaarrow P^{1}$ be a
cyclic covering, ramified on $p_{0}$ and $p_{1}$ with ramification index $m_{1}(\geqq 2)$ . After
normalization of $X\cross p1\Delta$ , we obtain a ramified cyclic covering $f;\tilde{X}arrow X$ with
ramification locus contained in $F_{0}$ and hence an $m_{1}$-fold cyclic, unramified cover-
ing of $X-D$ . This contradicts the fact that $H_{1}(X-D, Z)=(O)$ . Hence no fibre
of $\varphi$ is completely contained in $D$ . This completes the proof of the lemma.

9.3. LEMMA. $D’$ (and hence $D$) has at least two horizontal comPonents. In
particular, $\lambda\geqq 2,$ $\{m_{1}, m_{2}\}=\{2,3\}$ and $6|(P\cdot H’)$ for any horizontal component $H^{\nu}$
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and any general fibre $P$ of $\varphi’$ . Further, if there are only two horizontal com-
pOnents, then exactly one compOnent from each fibre of $\varphi$ is not contained in $D$ .

PROOF. Assume that $D’’$ has only one horizontal component, $H’’$ . We first
claim that $\varphi’$ has no fibres of type $mI_{0}$ , with $m>1$ . Suppose $m_{1}P_{1}$ is such a
fibre. Then $P_{1}\sim\Sigma_{i}\alpha_{i}D_{i}’’+\alpha H’$ , where $D_{i}’’\neq H’$ are other components of $D$ “

(which are vertical). Intersecting $P_{1}$ with a general fibre, we see that $\alpha=0$ .
Since each component of $D’$ is rational, $P_{1}$ is not contained in $D$“. On the
other hand, linear equivalence relations between fibre components of $\varphi’’$ are all
generated by relations of the type $P\sim P^{f}$ for any two scheme-theoretic fibres of
$\varphi’$ . Hence in any such relation $P_{1}$ should occur in multiples of $m_{1}$ , which con-
tradicts the relation, $P_{1}\sim\Sigma_{i}\alpha_{i}D_{i}’’$ , above.

Now let $S_{1},$ $\cdots$ , $S_{k}$ (respectively, $T_{1},$ $\cdots$ , $T_{l}$ ) denote the simply connected
(respectively, not simply-connected) singular fibres of $\varphi$ . By the above observa-
tion, it follows that $\chi_{top}(T_{j})=b_{2}(T_{j})$ and hence we have

(9.4) $\beta_{2}(X)+2=\chi_{top}(X)=\sum_{i=1}^{k}(b_{2}(S_{i})+1)+\sum_{j=1}^{l}b_{2}(T_{f})$ .

Since, by simply-connectivity of $D$ , none of the $T_{i}$ is completely contained in $D$ ,

we get

(9.5) $b_{2}(D) \leqq\sum_{i=1}^{k}b_{2}(S_{i})+\sum_{j=1}^{\iota}(b_{2}(T_{j})-1)+1$ .

Together with (9.4), this yields $k+l\leqq 3+\beta_{2}(X)-b_{2}(D)$ . If $k=0$ , then clearly no
fibre of $\varphi$ is contained in $D$ . However, by 9.1, it follows that $l\geqq 2$ . Since
$\beta_{2}(X)\leqq b_{2}(D)$ , it follows that $k\leqq 1$ , and if $k=1$ then $\beta_{2}(X)=b_{2}(D)$ . Thus if
$k\neq 0$ , we can appeal to 9.2 to conclude that no fibre of $\varphi$ is contained in $D$ .
But then we have

$b_{2}(D) \leqq\sum_{i=1}^{k}(b_{2}(S_{i})-1)+\sum_{j=1}^{l}(b_{2}(T_{j})-1)+1<rank$ (Pic $X$ )

which is absurd.
Hence $D’’$ has at least two horizontal components, and hence $\lambda=\Sigma_{t}D_{t}’’\cdot K’’$

$\geqq 2$ . Now by (2.8) we have $\lambda\leqq 4$ , and hence $K’’\cdot H_{i}’’\leqq 2$ for some horizontal
component. Hence by 9.1, $\{m_{1}, m_{2}\}=\{2,3\},$ $K’\cdot H_{i}’’=(1/6)\cdot(P\cdot H_{i}’’)$ and hence
$6|P\cdot H_{i}’’$ . By (2.8) it now follows that $b_{2}=\beta_{2}$ and hence by 9.2, no fibre of $\varphi$

is completely contained in $D$ .
Finally let there be exactly two horizontal components. Then we have

$b_{2}(D) \leqq\sum_{i=1}^{k}(b_{2}(S_{t})-1)+\sum_{j=1}^{l}(b_{2}(T_{j})-1)+2=rank$ Pic $(X)\leqq b_{2}(D)$ .

Hence equality holds everywhere. Thus exactly one component from each fibre
of $\varphi$ is missing from $D$ . This completes the proof of the lemma.
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9.6. REMARK. Note that, unlike $D,$ $D’’$ may contain a fibre of $\varphi’$ . The
following lemma gives some idea of such a situation and will be very useful
later. We use Kodaira’s list of singular fibres of an elliptic fibration. For any
fibre $P$ and a component $C$ of $D$ let $\mu(C)$ denote the multiplicity of $C$ in $P$.

9.7. LEMMA. Supp0se $P$ is a fibre of $\varphi’$ contained in $D’’$ and is not of type
$\Pi^{*}$ . Assume that

(i) there is at most one point $x\in P$ which is worse than an ordinary double
pojnt singularity of $D’’$ and

(ii) if $x$ exists, then $P$ is of type $mI_{1}$ , II, $m$ or IV with $x\in P$ being the
singularity of $P$ and at most one horizontal comp0nent of $D’’$ passes through $x$ .

Then $b_{1}(D’’)\geqq 2$ .
PROOF. First assume $x$ exists. By 9.3, there is a horizontal component $H’’$

of $D’’$ not passing through $x$ . If $P$ is of type $mI_{1}$ , then $m=2$ or 3, $6|(P\cdot H’’)$

and hence $P\cap H’’$ consists of at least two points. Since $b_{1}(mI_{1})=1$ , we have
$b_{1}(D’’)\geqq b_{1}(P\cup H’’)\geqq 2$ . If $P$ is of type II, $m$ or IV, then it follows that $P\cap H’’$

consists of at least six points and hence $b_{1}(D’’)\geqq b_{1}(P\cup H’’)\geqq 5$ .
Next assume that $x$ does not exist. (Clearly $P$ is not of type $mI_{0}$). Hence

$P$ is of type $m.I_{b}$ , ($m=2$ or 3, $b\geqq 1$ ), $I_{b}^{*},$ $m*orIV^{*}$ . Hence for every com-
ponent $C$ of $P,$ $\mu(C)\leqq 4,$ $P\cap H_{i}’’$ consists of points which are all ordinary double
points of $D’’$ . Hence it follows that $b_{1}(P\cup H_{i}’’)\geqq 1$ for each horizontal component
of $D$“. Hence $b_{1}(D^{ff})\geqq b_{1}(P\cup H_{1}’’\cup H_{2}’’)\geqq 2$ . This completes the proof of the lemma.

9.8. LEMMA. Supp0se $\beta_{2}(X)=b_{2}(D)$ and there are precisely two horizontal
comp0nents of D. Let $F_{0}$ be a fibre of $\varphi$ different from the multiple fibres $m_{1}F_{1}$

and $m_{2}F_{2}$ , and let $C_{0}$ be the comp0nent of $F_{0}$ not contained in D. Then the multi-
plicjty $\mu(C_{0})$ of $C_{0}$ in $F_{0}$ is not equal to $m_{1}$ or $m_{2}$ .

PROOF. If not, say $\mu(C_{0})=m_{1}$ . Then as in 9.2, we can construct an $m_{1}$-fold
unramified cyclic cover of $V$ which is absurd.

9.9. LEMMA. Let $Y$ be a normal, pr0jective $surface/C$ having exactly one
singular point $y$ . Supp0se $\tilde{Y}arrow\pi Y$ is a minimal resolution of singularity. Assume
further the following conditions:

i) $d_{Y.y}$ is a rational singularity
ii) $\mathcal{O}_{Y.y}$ is a unique factorization domain and
iii) $p_{g}(\tilde{Y})=0=q(\tilde{Y})$ .
Then locally analytically, the singularity at $y$ is $E_{8}$-rational double point, $i$ . $e.$ ,

given by $\{z_{1}^{2}+z_{2}^{3}+z_{3}^{5}=0\}$ .

PROOF. There exists an affine neighbourhood $U$ of $y$ such that $\Gamma(U, \mathcal{O}_{Y})$

is a U.F.D. Since $p_{g}(\tilde{Y})=0$ , any topological 2-cycle is algebraic. Let $\pi^{-1}(y)$



180 R. V. GURJAR and A. R. SHASTRI

$= \bigcup_{i=1}^{r}L_{i}$ where $L_{i}$ are the irreducible components. We can then find divisors
$\Delta_{1},$ $\cdots$ , $\Delta_{s}$ supported on $\tilde{Y}-\pi^{-1}(U)$ such that $L_{1},$ $\cdots$ , $L_{r},$ $\Delta_{1},$ $\cdots$ , $\Delta_{s}$ form a free
basis of $H^{2}(\tilde{Y}, R)$ . Therefore the intersection matrix of these divisors can be
assumed to be unimodular. Since the sets $L_{1}\cup\cdots\cup L_{r}$ and $\Delta_{1}\cup\cdots\cup\Delta_{s}$ are
disjoint, it follows that the intersection matrix $(L_{i}\cdot L_{j})$ is unimodular. Since the
singularity of $y$ is rational, this implies that analytically the singularity is the
$E_{8}$-rational double point, by results of Brieskorn [B].

\S 10. Estimating $N^{2}$ .
10.0. Here we briefly recall and modify certain results and terminologies

from \S 3 and \S 6 of [F] which will help us to estimate the term $N^{2}$ . Let $Y$ be
a smooth projective surface and $C$ be a reduced curve on $Y$. For our purpose
we shall assume that all components of $C$ are smooth rational curves. Hence,

we shall drop the word ’rational’ from Fujita’s terminology. We shall also
assume that $C$ is minimal with normal crossings (MNC). For any curve $\Gamma$ on
$Y$, let $Q(\Gamma)$ denote the subspace of Pic $Y\otimes Q$ generated by components of $\Gamma$ .

10.1. For any component $C_{0}$ of $C$ the branching number is given by $\beta(C_{0})$

$=C_{0}\cdot(C-C_{0})$ . $C_{0}$ is called a tip of $C$ if $\beta(C_{0})=1$ . A sequence $\Gamma$ of components
$\{C_{1}, \cdots , C_{r}\},$ $r\geqq 1$ , is called a twig of $D$ if $\beta(C_{1})=1,$ $\beta(C_{j})=2$ and $C_{j-1}\cdot C_{j}=1$

for $2\leqq$ ] $\leqq r$ . We denote $\Gamma$ by $[a_{1}, \cdots , a_{r}]$ where $a_{i}=-C_{i}^{2}$ . $\Gamma$ is a maximal
twig if there is a (unique) component $C_{0}$ of $C$ such that $C{}_{r}C_{0}=1$ and $\beta(C_{0})$

$\geqq 3$ . Then $C_{0}$ is called the branching component of $\Gamma$. For any twig $\Gamma,\overline{\Gamma}$

denotes the curve $C_{2}\cup$ $\cup C_{r}$ ( $\overline{\Gamma}=\emptyset$ if $r=1$ ), and $e(\Gamma)=d(\overline{\Gamma})/d(\Gamma)$ where $d(-)$

denotes the discriminant, ( $d(\phi)=1$ , by convention). A sequence $\Gamma$ is called a
club if $\beta(C_{1})=\beta(C_{r})=1,$ $\beta(C_{j})=2,2\leqq j\leqq r-1$ and $C_{j}\cdot C_{j+1}=1,1\leqq j\leqq r-1$ .

10.2. A connected component $\Lambda$ of $C$ is called an abnormal (rational) club if
(i) $\Lambda$ has a unique component $C_{0}$ with $\beta(C_{0})=3$ ,
(ii) $\Lambda$ has three maximal twigs $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}$ with $C_{0}$ as their branching

component,
(iii) $\Lambda$ is negative definite, and
(iv) $d(\Gamma_{1})^{-1}+d(\Gamma_{2})^{-1}+d(\Gamma_{3})^{-1}>1$ .

By 6.19 of [F] it follows that an abnormal club $\Lambda$ can be contracted to a rational
singularity, $i$ . $e$ . $\Lambda$ is ’rational’ according to our Definition 5.2.

10.3. Assume now that $K+C$ is pseudo effective, so that, by 6.13, of [F],

all (rational) clubs and maximal twigs of $C$ are negative definite (contractible).

If $\Gamma$ is a maximal twig of $C$ , then Bk $(\Gamma)$ (bark of $\Gamma$ ) is the element $N_{1}\in Q(\Gamma)$

such that $N_{1}\cdot C_{1}=-1,$ $N_{1}\cdot C_{j}=0$ for $j\geqq 2$ (equivalently, $N_{1}\cdot C_{i}=(K+C)\cdot C_{i}$ for
$1\leqq i\leqq r)$ . If $\Gamma$ is a club of $C$ then Bk $(\Gamma)$ is an element $N_{2}\in Q(\Gamma)$ such that
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$N_{2}\cdot C_{1}=N_{2}$ . $C.=-1$ and $N_{2}\cdot C_{j}=0,2\leqq j\leqq r-1$ (equivalently, $N_{2}\cdot C_{t}=(K+C)\cdot C_{i}\forall C_{i}$

in $\Gamma$ ). For an isolated club $\Gamma=\{C_{1}\}$ , we have Bk $(\Gamma)=2(-C_{1}^{2})^{-1}C_{1}$ . For any
connected component $\Lambda$ of $C$ we define Bk $( \Lambda)=\sum_{i}$ Bk $\Gamma_{i}$ where $\Gamma_{i}$ are all
maximal twigs and clubs of $\Lambda$ . We define Bk $(C)= \sum$ Bk $(\Lambda_{j})$ where $\Lambda_{j}$ are all
connected components of $C$ .

For an abnormal club $\Lambda$ of $C$ we define $Bk^{*}(\Lambda)$ as the element $N\in Q(\Lambda)$

such that $N\cdot L=(K+C)\cdot L=(K+\Lambda)\cdot L$ for every component $L$ of $\Lambda$ . If $\Lambda$ is a
connected component which is not an abnormal club of $C$ then we take $Bk^{*}(\Lambda)$

$=Bk(\Lambda)$ . Finally we define $Bk^{*}(C)=\sum Bk^{*}(\Lambda_{j})$ where $\Lambda_{j}$ are all the con-
nected components of $C$ .

We introduce the notation bk $(\Lambda)$ (respectively $bk^{*}(\Lambda)$ ) for the rational num-
ber (Bk $(\Lambda)$ ) $\cdot(Bk(\Lambda))$ (respectively, $(Bk^{*}(\Lambda))\cdot(Bk^{*}(\Lambda))$ ). Then clearly bk $(C)$

$=\Sigma_{i}bk(\Gamma_{i})$ where $\Gamma_{i}$ are all clubs and maximal twigs of $C$ . We have

10.4. LEMMA. Let $C$ be as in 10.0 and 10.3, and $\Gamma=[a_{1}, \cdots , a_{r}],$ $r\geqq 1$ be a
twig of $C$ .

(i) If $\Gamma$ is a maximal twig of $C$ , then bk $(\Gamma)=-e(\Gamma)$ . In particular,
$bk(\Gamma)\leqq-1/a_{1}$ .

(ii) If $\Gamma$ is a club of $C$ then $bk(\Gamma)\leqq-(1/a_{1}+1/a_{r})$ .
(iii) If $\Gamma$ is a club of $C$ with $r=1,2$ or 3 then $bk(\Gamma)=-4/a_{1},$ $-(a_{1}+a_{2}+2)$

$/(a_{1}a_{2}-1)$ or $-a_{2}(a_{1}+a_{3})/(a_{1}a_{2}a_{3}-a_{1}-a_{3})$ , respectively.
(iv) If $\{L_{1}, \cdots , L_{k}\}$ is a set of tiPs of $C$ , then $bk(C)\leqq\sum_{i=1}^{k}1/(L_{i}^{2})$ .
(v) For any abnormal club $\Lambda$ of $C$ we have $bk^{*}\Lambda<bk(\Lambda)$ . Hence $bk^{*}(C)$

$<bk(C)$ .
PROOF. (i) That $bk(\Gamma)=-e(\Gamma)$ is proved in 6.16 of [F]. Since $d(\Gamma)=$

$a_{1}d(\overline{\Gamma})-d(\overline{\Gamma})$ it follows that

$bk(\Gamma)=-e(\Gamma)=-d(\overline{\Gamma})/(a_{1}d(\overline{\Gamma})-d(\Gamma^{=}))\leqq-d(\overline{\Gamma})/a_{1}d(\overline{\Gamma})=-1/a_{1}$ .

(ii) If $r_{1}=1$ , then $bk(\Gamma)=-4/a_{1}$ and so we are done. In general, let $N_{1}=$

$\sum\lambda_{i}C_{i},$ $N_{2}= \sum\mu_{i}C_{i}\in Q(\Gamma)$ be defined as in 10.3. Then $N_{2}=Bk(\Gamma)$ whereas $N_{1}$

has the numerical property of $Bk(\Gamma)$ if $\Gamma$ were a maximal twig with $a_{1}$ as its
tip. Hence by 6.16 of [F], $\lambda_{1}=-N_{1}^{2}\geqq 1/a_{1}$ by (i) above. On the other hand we
have $(N_{2}-N_{1})\cdot C_{i}\leqq 0$ for every component $C_{i}$ of $\Gamma$ and hence $N_{2}\geqq N_{1}$ (by 5.3).

In particular $\mu_{1}\geqq\lambda_{1}\geqq 1/a_{1}$ . By symmetry, we get $\mu_{r}\geqq 1/a_{r}$ . Now $bk(\Gamma)=N_{2}\cdot N_{2}$

$=-(\mu_{1}+\mu_{r})\leqq-(1/a_{1}+1/a_{r})$ .
(iii) Compute directly.
(iv) Follows easily from (i) and (ii) above.
(v) Let $\Lambda$ be an abnormal club of $C$ as in 10.2, $N=Bk^{*}\Lambda$ , and let $N_{i}=$

$Bk(\Gamma_{i}),$ $i=1,2,3$ . Let $\theta=N-(N_{1}+N_{2}+N_{3})$ . Then we have $\theta\cdot L=0$ for every
component of $\Gamma_{1}\cup\Gamma_{2}\cup\Gamma_{3}$ , and $\theta\cdot C_{0}=(K+C)\cdot C_{0}-(d(\Gamma_{1})^{-1}+d(\Gamma_{2})^{-1}+d(\Gamma_{3})^{-1})<0$ ,
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by 6.16 of [F]. Hence $\theta>0$ (by 5.3). Now $N^{2}=N_{1}^{2}+N_{2}^{2}+N_{3}^{2}+\theta^{2}$ and $\theta^{2}=$

$\theta\cdot(\lambda C_{0})$ where $\lambda\geqq 0$ is the coefficient of $C_{0}$ in $N$. Since $\theta\cdot C_{0}<0$ , it follows that
$\theta^{2}<0$ . Hence $bk^{*}(\Lambda)=N^{2}<N_{1}^{2}+N_{2}^{2}+N_{3}^{2}=bk(\Lambda)$ . Hence $bk^{*}(C)<bk(C)$ . This
completes the proof of the lemma.

Finally the following lemma will enable us to use the above estimates in
our situation.

10.5. LEMMA. SuPpose $C$ is a union of trees of rational curves on a smooth
projective surface $Y,$ $C$ is MNC and all $(-1)$-curves on $Y$ are contained in $C$ .
For any set $E_{1},$ $\cdots$ , $E_{r}$ of $(-1)$-curves, $r\geqq 0$ , let $\underline{C}$ be the reduced curve $\underline{C}=$

$C-(E_{1}+\cdots+E_{r})$ . Assume that $|nK_{Y}|\neq\emptyset$ for some $n>0$ , and $K_{Y}+\underline{C}=\underline{P}+\underline{N}$ is
the Zariski decomPou tion. Then $\underline{N}=Bk^{*}(\underline{C})$ . In Particular $\underline{N}^{2}\leqq bk(\underline{C})$ .

PROOF. By 6.20 of [F], if $\underline{N}\neq Bk^{*}(\underline{C})$ then there exists an exceptional curve
$E$ on $Y$, not contained in $\underline{C}$ , such that one of the following holds:

(i) $\underline{C}\cdot E=0$ .
(ii) $\underline{C}\cdot E=1$ and $E$ meets a component of $Bk^{*}(\underline{C})$ .
(iii) $\underline{C}\cdot E>1$ and $E$ meets precisely two components of $D$ , one of which

is a tip of a (rational) club of $D$ .
Note that the word “precisely” in (iii) is not there in [F], though from the proof
of 6.20, this is obvious. Now, since $C$ is MNC, every exceptional curve $E_{i}$ not
in $\underline{C}$ meets at least three components of $\underline{C}$ . Hence $\underline{N}=Bk^{*}(\underline{C})$ . That $\underline{N}^{2}\leqq bk(\underline{C})$

follows from 10.4 (v) above. This completes the proof of the lemma.

\S 11. Some technical lemmas.

11.0. Here we collect a number of technical results similar to those in \S 4,

\S 5 and \S 6. The first one below, is analogous to 4.3 and will be used in con-
junction with 4.1.

11.1. LEMMA. Let $Y$ be a smooth pr0jective surface, $C$ be a curve on $Y$,

with $C=\Sigma_{i=0}^{k}C_{i}$ , where either (a) $C_{i}$ are smooth rational curves pairwise inter-
secting transversally as shown in (a) Figure 1, or (b) $C_{i}$ are smooth rational curves,
$C_{1}\cdot C_{2}=2,$ $C_{0}\cdot C_{1}=C_{0}\cdot C_{2}=1$ or (c) $C_{0}$ is a smooth rational curve; $C_{1}$ is a rational
curve with an ordinary $cusp;C_{0}\cdot C_{1}=2$ . Suppose, in each of these cases, we have
a canonical divisor

$K_{Y}= \sum_{i=0}^{k}t_{i}C_{i}+\Lambda$ $t_{i}\in Z$

for some $div\nu sor\Lambda$ with the properiy supp $(\Lambda)\cap C_{i}=\emptyset,$ $i\geqq 1$ , and $C_{0}\not\subset supp(\Lambda)$ .
Set $a_{i}=-C_{i}^{2}$ . Then:

(a) In Figure 1 (a), let $(a_{1}, a_{2}, a_{3})$ be any of the si $x$ triples (2, 2, 3), (3, 2, 3),
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(4, 2, 3), (2, 2, 4), (3, 2, 4) or (2, 3, 4). Then $t_{0}>0$ (resp. $t_{0}\leqq 0$) implies $t_{1}>0,$ $t_{2}>0$ ,
$t_{3}>0$ (resp. $t_{1}<0,$ $t_{2}<0,$ $t_{3}<0$).

(b) In Figure 1 (b) if $(a_{1}, a_{2})=(2,3)$ , then $t_{0}>0$ (respectjvely, $t_{0}\leqq 0$ ) implies
$t_{1}>0$ and $t_{2}>0$ (respectively $t_{1}\leqq 0$ and $t_{2}\leqq 0$).

(c) In Figure 1 (c) if $C_{1}^{2}=-1$ , then $t_{0}>0$ (respectjvely $t_{0}\leqq 0$), implies $t_{1}>0$

(respectively $t_{1}<0$).

(a) (b) (c)

Figure 1.

PROOF. (a) Compute $K_{Y}\cdot C_{i}$ and use adjunction formula to obtain the equa-
tions:

$\{\begin{array}{l}a_{1}-2=t_{0}+t_{2}+t_{3}-a_{1}t_{1}a_{2}-2=t_{1}+t_{3}-a_{2}t_{2}a_{3}-2=t_{1}+t_{2}-a_{3}t_{3}.\end{array}$

These, in turn, yield

$(a_{2}a_{3}-1)t_{2}=(a_{3}+1)t_{1}-(a_{2}a_{3}-a_{3}-2)$ ,

$(a_{2}a_{3}-1)i_{3}=(a_{2}+1)t_{1}-(a_{2}a_{3}-a_{2}-2)$ ,
$(a_{2}a_{3}-1)t_{0}=(a_{1}a_{2}a_{3}-a_{1}-a_{2}-a_{3}-2)t_{1}+(a_{1}a_{2}a_{3}-a_{1}-a_{2}-a_{3}-2)$ .

Using the fact that $t_{i}$ are all integers, we easily check the assertion of (a) for
any of the triples in the statement of (a).

(b) In Figure 1 (b), note that $C_{1}\cdot C_{2}=2$ and so we obtain

$\{0=1=-2t_{1}+2t_{2}+t_{0}-3t_{2}+2t_{1}+t_{0}$

and hence $t_{1}=(5t_{0}-2)/2;t_{2}=2t_{0}-1$ , and the conclusion follows easily.
(c) Here again, the adjunction formula yields $C_{1}\cdot K_{Y}=1=2t_{0}-t_{1}$ so that

$2t_{0}=1+t_{1}$ and again the conclusion follows easily.

The next lemma helps us to compute the discriminant of certain weighted
trees. The idea used here occurs in [R].

11.2. LEMMA. (a) SuppOse $\Gamma$ is a weighted tree, $u_{0}\in\Gamma$ is a vertex such
that $\Gamma-\{u_{0}\}$ is negative (or pOsjtjve) definite. Then $\Gamma$ can be diagonalized in
such a way that if $p/q$ is the diagonal entry at $u_{0}$ with $p,$ $q$ coprjme, then
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$d(\Gamma)(:=|\det(\Gamma)|)=|p|$ .
(b) Supp0se $\Lambda$ is a tree, $v_{0},$

$u_{0}\in\Lambda$ are any two $ad_{j}$ acent vertices, $\Gamma$ is the
branch of $\Lambda$ at $v_{0}$ containing $u_{0},$

$\Gamma’=\Lambda-\Gamma$ is the branch at $u_{0}$ containing $v_{0}$ .
Supp0se both $\Gamma$ and $\Gamma’$ can be diagonalized as in (a) above with diagonal entries
at $u_{0}$ and $v_{0}$ being $p/q$ and $p’/q’$ respectively. Supp0se that $p’\neq 0$ (or $p\neq 0$).

Then $d(\Lambda)=|pp^{r}-qq’$ .

PROOF. (a) We induct on the number of vertices of $\Gamma$ . Let $\Gamma-\{n_{0}\}=$

$\Gamma_{1}\perp\cdots JL\Gamma_{k},$ $k\geqq 1$ , with $u_{i}\in\Gamma_{\iota}$ , being joined to $u_{0}$ in $\Gamma$ . Then each $\Gamma_{i}$ can
be diagonalized in such a way that if $p_{i}/q_{i}$ is the entry at $u_{i}$ , then $d(\Gamma_{i})=|p_{i}|$ .
By the definiteness, $p_{i}\neq 0$ . Hence we can further diagonalize the whole of $\Gamma$

by taking the diagonal entry at $u_{0}$ as $\Omega_{u_{0}}-\Sigma_{i=1}^{k}(q_{i}/p_{i})=p/q$ , say, where $q=$

$p_{1}\cdots p_{k}$ . Thus $d(\Gamma)=|\det(\Gamma)|=|(p/q)d(\Gamma_{1})\cdots d(\Gamma_{k})|=|p|$ as claimed.
(b) Since $p’\neq 0$ , using the given diagonalization of $\Gamma$ and $\Gamma’$ we can further

diagonalize $\Lambda$ , by changing the entry at $u_{0}$ to $p/q-q’/p^{f}=(pp’-qq’)/p’q$ . If
$\Gamma_{1},$ $\cdots$ , $\Gamma_{k}$ are the branches of $\Gamma$ at $u_{0}$ , then we have $|p|=d(\Gamma)=|(p/q)d(\Gamma_{1})$

... $d(\Gamma_{k})|$ and hence $|q|=d(\Gamma_{1})\cdots d(\Gamma_{k})$ . Hence $d(\Lambda)=d(\Gamma_{1})\cdots d(\Gamma_{k})$ .
$(|pp^{f}-qq^{f}|/p’q)\cdot d(\Gamma^{f})=|pp’-qq’|$ as required.

11.3. LEMMA. Let $\Gamma$ be a unimodular tree with all $weights\leqq-1,$ $v\in\Gamma$ be a
vertex, $\Gamma_{1}$ be a branch of $\Gamma$ at $v$ , with $w\in\Gamma_{1}$ joined to $v$ in $\Gamma$ . Supp0se $\Gamma_{1}$

.satisfies the following conditions:
(i) $\#(\Gamma_{1})=6,$ $\Omega_{w}\leqq-2$ ;
(ii) The weight-set $\Omega(\Gamma_{1}-\{w\})$ of $\Gamma_{1}-\{w\}$ , is one of the following four

sets: $\dagger-2,$ $-2,$ $-2,$ $-2,$ $-2$ }, $\{-3, -2, -2, -2, -2\},$ $\{-3, -3, -2, -2, -2\}$ or
$\{-4, -2, -2, -2, -2\}$ .

(iii) $\Gamma_{1}$ is not rational (see 5.2).

Then we have:
(a) $\Gamma_{1}$ is one of the trees listed in Figure 2.
(b) $\Gamma_{1}$ is negative definite and we can diagonalize $\Gamma_{1}$ as in 11.2 (a) so that

if $p/q$ is the entry at $wthen|p|=|\det\Gamma_{1}|=d(\Gamma_{1})$ .
(c) For $\Omega_{w}=-2,$ $p/q$ takes the values, $-16/23$ , $-4/17$ , $-4/9$ , -27/26,

$-32/23,$ $-13/17$ , -13/42 and for $\Omega_{w}=-3,$ $p/q$ takes the values $-39/23$ , -21/17,
$-13/9,$ $-53/26,$ $-55/23,$ $-40/17$ , -55/42 respectively. And,

(d) If $\{\Lambda_{i}\}$ are the maximaI twigs of $\Gamma_{1}$ , not containing $w$ , then $\Sigma_{\ell}bk(\Lambda_{i})$

$\leqq-7/6$ .
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$-\underline{2-}*\underline{3w}-\llcorner 2-2$
$-3$

$-2w_{\dagger_{-2}}-2$

$*-3|$ $*-*--\ulcorner^{*}3$

(i) (ii)

$-2$ $-2$ $-2$

$-*--*$
$w$

$1_{-2}*-3|$
$w*\neg_{-2}^{\frac{3-}{1_{-3}}*}-\underline{2-}2$

(iii) (iv)

$-3$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$

$w*-i_{-2*-3}^{-}|^{-*}$ $w*-]_{-3*-3}\overline{|}^{*}$ $*\overline{w}||*-3*-3$

(v) (vi) (vii)

Figure 2.

$u_{\dagger}$

$*-*-]^{-}$ $u_{1}\overline{u_{2}}5I^{-}I^{-*}$

(a) (b) (c)

Figure 3.

PROOF. Since $\Gamma_{1}$ is nonrational, by 5.4, it follows that $\Gamma_{1}$ should have one
of the configurations shown in Figure 3. By 6.3 (i) configuration (a) is ruled
out easily. For the same reason, in (b) it follows that the tip $u$ must be same
as $w,$ $i.e$ . $u=w$ . And then if $v_{1}\in\Gamma_{1}$ is the branch point, the twigs of $\Gamma$ at $V_{1}$

(which are the twigs of $\Gamma_{1}$ at $v_{1}$ not containing w) should have coprime discri-
minants. Thus it is easily seen that $\Gamma_{1}$ should be either (i) or (ii) of Figure 2.

Finally, in (c) of Figure 3, upto symmetry there are two choices for the
location of $w$ , viz., $w=u_{1}$ or $w=u_{2}$ . The first choice gives precisely the four
possibilities (iii)-(vi) for $\Gamma_{1}$ and the second choice precisely the last one in
Figure 2. This proves statement (a). Statements (b), (c) and (d) are directly
checked.

11.4. LEMMA. Let $\Gamma$ be a unimodular tree $v\in\Gamma$ be a vertex at which $\Gamma_{1}$ is
a branch of $\Gamma$ with $w\in\Gamma_{1}$ being Joined to $v$ in $\Gamma$ . SuPpose $\Gamma_{1}$ satisfies the fol-
lowing condiiions:
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(i) $\#(\Gamma_{1})=7$ .
(ii) $\Omega_{w}\leqq-2$ and $\Omega(\Gamma_{1}-\{w\})=\{-2, -2, -2, -2, -2, -2\}$ or $\{-3,$ $-2,$ $-2$ ,

$-2,$ $-2,$ $-2$ } and
(iii) $\Gamma_{1}$ is not rational.
Then we have;
(a) $\Gamma_{1}$ is one of the trees listed in Figure 4.A and Figure 4.B.
(b) $\Gamma_{1}-\{w\}$ is negative definite and we can diagonalize $\Gamma_{1}$ , as in 11.2 (a), $so$

that if $p/q$ is the entry at $w$ , then $d(\Gamma_{1})=|p|$ .
(c) For $\Omega_{w}=-2,$ $p/q$ takes the values $-3/7,$ $-12/13,$ $-3/22,$ $+4/7,$ $-4/13$ ,

$-20/21,$ $-16/13,$ $+1/7,$ $+1/30,$ $+1/42,$ $+1/18,$ $+1/4,$ $+1/10,$ $+4/3,16/7,4/13$

and for $\Omega_{w}=-3,$ $p/q$ takes the values $-10/7,$ $-25/13,$ $-25/22,$ $-3/7$ , -17/13,

$-41/21$ , $-29/13$ , $-6/7,$ $-29/30,$ $-41/42,$ $-17/18,$ $-3/4,$ $-9/10,$ $+1/3,$ $+9/7$ ,

$-9/13$ respectjvely.
(d) If $\{\Lambda_{i}\}$ are maximal twigs of $\Gamma_{1}$ not containing $w$ , then $\Sigma_{t}bk(\Lambda_{i})\leqq$

-16/15.

$-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$

$w*-*-|^{-*-*}$ $\overline{w}\neg^{--}$ $-w\neg^{--*}$

$*-2|$ $*-3|$ $\mathfrak{s}^{-2}$

$*-3$ $*-2$ $*-3$

(1) (2) (3)

(4) (5) (6)

$-2$ $-2$ $-2$ $-2$

$|\overline{v}|\urcorner^{--}*-3*-2$

(7) (8)

Figure 4.A.

$-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$

$\overline{w*|}_{-3*}^{--}-|\begin{array}{ll} - rightarrow 2 \end{array}||\begin{array}{lll} - -2 \end{array}|\overline{|}^{-}\overline{w}$

(9) (10) (11)
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$-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$

$*-|^{-*}--|\begin{array}{lll}* * * w \end{array}|f^{-*-}$ $w*|\neg^{-*-*}$
$*-3$ $*-2$ $*-3*w$ $*-2$ $*-2$

(12) (13) (14)

$*-2$

$-3$ $-2$
$|_{-2}-2$

$-2$

$*--*-*-*$
$\downarrow w$

$*-2$

$-2$ $-3$
$|_{-2-2}$

$-2$

$*-*-*-*-$
$*w|$

(15) (16)

Figure 4. B.

PROOF. We argue exactly as in 11.3. By 5.4, first of all we see that the
non-rationality of $\Gamma_{1}$ implies that $\Gamma_{1}$ has one of the configurations $(a)-(h)$ in
Figure 5. We then employ 6.1 repeatedly, taking these configurations, one by
one, first to determine the possible locations for $w$ , and then with each such
location of $w$ , the possible weights at other vertices.

$\frac{*1}{/\backslash _{*}}$ $* \frac{1_{v_{1}}^{u}}{*1}*$

(a) (b) (c)

(d) (e)

(g)

$*---*-*$
$u_{1}$

$v_{1}\downarrow_{u_{Z}}$

$V_{2}$

$\nu_{3}!_{u_{3}}u_{4}$

(f)

$u$

$\overline{!}\overline{|^{--*}*}$

(h)

Figure 5.

The configurations (a), (b) and (d) are quickly ruled out. Configuration (c)

is ruled out as follows: Upto symmetry, we may assume that $w=u$ . Then
the two isolated twigs of $\Gamma_{1}$ at $V_{1}$ should have weights $-2$ and $-3$ respectively.
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This forces the third twig at $v_{1}$ to be [2, 2, 2] with discriminant even. This
contradicts 6.1. Configuration (e) gives the possibilities (15) and (16) of Figure
4. In (f), we first see that $w$ should be one of the four tips, which are sym-
metrical and hence we may assume $w=u_{1}$ . Then it follows that $\{\Omega_{u_{3}}, \Omega_{u_{4}}\}=$

$\{-2, -3\}$ , and all other weights are $-2$ . But now at $v_{1},$
$\Gamma$ has two branches,

viz. $\{u_{2}\}$ and $\{v_{2}, v_{3}, u_{3}, u_{4}\}$ with even discriminants, contradicting 6.1. Thus
configuration (f) is also ruled out.

Consider now, the configuration (g). There are, upto symmetry, three dif-
ferent possible locations for $w$ . The possibility $w=v_{1}$ is ruled out easily. The
other two possibilities precisely yield the first three configurations in Figure 4.

Finally, consider the configuration (h). If $\Omega(\Gamma_{1}-\{w\})=\{-2,$ $-2,$ $-2,$ $-2$ ,
$-2,$ $-2$ }, then upto symmetry there is a unique choice for $w$ , viz., $w=u$ . This
then yields configuration (14) of Figure 4. Now let $\Omega(\Gamma-\{w\})=\{-3,$ $-2,$ $-2$ ,

$-2,$ $-2,$ $-2$ }. Then upto symmetry, there are six different locations for $w$ .
If $w=u$ , then the (–3)-curve can be located in six different places. Five of
these are listed in (4)$-(8)$ , and the sixth one is ruled out easily. For the remain-
ing five locations of $w$ , it is easily seen that the location of $(-3)$-curve is uni-
quely determined, giving the trees (9)$-(13)$ . This proves statement (a).

Statements (b), (c) and (d) are directly checked. This completes the proof
of Lemma 11.4.

\S 12. The case $e_{1}\geqq 1$ .
12.0. Returning to the proof of 8.2, note that we have $\lambda\geqq 2$ (by 9.3), and

hence $r_{4}=0,$ $D$ is unimodular, $b_{2}=\beta_{2}$ (by 3.2), and $r_{3}+e_{1}+\sigma+\tau\leqq 2$ , by (2.8). By
(1.3) we now obtain $K\cdot D\leqq\beta_{2}-6=b_{2}-6$ . In this section we shall dispose off the
case when $e_{1}\geqq 1$ . However, we shall first prove:

12.1. LEMMA. SuPpose $D$ is unimodular and has no $(-1)$-curves. Then $b_{2}=$

$b_{2}(D)\geqq 12$ .

PROOF. Assume on the contrary that, $b_{2}\leqq 11$ . Since $D$ is unimodular, each
connected component of $D$ is also unimodular. Hence, by 6.2, it follows that $D$

is connected. Let $T$ be the dual tree of $D;v_{0}\in T$ be a vertex such that all
branches of $T$ at $v_{0}$ have less than six vertices. By 4.1, at least one of them,
say $T_{1}$ , is not rational. Hence by 5.4, $\#(T_{1})=5$ , and by 6.4 (a), there exist
$u_{1},$ $u_{2},$ $u_{3}\in T_{1}$ which are tips of $T$ such that $\Sigma_{i=1}^{3}\Omega_{u_{i}}\leqq-10$ . It follows that
$\sum_{u\in T_{1}}\Omega_{u}\leqq-14$ . Let $u_{4}\in T_{1}$ be the vertex joined to $v_{0}$ in $T$ . Again, by 4.1,
$T-u_{4}$ should have a branch $\Gamma$ which is non-rational. Since $\#(T_{1}-\{u_{4}\})=4$ , it
follows that $\Gamma$ is disjoint from $T_{1}-\{u_{4}\}$ . Clearly $\#(\Gamma)\leqq 6$ . Since $\Sigma_{u\in T_{1}}\Omega_{u}\leqq$

$-14$ , and $K\cdot D\leqq 5$ , it follows that all components in $\Gamma$ are $(-2)$-curves except
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perhaps one which may be a $(-3)$-curve. Hence by 6.4, it follows that $\#(\Gamma)=6$ ,

and $T$ should be the tree shown in Figure 6. But then one easily checks that
$T$ is not unimodular. This contradiction completes the proof of the lemma.

$-2$ $-2$ $-2$ $-2$ $-2$

$|_{-2}^{-2}-3$

$\neg^{-}f^{-*-*}v_{0}u_{4^{-*-*}}|$

$*-3$ $*-2$ $*-5$

Figure 6. $d=149$ .

12.2. We now claim that $e_{1}\leqq 1$ . Assume the contrary that $e_{1}=2$ . Then
we have $r_{3}=0$ and an equality in (2.8). Hence, by 2.10, $K\cdot D=\beta_{2}-6$ . Let $L_{1}$ ,
$L_{2}$ be the two components of $\mathcal{E}_{1}-D$ . Then $L_{i}\subseteqq R_{2}$ since $r_{3}=0=r_{4}$ . We claim
that $L_{1}\cap L_{2}=\emptyset$ . For, if $L_{1}\cap L_{2}\neq\emptyset$ , then, we may assume $L_{1}^{2}=-1$ , say, so
that $L_{1}\cdot L_{2}=1$ , $L_{2}^{2}\leqq-2$ . Since components of $D$ generate $PicX,$ $L_{2}\cdot D\geqq 1$ .
Clearly $L_{1}\cdot D=2$ . Hence it follows that $\beta(L_{2})\geqq 3$ contradicting the observation
that $L_{2}\subseteqq R_{2}$ . So $L_{1}\cap L_{2}=\emptyset$ . Now it follows easily that for the curve $C=$

$D\cup L_{1}\cup L_{2}$ , we have $b_{1}(C)\leqq 2,$ $K\cdot C\geqq K\cdot D-2=\beta_{2}-8$ , and $b_{2}(C)=b_{2}(D)+2=\beta_{2}+2$ .
Hence

$M(X, C)\leqq 4\beta_{2}+2-1-4-3(\beta_{2}+2)-(\beta_{2}-8)=-1$

contradicting (1.6). Hence $e_{1}\leqq 1$ as claimed.
For the rest of the section we shall assume that $e_{1}=1$ and hence $b_{0}+\lambda+\sigma$

$+\tau+r_{3}\leqq 4$ . Let $L_{0}$ be the unique component of $\mathcal{E}_{1}-D$ .

12.3. Suppose first that $L_{0}\subseteqq R_{3}$ . Then $r_{3}\geqq 1$ and hence $r_{3}=1,$ $b_{0}=1,$ $\lambda=2$ ,
$\sigma+\tau=0$ and we have equality in (2.8). Hence by 2.10, $K\cdot D=\beta_{2}-6$ . Let $D_{1}$ ,
$D_{2},$ $D_{3}$ be the three distinct components of $D$ such that $L_{0}\cdot D_{i}=1$ . Suppose first
that all the three points $L_{0}\cap D_{i}$ are distinct. Then we claim that $D_{i}^{2}\leqq-3$ , for
$i=1,2,3$ . If not, say, $D_{1}^{2}=-2$ . Then, it follows that $D_{1}\subseteqq \mathcal{E}_{1}$ and hence $D_{1}\subseteqq R_{2}$ .
This means that $D_{1}$ is an isolated component of $D$ and hence $1=b_{0}\geqq 2$ which is
absurd. It follows that after blowing down $L_{0}$ , we obtain the surface $X’$ .
Indeed we claim that $X’=X’’$ . For, first of all $\sigma=0$ implies, by 3.1, that $\mathcal{E}_{2}\subseteqq D^{f}$

has at most one component. Clearly this should be one of $D_{1}’,$ $D_{2}^{f}$ or $D_{3}’$ . But
we have just seen that $D_{i}^{2}\leqq-3$ and hence $D_{i^{2}}’\leqq-2$ . Hence $X^{f}=X’’$ . In parti-
cular, it follows that $\beta_{2}=11$ and $D$ has no $(-1)$-curves. By the lemma above,
this contradicts the unimodularity of $D$ .

Hence the three points $L_{0}\cap D_{i},$ $i=1,2,3$ , cannot be all distinct. Since $D$ is
$NC$ all the three points cannot coincide. Hence it must be the case that $L_{0}\cap D_{1}$

$=L_{0}\cap D_{2}\neq L_{0}\cap D_{3}$ , say. But then for $C=D\cup L_{0}$ , we have $b_{1}(C)=1,$ $b_{2}(C)=\beta_{2}+1$ ,
$K\cdot C=K\cdot D-1=\beta_{2}-7$ and hence
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$M(X, C)=4\beta_{2}+1-1-4-3(\beta_{2}+1)-(\beta_{2}-7)=0$ .
We now note that $C$ has tips (since $D$ is not linear) and hence by 1.4, and 1.6,
we have a contradiction.

Thus, we have shown that $L_{0}\subseteqq R_{2}$ .

12.4. Now let $D_{1}$ and $D_{2}$ be the components of $D$ such that $D_{i}\cdot L_{0}=1$ . We
shall first show that $L_{0}\cap D_{1}\neq L_{0}\cap D_{2}$ . For, if $L_{0}\cap D_{1}=L_{0}\cap D_{2}$ , then for $C=$

$D\cup L_{0},$ $b_{1}(C)=0,$ $b_{2}(C)=\beta_{2}+1$ , and $K\cdot C=K\cdot D-1\geqq\beta_{2}-8$ by 2.6 and hence

$M(X, C)\leqq 4\beta_{2}-1-4-3(\beta_{2}+1)-(\beta_{2}-8)=0$

which again leads to a contradiction as above. Hence $L_{0}\cap D_{1}\neq L_{0}\cap D_{2}$ . Here
again, if $K\cdot D\geqq\beta_{2}-6$ , then, as above we will have $M(X, C)\leqq 0$ which leads to
a contradiction. So we assume that $K\cdot D\leqq\beta_{2}-7$ . If $b_{0}=1$ , from (2.10) we see
that there is no equality in (2.8) and hence $\sigma+\tau+r_{3}=0$ . If $b_{0}>1$ , we get
$b_{0}+\lambda+\sigma+\tau+r_{3}\leqq 4$ . Thus $b_{0}=2,$ $\lambda=2,$ $r_{3}=0,$ $\sigma=0$ and $\tau=0$ . Now by 3.1, it
follows that $n_{2}\leqq 1$ , and $\mathcal{E}_{2}\subseteqq D’$ .

12.5. Suppose $n_{2}=1$ . Let $\mathcal{E}_{2}=\{E_{1}^{f}\},$ $E_{1}^{\prime 2}=-1$ . Since $\tau=0$ , there should exist
$\{D_{i}’\}_{1\leqq i\leqq S}$ , in $D’$ , such that $E_{1}^{f}\cdot D_{1}’=2,$ $E_{1}’\cdot D_{i}’=1,2\leqq i\leqq s$ . Clearly, after blowing
down $E_{1}’$ , we obtain the minimal surface $X’’$ . So one can easily see that $K’\cdot D’$

$=s+\lambda=s+2$ and hence

$M(X’, D’)\leqq 44+1-b_{0}-4-36-(s+2)=3-s-b_{0}$ .
Further, since $D$ is not linear, it follows that $D’$ has tips. Hence $M(X’, D^{f})>0$ ,

by 1.6, and 1.4. Hence $s=1,$ $b_{0}=1$ . Note that $E_{1}’$ should meet $D_{1}’$ in two dis-
tinct points (otherwise $r_{3}>0$).

Thus on $X’’$ , all components of $D’’$ are smooth except $D_{1}’’$ which has a node
at $\pi_{2}(E_{1}’)=x$ , and all the singularities of $D’’$ are ordinary double point singularities.
By 3.1 (i), it follows that $L_{0}\subseteqq\pi^{-1}(x)$ . So if $F$ is the singular fibre of $\varphi$ , con-
taining $L_{0}$ it follows that $F-L_{0}\subseteqq D$ , by 9.3. Hence, the fibre $P$ of $\varphi’$ , through
$x$ is contained in $D$“. Since no other component of $D’$ passes through $x$ , we
conclude that $P_{red}=D_{1}’’$ . But now we can appeal to 9.7 to conclude that $b_{1}(D’)$

$\geqq 2$ which is absurd, since $b_{1}’D’’$ ) $=b_{1}(D’)=1$ . Thus we have shown that $n_{2}=0$,
$i.e.,$ $X^{ff}=X’$ .

12.6. It follows that $D’$ is NC, $b_{1}(D’)=b_{1}(D\cup L_{0})=1,$ $b_{2}(D’)=11,$ $\lambda=2$ . Let
now $\pi_{1}(L_{0})=x\in X’$ . Then by 9.3, it follows that the fibre $P$ through $x$ of
$\varphi’(=\varphi’)$ is contained in $D’’=D^{f}$ . Since $b_{1}(D^{f\prime})=1$ , by 9.7, we conclude that $P$

is of type $II^{*}$ . Further more, if $H_{1}’’$ and $H_{2}’’$ are the two horizontal components,
then since $\lambda=2$ , we have $H_{i}’’\cdot K’=1,$ $i=1,2$ . Hence $H_{i}’’\cdot P=6$ . Again, using
the fact that $D’=D^{\parallel}$ is NC and $b_{1}(D’)=1$ , we infer that one of the horizontal
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Figure 7. The fibre $P=II^{*}$ .
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components say $H_{1}’’$ nleets $D_{0}’’$ transversely, where $D_{0}’’$ is the component of $P$

with $\mu(D_{0}’’)=6$ . The other component $H_{2}^{f\prime}$ will meet two (not necessarily dis-
tinct) components $D_{i}’’$ and $D_{j}’’$ of $P$ transversely, so that $\mu(D_{i}’’)+\mu(D_{j}’’)=6$ . This
yields eight possible configuration for the dual graph of $D’$ , as shown in Figure
8. Consider the configuration (a). It follows that if $D_{0}$ is the proper transform
of $D_{0}’’$ on $X$ , then $D$ has two branches [3] and $[2, 2]$ at $D_{0}$ both having dis-
criminant 3. This contradicts 6.1. Thus configuration (a) is ruled out. Exactly
for the same reason, (b), (c), (d) and (e) are also ruled out. In (f), $D$ will have
two branches [3] and [2, 2, 2, 2, 2] at $D_{0}$ with discriminants 3 and 6 respec-
tively. This again contradicts 6.1. In (g) and (h), we consider the curve $C=$

$D^{f\prime}-D_{0}’’$ . Then $b_{0}(C)=3,$ $b_{1}(C)=0,$ $b_{2}(C)=10,$ $K\cdot C=2$ , and so

$M(X’, C)=40-3-4-30-2=1$ .
If $T_{1},$ $T_{2}$ and $T_{3}$ denote the components of $C$ , then by 10.4, bk $(C)= \sum$ bk $(T_{i})$

$<-2-4/3-(1/2+1/2+1/2)<-4$ . Hence by 1.6 and 10.5, we have,

$0 \leqq M(X’, C)+\frac{1}{4}N^{2}\leqq 1+bk(C)<1-1=0$

which is absurd.
This proves that $e_{1}=0$ .

\S 13. The case $r_{3}=0$ .
13.0. We shall now dispose of the case $r_{3}=0$ . Since $D$ is MNC, $r_{3}=r_{4}=$

$e_{1}=0$ implies that $n_{1}=0,$ $i$ . $e.,$ $X=X’$ , and $D$ is free from $(-1)$-curves. By 12.1,
it follows that $\beta_{2}=b_{2}\geqq 12$ and hence $n_{2}\geqq 2$ . Hence, by 3.1, it follows that $\sigma\geqq 2$

and hence $\sigma=2$ , and $n_{2}=2$ . Let $\mathcal{E}_{2}=\{E_{1}’, E_{2}’\}$ .

13.1. Suppose $E_{1}’\cap E_{2}’=\emptyset$ . Then, it follows that $E_{1}^{\prime 2}=E_{2}^{\prime 2}=-1$ . Since $\tau=0$

(and $n=2$), $m_{t.i}=2$ for all $(t, i)$ . Hence both $E_{i}^{f}$ are outside $D$ . Also it follows
that there exist $\{D_{i.j}’\}_{1\leqq J\leqq s_{i}}\subseteqq D’$ such that $E_{i}’\cdot D_{i.1}’=2,$ $E_{i}^{f}\cdot D_{i.j}’=1,2\leqq j\leqq s_{i},$ $s_{i}\geqq 1$ ,

for $i=1,2$ . Note that for a fixed $i,$ $D_{i.j}^{f}$ are distinct. Now, there is an equality
in (2.8) and hence $K\cdot D=\beta_{2}-6=6$ . On the other hand using the fact that $\lambda=2$ ,
one also computes easily that $K\cdot D=s_{1}+s_{2}+4$ . Hence $s_{1}=s_{2}=1$ . Now for the
curve $C=D^{f}\cup E_{1}’\cup E_{2}’$ , we have $b_{0}(C)=1$ , $b_{1}(C)\leqq 2$ , $b_{2}(C)=b_{2}(D’)+2=14$ and
$K\cdot C=4$ . Hence,

$M(X’, C’)\leqq 48+2-1-4-42-4=-1$

contradicting (1.6).

13.2. Hence $E_{1}’\cap E_{2}’\neq\emptyset$ and we may assume that $E_{1}^{\prime 2}=-1,$ $E_{1}’\cdot E_{2}’=1,$ $E_{2}^{\prime 2}=$

$-2$ . Again by 3.1, $E_{i}’\not\subset D’$ , and there exist components $\{D_{i.j}’\}$ of $D’$ such that
$E_{1}’\cdot D_{1,1}’=2,$ $E_{1}’\cdot D_{1,j}’=1,2\leqq j\leqq s_{1}$ , $(s_{1}\geqq 1)$ , and $E_{2}’\cdot D_{2,j}’=1$ , for $1\leqq j\leqq s_{2}$ , $s_{2}\geqq 0$ .
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$\triangleright-iow$ for the curve $C=D’\cup E_{1}’\cup E_{2}’$ , it follows that, $b_{0}(C)=1,$ $b_{1}(C)\leqq s_{1}+s_{2},$ $b_{2}(C)$

$=14$ , and $K\cdot C=2s_{1}+s_{2}+\circ\vee\cdot$ Hence,

$M(X’, C)\leqq 48+s_{1}+s_{2}-1-4-42-(2s_{1}+s_{2}+3)<0$

contradicting (1.6).
Thus, we have shown that $r_{3}\geqq 1$ .

\S 14. The case $r_{3}=1=\sigma$ .
14.0. So far we have proved that $r_{4}=e_{1}=0$ and $r_{3}\geqq 1$ . Hence $\sigma\leqq 1$ . In

this section we shall show that $\sigma=0$ . Assuming that $\sigma=1$ , we have $r_{3}=1$ ,
$b_{0}=1,$ $\lambda=2,$ $\tau=0,$ $b_{2}=\beta_{2},$ $K\cdot D=\beta_{2}-6$ , etc. from (2.8). Let $L_{0}$ be the unique
$(-1)$-curve in $R_{3}$ . Note that since $e_{1}=0,$ $\{L_{0}\}=R_{3}\subset D$ . Let $L_{1},$ $L_{2},$ $L_{3}$ be the
three components of $D$ such that $L_{0}\cdot L_{i}=1$ .

14.1. Suppose $L_{i}^{2}\leqq-3,$ $i=1,2,3$ . Then, it follows that after blowing-down
$L_{0}$ , we obtain $X’$ . Now $\sigma=1$ implies, by 3.1, that $\mathcal{E}_{2}=\{E’\}$ is not contained in
$D$ , and there exist components $\{D_{i}’\}$ of $D’$ such that $E’\cdot D_{1}’=2$ , and $E_{1}’\cdot D_{j}’=1$ ,
$2\leqq j\leqq s,$ $s\geqq 1$ . It follows that $\beta_{2}(X’)=11=b_{2}(D’)$ . Since $\lambda=2$ , one easily com-
putes that $K’\cdot D’=s+3$ , K. $D=s+5=\beta_{2}-6=6$ . Hence, $s=1$ . Take $C’=D’\cup E’$ .
Then $K’\cdot C’=3,$ $b_{1}(C’)\leqq 1$ , and hence

$M(X^{f}, C’)\leqq 44+1-1-4-36-3=1$ .

Now consider the (nontrivial) contraction $\varphi_{1}$ : $Xarrow X’$ . After blowing up at
$E’\cap D_{1}^{f}$ if necessary, we obtain a contraction $\alpha;\tilde{X}arrow X$ such that $\tilde{C}=\alpha^{-1}(C)$ is
NC. Then $M(\tilde{X},\tilde{C})\leqq M(X, C)$ . And as in the proof of 1.7 we see that $M(X, C)$

$\leqq M(X’, C’)-1\leqq 0$ . Hence $M(\tilde{X},\tilde{C})\leqq 0$ . On the other hand since $C$ has tips so
does $\tilde{C}$ . Hence by (1.4) and (1.6) $M(\tilde{X},\tilde{C})>0$ , which is absurd.

Thus, it follows that $L_{i}^{2}=-2$ , for some $i=1,2,3$ , say $L_{3}^{2}=-2$ . Since $r_{3}=1$ ,

it follows that $L_{3}\subseteqq R_{2}$ and hence $L_{3}$ should be a tip of $D$ . Clearly $L_{1}^{2}\leqq-3$ ,

and $L_{2}^{2}\leqq-3$ .

14.2. Now, suppose that $L_{1}^{2}\leqq-4,$ $L_{2}^{2}\leqq-4$ . Then, it follows that after
blowing down $L_{0}$ and then $L_{3}$ , we obtain $X’$ . Now arguing exactly as in 14.1,
we obtain $\{E_{1}^{f}\}=\mathcal{E}_{2},$ $E_{1}’\not\subset D’$ etc., and for $C’=D’\cup E_{1}’,$ $M(X’, C’)\leqq 1$ which leads
to a contradiction, as above. Hence we may assume that $L_{2}^{2}=-3$ , so that the
image $L_{2}^{l}$ of $L_{2}$ on $X’$ , is a $(-1)$-curve. Note that $L_{1}’\cdot L_{2}’=2,$ $L_{1}’\cap L_{2}^{f}=\{x\}$ , say.
By 3.1, it follows that $\mathcal{E}_{2}$ consists of one more component, besides $L_{2}’$ , say,
$\mathcal{E}_{2}=\{E_{1}’, L_{2}’\}$ and we must have one of the following two cases:

(a) $E_{1}’$ and $L_{2}’$ are disjoint, $E_{1}^{\prime 2}=-1$ , and $E_{1}’\not\subset D^{f}$ , or
(b) $E_{1}’\cdot L_{2}’=1,$ $E_{1}^{\prime 2}=-2$ , and $E_{1}’\subset D’$ .
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14.3. Consider the case (a) above. It follows that there exist components
$\{D_{i.j}’\}_{1\leqq j\leqq s_{1}}$ of $D’$ with $E_{1}’\cdot D_{1,1}^{f}=2,$ $E_{1}’\cdot D_{1.j}’=1,2\leqq j\leqq s_{1},$ $s_{1}\geqq 1$ . Let $\{D_{2.j}’\}_{1\leqq j\leqq s_{2}}$ ,

be the components of $D’$ , such that $L_{2}’\cdot D_{2.j}’=1$ . (Clearly $D_{2,j}’\neq L_{1}’.$ ) Then one
easily computes that $K’\cdot D’=2+(s_{1}-1)+2+s_{2}+2-1=s_{1}+s_{2}+4$ . Again take
$C’=D’\cup E_{1}’$ . Then $K’\cdot C’=K’\cdot D’-1=s_{1}+s_{2}+3,$ $b_{1}(C’)\leqq s_{1}$ and hence $M(X’, C’)$

$=48+s_{1}-1-4-39-(s_{1}+s_{2}+3)=1-s_{2}\leqq 1$ . This again leads to a contradiction
as in 14.1, using the fact that $C’$ has tips.

14.4. Consider the case (b). Let now, $\{D_{1,j}’\}$ and $\{D_{2.j}’\}$ be components of
$D’$ such that $D_{2.j}’\cdot L_{2}’=1,$ $D_{2.j}’\neq E_{1}’,$ $1\leqq j\leqq s_{2},$ $s_{2}\geqq 0$ . $D_{1.j}’\cdot E_{1}’=1,$ $D_{1,j}’\neq L_{2}’,$ $1\leqq j\leqq$

$\leqq s_{1},$ $s_{1}\geqq 0$ . Again, one easily, computes that $K\cdot D=s_{1}+2s_{2}+8=\beta_{2}-6=8$ , and
hence $s_{1}=0=s_{2}$ . In particular, it follows that $E_{1}$ , the proper transform of $E_{1}’$

on $X$ is a $(-2)$-curve and is a tip of $D$ , and $L_{2}$ intersects only $E_{1}$ and $L_{0}$ .
Thus the curve $C=D-\{L_{0}\}$ has three connected components $T_{1},$ $T_{2},$ $T_{3}$ say,
where $T_{3}=\{L_{3}\}=[2]$ , and $T_{2}=\{L_{2}\cup E_{1}\}=[2,3]$ . On the other hand we have:

$M(X, C)=56-3-4-39-9=1$ .
Hence, by 10.5, and 1.6, $bk(C)\geqq-4$ . On the other hand $bk(C)=\Sigma bk(T_{i})=$

$bk(T_{1})-7/5-2$ . We shall presently show that $bk(T_{1})<-3/5$ which leads to a
contradiction.

As before, by 4.1, it follows that $T_{1}$ is non-rational, and hence has at least
three tips. One easily sees that $L_{1}’’$ is horizontal and so $L_{1}’’\cdot K’’>0$ . Since there
is another horizontal component in $D’$ , say, $L_{4}’’$ , it follows that $L_{1}’’\cdot K’’=L_{4}’’\cdot K’’$

$=1(\lambda=2)$ . It follows that $L_{1}^{2}=-9$ and $L_{4}^{2}=-3$ , and all other components of
$T_{1}$ are $(-2)$-curves. Hence by10.4, $bk(T_{1})\leqq-(1/9+1/3+1/2)<-3/5asreq_{11}ired$ .

This completes the proof of the claim $\sigma=0$ .

14.5. REMARK. At this stage, it is not hard to see that there are only
finitely many possibilities for the dual graph $T$ of $D$ .

\S 15. The case $r_{3}=1$ .
15.0. To sum-up, so far, we have proved that $r_{4}=e_{1}=\sigma=0$ and $r_{3}\geqq 1$ . Of

course, $3\geqq\lambda\geqq 2,$ $b_{2}=\beta_{2},$ $b_{0}\geqq 1,$ $b_{0}+r_{3}+\tau+\lambda\leqq 5$ . In this section we shall dispose
off the case $r_{3}=1$ . So, assume IIOW that $r_{3}=1$ , so that $b_{0}+\tau+\lambda\leqq 4$ . Since $\sigma=0$ ,
by 3.1, there is a unique $(-1)$-curve $L_{0}$ on $X,$ $\{L_{0}\}=R_{3}\subset D$ and there are pre-
cisely three components of $D$ which meet $L_{0}$ , say, $L_{i}\cdot L_{0}=1,$ $i=1,2,3$ .

Again, by 3.1, it follows that either $\mathcal{E}_{2}=\emptyset$ or $\mathcal{E}_{2}=\{E_{1}’\}\subset D’$ . In 15.1-15.4
we shall show that $\mathcal{E}_{1}$ has at least two components. Equivalently, we will
show that one of the $L_{i},$ $i=1,2,3$ , is a $(-2)$-curve. Then in 15.5-15.9 we
will show that $\mathcal{E}_{2}\neq\emptyset$ and in the rest of the section we investigate the case
when $\mathcal{E}_{2}\neq\emptyset$ .
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For a tree $\Gamma$ of smooth rational curves let us introduce the notation:

$\lambda(\Gamma):=-\sum_{C\in\Gamma}(C^{2}+2)=\sum_{C\in\Gamma}(C\cdot K)$ .

15.1. So, assume that $L_{i}^{2}\leqq-3$ for $i=1,2,3$ . It follows that after blowing-
down $L_{0}$ , we obtain the surface $X’=X$’, (using 3.1). Since $b_{1}(D’)=b_{1}(D)=0$ , it
follows from 9.7 (or otherwise) that not all $L_{t}$ are $(-3)$-curves, $i=1,2,3$ . (For,

if so, $L_{1}’\cup L_{2}’\cup L_{3}’$ will be a full fibre of $\varphi’’$ contained in $D’’.$ ) Thus $L_{i}^{2}\leqq-4$

for some $i=1,2,3$ .
15.2. Let now $T_{1},$ $T_{2},$ $T_{3}$ be the branches of $T$ at $L_{0}$ , with $L_{i}\in T_{i},$ $i=$

$1,2,3$ . As argued in 12.1, it follows from 4.1 that one of the $T_{i}$ say $T_{1}$ , is
non-rational. Since $\lambda\leqq 3$ , it follows, from 5.4 and 6.4 that $\#(T_{1})\geqq 6$ . Since
$\#(T)=b_{2}(D)=11$ , one easily checks that $T_{2}\cup\{L_{0}\}\cup T_{3}$ is rational. Hence, again
by 4.1, it follows that $T_{1}-\{L_{1}\}$ should have a branch $\Gamma_{1}$ which is non-rational,
and then again $\#(\Gamma_{1})\geqq 6$ . Since $L_{i}^{2}\leqq-4$ for some $i$ , it follows that $\lambda(\Gamma_{1})\leqq 2$ .

15.3. Suppose $\#(\Gamma_{1})=6$ . By Lemma 11.3, it follows that $\Gamma_{1}$ is one of the
trees in Figure 2 where $w$ is the vertex joined to $L_{1}$ , in $T_{1}$ . Using 6.1, we
list the possibilities for $\Gamma_{1}^{f}=T-\Gamma_{1}$ in Figure 9. We see that these trees can
be diagonalized in such a way that if $P’/q’$ is the entry at $L_{1}$ then $d(\Gamma_{1}’)=|p^{J}|$ ,

and $P’/q’$ has values $-3/8,$ $-11/8,$ $-11/13,$ $-6/13,$ $-1/7,$ $-1/4,$ $-4/7,$ $-8/7$ ,
$-5/4,$ $-1/10,$ $-4/15$ , -11/10 and $-5/14$ . With $p/q$ given by Lemma 11.3,
using 11.2, we see that $d(T)=|pp’-qq’|\neq 1$ , for any of these values.

$-2$ $-4$ $-1$ $-3$ $-2$ $-4$ $-1$ $-4$ $-2$ $-4$ $-1$ $-3$

$\overline{1}_{-3}^{-*}L_{1}$ $-*-**^{-}-|3 L_{1}^{*} l *|L_{1}^{*}$
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$-\underline{4-}\underline{1-}3-\underline{4-}\underline{1-}3***\neq***|_{-3*}-*-3*-3$
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Figure 9.
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15.4. Thus we have shown that $\#(\Gamma_{1})\geqq 7$ . Indeed $\#(\Gamma_{1})=7,$ $\#(T_{1})=8$ , so
that $\#(T_{2})=\#(T_{3})=1$ . We can now apply 11.1 (a) with $Y=X’,$ $C_{i}=L_{i}’,$ $i\geqq 1$ and
$C_{0}$ as the image of the curve dual to $w\in\Gamma_{1}$ . Since $\lambda\leqq 3$ , one easily sees
that the triple $(a_{1}, a_{2}, a_{3})=(-L_{1}^{\prime 2}, -L_{2}^{\prime 2}, -L_{3}^{;2})$ is one of the six triples men-
tioned in ll.l(a). Since $K’$ is supported on $D’$ , this leads to a contradiction by
11.4.

Thus as claimed in 15.0, one of the $L_{i}$ is a (–2)-curve, say, $L_{3}^{2}=-2$ . Then
clearly $L_{1}^{2}\leqq-3;L_{2}^{2}\leqq-3$ . We shall now show (in 15.5-15.9) either $L_{1}$ or $L_{2}$ is
a $(-3)$-curve.

15.5. Suppose that $L_{1}^{2}\leqq-4,$ $L_{2}^{2}\leqq-4$ . Clearly, $R_{3}=\{L_{0}\}$ , and so $T_{3}=\{L_{3}\}$

$=[2]$ . After blowing-down $L_{0}$ and $L_{3}$ we obtain the surface $X’=X’$ . So $b_{2}=$

12. As before, using 9.7, we see that not both $L_{1}$ and $L_{2}$ are $(-4)$-curves.
By 4.1, either $T_{1}$ or $T_{2}$ , say $T_{1}$ is non-rational, and again by 5.4 and 6.4, $\#(T_{1})$

$\geqq 6$ , so that $\#(T_{2}\cup\{L_{0}, L_{3}\})\leqq 6$ . So one easily sees that $T_{2}\cup\{L_{0}, L_{3}\}$ is rational
and hence, again by 4.1, $T_{1}-\{L_{1}\}$ should have a branch $\Gamma_{1}$ which is non-rational
and as before $\#(\Gamma_{1})\geqq 6$ . Let $u_{0}\in\Gamma_{1}$ be the vertex joined to $L_{1}$ in $T$ . Since
$L_{1}^{\prime\prime 2}+L_{2}^{\prime\prime 2}\leqq-5$ , it follows that $\lambda(\Gamma_{1})\leqq\lambda-1$ .

15.6. Suppose further that $\lambda=3$ . Then we have $K\cdot D=12-6=6$ . Hence,
for $C=D-\{L_{0}\}$ , we have $K\cdot C=7,$ $b_{0}(C)=3,$ $b_{1}(C)=0,$ $b_{2}(C)=11$ . Hence $M(X, C)$

$=48-3-4-33-7=1$ . By 1.6 and 10.5, it follows that $bk(C)\geqq-4$ . On the
other hand $bk(C)=bk(T_{1})+bk(T_{2})-2$ . Below, we shall show in 15.7, that
$bk(T_{1})+bk(T_{2})<-2$ which is absurd, thus proving that $\lambda=2$ .

15.7. Clearly, $\{-L_{1}^{\prime\prime 2}, -L_{2}^{\prime\prime 2}\}=\{2,3\},$ $\{3,3\}$ , {2, 4}. ( $\lambda(\Gamma_{1})>0$ , for otherwise
$\Gamma_{1}$ will be contained in a fibre of $\varphi’’$ , hence rational. Thus $\{-L_{1}^{\prime\prime 2}, -L_{2}^{\prime\prime 2}\}\neq$

$\{3,4\}.)$ Accordingly, $\{-L_{1}^{2}, -L_{2}^{2}\}=\{4,5\},$ $\{5,5\},$ $\{4,6\}$ . Thus it follows that
the weight set $\Omega(T_{1}\cup T_{2})$ is one of the following:

$\{-5, -4, -3, -3, -2, -2, -2, -2, -2, -2\}$ ,

$\{-5, -4, -4, -2, -2, -2, -2, -2, -2, -2\}$ ,

$\{-5, -5, -3, -2, -2, -2, -2, -2, -2, -2\}$ or
$\{-4, -6, -3, -2, -2, -2, -2, -2, -2, -2\}$ .

Suppose $T_{1}\cup T_{2}$ has at least six tips. Then by 10.4 it follows that
$bk(T_{1}\cup T_{2})\leqq-\Sigma_{i=1}^{6}(1/a_{i})$ , for some $\{a_{1}, \cdots , a_{6}\}\subset\Omega(T_{1}\cup T_{2})$ , which is easily
seen to be less than $-2$ . So we may assume that $T_{1}\cup T_{2}$ has fewer than six
tips.

Suppose $\#(\Gamma_{1})=6$ . Then by 11.3, it follows that $T_{1}$ has at least 4 tips.
Hence $t_{2}=\#(T_{2})=1$ . This means $T_{2}=[5]$ , $bk(T_{2})=-4/5$ . And it is easily
checked that $bk(\Gamma_{1})<-6/5$ as desired. So we may assume that $\#(\Gamma_{1})\geqq 7$ .
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Suppose $\lambda(\Gamma_{1})\leqq 1$ . If $t_{2}=2$ then by 11.4, it follows that $T_{1}\cup T_{2}$ has at least six
tips, except in the case (1) or (2) of 11.4. In these two cases we directly check
that $d(T)\neq\pm 1$ , for various possibilities of $T$ . If $t_{2}=1$ , then $T_{2}=[5]$ and one
easily verifies that $bk(T_{1})<-6/5$ . Hence $\lambda(\Gamma_{1})=2$ .

Now let $t_{2}\neq 1$ . Since $\lambda(\Gamma_{1})=2$ it follows that $\{-L_{1}^{\prime\prime 2}, -L_{2}^{\prime\prime 2}\}=\{2,3\}$ and
hence we can apply 4.3(2) with $L_{2}’’=C_{3}$ , $L_{1}’’=C_{2}$ , to conclude that $\Gamma_{1}-\{u_{0}\}$

should have branch $\Gamma_{2}$ which is not rational, where $u_{0}\in\Gamma_{1}$ is the vertex joined
$L_{1}$ in $T_{1}$ ; $\#(\Gamma_{2})\geqq 6$ , and hence $\#(\Gamma_{2})=6$ . Again, by Lemma 11.3, it follows
that $(T_{1}\cup T_{2})$ has at least six tips. Hence we must have $t_{2}=1$ .

It follows that $T_{2}=\{L_{2}\}=[5]$ , so that $bk(T_{2})=-4/5$ . Thus we have to
show that $bk(T_{1})<-6/5$ . Looking at $\Omega(T_{1})$ , this is obvious if $T_{1}$ has at least
four tips. Thus, since $T_{1}$ is non-rational, we have to consider the case when
$T_{1}$ has precisely three tips. Let $\Lambda_{1},$ $\Lambda_{2},$ $\Lambda_{3}$ be its maximal twigs. Since $T_{1}-\{L_{1}\}$

is also nonrational, we may assume that $L_{1}\in\Lambda_{1}$ . Further, if $\Lambda_{2}$ and $\Lambda_{3}$ consist
of only $(-2)$-curves then by 6.1, it follows that $\#(\Lambda_{2})+\#(\Lambda_{3})\geqq 3$ and hence
$bk(\Lambda_{2})+bk(\Lambda_{3})\leqq-(1/2+2/3)$ so that $bk(T_{1})\leqq-(1/2+2/3+1/6)<-6/5$ . So we
may assume that $\Lambda_{2}$ has a $(-3)$ or $(-4)$-curve. In particular, it follows that
$L_{1}^{2}\neq-6,$ $i$ . $e$ . $L_{1}^{\prime\prime 2}=-2$ or $-3$ .

Thus we apply 4.3 (1) with $Y=X’’,$ $C_{3}=L_{2}’’$ and $C_{2}=L_{1}’’$ . Along with 4.1,
this implies that $\Gamma_{2}=T_{1}-\{L_{1}, u_{0}\}$ is nonrational where $u_{0}$ is the vertex joined
to $L_{1}$ , in $T_{1}$ . Note that $\#(\Gamma_{2})=7$ and hence by 5.4 it follows that $T_{1}$ itself has
the configuration as shown in Figure 10. Further if $L_{1}^{2}=-5$ , then $\lambda(\Gamma_{2})\leqq 1$ and
so, by 11.4 $\Gamma_{2}$ is (1) or (2) of Figure 4. Hence $bk(\Lambda_{2})+bk(\Lambda_{3})\leqq-16/15$ and
hence $bk(T_{1})\leqq-16/15-1/5<-6/5$ . Finally, if $L_{1}^{2}=-4$ , then it follows that
$\Lambda_{2}=[4,2],$ $[3,3]$ or $[3, 2]$ , and hence $\Lambda_{3}=[2,2]$ always (using 6.1). But then
$bk(T_{1})\leqq-(1/4+2/7+2/3)<-6/5$ as desired, in 15.6.

$L_{1}^{*-*-*-\rceil^{-*-}}u_{0}$

Figure 10.

15.8. Thus we have $\lambda=2$ , and so $\lambda(\Gamma_{1})\leqq 1$ . Suppose, now that $\#(\Gamma_{1})=6$ .
Then by 11.3, $\Gamma_{1}$ should be as in (iii) of Figure 2, with $u_{0}=w,$ $\Omega_{w}=-2$ . $d(\Gamma_{1})$

$=4$ , and $\lambda(\Gamma_{1})=1$ . Hence we have $\{L_{1}^{\prime\prime 2}, L_{2}^{\prime\prime 2}\}=\{-2, -3\}$ , $i$ . $e$ . $\{L_{1}^{2}, L_{2}^{2}\}=$

$\{-4, -5\},$ $L_{0}^{2}=-1$ and all other components of $\Gamma_{1}’=T-\Gamma_{1}$ are $(-2)$-curves.
Also, since $d(\Gamma_{1})=4$ , by 6.1, all other branches of $T$ at $L_{1}$ should have odd
discriminants. Using 6.1, at other vertices of $T$ also, it follows that the only
possibility for $T$ is the one shown in Figure 11. But one easily checks that
even this tree is not unimodular. Hence $\#(\Gamma_{1})\geqq 7$ .
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$-2$ $-2$ $-5$ $-1$ $-4$ $-2$ $-2$ $-2$ $-2$

$---\uparrow^{-*-*}L_{1}u_{0^{-*-*-}}||$

$*-2$ $*-2$ $*-3$

Figure 11.

15.9. We now apply 4.3, with $Y=X’’,$ $C_{1}$ as the component dual to $u_{0}\in\Gamma_{1}$ ,
$C_{2}=L_{1}’’$ and $C_{3}=L_{2}’’$ . It follows that $\Gamma_{1}-\{u_{0}\}$ has a branch $\Gamma_{2}$ which is non-
rational, $\#(\Gamma_{2})\geqq 6$ . Let $u_{1}\in\Gamma_{2}$ be the vertex joined to $u_{0}$ . If $\#(\Gamma_{2})=6$ , then
$\Gamma_{2}$ is as in (iii) of Figure 2 with $u_{1}=w,$ $\Omega_{w}=-2,$ $d(\Gamma_{2})=4$ . Arguing as in 15.8
it follows that $\Gamma_{2}’=T-\Gamma_{2}$ is one of the configurations shown in Figure 12. We
can diagonalize each of these tree, with the diagonal entry $P’/q’$ at $u_{0}$ taking
the values 1/1, $+1/2$ and +4/1 respectively, where as the diagonal entry $p/q$

at $u_{1}=w$ , for $\Gamma_{2}$ is $-4/9$ . Hence $d(T)=|pp’-qq’|\neq 1$ , which proves that
$\#(\Gamma_{2})\geqq 7$ .

$-2$ $-4$ $-1$ $-5$ $-2$

$*-*-*|\overline{L}_{1}\overline{u}_{0}$

$*-2$

$-2$ $-5$ $-1$ $-4$ $-2$

$*-*--*-*$
$*-2|L_{1}$

$u_{0}$

$-5$ $-1$ $-4$ $-2$

$*\neg^{-*}|^{\overline{L_{1}u}_{0}}$

$*-2*-2$

Figure 12.

Thus $\#(\Gamma_{2})=7;\#(T_{1})=9$ , so that $L_{2},$ $L_{3}$ are tips of $T$ and hence by 6.1,
$L_{2}^{2}$ is odd and so $L_{2}^{2}=-5$ . Lemma 11.4 gives various possibilities for $\Gamma_{2}$ with
$w=u_{1}$ . Since $\Gamma_{2}$ is non-rational, $\lambda(\Gamma_{2})>0$ and hence $\lambda(\Gamma_{2})=1$ . Then $\Gamma_{2}^{f}$ should
be the tree in Figure 13. We can diagonalize this with diagonal entry $P’/q’$ ,

at $u_{0}$ given by $P’/q’=-1/2$ . Using the value of $p/q$ from 11.4, we see that
$d(T)=|pp’-qq^{f}|\neq 1$ , for any of the values of $p/q$ . This contradiction, then
proves that either $L_{1}^{2}=-3$ or $L_{2}^{2}=-3$ , as claimed in 15.4.

$-4$ $-1$ $-2$ $-3$

$*-*|\overline{L_{3}L}_{4}^{*}$

$*-5$

Figure 13.

15.10. Thus in the remaining paragraphs we shall assume that $L_{2}^{2}=-3$ . It
follows that after blowing down $L_{0},$ $L_{3}$ and $L_{2}$ successively, we obtain $X’’$ .
The image $L_{1}’’$ of $L_{1}$ is a rational curve with a cusp; $L_{1^{\prime 2}}’+L_{1}’’\cdot K’’=0$ . We claim
that either $\lambda=3$ and $L_{2}$ is a tip of $D$ or $\lambda=2$ and $L_{2}$ is linear in $D(i$ . $e.,$ $L_{2}$
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meets at most two components of $D$). For if $L_{2}$ meets $s$ components of $D$ ,

then one easily computes that $K\cdot D=\lambda+s+3$ . On the other hand $K\cdot D\leqq\beta_{2}-6=7$

and $K\cdot D=\beta_{2}-6$ if $\lambda=3$ (by 2.8 and 2.10). Hence $s\leqq 4-\lambda$ which proves the
claim.

In particular, through the cusp of $L_{1}’’$ there passes at most one other com-
ponent of $D$“. Hence by 9.7, we conclude that $L_{1}’’$ is horizontal; $L_{1}’’\cdot K^{ff}=1$ or
2. Accordingly, $L_{1}^{2}=-7$ or $-8$ . In 15.11, below we shall dispose off, the case
$\lambda=3$ .

15.11. Assume now that $\lambda=3$ . As seen above, $L_{2}$ is a tip of $D$ . We now
aPply (1.3) to $C=D-\{L_{0}\}$ . Letting $T_{1},$ $T_{2},$ $T_{3}$ denote the three branches of $C$ ,
as before, this yields; $-4\leqq bk(C)\leqq bk(T_{1})-4/3-2$ , and hence $bk(T_{1})\geqq-2/3$ .

On the other hand, it follows that $L_{1}’’$ is horizontal. Since $\lambda=3$ and there
is at least one more horizontal component of $D’’$ , which is of course a smooth
rational curve, it follows that the weight set $\Omega(T_{1})$ is one of the following:

$\{-8, -3, -2, -2, -2, -2, -2, -2, -2, -2\}$ ,

$\{-7, -4, -2, -2, -2, -2, -2, -2, -2, -2\}$ or
$\{-7, -3, -3, -2, -2, -2, -2, -2, -2, -2\}$ .

Moreover $T_{1}$ is non-rational and hence it has at least three tips. Hence, as seen
before, $bk(T_{1})<-2/3$ . This contradiction shows that $\lambda=2$ .

15.12. So, from now on, we have $\lambda=2$ . In 15.12-15.14, we shall show that
$L_{2}$ is a tip of $D$ . Assuming the contrary, as seen in 15.10, it follows that $L_{2}$

will meet another component, say $L_{4},$ $L_{2}\cdot L_{4}=1$ , and $L_{4}^{2}=-3$ or $-4;L_{1}^{2}=-7$

(because there is one more horizontal curve) $K\cdot D=\lambda+s+3=7$ . Hence for $C=$

$D-\{L_{0}\}\lambda$ by (1.3), we obtain, $bk(C)\geqq-4$ . We shall show that $bk(T_{1})+bk(T_{2})$

$<-2$ thereby arriving at a contradiction and proving that $L_{2}$ is a tip.
Note that the weight set

$\Omega(T_{1}\cup T_{2})=\{-7, -4, -3, -2, -2, -2, -2, -2, -2, -2, -2\}$ or
$\{-7, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2\}$ .

Hence, if $T_{1}\cup T_{2}$ has more than five tips then clearly $bk(T_{1})+bk(T_{2})<-2$ (by
10.4). So we shall assume that $T_{1}\cup T_{2}$ has at most five tips and hence at least
one of them is linear. On the other hand, at least one of them is non-rational
and hence $T_{1}\cup T_{2}$ has at least four tips.

15.13. Assume first that $T_{2}$ is linear. Then $T_{2}$ has two tips and so $T_{1}$

has three tips, $T_{1}-\{L_{1}\}$ has a non-rational branch $\Gamma_{1}$ and hence $\Gamma_{1}$ also has
three tips. By 11.3, it follows that $\#(\Gamma_{1})\geqq 7$ , and if $\#(\Gamma_{1})=7$ then by 11.4, it
is either (1) or (2) of Figure 4, with $w\in\Gamma_{1}$ being the vertex joined to $L_{1}$ and
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$\lambda(\Gamma_{1})=1$ . It follows that $T_{2}=[3,3,2]$ and hence $bk(T_{2})=-15/13$ , by 10.4. By
11.4, we have $bk(T_{1})\leqq-16/15$ and hence $bk(T_{1})+bk(T_{2})<-2$ as required. Thus
$\#(T_{1})=8$ . Again $T_{1}$ should have a (–3)-curve and so $T_{2}=[3,3],$ $d(T_{2})=8$ .
This contradicts 6.1.

15.14. It follows that $T_{1}$ is linear. Note that $\Gamma_{1}=T_{2}-L_{2}$ is connected. It
should be non-rational and as usual we must have $\#(\Gamma_{1})\geqq 6$ . Suppose $\#(\Gamma_{1})=6$ ,

so that $\#(T_{2})=7$ . By 11.3 and 10.4, $bk(T_{2})\leqq-7/6-1/3=-3/2$ . On the other
hand, $\#(T_{1})=4$ , and $T_{1}-\{L_{1}\}$ consists of $(-2)$-curves only $i$ . $e$ . $T_{1}=[7,2,2,2]$ .
Hence $bk(T_{1})\leqq-(1/7+1/2)=-9/14$ . Thus $bk(T_{1})+bk(T_{2})<-2$ . Suppose now
that $\#(\Gamma_{1})=7$ . By 11.4 it follows that $bk(T_{2})\leqq-(16/15+1/3)=-7/5$ . Also
$\#(T_{1})=3,$ $d(T_{1})$ is odd and so $T_{1}=[7,3,2]$ , or [7, 2, 2]. Hence $bk(T_{1})\leqq-9/14$

so that $bk(T_{1})+bk(T_{2})<-2$ .
Now suppose $\#(\Gamma_{1})=8$ . Then it follows that $T_{1}=[7,2]$ (since if $T_{1}=[7,3]$

then $d(T_{1})$ is even). Hence $bk(T_{1})=-11/13$ . Note that $L_{4}$ is not a tip of $T_{2}$ .
Hence one of the tips of $T_{2}$ is a $(-2)$-curve. Hence $bk(T_{2})\leqq-(1/3+1/3+1/2)$

$=-7/6$ and again we have $bk(T_{1})+bk(T_{2})<-2$ .
So finally let $\#(\Gamma_{1})=9$ , so that $T_{1}=[7];bk(T_{1})=-4/7$ . We have to show

that $bk(T_{2})<-10/7$ . We can now apply 11.1 (c), with $Y=X’’,$ $C_{0}=L_{4}’’$ , and
$C_{1}=L_{1}’’$ . Combined with 4.1, this implies $\Gamma_{1}-\{L_{4}\}$ is non-rational. Also if $T_{2}$

has four tips then clearly $bk(T_{2})\leqq-(1/3+1/3+1/2+1/2)=-5/3<-10/7$ . So $T_{2}$

has only 3 tips. Consequently $\Gamma_{1}-\{L_{4}\}$ has three tips. By 5.4, $\Gamma_{1}-\{L_{4}\}$ has
one of the two configurations in Figure 14. Consequently, $T_{2}$ itself has one of
the configurations shown in Figure 15. Note that $L_{4}^{2}=-3$ , for otherwise $L_{4}^{2}=-4$

and $\Gamma_{1}-\{L_{4}\}$ will consist of only $(-2)$-curves. The rest of the weights are
determined by using 6.1.

$*-\ulcorner$

(i)

$-*\neg^{*-*-*}$

(ii)

Figure 14.

Let $\Lambda_{1},$ $\Lambda_{2}$ and $\Lambda_{3}$ be the three maximal twigs of $T_{2}$ , with $L_{2}\in\Lambda_{3}$ . Then
$bk(T_{2})=\Sigma_{i=1}^{3}bk(\Lambda_{i})$ . Now consider Figure 15 (i), in which $\Lambda_{3}=[3,3,2,2,2]$ ,
$\Lambda_{2}=[2,2]$ and $\Lambda_{1}=[2,3]$ or $[3, 2]$ . Hence $bk(T_{2})\leqq-(2/5+2/3+9/23)<-10/7$

as required. In Figure 15 (ii), if $\Lambda_{1}$ and $\Lambda_{2}$ consist of only $(-2)$-curves then
$bk(\Lambda_{1})+bk(\Lambda_{2})\leqq-(3/4+2/3)$ where as $bk(\Lambda_{3})\leqq-1/3$ . Hence $bk(T_{2})<-10/7$ as
required. So we may assume that, say $\Lambda_{1}$ has a $(-3)$-curve. Then $\Lambda_{3}=$

[3, 3, 2, 2], $bk(\Lambda_{3})=-7/18$ . One easily checks that $bk(\Lambda_{1})+bk(\Lambda_{2})\leqq-(2/5+3/4)$
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$-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-3$ $-3$

$*-T^{-*-*}\overline{L}_{4}\overline{L}_{2}$

(i) (ii)

$-2$ $-2$ $-2$ $-2$ $-3$ $-3$ $-2$ $-2$ $-2$ $-2$

$-*-*--*---*-$ $-*-*--*-*-$
$\downarrow$

$L_{4}$ $L_{2}$

$*-2||$

$L_{4}*-3|$

$L_{2}*-3$

(iii) (iv)

Figure 15.

or $\leqq-(3/7+2/3)$ and hence again $bk(T_{2})<-10/7$ .
In Figure 15 (iv), $bk(\Lambda_{3})=-5/13,$ $bk(\Lambda_{2})=-3/4$ and $bk(\Lambda_{1})\leqq-3/7$ and hence

$bk(T_{2})<-10/7$ . Finally in Figure 15 (iii), one checks that $bk(T_{2})<-10/7$ unless
$\Lambda_{1}=[3,2,2],$ $\Lambda_{2}=[2]$ . In this last case one directly computes $d(T)$ and sees that
$T$ is not unimodular.

Thus the claim in 15.12 that $L_{2}$ is a tip has been proved.

15.15. As before, we have a branch $\Gamma_{1}$ of $T_{1}-\{L_{1}\}$ which is non-rational
and $\#(\Gamma_{1})\geqq 6;\lambda(\Gamma_{1})\leqq 1$ . If $\#(\Gamma_{1})=6$ , by 11.3, $\Gamma_{1}$ is the tree (iii) in Figure 2,
with $d(\Gamma_{1})=4;\lambda(\Gamma_{1})=1$ . Another branch of $T$ at $L_{1}$ is $L_{0}\cup L_{3}\cup L_{2}$ , and the
rest consists of three $(-2)$-curves, all contained in $T_{1}$ . Thus it is easily seen
that there will be one more branch of $T$ at $L_{1}$ with even discriminant which
contradicts 6.1.

Hence $\#(\Gamma_{1})\geqq 7$ . Suppose $\#(\Gamma_{1})=7$ . Then by 11.4, the possibilities for $\Gamma_{1}$

are given in Figure 4, with $w\in\Gamma_{1}$ being the vertex joined to $L_{1}$ . If $\lambda(\Gamma_{1})\leqq 1$ ,

it follows that $\Gamma_{1}’=T-\Gamma_{1}$ is as shown in Figure 16, (using 6.1) which can be
diagonalized with diagonal entry at $L_{1}=-1/3=(P’/q’)$ . With the values of $p/q$

given by 11.4, we see that $|pp^{f}-qq’|\neq 1$ for any of these possibilities. If $\lambda(\Gamma_{1})$

$-2$ $-2$ $-7$ $-1$ $-2$

$*--*L_{\overline{1|}}\overline{L}_{3}^{*}$

$L_{2}*-3$

Figure 16.
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$=0$ , then $\Gamma_{1}$ is the unique configuration (14) of Figure 4 and it is easily verified
that $d(T)\neq 1$ .

15.16. Hence $\#(\Gamma_{1})\geqq 8$ . We can now apply Lemma 4.4, to conclude that
$\Gamma_{1}-\{u_{0}\}$ should have a branch $\Gamma_{2}$ which is non-rational where $u_{0}$ is the vertex
of $\Gamma_{1}$ joined to $L_{1}$ . Let $u_{1}\in\Gamma_{2}$ be the vertex joined to $u_{0}$ . As before, $\#(\Gamma_{2})$

$\geqq 6$ , and if $\#(\Gamma_{2})=6$ , then $\Gamma_{2}$ is the configuration (iii) of Figure 2 with $u_{1}=w$ ,
$\Omega_{w}=-2$ , and $p/q=-4/9$ . Also $\Gamma_{2}^{f}=T-\Gamma_{2}$ is one of the configurations shown
in Figure 17. Neither of these possibilities yields a unimodular $T$ and hence
$\#(T_{2})\geqq 7$ .

$-3$ $-1$ $-7$ $-2$

$*-I_{-2*-2*-2}^{-*}|\overline{|}^{u_{0}}$

$-3$ $-1$ $-7$ $-2$

$-I_{-2*}^{-*-}|_{-2}^{u_{0}}$

$\downarrow-2$

Figure 17.

15.17. Suppose $\#(\Gamma_{2})=7$ . Then 11.4 gives the possibilities for $\Gamma_{2}$ with
$w=u_{1}$ etc. as before whereas one easily sees that $\Gamma_{2}’=T-\Gamma_{2}$ is one of the con-
figurations shown in Figure 18 (again using $\lambda(\Gamma_{2})=1$ ), with the diagonal entry
$p’/q’$ at $u_{0}$ taking the values $p’/q’=0/1,$ $-1/2$ respectively. One easily checks
that none of these yield $|PP’-qq’|=1$ and so $\#(\Gamma_{2})\geqq 8$ .

$-3$ $-1$ $-7$ $-2$

$rightarrow-*-2*-2||^{-*u_{0}}$

(i)

$-3$ $-1$ $-7$ $-2$

$*\neg^{-*-*u_{0}}|$

$*-2$ $*-2$

(ii)

Figure 18.

15.18. Hence $\#(\Gamma_{2})=8$ . Note that $L_{1}$ is a horizontal component and so we
shall also denote it by $H_{1}$ . Since $\Gamma_{2}$ is non-rational, it follows that $\Gamma_{2}$ contains
the other horizontal component $H_{2},$ $\lambda(\Gamma_{2})=1$ . In particular, $\Omega_{u_{0}}=-2$ .

We first claim that all connected components of $\Gamma_{2}-\{u_{1}\}$ are rational. This
is obvious, if each of them has less than 6 vertices. Now suppose $\Gamma_{3}$ is a
branch of $\Gamma_{2}-\{u_{1}\}$ with $\#(\Gamma_{3})\geqq 6$ . If $\#(\Gamma_{3})=6$ , then $\Gamma_{3}$ is not rational would
imply, by 11.3, that $\Gamma_{3}$ is as in (iii) of Figure 2 with $\Omega_{w}=-2$ and hence $T$

itself will be as shown in Figure 19 which is clearly not unimodular.
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$-2$ $-1$ $-7$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$

$*-*L_{1}u_{0|u_{1} 2 w|}-$

Figure 19.

When $\#(\Gamma_{3})=7$ , the non-rationality of $\Gamma_{3}$ implies, by 11.4, that $\Gamma_{3}$ is one
of the trees shown in Figure 4. Again not all curves in $\Gamma_{3}$ are $(-2)$-curves
and so $\lambda(\Gamma_{3})=1$ . Hence it follows that $\Gamma_{3}’=T-\Gamma_{3}$ is as shown in Figure 20
with $P’/q’$ at $u_{1}$ equal to $-1$ . With $p/q$ at $w$ for $\Gamma_{3}$ being given by 11.4 (c),

$-2$ $-1$ $-7$ $-2$ $-2$

$*\star-*\overline{*-3|L}_{1}\overline{u}_{0}u_{1}$

Figure 20.

we see that $|PP’-qq^{f}|=1$ if and only if ( $|P+q|=1$ and hence) $p/q=-12/13$ ,
-20/21 or $-3/4$ . In the last mentioned case, it turns out that $\lambda(\Gamma_{3})=2$ and so
we are left with only the first two cases, when $T$ itself has configuration as
shown in Figure 21 (a) and (b). In each case, a direct computation shows that
$K$ is effective. In Figure 21, the numbers in bracket give the respective co-
efficients for the canonical divisor. Thus, we have shown that all branches of
$\Gamma_{2}-\{u_{1}\}$ are rational.

$-2$ $-1$ $-7$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$$--*-*-*---$(50) $|(100)(16)(17)$ (18) (19) (20) (21) (14) (7)

(33) $*-3$

$(8)(4)1_{-2}^{-3}*$

(a)

$-2$ $-1$ $-7$ $-2$ $-2$ $-2$ $-2$ $-3$ $-2$ $-2$

$(9^{*}\overline{2)}*|\overline{(184)}(*\overline{30)(}3^{*}\overline{1)(3}^{*}\overline{)(33)|}\overline{(34)}|\overline{(18)(}1\overline{2)(}6)**$

(61) $*-3$ (17) $*$ (9) $*-2$

$-2$

(b)

Figure 21.

15.19. Consider the linear equivalence

$K^{ff}\sim\mu_{1}H_{1}’’+\mu_{2}H_{2}’’+\Sigma\lambda_{i}C_{i}’’$

on $X’$ , where $C_{0}’’$ and $H_{1}’’$ are the components corresponding to $u_{0}$ and $L_{1}$ . All



204 R. V. GURJAR and A. R. SHASTRI

the $C_{i}’’$ are $(-2)$-curves and vertical. $H_{1}’’$ is a rational curve with a cusp,
$(H_{1}’’)^{2}=-1$ , so that $K’\cdot H_{1}’’=1$ . $H_{2}^{\prime f}$ is a $(-3)$-curve and $K^{f;}\cdot H_{2}’’=+1$ . Hence
it follows that $\mu_{1}=-\mu_{2}$ , and hence $\mu_{2}\neq 0$ . Intersecting with $H_{1}’’$ and $C_{0}’’$ we
obtain

$K\cdot H_{1}’’=1=-\mu_{1}+\lambda_{0}$ ,

$K\cdot C_{0}’’=0=\mu_{1}-2\lambda_{0}+\lambda_{1}$

and hence

$\lambda_{1}=\mu_{1}+2\lambda_{0}=\mu_{1}+1\}$ .

As in the proof of 4.1, since all branches of $\Gamma_{2}-\{u_{1}\}$ are rational, it follows
that if $\lambda_{1}\leqq 0$ then $\mu_{2}\leqq 0$ and $\lambda_{i}\leqq 0$ for all $i\geqq 1$ and $\lambda_{1}\geqq 0$ then $\mu_{2}\geqq 0$ and $\lambda_{i}\geqq 0$

for all $i\geqq 1$ .
Thus, if $\lambda_{1}\leqq 0$ it follows that $-K$ is effective. Suppose $\lambda_{1}>0,$ $\lambda_{0}\geqq 0$ and

$\mu_{1}\geqq-1$ . Hence either $K$ is effective or $\mu_{1}=-1$ . Thus we have obtained a
linear equivalence

$K^{f\prime}\sim H_{2}’’-H_{1}’’+Z$

where $Z$ is supported on the vertical components of $D’’$ . Now $blo^{1}V$-down all
the vertical components of $D’$ to finitely many rational double-points on a normal
projective surface $Y$, and let $\pi:X^{f\prime}arrow Y$ be the contraction. Since $D’$ is a tree,
it follows that $\pi(H_{1}’’)\cap\pi(H_{2}^{\prime f})=\{y_{0}\}$ , a singleton set and $y_{0}$ is a singularity of
$Y$. We claim $y_{0}$ is the only singularity of $Y$ . For if $y\neq y_{0}$ is any other
singularity of $Y$, then $y\in\pi(H_{2}^{f\prime})$ and $\pi(H_{1}’’)$ does not pass through $y$ . On the
other hand $K_{Y}\sim\pi(H_{2}’’)-\pi(H_{1}’’)$ and $K_{Y}$ is locally principal on $Y$. Since every
divisor on $Y$ is linearly equivalent to an integral combination of $\pi(H_{1}’’)$ and
$\pi(H_{2}’’)$ , it follows that $\mathcal{O}_{Y,y}$ is a unique factorization domain. By Lemma 9.9, $y$

is an $E_{8}$-singularity, which is not possible since $\pi$ contracts, in all, eight curves
only.

Thus we have shown that $y_{0}$ is the only singularity of $Y,$ $i$ . $e.$ , all the eight
vertical components of $D^{ff}$ form a connected curve, and both $H_{1}’’$ and $H_{2}’’$ are
tips of $D’’$ .

15.20. Let $F_{0}$ be the fibre of $\varphi^{f\prime}$ containing $\pi^{-1}(y_{0})$ . From Kodaira’s list
of possible singular fibres of $\varphi’’$ , we see that $F_{0}$ is of one of the three types:
$mI_{9},$ $I_{4}^{*}$ or $\Pi^{*}$ . In the first two cases, it follows that $\pi^{-1}(y_{0})$ has configuration
$A_{8}$ and $D_{8}$ respectively. If $F_{0}$ is of type $II^{*}$ , then by 9.8, it follows that the
component of $F_{0}$ , not contained in $D’’$ should occur with multiplicity 1 and
hence $\pi^{-1}(y_{0})$ is actually the configuration $E_{8}$ .

We can now list all possibilities for the configuration of $D$“. Using the
unimodularity of $D^{f\prime}$ , only two possibilities, as shown in Figure 22, may occur.
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$-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-1$

$*-*--rightarrow---*-*$
$H_{2}’’\downarrow-3$

$H_{1}’’$

(a)

$-3$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-1$

$*-*-*-*--*--$
$H_{2}’’$

$|_{-2}$
$u_{0}$ $H_{1}’’$

(b)

Figure 22.

In both the cases one easily computes and checks that $K$ is effective; this
completely disposes off the case $r_{3}=1$ .

\S 16. The case $r_{3}=2$ and the two components meet.

16.0. So far, we have proved that $r_{4}=e_{1}=\sigma=0$ , $r_{3}=2$ and hence $b_{0}=1$ ,
$\lambda=2,$ $\tau=0$ and $D$ is unimodular. In this section we shall show that the two
components of $R_{3}$ do not meet. So, we assume that the two components meet,

and denote them by $L_{0}$ and $L_{3}$ . We can further assume that $L_{0}^{2}=-1$ . If fol-
lows that $L_{0}\cdot L_{3}=1;L_{3}^{2}=-2$ . Let $L_{1},$ $L_{2}$ be the other two components of $D$

such that $L_{0}\cdot L_{1}=L_{0}\cdot L_{2}=1$ . It follows that there is precisely one component
$L_{4}(\neq L_{0})$ such that $L_{3}\cdot L_{4}=1,$ $L_{1}^{2}\leqq-3;L_{2}^{2}\leqq-3$ . Also since there is equality in
2.8, we have $K\cdot D=\beta_{2}-6$ . Setting $C=D-\{L_{0}\}$ , it follows that $M(X, C)=1$ and
hence $bk(C)\geqq-4$ . In the sequel, we shall show that $bk(C)<-4$ thus arriving
at a contradiction and thereby showing that the two components of $R_{3}$ do not
meet. In this, often we use the unimodularity of $T$ .

16.1. Blow-down $L_{0}$ and $L_{3}$ to obtain a surface $X_{1}$ . We shall assume in
16.1-16.3 that $X_{1}$ is minimal, $(i. e., X_{1}=X’=X’’)$ and show that $bk(C)<-4$ . By
9.7, it follows that $(L_{1}^{\prime\prime 2}, L_{2}^{\prime\prime 2})\neq(-2, -2)$ . Since $\lambda=2$ , and there are two hori-
zontal components, $\{L_{1}^{\prime\prime 2}, L_{2}^{\prime\prime 2}\}=\{-3, -3\}$ or $\{-2, -3\}$ , so that $\{L_{1}^{2}, L_{2}^{2}\}=$

$\{-5, -5\}$ or $\{-4, -5\}$ . Also $L_{4}^{2}=-3$ or $-4$ . Setting $T-\{L_{0}\}=T_{1}\perp T_{2}\perp T_{3}$ ,

with $L_{i}\in T_{i},$ $i=1,2,3$ , it follows, by 4.1, as usual, that at least one of the $T_{t}$

is non-rational.

16.2. Suppose $T_{3}$ is non-rational. Then, as seen before, it follows that
$\#(T_{3})\geqq 6$ and so $\#(T_{1}\cup T_{2}\cup\{L_{0}\})\leqq 6$ . Hence $T_{1}\cup T_{2}\cup\{L_{0}\}$ is easily seen to be
rational, using 5.4 and 6.1. Hence it follows that $\Gamma_{1}=T_{3}-\{L_{3}\}$ is itself non-
rational; $\#(\Gamma_{1})\geqq 6;\lambda(\Gamma_{1}-\{L_{4}\})\leqq 1$ .

If $\#(\Gamma_{1})=6$ , then by 11.3, $\Gamma_{1}$ is (iii) of Figure 2 with $w=L_{4},$ $\Omega_{w}=-3$ . It
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follows that $\{L_{1}^{2}, L_{2}^{2}\}=\{-4, -5\}$ . Keeping in mind 6.1 we obtain only two
possibilities for $T$ as shown in Figure 23. But neither of these is unimodular.
Hence $\#(\Gamma_{1})\geqq 7$ .

$-2$ $-2$ $-5$ $-1$ $-2$ $-3$ $-2$ $-2$ $-2$ $-2$ $-5$ $-1$ $-2$ $-3$ $-2$ $-2$ $-2$

$*-*-*-*-*-*-*-*-|L_{3}L_{4}||$ $*-*-*-*-*-\overline{|}L_{3}L_{4}|\dagger^{-}$

$*-4$ $*-2*-3$
$*-4|$

$*-2*-3$

$*-2$

Figure 23.

If $\#(\Gamma_{1})=7$ , then 11.4 gives all possibilities for $\Gamma_{1}$ with $w=L_{4}$ . It follows
that except perhaps for (14) of Figure 4 ( $i$ . $e$ . when $\lambda(\Gamma_{1}-\{L_{4}\})=0$), $\Omega_{w}=-3$

and $\{L_{1}^{2}, L_{2}^{2}\}=\{-4, -5\}$ , and in (14), we may even have $\Omega_{w}=-4$ and $\{L_{1}^{2}, L_{2}^{2}\}$

$=\{-4, -5\}$ or $\Omega_{w}=-3$ and $\{L_{1}^{2}, L_{2}^{2}\}=\{-5, -5\}$ . Thus, we list up the con-
figurations for $\Gamma_{1}’=T-\Gamma_{1}$ in Figure 24. We can diagonalize each of these
with diagonal entry $p^{l}/q’$ at $L_{3}$ taking values $-2/9,$ $-1/18,$ $-7/26$ , respectively.
With $p/q$ at $L_{4}$ given by 11.4 we see that $|pp’-qq’|\neq 1$ for any of these values
and hence by 11.2 $d(T)\neq 1$ . Hence $\#(\Gamma_{1})\geqq 8$ .

$-2$ $-5$ $-1$ $-2$ $-2$ $-4$ $-1$ $-2$ $-2$ $-5$ $-1$ $-2$

$*-*\urcorner_{-4}^{-}L_{3}^{*}$ $*-*\neg_{-5}^{-*}L_{\theta}$ $*--*\overline{1}_{-5}^{L_{3}}$

Figure 24.

In fact $\#(\Gamma_{1})=8,$ $\#(T_{3})=9$ , so that both $L_{1}$ and $L_{2}$ are tips of $T$ . In parti-
cular it follows that $\{L_{1}^{2}, L_{2}^{2}\}=\{-4, -5\}$ , by 6.1. We can now apply 11.1 (b)

with $Y=X_{1},$ $C_{1}=L_{1}’’,$ $C_{2}=L_{2}’’$ , and $C_{0}=L_{4}’’$ . Along with 4.1, this yields that
$\Gamma_{1}-\{L_{4}\}$ , has a branch $\Gamma_{2}$ which is non-rational.

Now, if $\#(\Gamma_{2})=6$ , then $\Gamma_{2}$ is as in (iii) of Figure 2 with $d(\Gamma_{2})=4$ and there
is a tip of $T$ which is joined to $L_{4}$ and which is a $(-2)$-curve, contradicting
6.1. Hence $\#(\Gamma_{2})=7$ . Since $\lambda(\Gamma_{2})=1,$ $\Gamma_{2}$ is determined by 11.4, whereas $\Gamma_{2}’=$

$T-\Gamma_{2}$ is the configuration in Figure 25 with the diagonal entry $P’/q’$ at $L_{4}$

being +5/2. With the value of $p/q$ at $w\in\Gamma_{2}$ given by 11.4, we see that
$|PP’-qq^{f}|=1$ if and only if $T$ is the configuration shown in Figure 26. But
then one easily sees that

$-5$ $-1$ $-4$ $-2$

$*-I_{-2}^{\overline{L}_{1}u_{0}}*-*$

Figure 25.
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$-5$ $-1$ $-2$ $-3$ $-3$ $-2$ $-2$ $-2$ $-2$

$---*--*-*--*-2*-2$

Figure 26.

$bk(C)=bk(T_{1})+bk(T_{2})+bk(T_{3})=-(1+4/5+8/13+1/2+1/2+2/3)<-4$

as claimed.

16.3. We may now assume that $T_{1}$ is non-rational; (the case $T_{2}$ being non-
rational is similar). As before, one first concludes that $T_{1}-\{L_{1}\}$ has a branch
$\Gamma_{1}$ which is non-rational, $\#(\Gamma_{1})\geqq 6;\lambda(\Gamma_{1})\leqq 1$ . Further, if $\#(\Gamma_{1})=6$ , then $\Gamma_{1}$ is
as in (iii), Figure 2. Clearly $\#(T_{1})\leqq 8$ . If $\#(T_{1})=8$ , then it follows that there
is a $(-2)$-curve in $T$ , which is a tip of $T$ and is joined to $L_{1}$ , contradicting 6.1,
since $d(\Gamma_{1})$ is even. If $\#(T_{1})=7$ one easily determines that $\Gamma_{1}’=T-\Gamma_{1}$ is one
of the trees shown in Figure 27 with $P’/q’$ at $L_{1}$ taking values 15/4, 13/8 and
12/7 respectively. With $p/q$ at $w\in\Gamma_{1}$ equal to $-4/9$ , we see that $|PP’-qq’|\neq 1$

and hence $\#(\Gamma_{1})\geqq 7$ .
$-3$ $-2$ $-1$ $-5$ $-3$ $-2$ $-1$ $-4$ $-2$ $-3$ $-2$ $-1$ $-4$

$-*-\overline{|L}_{1}$ $*--\overline{|}L_{1}^{*}$ $-*--\uparrow^{-}L_{1}^{*}$

$\mathfrak{s}^{-4}$ $|*-5$

$*-5$

$*-2$ $*-2$

Figure 27.

Indeed $\#(\Gamma_{1})=7,$ $\lambda(\Gamma_{1})\geqq 1$ and it is given by 11.4, where as $\Gamma_{1}’$ is now
given by Figure 28 with $P’/q’$ at $L_{1}$ taking the value 5/3. Again, with $p/q$

being given by 11.4, we see that $|pp’-qq’|=1$ if and only if $P’/q’=5/3$ , and
$p/q=4/7$ . This yields the unique possibility for $T$ as shown in Figure 29.
But then again one easily computes that $bk(C)<-4$ , as claimed in 16.1.

$-4$ $-1$ $-5$ $-4$ $-1$ $-5$ $-2$ $-2$ $-2$ $-2$ $-3$

$**-2\overline{|}^{-}L_{1}^{*}$ $\neg\overline{L}_{1}^{-*-*-*-}w!_{-2*-2}\overline{|}$

$\downarrow-3$
$*f_{-3}^{-2}$

Figure 28. Figure 29.

16.4. Thus we can now assume that $X_{1}$ is not minlmal. It follows that
one of the images of $L_{1},$ $L_{2}$ and $L_{4}$ is a (–1)-curve on $X_{1}$ . Indeed, we claim
that the image of $L_{4}$ is exceptional. For, suppose that the image of $L_{1}$ is ex-
ceptional. Then, (since $\sigma=0$), clearly $X_{1}=X’$ , and $\{L_{1}’\}=\mathcal{E}_{2}$ . so that after
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blowing down $L_{1}’$ , we obtain the minimal surface $X’’$ . $L_{2}’’$ is a cuspidal curve
on $X^{ff}$ . One easily computes that $K\cdot D\geqq 8$ whereas we know that $K\cdot D=\beta_{2}-6$

$=7$ , which is absurd. The case when the image of $L_{2}$ is exceptional on $X_{1}$ is
symmetrical. Hence the image of $L_{4}$ is exceptional on $X_{1}$ .

16.5. Blow-down $L_{0},$ $L_{3}$ and $L_{4}$ successively, to obtain a surface $X_{2}$ . Then
clearly $X_{2}=X’$ . Indeed we claim $X_{2}=X’=X’’$ . For, to begin with since $L_{4}$ is
in $R_{2},$ $L_{4}$ is a tip of D. $L_{1}’$ and $L_{2}’$ meet in a single point $x$ , such that $L_{1}’\cdot L_{2}’$

$=3$ , and through $x$ , no other component of $D’$ passes. Hence, if at all $X’$ is
not minimal, then either $L_{1}^{f}$ or $L_{2}’$ is exceptional on $X_{1}’$ . But then we see that
$\tau>0$ which contradicts our earlier observation that $\tau=0$ . Hence $X_{2}=X’=X’$ .
In particular, $\beta_{2}=13$ . Clearly at least, one of $\{L_{1}’’, L_{2}’’\}$ is horizontal and hence
$\{L_{1}^{\prime\prime 2}, L_{1}^{\prime\prime 2}\}=\{-2, -3\}$ or $\{-3, -3\}$ , so that $\{L_{1}^{2}, L_{2}^{2}\}=\{-5, -6\}$ or $\{-6, -6\}$ ,
$L_{3}^{2}=-2,$ $L_{4}^{2}=-2;T_{3}=[2,2],$ $d(T_{3})=3$ .

As before, it follows that $T_{1}$ or $T_{2}$ is non-rational; say, $T_{1}$ is non-rational;
$\#(T_{1})\geqq 6$ . And then $T_{1}-\{L_{1}\}$ itself has a branch $\Gamma_{1}$ which is non-rational;
$\#(\Gamma_{1})\geqq 6,$ $\lambda(\Gamma_{1})=1$ .

16.6. If $\#(\Gamma_{1})=6$ , then by 11.3, $\Gamma_{1}$ is (iii) of Figure 2, with $\lambda(\Gamma_{1})=1$ and
hence $\{L_{1}^{2}, L_{2}^{2}\}=\{-5, -6\}$ . It follows that $bk(T_{1})\leqq-(1/6+4/3)=-3/2$ , and
$bk(T_{2})\leqq-(1/6+1/2)=-2/3$ . Since $bk(T_{3})=-2$ , we have shown that $bk(C)<-4$

as required.
If $\#(\Gamma_{1})=7$, then by 11.4, we have $bk(T_{1})\leqq-(1/6+16/15)$ . Now $\#(T_{2})=1$ ,

or 2, so that $T_{2}=[5],$ $[5,2]$ , or $[6, 2]$ . ( $T_{2}\neq[6]$ , by 6.1), and hence $bk(T_{2})\leqq$

$-4/5$ and hence again we obtain $bk(C)<-4$ .

16.7. Finally suppose $\#(\Gamma_{1})=8$ . Then $\#(T_{2})=1$ and hence $T_{2}=[5],$ $L_{1}^{2}=$

$-6$ , $\Omega(T_{1})=\{-6, -3, -2, -2, -2, -2, -2, -2, -2\}$ . We should now show
that $bk(T_{1})<-6/5$ . This is clear if $T_{1}$ has more than three tips. Hence we
may assume that $T_{1}$ has precisely three tips. (Clearly $L_{1}$ is one of them.) Let
$\Lambda_{1},$ $\Lambda_{2},$ $\Lambda_{3}$ be the three maximal twigs of $T_{1}$ with $L_{1}\in\Lambda_{1}$ . Since $\Gamma_{1}$ is non-
rational it follows that $T_{1}$ should have one of the configurations shown in
Figure 30.

In (i) we may assume that $\Lambda_{2}=[2,2]$ . Then $\Lambda_{3}=[2,3]$ or $[3, 2]$ and $\Lambda_{1}=$

[6, 2, 2, 2]. Hence

$bk(T_{1})=bk(\Lambda_{1})+bk(\Lambda_{2})+bk(\Lambda_{3})\leqq-(4/21+2/3+2/5)=-44/35<-6/5$ .
In (ii), if $\Lambda_{2}$ (or $\Lambda_{3}$ ) is [2, 2, 2] then clearly $bk(T_{1})\leqq-(1/6+1/3+3/4)<-6/5$ .
So, we may assume that $\Lambda_{2}$ has a (–3)-curve and hence $\Lambda_{1}=[6,2,2],$ $\Lambda_{3}=$

$[2, 2]$ , and $\Lambda_{2}=[2,2,3]$ , [2, 3, 2] or [3, 2, 2]. So, in any case $bk(T_{1})\leqq$

$-(3/16+2/3+3/7)<-6/5$ . In (iii) we may assume that $\Lambda_{2}=[2,2,2]$ and so we
are done. In (iv), if $\Lambda_{2}=[2,2,2]$ we are done. So we may assume that $\Lambda_{3}=$
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$-6$ $-6$

$L_{1\overline{|}^{-*-*}}^{*--*-*}$ $L_{1}*---|^{--*-*}$

$\downarrow*$ I
(i)

$*$

$-*---*1|$
$L_{1}*-6$

(iii)

(ii)

$-6$

$L_{I}*--$
$I^{--*-}$

(iv)

Figure 30.

[2], $\Lambda_{1}=[6,2,2,2]$ and $\Lambda_{2}=[2,2,3],$ $[2,3,2]$ or [3, 2, 2]. In the first two cases
$bk(\Lambda_{2})\leqq-5/8$ and so $bk(T_{1})\leqq-(4/21+5/8+1/2)<-6/5$ . In the third case, we
do not get $bk(T_{1})<-6/5$ as needed. However, the tree $T$ is now as shown in
Figure 31. One easily checks that this is not unimodular and so this case does
not exist. Thus we have shown that $bk(C)<-4$ , in all cases, and hence the
two components of $R_{3}$ are disjoint, as claimed in 16.0.

$-2$ $-2$ $-1$ $-6$ $-2$ $-2$ $-2$ $-2$ $-2$ $-2$ $-3$

$*--*-*-*-*--1|^{-*-*-*}$

Figure 31. $d=16$ .

\S 17. Completion of the proof of the Theorem 8.2.

17.0. So far, we have proved that $r_{4}=e_{1}=\sigma=\tau=0,$ $b_{0}=1,$ $\lambda=2,$ $D$ is uni-
moduIar, $K\cdot D=\beta_{2}-6,$ $r_{3}=2$ and the two components of $R_{3}$ are disjoint. We
shall denote these two components by $L_{1,0}$ and $L_{2,0}$ . Now for the curve $C=$

$D-L_{0,1}-L_{0,2}$ we have $b_{0}(C)=5,$ $b_{1}(C)=0,$ $b_{2}(C)=\beta_{2}-2$ , and $K\cdot C=\beta_{2}-4$ . Hence
by 1.3 and 10.5, $bk(C)\geqq-4$ . As before, here also, we shall estimate $bk(C)$

directly, and show that $bk(C)<-4$ , which will complete the proof of the
theorem.

Let now, $\{L_{i.j}\}_{1\leqq j\leqq 3}$ be the other components of $D$ meeting $L_{i.0},$ $i$ . $e.,$ $L_{t,0}$ .
$L_{i,j}=1(i=1,2)$ , and $L_{1}=U_{j=0}^{3}L_{1,j}$ and $L_{2}=U_{J\Leftarrow 0}^{3}L_{2,j}$ . Since $D$ is simply con-
nected, it follows that $L_{1}\cap L_{2}$ is either empty or a single point or an irreducible
curve. In the last case we shall choose the labeling so that $L_{1}\cap L_{2}=L_{1.1}=L_{2,1}$ .
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Thus $L_{1,1}\neq L_{2.1}$ means $L_{1.j}\neq L_{2,k}$ for any $j$ and $k$ . Let $C=T_{1-}\perp T_{2}4LT_{3}4LT_{4-}LT_{5}$ ,
$\#(T_{s})=t_{s}$ . Then $bk(C)=\Sigma_{s=1}^{5}bk(T_{S})$ .

17.1. Let $X_{1}$ be the surface obtained by contracting $L_{1.0}$ and $L_{2,0}$ . Assume,
first that $X_{1}$ is minimal, $X_{1}=X’=X’$ . Then, $\beta_{2}=12,$ $L_{i.j}^{2}\leqq-3,1\leqq j\leqq 3$ . We
shall make two subcases, viz., (i) $L_{1,1}=L_{2.1}$ , (ii) $L_{1.1}\neq L_{2.1}$ .

Consider the case $L_{1,1}=L_{2.1}$ . Then, it follows that $L_{1,1}^{2}=-4$ or $-5$ . Then
using 9.7, it follows that the dual graph of the curve $L=L_{1}\cup L_{2}$ is one of the
three trees shown in Figure 32. Note also that the five components of $L-L_{1.0}$

$-L_{2.0}$ belong to distinct $T_{s}$ . In (a) and (b) all components of $D-L$ are $(-2)-$

curves whereas in (c), $D-L$ has one $(-3)$-curve and all other $(-2)$-curves.
$-4$ $-1$ $-4$ $-1$ $-4$ $-4$ $-1$ $-5$ $-1$ $-3$ $-3$ $-1$ $-5$ $-1$ $-3$

$*-*-**|_{-3}\neg_{*-3}^{-*}$ $*-*-3*-3|^{-}\overline{|}^{-*}$ $*\neg_{-3*-3}^{-*-*}\overline{|}$

(a) (b) (c)

Figure 32.

Thus if $t_{s}\leqq 2$ , then $bk(T_{s})\leqq-1$ unless $T_{s}=[5]$ or $[5, 3]$ . Hence, if $t_{s}\leqq 2$

for more than three $s\in\{1,2,3,4,5\}$ , say $t_{s}\leqq 2$ for $s\leqq 4$ , then clearly $\sum_{s=1}^{4}bk(T_{s})$

$\leqq-(1+1+1+5/7)$ . On the other hand $bk(T_{5})<-1/2$ and hence $\Sigma_{s=1}^{5}bk(T_{s})$

$<-4$ .
So we may assume $t_{1}\geqq 3$ , and $t_{2}\geqq 3$ . Since $\sum t_{s}=10$ , it follows that $t_{1}+t_{2}\leqq 7$

and $t_{3}+t_{4}+t_{5}\leqq 4$ . Here again $bk(T_{1})+bk(T_{2})<-1$ and so if $T_{s}\neq[5]$ or $[5, 3]$

for any $s=3,4,5$ , then we are done. So assume that $T_{5}=[5]$ or $[5, 3]$ . Then
it follows that $\Omega(T_{1}\cup T_{2})$ does not contain $-5$ and so it follows that $bk(T_{1})+$

$bk(T_{2})<-(1/4+1/2+1/3+1/2)$ , (by 10.4, (iii)) and hence $\Sigma_{s=1}^{5}bk(T_{S})<-(1/4+1/2$

$+1/3+1/2+1+1+5/7)<-4$ as required.

17.2. Now consider the case $L_{1,1}\neq L_{2,1}$ . Now using 9.7, we conclude that
$\Omega(L_{1})=\Omega(L_{2})=\{-1, -3, -3, -4\}$ and $\Omega(C)=\{-4,$ $-4,$ $-3,$ $-3,$ $-3,$ $-3,$ $-2$ ,
$-2,$ $-2,$ $-2$ }. Note that there is a unique branch $T_{s}$ of $C$ say, $T_{1}$ which meets
both $L_{1.0},$ $L_{2.0}$ , and $t_{1}\geqq 2$ . Now if $t_{s}\leqq 2$ , then $bk(T_{s})\leqq-1$ and hence as in 17.1,
we may assume, that $t_{s}\geqq 3$ for at least two $s\in\{1,2,3,4,5\}$ . So let $t_{2}\geqq 3$ .
Further if $t_{3},$ $t_{4}$ or $t_{5}$ , say, $t_{3}\geqq 3$ , then $t_{4}=t_{5}=1,$ $t_{1}=2,$ $t_{2}=t_{3}=3$ . Clearly $T_{1}=$

$[4, 4]$ , $[4, 3]$ or $[3, 3]$ and hence $bk(T_{1})\leqq-10/15$ . Also $bk(T_{2})\leqq-(1/4+1/2)$ ,
$bk(T_{3})\leqq-(1/4+1/2)$ where as $bk(T_{4})\leqq-1,$ $bk(T_{5})\leqq-1$ , and hence $\sum bk(T_{s})<-4$ .
Finally, consider the case where $t_{s}\leqq 2$ for $s=3,4,5$ . Then $bk(T_{s})\leqq-1$ and in
any case $bk(T_{1})<-1/2,$ $bk(T_{2})<-1/2$ so that $\sum bk(T_{\ell})<-4$ .

Thus we have shown that $bk(C)<-4$ if $X_{1}$ is minimal.

17.3. Now suppose $X_{1}$ is not minimal so that $L_{i,j}^{2}=-2$ at least for one
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$(i, j)$ . Since $r_{4}=0$ , if $L_{1.1}=L_{2,1}$ then $L_{1,1}$ is never in $\mathcal{E}_{1}$ and so we may assume
that $L_{1.2}^{2}=-2$ . Contract the image of $L_{1.2}$ on $X_{1}$ , to obtain a surface $X_{2}$ . We
shall now assume that $X_{2}$ is minimal, $i.e$ . $X_{2}=X’=X$‘’, and show that $bk(C)$

$<-4$ .
It follows that $\beta_{2}=13$ , and $L_{1.2}$ is a tip of $D$ as $r_{3}=2$ . As before we now

make two subcases (i) $L_{1.1}=L_{2,1}$ and (ii) $L_{1.1}\neq L_{2.1}$ .

17.4. Suppose $L_{1.1}=L_{2,1}$ . It follows that $L$ has one of the configurations
shown in Figure 33, with $D-L$ consisting of $(-2)$-curves in (a), (b) and (c),

and having one $(-3)$-curve and other $(-2)$-curves in (d).

$-5$ $-1$ $-6$ $-1$ $-3$

$*-L_{1.2}*|_{-2}\overline{L}_{1.1}^{*-*-*}\downarrow_{-3}$

(a)

$-4$ $-1$ $-6$ $-1$ $-4$

$*-*--$
$L_{1,2}*-2|^{L_{1.1}}$ $\downarrow-3$

(c)

$-5$ $-1$ $-5$ $-1$ $-4$

$-*L_{1.2}1_{-2\tau-3}^{\overline{L}_{1,1}^{*-}\ulcorner^{*}}$

(b)

$-4$ $-1$ $-6$ $-1$ $-3$

$--L_{1.2}*-|2 L_{1,1}|$

(d)

Figure 33.

We set $T_{5}=\{L_{1.2}\}=[2]$ , so that $bk(T_{2})=-2$ . Thus we have to show that
$\Sigma_{s=1}^{4}bk(T_{s})<-2$ . If $t_{s}=1$ , then clearly $bk(T_{s})\leqq-4/6$ . If $T_{s}\geqq 2$ , then by 10.4,
$it_{-}^{:}easily$ follows that $bk(T_{s})\leqq-(1/6+1/3)=-1/2$ and, for at least one of the
$s,$ $bk(T_{s})<-1/2$ . Hence $\sum_{s=1}^{4}bk(T_{s})<-2$ as required.

17.5. Now consider the case $L_{1,1}\neq L_{2.1}$ . As before, it follows that $\Omega(L_{1})$

$=\{-5, -4, -2, -1\}$ and $\Omega(L_{2})=\{-4, -3, -3, -1\}$ . So that $\Omega(C)$ is $\{-5,$ $-4$ ,
$-4,$ $-3,$ $-3,$ $-2,$ $-2,$ $-2,$ $-2,$ $-2,$ $-2$ }. Taking $T_{5}=\{L_{1,2}\}$ , here also we have
to show that $\Sigma_{s=1}^{4}bk(T_{s})<-2$ . As in 17.2, there is a unique $T_{s}$ , say $T_{1}$ , which
meets both $L_{1.0}$ and $L_{2.0}$ . Then for $T_{2},$ $T_{3},$ $T_{4}$ , it easily follows that $bk(T_{s})\leqq$

$-(1/5+1/2)=-7/10$ . Hence $\sum_{s=1}^{4}bk(T_{s})<-2$ as required.

17.6. We may now assume that $X_{2}$ is not minimal. This means that the
image of $L_{1.1},$ $L_{1.3}$ or one of $L_{2.j}$ on $X_{2}$ is a $(-1)$-curve. However, using the
fact that $K\cdot D=\beta_{2}-6$ , we can see that if $L_{1.1}=L_{2.1}$ then its image on $X_{2}$ can-
not be a $(-1)$-curve (for, the contraction of the image ef $L_{1,1}$ gives $X^{ff}$ by 3.1,
$K\cdot D=8$ . This is a contradiction). So we may assume that $L_{1,S}$ is a $(-1)-$

curve or L2.2 is a $(-1)$-curve. In the latter case, $i.e$ . if L2.2 is a $(-1)$-curve
then it follows (by $r_{4}=0$) that L2.2 is a tip of $D,$ $L_{2.2}^{2}=-2$ , and hence clearly
$bk(C)<bk(\{L_{1,2}\})+bk(\{L_{2.2}\})=-4$ . So we may assume that $L_{2,j}^{2}\leqq-3$ .
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Hence, the image of $L_{1,3}$ on $X_{2}$ is a $(-1)$-curve. Again using the fact
$K\cdot D=\beta_{2}-6$ , it follows that $L_{1.3}$ is also a tip of $D$ as above, $L_{1,3}^{2}=-3$ . Thus
taking $T_{4}=\{L_{1.3}\}$ , we have to show that $\Sigma_{s=1}^{3}bk(T_{s})<-2/3$ .

Contract the image of $L_{1,3}$ on $X_{2}$ to obtain a surface $X_{3}$ . It is easily seen
that $X_{3}$ is minimal by 3.1, $i$ . $e$ . $X_{3}=X^{J\gamma}$ . Suppose $L_{1,1}\in T_{1}$ . Then it follows
easily that for any component $D_{i}$ of $T_{2}$ or $T_{3}$ , we have $D_{l}^{2}\geqq-4$ and hence
$bk(T_{2})\leqq-1/2,$ $bk(T_{3})\leqq-1/2$ proving thereby that $\sum_{s=1}^{3}bk(T_{s})<-2/3$ as required.

This completes the proof of 8.2.
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