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\S 0. Introduction.

A map $f$ : $(M, g)arrow(N, h)$ from a compact Riemannian manifold $(M, g)$ into
a complete Riemannian manifold $(N, h)$ is harmonic if it is a critical point for

the energy integral $E(f)= \int_{M}|df|^{2}d\uparrow)_{g}$ .
The identity map of a compact Riemannian manifold is always a harmonic

map. Any harmonic map has its Jacobi operator determined by the second
variational formula of the energy integral of the harmonic map. The Jacobi
operator of the identity map of a compact manifold is a linear elliptic self-
adjoint operator of second order on the vector fields of the manifold. So we
consider the first eigenvalue of the Jacobi operator of the identity map. We
call a Riemannian manifold stable if the first eigenvalue of the Jacobi operator
of the identity map is non-negative and unstable otherwise.

The stability of Riemannian manifolds has been studied by many people.
Mostly they studied which Riemannian manifolds are stable or unstable. We
consider the stability problem from the different point of view. We are inter-
ested in the problem how stability of a compact Riemannian manifold depends
on its Riemannian metric. For example the three-dimensional sphere is unstable
with its standard Riemannian metric but there also exists a Riemannian metric
which makes the three-sphere stable. We formulate the problem as follows:

We consider all the $pos\dot{\alpha}ble$ Riemannian metncs on a given compact mamfold.
Then what are the $pos\alpha ble$ stgns of the first eigenvalues of Jacobi operatOrs of
the identity map of the manifold.$P$

In this paper we give the complete answer to the problem if the dimension
of the manifold is less than or equal to three and a partial result if the dimen-
sion of the manifold is greater than three.

The essential part of the proof is that we can construct an unstable
Riemannian metric on the Euclidean ball of dimension greater than or equal to
three.

The author would like to thank Prof. T. Ochiai for his advice, and Prof. H.
Urakawa for his lectures which stimulated and interested the author in harmonic
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map theory.

REMARK. It is an easy consequence of the result by G. Z. Gao and S. T.
Yau [2] that there exists a Riemannian metric on the three-sphere which makes
it stable.

\S 1. Definitions and statement of results.

From here on we let all the manifolds which appear in this paper be com-
pact, connected and without boundary unless otherwise specified. In this section
we give definitions necessary in this paper. Refer to [1] for precise definitions.
We give the statement of our Main Theorem at the end of this section.

DEFINITION (Jacobi operator). For a harmonic map $f:(M, g)arrow(N, h)$ we
define the Jacobi oPerator $J_{f}$ of $f$ as the following differential operator on
$\Gamma(f^{-1}TN)$ .

$J_{f}V:=\Delta^{f}V-traceR^{N}(V, df)df$

for $V\in\Gamma(f^{-1}TN)$ . Here $\Delta^{f}$ : $\Gamma(f^{-1}TN)arrow\Gamma(f^{-1}TN)$ is the differential operator

which can be written in the following way using the pull-back connection $\nabla^{f}$

of the Levi-Civita connection on $(N, h)$ by $f$.
$\Delta^{f}V:=-\sum_{i=1}\{\nabla_{e_{i}}^{f}\nabla_{e_{i}}^{f}V-\nabla_{\nabla_{e_{i}}^{f}e_{i}}^{f}V\}\dim M$

for $V\in\Gamma(f^{-1}TN)$ , where $\{e_{t}\}_{i=1}^{\dim M}$ is the orthonormal frame of $(M, g)$ and $R^{N}$

is the curvature tensor of $(N, h)$ .

The Jacobi operator appears in the second variational formula of the energy
functional. See the proof of [1, Proposition (4.3)] for the derivation of the
formula.

PROPOSITION (Second variational formula). Let $f:(M, g)arrow(N, h)$ be a har-
monic map and $f_{s,t}$ be a smooth two-parameter variation of $f$ such that $f_{0.0}=f$ .
Let $V,$ $W\in\Gamma(f^{-1}TN)$ be the vanational vector fields of $f_{s,t}$ with resPect to $s$

and $t,$ $i.e.$ ,

$V= \frac{\partial f_{s,t}}{\partial s}|_{(s,t)=(0.0)}$ , $W= \frac{\partial f_{s,t}}{\partial t}|_{(s,t)=(0.0)}$ .

Then the second variational formula of the energy functional is given by

$\frac{\partial^{2}E(f_{s,t})}{\partial s\partial t}|_{(s.t)=(0,0)}=\int_{M}h(J_{f}V, W)dv_{g}$ .

DEFINITION (Stability of harmonic maps). For a harmonic map $f:(M, g)arrow$

$(N, h)$ let $J_{f}$ be its Jacobi operator.
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(1) We call the map $f$ stable if for any $V\in\Gamma(f^{-1}TN)$

$\int_{M}h(J_{f}V, V)dv_{g}\geqq 0$ .

(2) We call the map $f$ strongly stable if for any non-zero $V\in\Gamma(f^{-1}TN)$

$\int_{M}h(J_{f}V, V)d_{t)_{g}}>0$ .

(3) We call the map $f$ unstable otherwise.

The identity map id: $(M, g)arrow(M, g)$ of a Riemannian manifold $(M, g)$ is
always a harmonic map. So we can define the stability of a Riemannian
manifold in terms of its identity map.

DEFINITION (Stability of Riemannian manifolds). Let $(M, g)$ be a Riemannian
manifold and id its identity map. We call $(M, g)$ stable (respectively strongly
stable, unstable) if id is stable (respectively strongly stable, unstable).

Since the Jacobi operator is an elliptic self-adjoint differential operator of
second order, there exists the first eigenvalue of the Jacobi operator. For a
harmonic map $f:(M, g)arrow(N, h)$ we write $\lambda_{1}^{f}$ for the first eigenvalue of $J_{f}$ and
especially when $f$ is the identity map id of a compact Riemannian manifold
$(M, g)$ we write $\lambda_{1}^{(M.g)}$ for the first eigenvalue. In the above case of the
identity map, $J_{(M.g)}=J_{id}$ can be written in the following way using the Ricci
tensor Ric $=Ric_{(M.g)}$ of $(M, g)$ .

$J_{(M.g)}V=J_{id}V=\Delta^{id}-Ric(V)$

for $V\in\Gamma(TM)$ . The next definition is important to our Main Theorem.

DEFINITION (The quantity $\Lambda(M)$ ). For a compact manifold $M$ we write
$\Lambda(M)$ for the set of possible signs of first eigenvalues of Jacobi operators, $i.e.$ ,

$\Lambda(M):=\{sign(\lambda_{1}^{(M.g)})|g\in Riem(M)\}\subset\{1,0, -1\}$

where Riem$(M)$ is the set of all Riemannian metrics on $M$.

The relations between $\Lambda(M)$ and the stability are:
(1) $\Lambda(M)\ni 1$ if and only if there exists a Riemannian metric $g$ on $M$ such

that $(M, g)$ is strongly stable.
(2) $\Lambda(M)\subset\{0,1\}$ if and only if any Riemannian metric $g$ on $M$ makes

$(M, g)$ stable.
(3) $\Lambda(M)\ni-1$ if and only if there exists a Riemannian metric $g$ on $M$

which makes $(M, g)$ unstable.

Now we can state our Main Theorem.
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MAIN THEOREM. Let $M$ be a compact manifold without boundary and let
$\Lambda(M)$ as above. Then the following statements hold.

(1) If dim M$=1$ then $\Lambda(M)=\{0\}$ .
(2) If dim $M=2$ then $\Lambda(M)$ is determined by the Euler number $\chi(M)$ of $M$.

If dimM$=2$ and $\chi(M)\geqq 0$ then $\Lambda(M)=\{0\}$ . If dim M$=2$ and $\chi(M)<0$ then
$\Lambda(M)=\{1\}$ .

(3) If dim $M=3$ then $\Lambda(M)=\{1,0, -1\}$ .
(4) If dim $M\geqq 4$ then $\Lambda(M)\ni-1$ .

\S 2. Proof of Main Theorem.

In this section we prove Main Theorem. First we show that we can
construct a Riemannian metric on the Euclidean ball of dimension greater than
or equal to three which is unstable.

LEMMA 2.1. For an integer $n\geqq 3$ there exist a Positive real number $L=L(n)$ ,

a smooth function $\rho$ with a comPact suPport in the n-dimensional Euclidean ball
$(B^{n}(L), g_{0})$ of the radius of $L$ and a smooth vector field $Z’$ with a compact $suPPort$

in $(B^{n}(L), g_{0})$ which satisfy the following condition.
Let $J’$ be the Jacobi oPerator of the identity map of $(B^{n}(L), g’)$ and $dv’$ the

volume element of $(B^{n}(L), g’)$ where $g’=e^{2\rho}g_{0}$ . Then

(2-1) $\int_{B^{n}(L)}g’(J’Z’, Z’)dv’<0$ .

PROOF. In this proof we denote by $\{C_{i}(n)\}_{i=1.2}\ldots$ . the constants which
depend only on $n$ and we put $B^{n}(L)=\{x=(x_{1}, \cdots , x_{n})\in R^{n}||x|<L\}$ . We take

a constant $l$ such that $l\geqq 4$ and put $L=2l$ . And we put $Z’=grad\rho$ for a
function $\rho$ on $B^{n}(L)$ . Later we shall show that we can choose $l$ and a smooth
function $\rho$ so that the lemma holds. We rewrite the right-hand side of (2-1)

using only $\rho$ and $g_{0}$ as

(2-2) $\int_{B^{n}(L)}\{trace’\langle\nabla’Z’, \nabla’Z’\rangle’-Ric’(Z’, Z’)\}dv’$

$= \int_{B^{n}(L)}\{trace\langle\nabla grad\rho, \nabla grad\rho\rangle-2n|grad\rho|^{2}$

$+(n-8)(\nabla d\rho)$ ($grad\rho$ , grad $\rho$ )} $e^{n\rho}dv$

where trace’, $Ric’$ and $\langle$ , $\rangle’$ are the trace, the Ricci tensor and the Riemannian
metric itself with respect to $g’$ respectively. Those symbols without $u’$ ’ are
the symbols related to $g_{0}$ . We take a Lipschitz function $\rho_{1}$ on $B^{n}(L)$ such that

$\rho_{1}=\max\{\frac{1}{n}(1-\frac{|x|}{l}),$ $0\}$
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for $x\in R^{n}$ . First we estimate the integral on the right-hand side of (2-2) with
$\rho=\rho_{1}$ . Later we take a smooth function $\rho$ near $\rho_{1}$ and estimate the difference.
Here are the estimates of the terms on the right-hand side of (2-2).

$\int_{B^{n}(L)}trace\langle\nabla grad\rho_{1}, \nabla grad\rho_{1}\rangle e^{n\rho_{1}}dv\leqq C_{1}(n)l^{n-4}$ .

$\int_{B^{n}(L)}2n$ lgrad $\rho_{1}|^{2}e^{n\rho 1}dv\geqq C_{2}(n)l^{n-2}$ .

$\int_{B^{n}(L)}(n-8)(\nabla d\rho_{1})$ ($grad\rho_{1}$ , grad $\rho_{1}$) $e^{n\rho_{1}}dv=0$ .

Therefore we can take $l_{0}>0$ and $C_{3}(n)>0$ such that

(2-3) $\int_{B^{n}(L)}\{trace$ \langle $\nabla$ grad $\rho_{1},$

$\nabla$ grad $\rho_{1}\rangle$ $-2n$ lgrad $\rho_{1}|^{2}$

$+(n-8)(\nabla d\rho_{1})$ ($grad\rho_{1}$ , grad $\rho_{1}$)} $e^{n\rho_{1}}dv\leqq-C_{3}(n)l^{n-2}$

for $l\geqq l_{0}$ .
Now we take a smooth $\rho$ and estimate the difference. We take $\rho\in$

$C^{\infty}(B^{n}(2l))$ satisfying the following conditions:
(1) The function $\rho$ depends only on $|x|$ .

(2) $0 \leqq\rho(x)\leqq\frac{1}{n}$

for any $x\in B^{n}(2l)$ .
(3) $\rho(x)=\rho_{1}(x)$

for any $x$ such that $1\leqq|x|\leqq l-1$ .
(4) $\rho(x)=0$

for any $\chi$ such that $l+1\leqq|x|\leqq 2!$ .
(5) grad $\rho|\leqq\frac{C_{4}(n)}{l}$

for any $x\in B^{n}(2l)$ .

(6) $| \frac{\partial}{\partial x_{i}}$ grad $\rho|\leqq\frac{C_{5}(n)}{l}$

for any $x\in B^{n}(2l)$ and $i=1,$ $\cdots$ , $n$ .
$\rho(x)$ differs from $\rho_{1}(x)$ when $|x|<1$ or when $l-1<|x|<l+1$ . The integral

on $B^{n}(1)$ is negligible when $l$ is large enough. So all we have to estimate is
the difference of the integral on $B^{n}(l+1)\backslash B^{n}(l-1)$ . Under the above conditions
of $\rho$ it is easy to show that there exist constants $l_{1}>0$ and $C_{6}(n)>0$ such that

(2-4) $| \int_{B^{n}(l+1)\backslash B^{n}(l-1)}g_{1}(J_{1}Z_{1}, Z_{1})d_{U_{1}}-\int_{B^{n}(l+1)\backslash B^{n}(l-1)}g’(J’Z’, Z’)dv’|<C_{6}(n)l^{n-3}$
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for $l>l_{1}$ where those symbols with subscript 1’ are the symbols related to $\rho_{1}$

and those symbols with “”’ are the symbols related to $\rho$ . From the formulas
(2-3) and (2-4) we can conclude that if we take $l$ large enough $L=2l$ satisfies
the statement of the lemma with $\rho$ constructed as above and $Z’=grad\rho$ . $\blacksquare$

Now we get down to the main part of the proof.

Case (1). dim $M=1$ .
This is an easy case because any $(M, g)$ is isometric to a certain flat one-

dimensional sphere. So we omit the proof of this case.
Case (2). dim $M=2$ .
The following theorem by H. Urakawa is essential for the proof of this

case (cf. [5, Proposition 2.1]).

THEOREM 2.2. Let $f:(M, g)arrow(N, h)$ be a holomorpfuc map between Kahler
manifolds $(M, g),$ $(N, h)$ . Then

$\int_{M}h(J_{f}V, V)dv_{g}=\frac{1}{2}\int_{M}traceh(DV, DV)dv_{g}$ ,

where $DV(X):=\tilde{\nabla}_{f*JX}V-J\nabla_{f*X}V,$ $V\in\Gamma(f^{-1}TN),$ $X\in\Gamma(TM),\tilde{\nabla}$ is the pull-back
connection of the Levi-Ci $\nu i$ ta connection on $(N, h)$ and $J$ stands for complex structures
of $M$ and of N. In partjcular,

(1) such map $f:(M, g)arrow(N, h)$ is stable.
(2) $Ker(J_{f})=\{V\in\Gamma(f^{-1}TN)|\tilde{\nabla}_{f*JX}V=J\tilde{\nabla}_{f*X}V \forall X\in\Gamma(TM)\}$ .
Let $(M, g)$ and $(N, h)$ be as in Theorem 2.2 and id: $(M, g)arrow(M, g)$ be the

identity map of $(M, g)$ . The following statements are easy consequences of
Theorem 2.2.

(1) $\lambda_{1}^{f}\geqq 0$ .
(2) Let $H^{0}(M, f^{-1}T^{1,0}N)$ be the C-linear vector space consisting of the

holomorphic sections of the pull-back bundle of the holomorphic vector bundle
of $N$. Then there exists an isomorphism between $Ker(J_{f})$ and $H^{0}(M, f^{-1}T^{1,0}N)$

as R-linear vector spaces. Especially in case of id $H^{0}(M, f^{-1}T^{1.0}N)=$

$H^{0}(M, T^{1,0}M)$ and the above isomorphism $i:Ker(J_{(M,g)})arrow H^{0}(M, T^{1,0}M)$ is given
by

$i(V)= \frac{1}{2}(V-\sqrt{-1}JV)$

for $V\in Ker(J_{(M,g)})$ .
(3) $\lambda_{1}^{(M.g)}>0$ if and only if $H^{0}(M, T^{1,0}M)=\{0\}$ .
Now we apply the above results to two-dimensional $M’ s$ . If $M$ is orien-

table $M$ is a K\"ahler manifold.



Stability of Riemannian manifolds 499

If $\chi(M)<0$ and $M$ is orientable then it is well known that $H^{0}(M, T^{1,0}M)$

$=\{0\}$ . So $\lambda_{1}^{(M.g)}>0$ for any Riemannian metric $g$ on $M$ and $\Lambda(M)=1$ .
If $\chi(M)<0$ and $M$ is nonorientable then $\chi(\tilde{M})<0$ for the orientable covering

manifold $\tilde{M}$ of M. $\lambda_{1}^{(\overline{M},g)}>0$ for any Riemannian metric $g$ on $M$ where $(\tilde{M},\tilde{g})$

is the orientable Riemannian covering manifold of $(M, g)$ . So $\lambda_{1}^{(M,g)}\geqq\lambda_{1}^{(\overline{M},\tilde{g})}>0$

for any Riemannian metric $g$ on $M$ and $\Lambda(M)=1$ .
If $\chi(M)\geqq 0$ and $M$ is orientable then $M$ is diffeomorphic to a sphere $S^{2}$ or a

torus $T^{2}$ . From the well-known facts that $\dim_{C}H^{0}(S^{2}, T^{1,0}S^{2})=3$ and that
$\dim_{C}H^{0}(T^{2}, T^{1,0}T^{2})=2$ we can conclude that $\lambda_{1}^{(M,g)}=0$ for any Riemannian
metric $g$ on $M$ and that $\Lambda(M)=0$ .

If $\chi(M)\geqq 0$ and $M$ is nonorientable then $\chi(\tilde{M})\geqq 0$ for its orientable covering
manifold $\tilde{M}$. Therefore for any Riemannian metric $g$ on $M\lambda_{1}^{(M.g)}\geqq\lambda_{1}^{(\tilde{M}.\tilde{g})}=0$

where $(\tilde{M},\tilde{g})$ is the orientable Riemannian covering manifold of $(M, g)$ . In
order to determine whether $\lambda_{1}^{(M.g)}>0$ or $\lambda_{1}^{(M.g)}=0$ we have to investigate
whether vector fields in $Ker(J_{(\overline{M}.\tilde{g})})$ are compatible with the covering map. We
use the fact that $(M, g)$ is conformally equivalent to the manifold $(M, g_{0})$ with
the constant curvature (see [4]). Their orientable covering Riemannian mani-
folds $(\tilde{M},\tilde{g})$ and ( $\tilde{M}$, go) are also conformally equivalent. The conformalities
determine the complex structures on the manifolds and the complex structures
determine the kernels of $J_{(\overline{M}.\tilde{g})}$ and $J_{(\overline{M},\tilde{g}_{0})}$ . Therefore they have the same
kernel of Jacobi operators. So in order to investigate whether the vector fields
in $Ker(J_{(\overline{M}.g)})$ are compatible with the covering map we only have to consider
the case of the manifolds with constant curvature under the condition $\chi(M)\geqq 0$ .
It is easy to show that they are always compatible. This shows that $\lambda_{1}^{(M,g)}=0$

and we can conclude that $\Lambda(M)=0$ .
Case (3). dim $M=3$ .
We use next two theorems along with Lemma 2.1. The first one is by

L. Z. Gao and S. T. Yau (cf. [2, Main Theorem]).

THEOREM 2.3. Every compact three-dimensional manifold without boundary
admits a metric with negative Ricci curvature.

The second theorem is by K. Kodaira and D. C. Spencer (cf. [3, Theorem
2]). We only show how it applies to our case.

THEOREM 2.4. Let $\{g_{t}\}_{t\in R}$ be a smooth family of Riemannian metrics on $M$.
Then $\lambda_{1}^{(M.g_{\delta})}$ is a continuous function of $t$ .

That $\Lambda(M)\ni 1$ is an easy consequence of Theorem 2.3 and the definition of
Jacobi operator.

That $\Lambda(M)\ni-1$ is derived from Lemma 2.1. By Lemma 2.1 we have a
three-dimensional ball $(B^{3}(L), g’)$ and a vector field $Z’$ on the ball which satisfy
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(2-1). We can imbed this ball into $M$. We extend the Riemannian metric $g’$

on the ball to a Riemannian metric $g$ on $M$ appropriately and the vector field
$Z’$ on the ball to the vector field $Z$ on $M$ being zero outside the ball. $M$ with
the Riemannian metric $g$ constructed as above is unstable because $Z$ satisfies

$\int_{M}\langle J_{(M,g)}Z, Z\rangle dv_{g}<0$ .

This implies $\Lambda(M)\ni-1$ .
Lastly we show that $\Lambda(M)\ni O$ . For a compact three-dimensional manifold

$M$ we know from the above argument that there exist Riemannian metrics
$g_{0}$ and $g_{1}$ such that $\lambda_{1}^{(M,g_{0})}>0$ and $\lambda_{1}^{(M.g_{1})}<0$ . We consider a smooth family
$\{g_{t}\}_{\iota\in[0,1]}$ of Riemannian metrics on $M$ such that

$g_{t}=(1-t)g_{0}+tg_{1}$

for $t\in[0,1]$ . Then Theorem 2.4 guarantees that there exists $s\in(O, 1)$ such that
$\lambda_{1}^{(M,g_{s})}=0$ .

This concludes Case (3).

Case (4). dim $M\geqq 4$ .
That $\Lambda(M)\ni-1$ is an easy consequence of Lemma 2.1 as in Case (3).

This completes the whole proof of the Main Theorem.

\S 3. Conjectures.

Unfortunately we can not determine $\Lambda(M)$ completely in case of $M$ such
that dim $M\geqq 4$ . But the author believes that the following conjecture holds.

CONJECTURB. For every compact manifold $M$ without boundary such that
$\dim M\geqq 4$ we have

$\Lambda(M)=\{1,0, -1\}$ .
The author also believes that the solution of the next conjecture will be

the essential step toward the solution of the above conjecture.

CONJECTURE. For every integer $n\geqq 4$ there exists a Riemannian metric on
n-dimenstonal sphere whuch makes the sphere with the Riemannian metric sfrongly
stable.
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