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§0. Introduction.

A toroidal group is a quotient X=C"/I" of C™ by a lattice I" such that X
has no non-constant holomorphic function ([1L]). Morimoto considered a con-
nected complex Lie group without non-constant holomorphic functions and called
it an (H, C)-group ([12]). Since every (H, C)-group is commutative, the (H, C)-
groups are exactly the toroidal groups.

It is a well known result that for a complex torus 7 the following are
equivalent :

(1) T is an abelian variety.

(2) T has a positive line bundle.

(3) T is projective algebraic.

In the previous paper we obtained a similar result for a toroidal group X
under the condition dim H(X, Ox)<co.

One of the purpose of this paper is to drop the above condition (see Theo-
rem 4.6). This contains answers to problems of the structure and of the global
embedding of weakly l-complete manifolds in the case of toroidal groups (see
[17). Another is to prove the meromorphic reduction theorem for toroidal
groups (Theorem 5.1). As a by-product we obtain that for a topologically
trivial holomorphic line bundle L over a toroidal group X=C"/I", H'(X, ©(L))

+{0} if and only if L is analytically trivial (Corollary 3.3). By different methods
Huckleberry and Margulis proved it.

§1. Preliminaries.

A discrete subgroup I" of C™ is called a lattice in C". Let p,=(p.1, P21,

vy Pat)y s Pr=(P1r, D2r, =, Pur)EC™ be generators of I', where r=rank .
An (n, r)-matrix

P=(py 'ps - ‘br)

is called a period matrix of I, or also of X=C"/I'. Two period matrices P
and P’ are said to be equivalent if there exist A=GL(n, C) and MeGL(r, Z,
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such that
P = APM.

Let I' and I'" be lattices in C" with period matrices P and P’ respectively.
Then X=C"/I" and X’'=C"/I"’ are isomorphic if and only if P and P’ are
equivalent. If X=C"/I" is a toroidal group, then the generators of I’ contain
n-vectors linearly independent over C and »r>n. For the condition on which

X=C"/I" is a toroidal group, we refer the reader to [10], and [187.
Let X=C"/I" be a toroidal group and let rank/'=n-+m, m=1. We can
choose a period matrix P of I” as follows

P:( 0 I U1+\/jIU2>

Inom Ry R, ’

where I, is the (%, k) unit matrix, (In U,++—1U,) is a period matrix of an
m-dimensional complex torus and (R, R,) is a real matrix (see and [18]).
We denote by CF the maximal complex linear subspace contained in the real linear
subspace R}*™ spanned by I'. In the above normal form of P, CF is spanned
by U,. There exists a real linear subspace V of C" such that R}F"=CEFDYV,
C"=CPrPVP~/—1V. We take a holomorphic coordinate system (z, w) of C”
so that z=(z,, .-, zn) is a coordinate system of CF and that w=(wy, =+, Wnp-m)
is a coordinate system of VEv/—1V. X=C"/I is isomorphic onto TE*™xXR" ™
as a real Lie group, where T3Z*™=R}*™/I" is an (n+m)-dimensional real torus.
We have global vector fields 0/0z., 0/0Z,, (1, 0)-forms dz, and (0, 1)-forms dz,.
We take coordinate charts U; of X with coordinate systems induced from C™”.
We have the d-operator d,=d,+0d, with respect to the z-variable.

§2. d,-exact (1, 1)-forms.
We write T=T%*™. Let
za:Ea""\/"“—lva, wa=xa+\/——_lya.

Then (&, =+, &n, 91, ***» Ym, X1, =+, Xn-m) is a real coordinate system of CFPV
=R}*™ We denote by AP ?=AP? the sheaf of (p, g)-forms on X with respect
to {dz,, dz,}. An element ¢ of H%X, A™9) is represented globally as

1

Q= mz(pal...apﬁl...quzal/\ /\dzap/\dé,sl/\ /\dE,Bq ,

where @a,..apf,-5, 18 @ C= function on X. ¢ is also regarded as a (p, ¢)-form on
T with parameter space R*-™. For ¢, ¢=H (X, AP we define

1 —_—
(@, P)y(z, x):= Fial ?ﬂgoal...ap,gl...gnga‘...apgl...gq .
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Let 0=+ —13dz.AdZ,. We define
@ 9= (0, e, DL AdxA - Ad

for ¢, g HYX, A?%. For a fixed yeR" ™, (,), is an inner product on
H°(X, 479 regarded as the space of (p, ¢)-forms with respect to {dz,, dZ,} on
T. The star operator *: H*(X, A?9)—H(X, A™ ¢™-?) is defined by the usual
way and has properties

(0, Pz )y = pA*F,
s = (—1)P*p if peH(X, 479,

Let 9,, 9, and §, be dual operators of 3, 9, and d, with respect to the
inner product (, ),, respectively.

DEFINITION. We define the complex Laplacian with respect to the z-variable

O,: HY(X, 4?9 —> H (X, A?9
by ,:=0d,9,+9,0,.
We can write explicitly
m g
(OeP)ayapsify = “Elm%rapﬁr--ﬁq

for all o= H (X, A?9. The complex Laplacian [J, with respect to the z-vari-
able is self-adjoint, i.e. (0., ¢),=(¢, O.¢),, and has the property A,=20,=
207,, where T,:=0,9,+8,0, and A,:=d,8,40,d,. As usual we have an operator
A H(X, AP %) — H (X, AP-%9-Y) with 0,4—A40,=+/—19, and §,4—13,=
—+/—=19..

We denote by S the subbundle of the tangent bundle T(T) given by vector
fields {0/0&,, ---, 0/0¢n, 8/071, -+, 3/07n} on T. Clearly S is completely inte-
grable. The complex Laplacian [J, with respect to the z-variable is an elliptic,
self-adjoint differential operator on 7T with respect to S ([2]). Using Corollary
5.5 in [2], we obtain the following proposition.

PROPOSITION 2.1. For any ¢<HX, AP there exist 7, ¢S H (X, AP9)

with O,p=0 such that
¢ =7+0.9.

PROPOSITION 2.2. Let ¢=H(X, A"Y). If ¢=d.¢p, then there exists a C*
function f on X such that

& =0.3.f.

PRrOOF. Our proof is along the argument in the proof of Theorem 7.4 in
[13]. By Proposition 2.1 there exist 5, ¢=H(X, A"") with O,7=0 such that
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dp=n+0.¢.
Since A,n=2[1,7=0, we have (A,y, 9),=0. Then d,d.d.)=0. Hence we have
(0.d.¢, 0.d.¢), = (d 4, d,0.d,¢), = 0.
This means that 0.d.¢=0. Also we have

(7]’ dzq))y = (5277, (P)y = 0 .
Then 5=0. Since
0 = (6Zd2¢’ gb)l/ = (dz¢y dz¢)y »

we have d,¢=0. Considering the type of ¢, we obtain that 0,¢=0 and ¢,¢=0.
Therefore we have

dop = O = 8.0, = v/ —10,3, 4.

§3. Topologically trivial line bundles.

In we defined a certain refined Chern class &,(L) for C* complex line
bundle L holomorphic with respect to the z-variable over a toroidal group X.
The following proposition was stated without proof to give an application of
the obtained results in [3]. Here we give its proof.

PROPOSITION 3.1. Let L be a holomorphic line bundle over a toroidal group
X. If L is topologically trivial, then &,(L)=0.

ProOOF. Since L is topologically trivial, there exists a summand of auto-
morphy a(7; z, w) which gives L (Vogt [17], Proposition 5). Moreover, we
may assume by Proposition 8 in that a(y; z, w)=a(y, w) for all yeI', and
aw):=a(y, w) is Z" ™-periodic for all y=I"

Let {a;} be a hermitian metric along the fibres of L. Then there exists a
corresponding real-valued C*= function A(z, w) on C™ such that

(*) Al(z, w)+7)— Az, w) = 2Re a(y, w)

for all y=I" and (z, w)=C" (see [3], Remark 1). By the above equality (x) we
obtain that {0, log a;} gives a p=H(X, A%!'). Therefore we have

0.0, loga; =4d,p.

By |Proposition 2.2 there exists a C* function f on X such that

0,0, log a; = 0,0,f ,
this implies &,(L)=0.

Let L be a holomorphic line bundle over X. Then L is isomorphic onto
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Ly®L,, where L, is a topologically trivial holomorphic line bundle and L, is
a theta bundle with theta factor p of type (4, ¢, Q, .£) ([18], cf. also [1]).
For a hermitian form 4 on C*xXC?", we define

Ker(#):= {zeC¥; 4(z, z/)=0 for all 2z’ CE}.

By Theorem 1 in and [Proposition 3.1 we obtain the following theorem.

THEOREM 3.2. Let L be a holomorphic line bundle over a toroidal group X.
Suppose that L is isomorphic onto LyQL,. Then there exists a C* function h
on C"™ which is holomorphic with respect to the z-variable such that fe* is con-
stant on Ker(K) for any holomorphic function f corresponding to a holomorphic
section of L.

By Proposition 3.1] and Corollary in we have the following corollary.

COROLLARY 3.3 (Huckleberry and Margulis [7], Corollary 3). Let L be a
topologically trivial holomorphic line bundle over a toroidal group X. Then
HY(X, o(L))+1{0} if and only if L is analytically trivial.

§4. Quasi-abelian varieties.
The following definition is due to Gherardelli and Andreotti [4].

DEFINITION. A toroidal group X=C"/I is said to be a quasi-abelian variety,
if there exists a hermitian form 4 on C"XC"™ satisfying the following condi-
tions :

(@) A:=Im4 is Z-valued on I'x[.

(b) & is positive definite on CFXCE.

A quasi-abelian variety X=C"/I" is said to be of kind p, if there exists a her-
mitian form 4 on C"XC"™ with the conditions (a) and (b) such that A grm
has rank 2m+2p, 0<2p<n—m.

ProprosITION 4.1 (Gherardelli and Andreotti [4], Theorem 1). Every quasi-
abelian variety is a covering space on an abelian variety.

PROPOSITION 4.2 (Gherardelli and Andreotti [4], Theorem 2). Let X=C"/I"
be a quasi-abelian variety of kind p. Then X is a fibre bundle over an (m+p)-
dimensional abelian variety with fibres C? X (C*)"~-™-2p,

By the embedding theorem of Kodaira and the above proposition, every
quasi-abelian variety is quasi-projective. For a quasi-abelian variety of kind 0
Nakano and Rhai proved the embedding theorem directly in [15].

PROPOSITION 4.3. Let X=C"/I" be a toroidal group. If X has a positive
line bundle, then it is meromorphically separable.
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PrOOF. It is well known that X has a C= plurisubharmonic exhaustion
function (cf. [9]). Since the canonical bundle of X is trivial, we get the con-
clusion by the standard argument about weakly 1-complete manifolds (cf. [14]).

PROPOSITION 4.4. Let

a(r; z, w) =exp(a(y, w)e; z, w)

be a factor of automorphy for I' on C™, where a is a summand of automorphy
and p is a theta factor of type (4, P, 0, L). Let f be a holomorphic. function
on C™ with

f((z, w)+7) = a(r; 2, w)f(z, w)

for all v’ and (z, w)eC". If f=£0, then K is positive semi-definite on
CrEXCE.

Proor. Without loss of generality, we may assume that p is of type
(4, ¢, 0,0). Since exp(a(y, w)) gives a topologically trivial holomorphic line
bundle, there exists a real-valued C* function ¢ on C™ which is pluriharmonic
with respect to the z-variable by Remark 2 in and [Proposition 3.1, so that

oz, w)+7)—¢(z, w) = Rea(y, w)

for all ye!l" and (z, w)eC™ There exists a C>= function 2~ on C"™ which is
holomorphic with respect to the z-variable such that Reh=¢. We set

Flz, w)i= | f(z, w)exp(—hz, w) e[ YL a((z, w), o, i),

where e(x)=exp(2x+/ —1x). We see by a straight calculation that F'is I '-periodic.
Hence there exists a constant C such that

| f(z, w)exp(—h(z, w))|* < Cexp{nH((z, w), (z, w))}  on R}*™,.
Since [0, there exists a=(a,, a,)=C" such that f(a)#0. Let
falz, w)i= f((z, w)+a).

Then we have
fal(z, w)+7) =exp(a(r, w+a)o.7; 2z, w)f a2, w),

where p, is a theta factor of type (4, ¢, 0, .£,) with
1
¢1(7) = Gb(T)e[—Im ‘ﬂ[(a) T):lr OEI(Zy w) = év—jiﬂ[(a: (Z: w)) .

Take a trivial theta function @, of type (0,1,0, —.L,). Let f.:=f.8, and let
¢a(z, w):=¢(z, w+a,). Then we have

0u((z, W)+7)—¢a(z, w) = Rea(y, w+a,),
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Fallz, w)+7) = exp(ay, w+a:))pir ; z, w)falz, w),

where g, is a theta factor of type (4, ¢, 0,0). Let h.(z, w):=h(z, w+a,).
Then, by the same reason as above, there exists a constant C’ such that

| Falz, w)exp(—ha(z, w)|? < C’exp{nd((z, w), (z, w))}  on R}+™,
Assume that there exists z,=C}E with 4(z,, 2,)<0. For all 2=C it holds that
| Fa(Rz0)exXp(—ha(A20)|® < C'exp{n|2]|°H (20, 20)}.

Since f.exp(—h,) is holomorphic on C%, we have f,(0)=0. This contradicts
the assumption f(a)=0.

We stated the following proposition without proof in the last section of [3].
Here we give its detailed proof.

PROPOSITION 4.5. Let X=C"/I" be a toroidal group. If X is meromor-
phically separable, then it is a quasi-abelian variety.

PrOOF. Let O be the set of all theta factors p of type (H,, ¢p, Qo L)
with #,=0 on CFXCPF. We define

K:= NKer(4,).
peB

It sufficies to show that K={0}. Let z: C™ X be the projection. Assume that
dim¢K>0. Then there exist z!, z2< K such that n(z")##(z%). Since X is mero-
morphically separable, there exists a meromorphic function f on X such that
f(m(z2)+# f(m(z?). The zero-divisor of f and the pole-divisor of f give the
same line bundle L. Let a(7; z, w) be a factor of automorphy which gives L.
Then there exist holomorphic functions g, and g, on C* with

gillz, w)+r) = a(r; z, wgiz, w), i=1,2,

for all y=I" and (z, w)=C™ such that
82
o= =-,
f &
We may assume that a=e®p, where a is a summand of automorphy and pisa
theta factor of type (X ,, ¢, Qp, -L,). By [Theorem 3.2 there exists a C= func-

tion A on C" which is holomorphic with respect to the z-variable such that g;e®
is constant on Ker(4,) for /=1, 2. Therefore

g __ gee"
ojz' = — =
/ g1 get
is constant on Ker(4,). Since g,%#0 and g,%0, 4, is positive semi-definite on

CEXCPF by Proposition 4.4 Then feom is constant on K. This is a contra-
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diction.

Then we get the following theorem which was obtained in under the
condition dim H}{X, Ox)<co,

THEOREM 4.6. Let X=C"/I" be a toroidal group with rank I'=n-+m. Then
the following statements are equivalent :

(1) X has a positive line bundle.

(2) X is meromorphically separable.

(3) X is a quasi-abelian variety.

(4) X is a covering space on an abelian variety.

(5) There exists a fibration of X over an (m—+p)-dimensional abelian variety
with fibres CPX(C*)"~™"22 where p is a natural number depending on X (0<2p
<n—m).

(6) X is quasi-projective.

§5. Meromorphic reduction fibrations.

In [5], Grauert and Remmert proved the meromorphic reduction theorem
for compact homogeneous complex manifolds. It was extended to complex-
homogeneous manifolds by Huckleberry and Snow [8] The following theorem
is the meromorphic reduction theorem for toroidal groups.

THEOREM b5.1. Let X=C"/I" be a toroidal group. Then there exists a holo-
morphic fibration p: X—X, over a quasi-abelian variety X, with fibres connected
commutative complex Lie groups, which has the following properties:

(1) p is a homomorphism between toroidal groups.

(2) MX)=M(X)), where M(X) and M(X,) are meromorphic function fields
on X and X, respectively.

(3) If v: X—>Y is a homomorphism into a quasi-abelian variety Y, then there
exists a unique homomorphism o : X;—Y such that t=a-p. This means that such
a quasi-abelian variety X, exists uniquely.

PrRoOOF. We may assume that X is not a quasi-abelian variety. Let K be
a complex linear subspace of C7 as in the proof of Proposition 4.5 Then
K=+{0} and

K¥T C Rpr™ = CpOV.

There exists a real linear subspace E and a lattice I, in R%*™ such that
K+T=E®I, Let E,:=ENC} and let E,:=ENV. Then we have that E=
E/®E, and ~v/—1E,NR}™={0}. We define a complex linear subspace W :=
E®~+/—1E,. Then
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W+, =Wl D K+T'.

Let p: C*—C™/W be the canonical projection. Let I'*:=p(I%). Then I'* is a
lattice in C"/W and I'*=I",. We see easily that ["*=p(I"). Let dimcW=n—k.
We may assume that C"=C*xC""*, C*=C"/W, C"*=W. We regard I'* as
a lattice in C"* Let P be a period matrix of I Then P is equivalent to
the following period matrix

G

A B/’

where P* is a period matrix of I'* and B is an (n—&, [)-matrix, /=rank ['—
rank I"*. Since column vectors of B are linearly independent over R, [<2(n— k).
Hence B gives a lattice I'p in C*~*. By the projection g: C*—C*, we get a
fibre bundle 7: X=C"/I'->X,=C*/I"* with fibres C**/['z. By the proof of
Proposition 4.5 every meromorphic function on C™ with period I is constant
on W®I,. Then pg*: M(X,)—M(X) is an isomorphism. Since X is a toroidal
group, X; is also a toroidal group.

Repeating this procedure when X, is not quasi-abelian, we obtain a fibration
of X over a quasi-abelian variety with properties (1) and (2). The property (3)
is proved by the standard argument (see [5]) because a quasi-abelian variety
is meromorphically separable (Theorem 4.6)).

Combining with a result of Pothering and Hefez [6], we obtain the
following corollary.

COROLLARY 5.2. Let X=C"/I" be a non-compact toroidal group. If
dim M(X)=n, then dim M(X)=co, where dim M(X) is the iranscendental degree
of M(X) over C.

REMARK. Let X=C"/I" be a toroidal group with rank/'=2n—1. Then X
is a C*-principal bundle over an (n—1)-dimensional complex torus 7'*-*. By
the proof of we see that X; is the abelian image of T"! or a
C*-principal bundle over it, especially X, is 0-dimensional when 7! has the
trivial abelian image. Therefore, we can construct an example of non-compact
weakly 1-complete manifold which has no non-constant meromorphic function.
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