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\S 0. Introduction.

A toroidal group is a quotient $X=C^{n}/\Gamma$ of $C^{n}$ by a lattice $\Gamma$ such that $X$

has no non-constant holomorphic function ([11]). Morimoto considered a con-
nected complex Lie group without non-constant holomorphic functions and called
it an $(H, C)$-group ([12]). Since every $(H, C)$-group is commutative, the $(H, C)-$

groups are exactly the toroidal groups.
It is a well known result that for a complex torus $T$ the following are

equivalent:
(1) $T$ is an abelian variety.
(2) $T$ has a positive line bundle.
(3) $T$ is projective algebraic.

In the previous paper [1] we obtained a similar result for a toroidal group $X$

under the condition dim $H^{1}(X, O_{X})<\infty$ .
One of the purpose of this paper is to drop the above condition (see Theo-

rem 4.6). This contains answers to problems of the structure and of the global
embedding of weakly l-complete manifolds in the case of toroidal groups (see

[1]). Another is to prove the meromorphic reduction theorem for toroidal
groups (Theorem 5.1). As a by-product we obtain that for a topologically
trivial holomorphic line bundle $L$ over a toroidal group $X=C^{n}/\Gamma,$ $H^{0}(X, O(L))$

$\neq\{0\}$ if and only if $L$ is analytically trivial (Corollary 3.3). By different methods
Huckleberry and Margulis [7] proved it.

\S 1. Preliminaries.

A discrete subgroup $\Gamma$ of $C^{n}$ is called a lattice in $C^{n}$ . Let $p_{1}=(p_{11},$ $p_{21}$ ,

, $p_{n1}$ ), $\cdots$ , $p_{r}=(p_{1r}, p_{2r}, \cdots , p_{nr})\in C^{n}$ be generators of $\Gamma$, where $r=rank\Gamma$.
An $(n, r)$-matrix

$P=({}^{t}p_{1}tp_{2}\ldots tp_{r})$

is called a period matrix of $\Gamma$, or also of $X=C^{n}/\Gamma$. Two period matrices $P$

and $P’$ are said to be equivalent if there exist $A\in GL(n, C)$ and $M\in GL(r,$ $Z_{J}$
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such that
$P’=APM$ .

Let $\Gamma$ and $\Gamma’$ be lattices in $C^{n}$ with period matrices $P$ and $P’$ respectively.
Then $X=C^{n}/\Gamma$ and $X’=C^{n}/\Gamma’$ are isomorphic if and only if $P$ and $P’$ are
equivalent. If $X=C^{n}/\Gamma$ is a toroidal group, then the generators of $\Gamma$ contain
n-vectors linearly independent over $C$ and $r>n$ . For the condition on which
$X=C^{n}/\Gamma$ is a toroidal group, we refer the reader to [10], [17] and [18].

Let $X=C^{n}/\Gamma$ be a toroidal group and let rank $\Gamma=n+m,$ $m\geqq 1$ . We can
choose a period matrix $P$ of $\Gamma$ as follows

$P=(I_{n-m}0$ $I_{m}R_{1}$ $U_{1}+\sqrt{-1}U_{2}R_{2}$),
where $I_{k}$ is the $(k, k)$ unit matrix, $(I_{m}U_{1}+\sqrt{-1}U_{2})$ is a period matrix of an
m-dimensional complex torus and $(R_{1}R_{2})$ is a real matrix (see [17] and [18]).

We denote by $C_{\Gamma}^{m}$ the maximal complex linear subspace contained in the real linear
subspace $R_{\Gamma}^{n+m}$ spanned by $\Gamma$. In the above normal form of $P,$ $C_{\Gamma}^{m}$ is spanned
by $U_{2}$ . There exists a real linear subspace $V$ of $C^{n}$ such that $R_{\Gamma}^{n+m}=C_{\Gamma}^{m}\oplus V$,
$C^{n}=C_{\Gamma}^{m}\oplus V\oplus\sqrt{-1}V$. We take a holomorphic coordinate system $(z, w)$ of $C^{n}$

so that $z=(z_{1}, \cdots , z_{m})$ is a coordinate system of $C_{\Gamma}^{m}$ and that $w=(w_{1}, \cdots , w_{n-m})$

is a coordinate system of $V\oplus\sqrt{-1}$ V. $X=C^{n}/\Gamma$ is isomorphic onto $T_{R}^{n+m}\cross R^{n-m}$

as a real Lie group, where $T_{R}^{n+m}=R_{\Gamma}^{n+m}/\Gamma$ is an $(n+m)$-dimensional real torus.
We have global vector fields $\partial/\partial z_{a},$ $\partial/\partial\overline{z}_{a},$ $(1,0)$-forms $dz_{\alpha}$ and $(0,1)$-forms $d\overline{z}_{\alpha}$ .
We take coordinate charts $U_{i}$ of $X$ with coordinate systems induced from $C^{n}$ .
We have the d-operator $d_{z}=\partial_{z}+\partial_{z}$ with respect to the z-variable.

\S 2. $d_{z}$-exact $(1, 1)$-forms.

We write $T=T_{R}^{n+m}$ . Let

$z_{\alpha}=\xi_{\alpha}+\sqrt{-1}\eta_{a}$ , $w_{\alpha}=x_{a}+\sqrt{-1}y_{\alpha}$ .
Then $(\xi_{1}, \cdots , \xi_{m}, \eta_{1}, \cdots , \eta_{m}, x_{1}, \cdots , x_{n-m})$ is a real coordinate system of $C_{\Gamma}^{m}\oplus V$

$=R_{\Gamma}^{n+m}$ . We denote by $\mathcal{A}^{p.q}=\mathcal{A}_{z}^{p.q}$ the sheaf of $(p, q)$-forms on $X$ with respect
to $\{dz_{a}, d\overline{z}_{\alpha}\}$ . An element $\varphi$ of $H^{0}(X, \mathcal{A}^{p.q})$ is represented globally as

$\varphi=\frac{1}{p!q!}\sum\varphi_{a_{1}\cdots\alpha_{p}\overline{\beta}_{1}\cdots\overline{\beta}_{q}}dz_{\alpha_{1}}\Lambda\ldots\wedge dz_{\alpha_{p}}\wedge d\overline{z}_{\beta_{1}}\wedge\cdots$ A $d\overline{z}_{\beta_{q}}$ ,

where $\varphi_{\alpha_{1}\cdots\alpha_{p}\overline{\beta}_{1}\cdots\overline{\beta}_{q}}$ is a $C^{\infty}$ function on X. $\varphi$ is also regarded as a $(p, q)$-form on
$T$ with parameter space $R^{n- m}$ . For $\varphi,$ $\psi\in H^{0}(X, \mathcal{A}^{p.q})$ we define

$( \varphi, \psi)_{y}(z, x):=\frac{1}{p!q!}\sum_{\alpha}\varphi_{\alpha_{1}\cdots\alpha_{p}\overline{\beta}_{1}\cdots\overline{\beta}_{q}}\overline{\psi_{a_{1}\cdots\alpha_{p}\overline{\beta}_{1}\cdots\overline{\beta}_{q}}}\beta$
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Let $\omega=\sqrt{-1}\sum^{l}.dz_{\alpha}\Lambda d\overline{z}_{\alpha}$ . We define

$(\varphi, \psi)_{y}$ $:= \int_{T}(\varphi, \psi)_{y}(z, x)\frac{\omega^{m}}{m!}\wedge dx_{1}\Lambda\cdots\Lambda dx_{n-m}$

for $\varphi,$
$\psi\in H^{0}(X, \mathcal{A}^{p.q})$ . For a fixed $y\in R^{n-m}$ , $(, )_{y}$ is an inner product on

$H^{0}(X, \mathcal{A}^{p.q})$ regarded as the space of $(p, q)$-forms with respect to $\{dz_{\alpha}, d\overline{z}_{\alpha}\}$ on
$T$. The star operator $*:H^{0}(X, \mathcal{A}^{p.q})arrow H^{0}(X, \mathcal{A}^{m- q.m-p})$ is defined by the usual
way and has properties

$( \varphi, \psi)_{y}(z, x)\frac{\omega^{m}}{m!}=\varphi\Lambda*\overline{\psi}$ ,

$**\varphi=(-1)^{p+q}\varphi$ if $\varphi\in H^{0}(X, \mathcal{A}^{p.q})$ .
Let $\theta_{z},\overline{\theta}$ , and $\delta_{z}$ be dual operators of $\partial_{z},$ $\partial_{z}$ and $d_{z}$ with respect to the

inner product $(, )$ ,, respectively.

DEFINITION. We define the complex Laplacian with respect to the z-variable

$\coprod_{z}$ : $H^{0}(X, \mathcal{A}^{p,q})arrow H^{0}(X, \mathcal{A}^{p.q})$

by $\coprod_{z}:=\partial_{z}\theta_{z}+\theta_{z}\partial_{\iota}$.
We can write explicitly

$( \coprod_{z}\varphi)_{\alpha_{1}\cdots\alpha_{p}\overline{\beta}_{1}\cdots\overline{\beta}_{q}}=-\sum_{\alpha=1}^{m}\frac{\partial^{2}}{\partial_{Z_{a}}\partial\overline{z}_{\alpha}}\varphi_{a_{1}\cdots a_{p}\overline{\beta}_{1}\cdots\overline{\beta}_{q}}$

for all $\varphi\in H^{0}(X, \mathcal{A}^{p.q})$ . The complex Laplacian $\coprod_{z}$ with respect to the z-vari-
able is self-adjoint, $i.e$ . $(\coprod_{z}\varphi, \psi)_{y}=(\varphi, \coprod_{z}\psi)_{y}$ , and has the property $\Delta_{z}=2\coprod_{z}=$

$2\overline{\coprod}_{z}$ , where $\overline{\coprod}_{z}:=\partial_{z}\overline{\theta}_{z}+\overline{\theta}_{z}\partial_{z}$ and $\Delta_{z}:=d_{z}\delta_{z}+\delta_{z}d_{z}$ . As usual we have an operator
$\Lambda:H^{0}(X, \mathcal{A}^{p.q})arrow H^{0}(X, \mathcal{A}^{p- 1.q-1})$ with $\partial_{z}\Lambda-\Lambda\partial_{z}=\sqrt{-1}\theta_{z}$ and $\partial_{z}\Lambda-\Lambda\partial_{z}=$

$-\sqrt{-1}\overline{\theta}_{z}$.
We denote by $S$ the subbundle of the tangent bundle $T(T)$ given by vector

fields $\{\partial/\partial\xi_{1}, \cdots , \partial/\partial\xi_{m}, \partial/\partial\eta_{1}, \cdots , \partial/\partial\eta_{m}\}$ on $T$. Clearly $S$ is completely inte-
grable. The complex Laplacian $\coprod_{z}$ with respect to the z-variable is an elliptic,
self-adjoint differential operator on $T$ with respect to $S$ ([2]). Using Corollary
5.5 in [2], we obtain the following proposition.

PROPOSITION 2.1. For any $\varphi\in H^{0}(X, \mathcal{A}^{p.q})$ there exist $\eta,$ $\psi\in H^{0}(X, \mathcal{A}^{p,q})$

with $\coprod_{z}\eta=0$ such that
$\varphi=\eta+\coprod_{z}\psi$ .

PROPOSITION 2.2. Let $\psi\in H^{0}(X, \mathcal{A}^{1.1})$ . If $\psi=d_{z}\varphi$ , then there existS a $C^{\infty}$

function $f$ on $X$ such that
$\psi=\partial_{z}\partial_{z}f$ .

PROOF. Our proof is along the argument in the proof of Theorem 7.4 in
[13]. By Proposition 2.1 there exist $\eta,$ $\psi\in H^{0}(X, \mathcal{A}^{1.1})$ with $\coprod_{z}\eta=0$ such that
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$d_{z}\varphi=\eta+\coprod_{z}\psi$ .
Since $\Delta_{z}\eta=2\coprod_{z}\eta=0$ , we have $(\Delta_{z}\eta, \eta)_{y}=0$ . Then $d_{z}\delta_{z}d_{z}\psi=0$ . Hence we have

$(\delta_{z}d_{z}\psi, \delta_{z}d_{z}\psi)_{y}=(d_{f}\psi, d_{z}\delta_{z}d_{z}\psi)_{y}=0$ .

This means that $\delta_{z}d_{z}\psi=0$ . Also we have

$(\eta, d_{z}\varphi)_{y}=(\delta_{z}\eta, \varphi),$ $=0$ .
Then $\eta=0$ . Since

$0=(\delta_{z}d_{z}\psi, \psi),$ $=(d_{z}\psi, d_{z}\psi),$ ,

we have $d_{z}\psi=0$ . Considering the type of $\psi$ , we obtain that $\partial_{z}\psi=0$ and $\partial_{z}\psi=0$ .
Therefore we have

$d_{z}\varphi=\coprod_{z}\psi=\partial_{z}\partial_{z}\psi=\sqrt{-1}\partial_{z}\partial_{z}\Lambda\psi$ .

\S 3. Topologically trivial line bundles.

In [3] we defined a certain refined Chern class $\tilde{c}_{z}(L)$ for $C^{\infty}$ complex line
bundle $L$ holomorphic with respect to the z-variable over a toroidal group $X$.
The following proposition was stated without proof to give an application of
the obtained results in [3]. Here we give its proof.

PROPOSITION 3.1. Let $L$ be a holomorphic line bundle over a toroidal grouP
X. If $L$ is toPologically trivial, then $\hat{c}_{z}(L)=0$ .

PROOF. Since $L$ is topologically trivial, there exists a summand of auto-
morphy $a(\gamma;z, w)$ which gives $L$ (Vogt [17], Proposition 5). Moreover, we
may assume by Proposition 8 in [17] that $a(\gamma;z, w)=a(\gamma, w)$ for all $\gamma\in\Gamma$, and
$a_{\gamma}(w):=a(\gamma, w)$ is $Z^{n-m}$-periodic for all $\gamma\in\Gamma$.

Let $\{a_{i}\}$ be a hermitian metric along the fibres of $L$ . Then there exists a
corresponding real-valued $C^{\infty}$ function $A(z, w)$ on $C^{n}$ such that

$(*)$ $A((z, w)+\gamma)-A(z, w)=2{\rm Re} a(\gamma, w)$

for all $\gamma\in\Gamma$ and $(z, w)\in C^{n}$ (see [3], Remark 1). By the above equality $(*)$ we
obtain that { $\partial_{z}$ log $a_{i}$ } gives a $\varphi\in H^{0}(X, \mathcal{A}^{0.1})$ . Therefore we have

$\partial_{z}\partial_{z}$ log $a_{i}=d_{z}\varphi$ .

By Proposition 2.2 there exists a $C^{\infty}$ function $f$ on $X$ such that

$\partial_{z}\partial_{z}$ log $a_{i}=\partial_{z}\partial_{z}f$ ,

this implies $\tilde{c}_{z}(L)=0$ .
Let $L$ be a holomorphic line bundle over $X$. Then $L$ is isomorphic onto
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$L_{0}\otimes L_{\rho}$ , where $L_{0}$ is a topologically trivial holomorphic line bundle and $L_{\rho}$ is
a theta bundle with theta factor $\rho$ of type $(\mathcal{H}, \psi, Q, X)$ ([18], cf. also [1]).

For a hermitian form $\mathcal{H}$ on $C^{n}\cross C^{n}$ , we define

Ker $(\mathcal{H});=$ { $z\in C_{\Gamma}^{m}$ ; $\mathcal{H}(z,$ $z’)=0$ for all $z’\in C_{\Gamma}^{m}$ }.

By Theorem 1 in [3] and Proposition 3.1 we obtain the following theorem.

THEOREM 3.2. Let $L$ be a holomorphic line bundle over a toroidal group $X$.
SuppOse that $L$ is isomorphjc onto $L_{0}\otimes L_{\rho}$ . Then there exists a $C^{\infty}$ function $h$

on $C^{n}$ which is holomorphjc with $res$pect to the z-variable such that $fe^{h}$ is con-
stant on Ker $(\mathcal{H})$ for any holomorphic function $f$ correspondjng to a $holomorp/uc$

section of $L$ .
By Proposition 3.1 and Corollary in [3] we have the following corollary.

COROLLARY 3.3 (Huckleberry and Margulis [7], Corollary 3). Let $L$ be a
topolOgjcally trivial holomorphjc line bundle over a toroidal group X. Then
$H^{0}(X, O(L))\neq\{0\}$ if and only if $L$ is analytically trivial.

\S 4. Quasi-abelian varieties.

The following definition is due to Gherardelli and Andreotti [4].

DEFINITION. A toroidal group $X=C^{n}/\Gamma$ is said to be a quasi-abelian variety,
if there exists a hermitian form $\mathcal{H}$ on $C^{n}\cross C^{n}$ satisfying the following condi-
tions:

(a) $\mathcal{A}$ $:={\rm Im} \mathcal{H}$ is Z-valued on $\Gamma\cross\Gamma$.
(b) $\mathcal{H}$ is positive definite on $C_{\Gamma}^{m}\cross C_{\Gamma}^{m}$ .

A quasi-abelian variety $X=C^{n}/\Gamma$ is said to be of kind $p$ , if there exists a her-
mitian form $\mathcal{H}$ on $C^{n}\cross C^{n}$ with the conditions (a) and (b) such that $\mathcal{A}|_{R_{\Gamma}^{n+m}}$

has rank $2m+2p,$ $0\leqq 2p\leqq n-m$ .

PROPOSITION 4.1 (Gherardelli and Andreotti [4], Theorem 1). Every quast-

abelian variety is a covering space on an abelian vanety.

PROPOSITION 4.2 (Gherardelli and Andreotti [4], Theorem 2). Let $X=C^{n}/\Gamma$

be a quast-abelian vanety of kind $p$ . Then $X$ is a fibre bundle over an $(m+P)-$

dimensional abelian $va?\tau ety$ with fibres $C^{p}\cross(C^{*})^{n-m-2p}$ .
By the embedding theorem of Kodaira and the above proposition, every

quasi-abelian variety is quasi-projective. For a quasi-abelian variety of kind $0$

Nakano and Rhai proved the embedding theorem directly in [15].

PROPOSITION 4.3. Let $X=C^{n}/\Gamma$ be a toroidal group. If $X$ has a $po$sitive
line bundle, then it is meromorphically separable.
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PROOF. It is well known that $X$ has a $C^{\infty}$ plurisubharmonic exhaustion
function (cf. [9]). Since the canonical bundle of $X$ is trivial, we get the con-
clusion by the standard argument about weakly l-complete manifolds (cf. [14]).

PROPOSITION 4.4. Let

$\alpha(\gamma;z, w)=\exp(a(\gamma, w))\rho(\gamma;z, w)$

be a factor of auiomorphy for $\Gamma$ on $C^{n}$ , where $a$ is a summand of auiomorphy
and $\rho$ is a theta factor of type $(\mathcal{H}, \psi, Q, X)$ . Let $f$ be a holomorphic function
on $C^{n}$ with

$f((z, w)+\gamma)=\alpha(\gamma;z, w)f(z, w)$

for all $\gamma\in\Gamma$ and $(z, w)\in C^{n}$ . If $f\not\equiv O$ , then $\mathcal{H}$ is $po\alpha tive$ semi-definite on
$C_{\Gamma}^{m}\cross C_{\Gamma}^{m}$ .

PROOF. Without loss of generality, we may assume that $\rho$ is of type
$(\mathcal{H}, \psi, 0,0)$ . Since $\exp(a(\gamma, w))$ gives a topologically trivial holomorphic line
bundle, there exists a real-valued $C^{\infty}$ function $\varphi$ on $C^{n}$ which is pluriharmonic
with respect to the z-variable by Remark 2 in [3] and Proposition 3.1, so that

$\varphi((z, w)+\gamma)-\varphi(z, w)={\rm Re} a(\gamma, w)$

for all $\gamma\in\Gamma$ and $(z, w)\in C^{n}$ . There exists a $C^{\infty}$ function $h$ on $C^{n}$ which is
holomorphic with respect to the z-variable such that ${\rm Re} h=\varphi$ . We set

$F(z, w):=|f(z, w)$ exp $(-h(z, w))|^{2}e[ \frac{\sqrt{-1}}{2}\mathcal{H}((z, w),$ $(z, w))]$ ,

where $e(*)=\exp(2\pi\sqrt{-1}*)$ . We see by a straight calculation that $F$ is $\Gamma$-periodic.
Hence there exists a constant $C$ such that

$|f(z, w)\exp(-h(z, w))|^{2}\leqq C$ exp $\{\pi \mathcal{H}((z, w), (z, w))\}$ on $R_{\Gamma}^{n+m}$ .
Since $f\not\equiv O$ , there exists $a=(a_{1}, a_{2})\in C^{n}$ such that $f(a)\neq 0$ . Let

$f_{a}(z, w):=f((z, w)+a)$ .
Then we have

$f_{a}((z, w)+\gamma)=\exp(a(\gamma, w+a_{2}))\rho_{1}(\gamma;z, w)f_{a}(z, w)$ ,

where $\rho_{1}$ is a theta factor of type $(\mathcal{H}, \psi_{1},0, \mathcal{L}_{1})$ with

$\psi_{1}(\gamma)=\psi(\gamma)e[-{\rm Im} \mathcal{H}(a, \gamma)]$ , $X_{1}(z, w)= \frac{1}{2\sqrt{-1}}\mathcal{H}(a, (z, w))$ .

Take a trivial theta function $\theta_{0}$ of type $(0,1,0, -X_{1})$ . Let $f_{a}$ $:=f_{a}\theta_{0}$ and let
$\varphi_{a}(z, w):=\varphi(z, w+a_{2})$ . Then we have

$\varphi_{a}((z, w)+\gamma)-\varphi_{a}(z, w)={\rm Re} a(\gamma, w+a_{2})$ ,
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$\tilde{f}_{a}((z, w)+\gamma)=\exp(a(\gamma, w+a_{2}))\tilde{\rho}_{1}(\gamma;z, w)\tilde{f}_{a}(z, w)$ ,

where $\tilde{\rho}_{1}$ is a theta factor of type $(\mathcal{H}, \psi_{1},0,0)$ . Let $h_{a}(z, w):=h(z, w+a_{2})$ .
Then, by the same reason as above, there exists a constant $C’$ such that

$|\tilde{f}_{a}(z, w)\exp(-h_{a}(z, w))|^{2}\leqq C’$ exp $\{\pi \mathcal{H}((z, w), (z, w))\}$ on $R_{\Gamma}^{n+m}$ .
Assume that there exists $z_{0}\in C_{\Gamma}^{m}$ with $\mathcal{H}(z_{0}, z_{0})<0$ . For all $\lambda\in C$ it holds that

$|\tilde{f}_{a}(\lambda z_{0})\exp(-h_{a}(\lambda z_{0}))|^{2}\leqq C’\exp\{\pi|\lambda|^{2}\mathcal{H}(z_{0}, z_{0})\}$ .
Since $f_{a}$ exp $(-h_{a})$ is holomorphic on $C_{\Gamma}^{m}$ , we have $\tilde{f}_{a}(0)=0$ . This contradicts
the assumption $f(a)\neq 0$ .

We stated the following proposition without proof in the last section of [3].

Here we give its detailed proof.

PROPOSITION 4.5. Let $X=C^{n}/\Gamma$ be a toroidal grouP. If $X$ is meromor-
phically separable, then it is a quast-abelian variety.

PROOF. Let $\Theta$ be the set of all theta factors $\rho$ of type $(\mathcal{H}_{\rho}, \psi_{\rho}, Q_{\rho}, X_{\rho})$

with $\mathcal{H}_{\rho}\geqq 0$ on $C_{\Gamma}^{m}\cross C_{\Gamma}^{m}$ . We dePne

$K:= \bigcap_{\rho\in\Theta}Ker(\mathcal{H}_{\rho})$ .

It sufficies to show that $K=\{0\}$ . Let $\pi;C^{n}arrow X$ be the projection. Assume that
$\dim_{C}K>0$ . Then there exist $z^{1},$ $z^{2}\in K$ such that $\pi(z^{1})\neq\pi(z^{2})$ . Since $X$ is mero-
morphically separable, there exists a meromorphic function $f$ on $X$ such that
$f(\pi(z^{1}))\neq f(\pi(z^{2}))$ . The zero-divisor of $f$ and the pole-divisor of $f$ give the
same line bundle $L$ . Let $\alpha(\gamma;z, w)$ be a factor of automorphy which gives $L$ .
Then there exist holomorphic functions $g_{1}$ and $g_{2}$ on $C^{n}$ with

$g_{i}((z, w)+\gamma)=\alpha(\gamma;z, w)g_{i}(z, w)$ , $i=1,2$ ,

for all $\gamma\in\Gamma$ and $(z, w)\in C^{n}$ such that

$f \circ\pi=\frac{g_{2}}{g_{1}}$ .
We may assume that $\alpha=e^{a}\rho$ , where $a$ is a summand of automorphy and $\rho$ is a
theta factor of type $(\mathcal{H}_{\rho}, \psi_{\rho}, Q_{\rho}, X_{\rho})$ . By Theorem 3.2 there exists a $C^{\infty}$ func-
tion $h$ on $C^{n}$ which is holomorphic with respect to the z-variable such that $g_{i}e^{h}$

is constant on Ker $(\mathcal{H}_{p})$ for $i=1,2$ . Therefore

$f \circ\pi=\frac{g_{2}}{g_{1}}=\frac{g_{2}e^{h}}{g_{1}e^{h}}$

is constant on Ker $(\mathcal{H}_{\rho})$ . Since $g_{1}\not\equiv 0$ and $g_{2}\not\equiv 0,$
$\mathcal{H}_{\rho}$ is positive semi-dePnite on

$C_{\Gamma}^{m}\cross C_{\Gamma}^{m}$ by Proposition 4.4. Then $f\circ\pi$ is constant on $K$. This is a contra-
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diction.

Then we get the following theorem whicb was obtained in [1] under the
condition dim $H^{1}(X, O_{X})<\infty$ .

THEOREM 4.6. Let $X=C^{n}/\Gamma$ be a toroidal group with rank $\Gamma=n+m$ . Then
the following statements are equivalent:

(1) $X$ has a positive line bundle.
(2) $X$ is meromorphucally separable.
(3) $X$ is a quasi-abelian vanety.
(4) $X$ is a covenng space on an abelian variety.
(5) There exists a fibration of $X$ over an $(m+p)$-dimensional abelian variety

wzth fibres $C^{p}\cross(C^{*})^{n-m-2p}$ , where $p$ is a natural number depending on $X(0\leqq 2p$

$\leqq n-m)$ .
(6) $X$ is quasi-projectjve.

\S 5. Meromorphic reduction fibrations.

In [5], Grauert and Remmert proved the meromorphic reduction theorem
for compact homogeneous complex manifolds. It was extended to complex-
homogeneous manifolds by Huckleberry and Snow [8]. The following theorem
is the meromorphic reduction theorem for toroidal groups.

THEOREM 5.1. Let $X=C^{n}/\Gamma$ be a torozdal group. Then there exists a holo-
$morpl\iota ic$ fibration $\rho:Xarrow X_{1}$ over a quast-abelian vanety $X_{1}$ with fibres connected
commutative complex Lie groups, which has the followzng prOpertjes:

(1) $\rho$ is a homomorphjsm between tormdal groups.
(2) $\mathcal{M}(X)\cong \mathcal{M}(X_{1})$ , where $\mathcal{M}(X)$ and $\mathcal{M}(X_{1})$ are meromorphic function fields

on $X$ and $X_{1}$ respectively.
(3) If $\tau:Xarrow Y$ is a homomorphism into a quasi-abelian variety $Y$, then there

exists a unique homomorphism $\sigma:X_{1}arrow Y$ such that $\tau=\sigma\circ\rho$ . This means that such
a quast-abelian vanety $X_{1}$ exists uniquely.

PROOF. We may assume that $X$ is not a quasi-abelian variety. Let $K$ be
a complex linear subspace of $C_{\Gamma}^{m}$ as in the proof of Proposition 4.5. Then
$K\neq\{0\}$ and

$\overline{K+\Gamma}\subset R_{\Gamma}^{n+m}=C_{\Gamma}^{m}\oplus V$ .
There exists a real linear subspace $E$ and a lattice $\Gamma_{0}$ in $R_{\Gamma}^{n+m}$ such that
$\overline{K+\Gamma}=E\oplus\Gamma_{0}$ . Let $E_{0}:=E\cap C_{\Gamma}^{m}$ and let $E_{1}$ $:=E\cap V$ . Then we have that $E=$

$E_{0}\oplus E_{1}$ and $\sqrt{-1}E_{1}\cap R_{\Gamma}^{n+m}=\{0\}$ . We define a complex linear subspace $W:=$

$E\oplus\sqrt{-1}E_{1}$ . Then
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$W+\Gamma_{0}=W\oplus\Gamma_{0}\supset\overline{K+\Gamma}$ .
Let $\mu:C^{n}arrow C^{n}/W$ be the canonical projection. Let $\Gamma^{*}:=\mu(\Gamma_{0})$ . Then $\Gamma^{*}$ is a
lattice in $C^{n}/W$ and $\Gamma^{*}\cong\Gamma_{0}$ . We see easily that $\Gamma^{*}=\mu(\Gamma)$ . Let dim$cW=n-k$ .
We may assume that $C^{n}=C^{k}\cross C^{n-h},$ $C^{k}\cong C^{n}/W,$ $C^{n-k}\cong W$ . We regard $\Gamma^{*}$ as
a lattice in $C^{n-k}$ . Let $P$ be a period matrix of $\Gamma$. Then $P$ is equivalent to
the following period matrix

$(\begin{array}{ll}P^{*} 0A B\end{array})$ ,

where $P^{*}$ is a period matrix of $\Gamma*andB$ is an $(n-k, 1)$-matrix, $l=rank\Gamma-$

rank $r*$ . Since column vectors of $B$ are linearly independent over $R,$ $l\leqq 2(n-k)$ .
Hence $B$ gives a lattice $\Gamma_{B}$ in $C^{n-k}$ . By the projection $\mu:C^{n}arrow C^{k}$ , we get a
fibre bundle $\tilde{\mu}:X=C^{n}/\Gammaarrow X_{1}=C^{k}/\Gamma^{*}$ with fibres $C^{n-k}/\Gamma_{B}$ . By the proof of
Proposition 4.5 every meromorphic function on $C^{n}$ with period $\Gamma$ is constant
on $W\oplus\Gamma_{0}$ . Then $\tilde{\mu}^{*}:$ $\mathcal{M}(X_{1})arrow \mathcal{M}(X)$ is an isomorphism. Since $X$ is a toroidal
group, $X_{1}$ is also a toroidal group.

Repeating this procedure when $X_{1}$ is not quasi-abelian, we obtain a fibration
of $X$ over a quasi-abelian variety with properties (1) and (2). The property (3)

is proved by the standard argument (see [5]) because a quasi-abelian variety
is meromorphically separable (Theorem 4.6).

Combining with a result of Pothering [16] and Hefez [6], we obtain the
following corollary.

COROLLARY 5.2. Let $X=C^{n}/\Gamma$ be a non-comPact toroidal grouP. If
dim $\mathcal{M}(X)\geqq n$ , then dim $\mathcal{M}(X)=\infty$ , where dim $\mathcal{M}(X)$ is the transcendental degree

of $\mathcal{M}(X)$ over $C$ .

REMARK. Let $X=C^{n}/\Gamma$ be a toroidal group with rank $\Gamma=2n-1$ . Then $X$

is a $c*$-principal bundle over an $(n-1)$-dimensional complex torus $T^{n-1}$ . By
the proof of Theorem 5.1 we see that $X_{1}$ is the abelian image of $T^{n-1}$ or a
$c*$-principal bundle over it, especially $X_{1}$ is O-dimensional when $T^{n-1}$ has the
trivial abelian image. Therefore, we can construct an example of non-compact
weakly l-complete manifold which has no non-constant meromorphic function.

References

[1] Y. Abe, (H, C) -groups with positive line bundles, Nagoya Math. J., 107 (1987),
1-11.

[2] Y. Abe, Elliptic differential operators with respect to a subbundle of the tangent
bundle, Math. Rep. Toyama Univ., 10 (1987) , 107-126.

[3] Y. Abe, Holomorphic sections of line bundles over (H, C) -groups, Manuscripta
Math., 60 (1988), 379-385.



708 Y. ABE

[4] F. Gherardelli and A. Andreotti, Some remarks on quasi-abelian manifolds, Global
analysis and its applications, Vol. II, Intern. Atomic Energy Agency, Vienna, 1974,
pp. 203-206.

[5] H. Grauert and R. Remmert, \"Uber kompakte homogene komplexe Mannigfaltigkeiten,
Arch. Math. (Basel), 13 (1962) , 498-507.

[6] A. Hefez, On periodic meromorphic functions on $C^{n}$ , Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur. (8), 64 (1978), 255-259.

[7] A. T. Huckleberry and G. A. Margulis, Invariant analytic hypersurfaces, Invent.
Math., 71 (1983), 235-240.

[8] A. T. Huckleberry and D. Snow, Pseudoconcave homogeneous manifolds, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 29-54.

[9] H. Kazama, On pseudoconvexity of complex abelian Lie groups, J. Math. Soc.
Japan, 25 (1973), 329-333.

[10] H. Kazama, $\overline{\partial}$ cohomology of (H, C) -groups, Publ. R. I. M. S., Kyoto Univ., 20
(1984), 297-317.

[11] K. Kopfermann, Maximal Untergruppen Abelscher komplexer Liescher Gruppen,
Schr. Math. Inst. Univ. M\"unster, 29 (1964).

[12] A. Morimoto, Non-compact complex Lie groups without non-constant holomorphic
functions, Proc. of the Conf. on Complex Analysis at Univ. of Minn., Springer,
1965, pp. 256-272.

[13] J. Morrow and K. Kodaira, Complex manifolds, Rinehart, New York, 1971.
[14] S. Nakano, Several complex variables (in Japanese), Asakura Shoten, Tokyo, 1982.
[15] S. Nakano and T.-S. Rhai, An attempt towards the global projective embedding of

pseudoconvex manifolds, Chinese J. Math., 7 (1979), 47-54.
[16] G. Pothering, Meromorphic function fields of non-compact $C^{n}/\Gamma$ , Thesis, Univ. of

Notre Dame, 1977.
[17] Ch. Vogt, Line bundles on toroidal groups, J. Reine Angew. Math., 335 (1982),

197-215.
[18] Ch. Vogt, Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983),

217-232.
Yukitaka ABE
Department of Mathematics
Faculty of Science
Toyama University
Gofuku, Toyama 930
Japan


	\S 0. Introduction.
	\S 1. Preliminaries.
	\S 2. $d_{z}$ -exact $(1, ...
	\S 3. Topologically trivial ...
	THEOREM 3.2. ...

	\S 4. Quasi-abelian varieties.
	THEOREM 4.6. ...

	\S 5. Meromorphic reduction ...
	THEOREM 5.1. ...

	References

