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Introduction.

Let X be a Kummer surface obtained by the minimal resolution of the
quotient surface of the product abelian surface E XF by the inversion auto-
morphism, where E and F are arbitrarily fixed complex elliptic curves which
are not mutually isogenous. As is well-known, X is an algebraic K3 surface.

This paper is concerned with Jacobian fiber space structures on X, i.e.,
elliptic fiber space structures with a section on X, or in other words, structures
as an elliptic curve over C(P'). By 4x we denote the set of all Jacobian
fibrations of X.

Let us recall that any elliptic fibration of X is given by the morphism
D 6,: X—P* defined by the complete linear system |@| which contains a divisor
having the same type as a non-multiple singular fiber of an elliptic surface.
By definition, an irreducible curve C is a section of @, if and only if C
satisfies C-@=1. We note that every section of @, is a nodal curve, i.e., a
non-singular rational curve whose self-intersection number is —2. The group
Aut(X) acts on Fx in an obvious manner; f: @, —®@ s for fAut(X).

By Sterk [12], the orbit space Jx/Aut(X) is finite, i.e., the number of
non-isomorphic Jacobian fibrations of X is finite.

The purpose of this paper is to describe all Jacobian fibrations of X modulo
isomorphism, or saying more clearly, to find a minimal complete set of repre-
sentatives of the orbit space 4x/Aut(X).

As a first consequence of this paper, we see that 4y is divided into eleven
Aut(X)-stable subsets 4,, ---, §1;. by types of the singular fibers, and the
Mordell-Weil group of its member is calculated for each 4,(m=1, ---, 11) as
follows (Table A, (2.1) in §2). Here, for example, by 2[;+8I, we
mean two singular fibers of type I; (Kodaira’s notation) and eight singular fibers
of type I,.

We note that there exist infinitely many nodal curves on X since X has a
Jacobian fibration whose Mordell-Weil group is an infinite group by Table A.
From this fact we can construct infinitely many Jacobian fibrations of X.
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Table A.
F1 - & Fs Fa Fs
Type of the 2I5+81; Li+41524-81 2IV*+al,+bll 41 [¥+61,
singular fibers a-+2b=8
M(;I;(;l)il;’-weil Z¥DZ)2Z | Z¥DZ/2Z Z4 (Z/2Z)? (Z/2Z)?
rs &+ Fs Fs S0 |
23441, | Ir4-20F+2L HI*4-1x+43L+1; I1* 421 +al, + 511 I¥+1¥+al,+ 010
or IM*+I¥+4 21,4111 a+2b=2 a+2b=4
(Z/2Z)2 Z)2Z Z/2Z {id} {id}
Fu
21 +al; 4511
a+4-2b=4
{id}

Let us note that X is isomorphic to one of the following:
(i) Km(E/=XEciev=nr2), (ii) Km(EpXE(-1+¢:§)/2),
(i) Km(E,5XE,), (iv) Km(E,XE,),

where E; is the elliptic curve whose period is £ in the period domain H/SL,(Z)
and p and p’ are elements of H/SL,(Z) which are neither +/—1 nor (—1++/=3)/2.

As a second consequence of this paper, we calculate the number of non-
isomorphic Jacobian fibrations of X as follows.

Table B.

Type F1 S Fs F1 Fs5 Fo F1 Fs Fos Fr0o Fu| Total

(i) 21 1 2 1 2 2 1 1 1 2 16
(ii) 3 2 1 2 1 3 2 1 2 3 23
(iii) 6 3 1 2 1 6 6 3 1 3 6 38
(iv) 9 6 1 2 1 9 9 6 1 6 9 59

Outline of proof is as follows.

Via the natural rational map n: EXF-->X, we have 24 nodal curves on
X, i.e., four branched nodal curves E; (=1, ---, 4) which come from E, four
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branched nodal curves F; (=1, ---, 4) which come from F, and 16 exceptional
nodal curves Cy;.
First we prove the following Table C concerning the intersection numbers

of nodal curves on X (Lemma (1.6) and (1.7) in §1) by studying a certain
involution on X which was first introduced by Nikulin [4].

Table C.
E; j=1,---,4) F; (i=1,-,4) other nodal curves

Ej Ej'EL=—25jL E]"Fi:O ‘there is unique j such that
D-E;j=1 and D-E;=0 (I+j)

F; ‘ Fi Fp=—25;4 there is unique 7 such that
D-F;=1 and D-F,=0 (k+1)

other nodal —_

curves D-D’=0 (mod 2)

By using Table C, we examine singular fibers and sections of Jacobian fibrations
of X and we get Table A.

A divisor \U;(E;UF)\UULs, ;Ci; on X is called the natural double Kummer
pencil divisor, and a divisor on X which has the same configuration as the
natural double Kummer pencil divisor is called a double Kummer pencil divisor.
Let us put Auty(X):={f€Aut(X); f*| g2 0x,=id}.

Next we prove the following Lemma 1| (Lemmal (1.8) and (1.13)
in §1) by using Torelli for complex tori of dimension 2.

LEMMA 1. The group Auty(X) acts transitively on the set of all double
Kummer pencil divisors on X.

Using Table A and Lemma 1, we prove the following

LEMMA 2. Let ¢ be a Jacobian fibration of X. Then there exist a singular
fiber @ of ¢ and g=Auty(X) such that Supp g(0) is contained in the natural
double Kummer pencil divisor except for at most one component of g(O).

By using and by constructing certain automorphisms of X, we
determine a minimal complete set of representatives of the orbit space
In/Auty(X) (m=1, ---, 11). Finally by studying the quotient group Aut(X)/
Auty(X) and the action of Aut(X)/Auty(X) on S./Auty(X), we determine a
minimal complete set of representatives of the orbit space 4,/Aut(X) (m=1, -+,
11). As a corollary, we get Table B.

The contents of this paper are as follows.

In §0, we fix some notation and recall some basic facts about Kummer
surfaces and elliptic K3 surfaces. Main references of this section are Morrison
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and Shioda and Inose [8].

In §1, we prove Table C and Lemma 1. We also study the quotient group
Aut(X)/Auty(X). In the course of proof, the condition that E and F are not
mutually isogenous is essential. As for §1, the author was very much inspired
by works of Nikulin and Shioda and Mitani [7].

In §2, we classify all Jacobian fibrations of X according to the types of
the singular fibers.

In §3 and 4, we determine a minimal complete set of representatives of the
orbit space 4,/Aut(X) (m=1, ---,11).

1 would like to thank Prof. T. Terasoma for many valuable conversation
and suggestion and also thank Prof. T. Shioda and Prof. Y. Kawamata for
their advice and encouragement.

§0. Preliminaries.

Throughout this paper, we assume that the ground field is the complex
number field C. For a divisor we use a capital letter, and for its cohomology
class the corresponding small letter, e.g., d=c¢,(©(D)). When a group G acts
on a set S, by a minimal complete set (resp. a non-minimal complete set) of
representatives of the orbit space S/G, we mean a subset of S which meets
each orbit of S by G at exactly one (resp. at least one) point.

1. Kummer surfaces. Let A be an abelian surface. The Kummer surface
Km(A) is the algebraic K3 surface obtained by the minimal resolution of the
quotient surface A/{—id,>. Then we have the natural rational map n,: A-->
Km A whose fundamental points are the 2-torsion points of A, say r, (k=1, ---,
16), and we let C, denote the 16 nodal curves (i.e., nonsingular rational curves
with self intersection number —2) on Km(A) corresponding to r,. Via the
morphism w4 A—\U.{r:}, we get a natural homomorphism 7z 4.: H%*A, Z)—
(B Zcy)*cH¥ Km(A), Z). The map =4« satisfies the following properties:

T axX T sy = 2%+,

74« preserves the Hodge decompositions, and

T4+ 1S an isomorphism onto (P.Zc)* .

Especially, the induced map 7 : T 4—Tkmcsy 1S an isomorphism which preserves
Hodge decomposition. Here, for an algebraic surface Y such that H%Y, Z) is
torsion free, we put:

Sy := the Neron Severi group of Y (the algebraic lattice),

Ty := St in H¥Y, Z) (the transcendental lattice).

For more detail, we refer the reader to Morrison [1I], Shioda and Inose [8],
and Pjateckii-Sapiro and Safarevié [13].
Let X be the Kummer surface Km(FE X F) where E and F are elliptic curves
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which are not mutually isogenous. The last condition on E and F is equivalent
to the condition that the Picard number of Km(EXF) is 18. Throughout this
paper we fix E, F and X arbitrarily.

We use the following notation.

T = mwgp. EXF-->X (the natural rational map)

oy (resp. wgyr) := a nowhere vanishing holomorphic 2-form on X (resp. EXF).
(These are determined up to non-zero scalar multiples, and satisfy #xCwg,r=
Cwyx.) A

{P;i}iz1,...s (resp. {Q;}) := the set of the 2-torsion points on E (resp. F).

Ri; :=(P, Qj), 7, j=1, -+, 4. (These are the 2-torsion points on EXF.)

C;; := the nodal curve on X corresponding to R;;.

E; :=xn(EXQ;, F;:=n(P;XF). (These are nodal curves on X.)

B = Q(Equi).

We call a nodal curve which is in B a special nodal curve, and a nodal
curve which is not in B an ordinary nodal curve.

Koar := BU(JC:j;) (the natural double Kummer pencil divisor).
1,7

E :=rn(EXP), F:=r(QXF), for fixed P=PF;, Q+Q;.
By definition, E;, F;, Cj, E, F intersect as follows.

E, —
Cu /%‘;//C‘;JE’

E, —
3 C,,/ZC:/%(_ 76:/

33

E__

C;z 4 32/

e v v

Cu /1 Cu A CaACau
E )

F, F, F, F. F )

YT

i.e.,

Cij Crr= —20:10;1, E*=F*=0, E; E, = —20;, E.F=2,
F,-F, = —20;;, E-E,=F-F,=0, CirE,=10;,

E-F,=F-E, =1, Cij*Fr = 0is, E-Cij=F-Ci;=0
(d0;;=Kronecker’s symbol).

0.1)

We call a divisor consisting of 24 nodal curves which has the same type as

K... a double Kummer pencil divisor.
As for H¥X, Z), H¥(EXF, Z), we get the following:
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01
0.2) (1) HYEXF, Z)=Ss.®Tsr, Ser=(] o)
0010
0 001
Ter=l1 ¢ 0 o)
0100
2) e, f, cij} is a basis of SxRQ,

3) e,-':——;—(e-—écij), fi:%(f_gcij) in Sy.

2. Elliptic K3 surfaces. Let Y be a K3 surface. We denote by 4y the
set of all Jacobian fibrations of Y, i.e., elliptic fibrations of ¥ with a global
section. As is well-known, any elliptic fibration of Y is given by the morphism
®,6,: Y- P! defined by the complete linear system |@| which contains a divisor
of the same type as a non-multiple singular fiber of an elliptic surface. (See
Table 1.) By definition, an irreducible curve C is a section of @6, if and only
if C satisfies C-@=1. We note that every section of @9, is a nodal curve.
The biholomorphic automorphism group of Y, Aut(Y), acts on 4y in an obvious
manner; f: @,9—P s for feAut(X).

Let C; (=1, 2) be (not necessarily distinct) sections of ¢=4y. Then there
exists a unique symplectic automorphism f of Y (i.e., an automorphism whose
action on H*%Y)=Cwy is trivial) such that f(C,)=C, and ¢°f=¢. On each
non-singular fiber of ¢, f acts as a translation. On a singular fiber, f acts
by the rule in Table 1 (cf. Kodaira [10], p. 604). We call such f a translation
automorphism of ¢. We denote by M,(Y) a subgroup of Aut(Y) consisting of
all translation automorphisms of ¢. M,(Y) is naturally identified with the
Mordell-Weil group of Y considered as an elliptic curve over C(P?) via ¢.

LEMMA (0.3) (Shioda [6], p. 23 or Shioda and Inose [8], p.120). Let ¢ be
a Jacobian fibration of a K3 surface Y. Let O; (=1, ---, k) be all the singular
fibers of ¢. Then,

(1) 24 = xtop(Y) == ;xtop(@i):

(2) Sy is generated by the classes of all irreducible components of ©; (i=1, ---,
k) and all sections of ¢. Hence, if one of Oy is neither of type 1, nor of type
O, then Sy is generated by some classes of nodal curves.

(3) The Mordell-Weil group M,Y) is a finitely generated abelian group,
which satisfies the equality,

rank M,(Y') = rank Sy—2—>3(m(6;)—1),

where m(©;) denotes the number of irreducible components of 0.
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Table 1. Non-multiple singular fibers of an elliptic surface.
the number fthe number|p G
Symbol| Structure (dual graph) |[of of simple [~W€r roup
Y ( graph) components COmpOxrl)ents number | structure
a non-singular 1 ..
Iy elliptic curve 1 0 elliptic curve
a rational curve
with one
I ordinary double <©<> 1 1 1 Cx
point
1 1
I, O=—=0 2 2 2 C*xZ/2Z
a rational curve
II with one < 1 1 2 c
ordinary cusp
1 1
I o) <j > 2 2 3 |CxZ/2Z
\Y < > 3 3 4 |CxZ/3Z
I 1
b
b b b |C*xZ/bZ
b=3 4\0 }b z/
1 1 1
Ip* : 2 2 2 :
2 p=
b :>}_°__{< b5 4 big |CX(2/22)° b=0(2)
b=0 — CxZ/4Z b=1(2)
1 b+1 1
1 2 3 4 5 6 4 2
. 9 1 10 |C
3
1 2 3 4 3 2 1
1I* 8 2 9 CxZ/2Z
2
1
2
IV* o~ 2 1 7 3 8 |Cxz/3z
1

By a simple component, we mean a non-multiple irreducible component.




658 K. Ocuiso

§1. Some properties on X.

First, we remark that the following natural exact sequence holds. Here for a
subset ZCY, we put Aut(Y ; Z):={f<Aut(Y); f(Z)=Z}.

(LD 1—><(—idppy —> Aut(EXF; \U{Ry;}) —> Aut(X; UCyp) —> 1.

For feAut(EXF;\J{R}), by f, we denote a corresponding element of
Aut(X;\UC:y). If fywg.r=awg.r, We have fioy=awy.

-1 0

(1.2) For 9:( o 1

)eAut(EXF;U{Rij}), we put 6=0.

We note that 8 is an involution on X.

(2) XY (:=the set of fixed points of )= B.

ProOF. (1) is obvious by [0.2) By definition, we have,
(X—\UC:)! = n({x€EXF—-\JC;;; Ox=x, or —x})= B—\JCj;.
On the other hand, since fswy=—wyx, X? is a smooth closed submanifold of
X. Then we have X?=B. O
LEMMA (1.4). Aut(X)= Aut(X; B), i.e., f(B)= B forany feAut(X).

ProoF. (Following Nikulin [4], p. 1424.) By (1.3) and by the fact that
Sx@Tx is of finite index in H*X, Z), we have (f0)s=(0f)x on H¥ X, Z).
Then by Torelli for K3 surfaces, we have fd=6f. Combining this
with (1.3)(2), we get f(B)=B. O

Before proceeding, we remark the following.

(1.5) For nodal curves D; (=1, 2) on X and for f<Aut(X), we have f(D,)=D,
if and only if f«(d\)=d, where d;=c,(0x(D;)). (Note that h%O©x(D,)=1.)

LEMMA (1.6). Let D; (f=1,2) be ordinary nodal curves on X. Then
D,-D,=0 (mod2).

Proor. If D,=D,, then we have D,-D,=—2. Assume that D,#D,. By
definition, we have

D,-D, = 2 mult (Dy, Dy)+ > mult p (D1, Ds).

PeDiNDy-B PocDiND2NB

By (1.3), (1.5), we have 6(D;)=D; (I=1, 2) and @ acts on each D; as an invo-
lution. Then the first sum above is even since mult z(D,, Dy)=mult ¢z (D;, D,)
and §(P)+P if PeD,ND,—B. So, to prove (1.7) it is sufficient to show that
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mult p (D, D,) is even for each P,&D;ND,N\B. Assume that mult pi(D;, Dg)=
2k4+1 (=0, 1, 2, ---) for some P,eD;"\D,N\B. By repeating blowing up, we
get,

sz _— sz-]'—'— """ —> Xz > Xl > X0=X.
blowing up blowing up blowing up
at Py at P, at P,

(Here &;:=P(Tp,_,(X)) is the exceptional curve. For proper transforms of D,
and D,, we use the same letters on each X;.) On X,, we have multp,,(D;, D,)
=1 by construction. On the other hand, by the property of blowing up, 6 also
acts on each X; and preserves ¢;, Dy, D,, and P;. By construction, we see
easily that on X,;, 6|D, and 6|D, are involutions and @|.,, is an identity.
Then on X,,, we get Tp, (D)=Tp,,(D.) and multp,, (D, D;)=2. This is
contradiction. O

LEMMA (1.7). Let D be an ordinary nodal curve on X. Then, there exist
two special nodal curves E; and F; such that D-E;=D-F;=1. Moreover D does
not meet the other six special nodal curves.

PROOF. Since € acts on D=P* as an involution, D and B meet at exactly
two points transversely. (cf. Nikulin [4], p. 1434). So to prove (1.7), it is
sufficient to show that the following 4 cases do not occur: (1) D-E;=2 (for
some 7), (2) D-E;=D-E;=1 (for some i#7), (3) D-F;=2 (for some 7), (4) D-F;
=D-F;=1 (for some ;#j). For example, assume that (2) does occur. For
simplicity of notation, we also assume /=1, j=2. In Sy we put,

d == ae“l“bf"l" izjxijcij; (ay b; xijeQ)' (See )

Since we have —2x;;=D-C;;=0 (mod2) by (1.6), we get x;;Z. By (0.1) and
we get
1 Gf j=1
sy ={b G =LD

0 (f j=3,4 TP =0 G=Lon .

Then, we get b—a=1/2. On the other hand, since we have x;;€Z, we get
b—acZ. Therefore (2) does not occur. Other cases also do not occur by a
similar reason. O
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LEMMA (1.8). Let D, (k=1, ---, 16) be disjoint nodal curves on X. Then there
exists fEeAut(X) such that f(\JrDwr)=\Us,;Ci;. Hence, combining this with (1.4),
we get f(UJrDp\UB)=K, ... Especially, Kp=\_,D\UB is a double Kummer pencil
divisor.

Proor. By Nikulin [1], p. 262, we have X}%,d,=2-Sy and hence there
exist an abelian surface A and a rational map = 4: A---X whose exceptional
curves are D, (k=1, ---, 16). Hence via 7 and w4, we have a Hodge isometry

¢r: T4>Tger. Then, by applying the theorem by Nikulin [3], p. 126, (or
Morrison [11], p. 112), ¢r is extended to a Hodge isometry ¢: H*(4, Z)

SHYEXF, Z). So we can apply the theorem of Shioda [6], p. 48 and we get
A=EXF. (Remark that Pic®EXF)=EXZF.) Therefore feAut(X) induced
from F: A= E X F which preserves the origins satisfies (1.8). O

Let M be either an abelian surface or a K3 surface. Since H*°(M)=Cwy,
we get the homomorphism aj : Aut(M)—C* characterized by firwy=ay(f)wy.
Putting I'y:=Im(ay) and Auty(M):=Ker(ay) (the symplectic automorphism
group of M), we have the following exact sequence.

[44
(1.9) 1 —> Auty(M) —> Aut(M) —> Iy —> 1.

LEmMMA (1.10). Let D, (k=1, ---, 1) be ordinary nodal curves on X. Let us
put D:=Dy+ - +D,. If D-E;=D-F;=0 (mod2) (¢, j=1, ---, 4) then fx(d)+d
€2-Sx for any feAuty(X).

PROOF. For feAuty(X), we have fi|T y=id. (Because we have fu«(x)-wy
=fu(x) fxlwx)=x-wx for x&Tx and then we get f(x)—x&SxyNT x={0}.)
Especially the induced map of fi« on T%/Ty is identity. Here, for a non-
degenerate lattice L, we set L*:={x=LQQ; x-LeZ}=HomyzL, Z). Then
we see that the induced map of fi on S%/Sy is also identity by an easy lattice
theoretic consideration. Hence we have fi(x)—x=Sy for all x=S%. Let us
consider d/2. Then (d/2)-C is an integer for every nodal curves on X by the
assumption on D and (1.6). On the other hand, by considering a Jacobian
fibration @z, we see that Sy is generated by some classes of nodal curves on
X. (See (0.3) (2).) Hence we have d/2<S%. Therefore we have f.(d/2)—d/2
&Sy and fi(d)+d<2-Sy. O

LEMMA (1.11). Aut(X)=Auty(X)XE)> (semi-direct product), where & is the
element of Aut(X;\ Ui, ;Ciy) induced from the following €= Aut(EXF;\ s ;{Ri;})
by (1.1).
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EXF | EymiXE, | EgXEy | Ey=iXE, | EpXE,,

V=1 0 10 V=1 1 -1 0
¢ 1M W) 6w Co DG D)
(By E; we denote the elliptic curve whose period is § in H/SLy(Z) where H is the

upper half plane. And w=(—14++/—3)/2, p, p'#+v—1, w in H/SLyZ). Since
E and F are not mutually isogenous, these cover all the cases.)

Proor. By it is sufficient to show that
axl<es: <§> — I'y.

Since E and F are not isogenous, we easily show that

Apxrl<es: <& = I'gip.

So it is sufficient to show that if ac 'y, then acl'z.r. Let f be an auto-
morphism of X such that fiwyr=awx. Put ¢=f«|Tx. Then g:=n3le@emy is
a Hodge isometry on Tz.r, and satisfies gwg.r=awe.r. So it is sufficient to
show that there exists g€ Aut(EXF) such that g«|Tx=¢. To show this we
use the following theorem by Shioda [6], p. 53.

THEOREM (1.12). Let A be a two dimensional complex torus. Let ¢ be a
Hodge isometry on H*(A, Z) such that det¢p=1. Then there exists g€ Aut(A)

satisfying either gx=d¢ or gx=—¢.
We put ¢=ids,,D@. Then ¢ is a Hodge isometry on H*EXF, Z) and
preserves effective classes on it. So if we can prove that det¢=l1, i.e.,

detg=1, we get g Aut(EXF) such that g4«|Tx=¢@. Assume that detg+1.

Then we have detg=—1 since ¢ is an isometry on Tg.r. Thus, putting
¢ ¢
¢'=((1) (l))eaq';, we see that ¢’ satisfies the condition of the above theorem.

Hence there exists g’€Aut(EXF) such that gi=¢’ or —¢’. But this does not
happen since E and F are not isogenous. Therefore we have det g=1. O

Combining (1.8) and (1.11), we get the following.

COROLLARY (1.13). There exists feAuty(X) such that f(Kp)=K,.. (Here
K, is same as in (1.8).)

Finally, we quote two theorems by Nikulin [1], as lemmas.

LEMMA (1.14). Let Y be a K3 surface. Let D, (k=1, ---,1) be disjoint
nodal curves on Y. If D:=X}_,D,<2-Sy, then [=0, 8 or 16. :

LEMMA (1.15). Let Y bea K3 surface. If feAuty(Y)is of finite order and
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not identity. Then the ovder of f and the number of the fixed points of [ are
as follows.

order of f i2!3,4|5|6|7{81
number of | ‘ i
fixed points | 8 | 6 | 4 | 4|2 |32
of f ]

§ 2. Classification of 4y via types of the singular fibers.

We use the following notation in §2, 3, and 4. By Gi, H; (=1, -, 4) we
denote the 8 special nodal curves such that either {G;}={E;} and {H;}={F;}
or {G;}={F;} and {H;}={E;} asaset. For fixed G;, H; (=1, ---, 4), we denote
by C% the nodal curve in {C,;} meeting both G; and H;. By {D%}, where
(Z, j) moves some subsets of {1, ---, 4} X {1, ---, 4}, we denote a collection of nodal
curves such that D% meets G; and H; and D% do not meet one another. By
R%, Q% etc., we denote a nodal curve which meets G; and H;.

In this section we prove the following theorem.

THEOREM (2.1). (1) The set 4x is divided into eleven Aut(X)-stable subsets,
&1, o, S by the types of the singular fibers.

(2) For each 4 sections, Mordell-Weil groups, and configurations of sections
and singular fibers of its members are described as in the following Table 2.

Table 2.
1 i -
type .al the singular fibers all the ‘vail;;ie“ configuration of singular fibers
(Flgures of type I; and II sections and sections
are omitted. group
21s+al,+b0, a+2b=8
G, Gs
See figure in the remark
I HXQHD HsQH‘ ZXDZ12Z| (513
Gz G4

I+ 1o+al,+b0, a+2b=8

G,
G
H, H,
s <> 20222 ,
e G Gs
H,
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s

2IV*+a 1,401, a+2b=8
H G, H G, H G

’

Z4

14
H; Gs
41%
G, G, H, H,
g >< :>< Hy Hy | oge >G<
y H,, H,
Gy G, & T 133.. ...]Z‘
><:, >‘< (=1,2,3,4)
1¥+61, 1. G, H G, H G
: G, H G H : o G ]gf-.> o—o—o—o—o *’<:€*
3 4
s H, H, | Z12)? 31, 31,
G, G. Gs G,
o Kol .0
O====0 Hy om0 H, H,io===0:"H,
(¢} ] » o]
H G
21%+41, oa_G; H, 08" |
: G, H ° : G, H, g 13:>°_°_‘<:€ @=1,2)
g , Gsy Gt 7/97)2
6 H. H (Z/22) 21 21
3 4 Cén 2 %:‘ (C;)s 2 Ggl
= H, io==0i""H, H, :om==0!H,
o ‘0!, o ‘o
H. H,
I¥+21%4+21, o>§_o_1.g_o_c<o
G. H, G, H,H | | Tl PR
4. > < Hiisa | 222 B oo H
G, G, 2-section. O J L POty )
:>"<, > >;<: (=3, 4)
H,
m*4- I ¥+31.4+1,
(0!' m*+ I ’{+2 I z+m) Ha Gl H, Gz Ht
Gx Hl G' Osee @O
o—o—o—i—o—o—o Ha,.H4 0
Is G, is a Z/2Z H o B 2 g4 0.3,(_.)_,0‘
G, H, O===0 2-section. Iz(":: 3 2<:::o ‘ , ..'o"‘
(0T om0 ) G,
O*4+21%¥+al,+b0, a+2b=2 H, G, H G. H
G, H, G, H, Oese
H, ....0H,
& H is a {id) H o 3
Bsection Y
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I¥+1¥+al,+b0, a+2b=4

Gx H1 Gg Hg G, H3 " ..'.
gm O OO O O~—0—O {id} ....................... cod

H,is a

:>G< 3-section. °---:>G°4<Z:::.° .

21%+al,+b0, a+2b=4 ’Z= G. H G, o H
G, H G, H, >>—o—o——o—<° A
Fn : : H,is a {id} H, e e

:Gs H, G.i 3-section. omz>0=—<>—o—c~—0<'-.°H4

G; H;
By o (resp. ot, resp. o), we mean a nodal curve G; (resp. H;, resp. an ordinary
nodal curve).

D D
BDe, m2a, , ,
For example, by Z>0—0—~0<:_.-'° , we mean that a section H; meets a singular

D,
fiber of type I,* in D, and 2-section G, meets this singular fiber in D, and Ds.

Let ¢ be a Jacobian fibration of X.

LEMMA (2.2). Let O be a singular fiber of ¢. Then O isone of the follow-
ing form:

I.O<,II<, G H G H G H G

120==0,mm—0,n*o—o—<>—o—o-—-1—o—43,m*c»—o—o—1—o——o—o’
) G G H ¢ H G H G
v* »—o—}—O——o, 1%, Ogb__<_4>c< >—o—<>}—0—o—o——o—o—o—o—<
G

G G
' ¢ H H
1, b=4,8 12 Q H H,o .
X | .
G H

Proor. For example, we show that @ is neither of type If nor of type
L. If @ is of type If,, then by (1.6) and (1.7), @ is as follows:

Dl Gl Hx Ga Hz GS HS Da
Dg Dl'
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Then, by (1.6), a section of ¢ must be either H, or G,. But this is impossible
because, by (1.7), we have D;-H,=1 for =1, 2, and D;-G,=1 for j=3,4. If
6 is of type I, then O contains B. So for any ordinary nodal curve C, C-0
=2 holds. Hence ¢ has no sections. a

LEMMA (2.3). If all special curves are contained in some singular fibers of
@, then 94, or §, or 45. Moreover rank M, (X)=2, 2, 4 respectively.

ProoF. Let C be a section of ¢. Let 6,, ---, @, be the singular fibers of
¢ which are neither of type I, nor of type II. We note that C meets each ©;
in a simple component. Since C is an ordinary nodal curve by the assumption,
C meets each 6, in a special nodal curve. So we get k=2 because we have
C-B=2. Then types of @, and 6, are either of (1) I;, I; (2) I, I, (3) IV*, IV*
by (2.2). For each of three cases (1), (2), (3), by counting Euler number and
rank M,(X) by (0.3) (1) and (3), we get the desired results. O

Until (2.12) we assume that at least one of special nodal curves is not in
any singular fibers of ¢.

LEMMA (2.4). (1) rank M,(X)=0.
Let Oy, ---, O, be the singular fibers of ¢. Then,
(2) 24= Eilxmp(ei), 16 = Ei](m(e)—-l),

(3) ¢ has at least one singular fiber which is neither of type I, nor of type
11

Proor. If (1) holds, then (2) holds by (0.3) (1), (3). Then (3) holds since
m(I,)=m(I)=1. Let us prove (1). Let S, ---, S; be all the special nodal curves
not contained in any singular fibers of ¢. Let C be an arbitrary smooth fiber
of ¢. We have 1Z#(CN(S,\U - US)HZC+(Si+ - +S)=m. Of course, m is
independent of the choice of C. By (1.3), any f&M,(X) acts on the finite set
Ic=CN\(S;U --- US)) as a permutation. So f™' fixes all the points of I, for
any C. Therefore, by definition of M, (X), we get f™=id on X. Hence we
have rank M (X)=0. O

Let © be a singular fiber of ¢ which is neither of type I, nor of type IL
LEMMA (2.5). (1) O is one of the following form in (2.2):
L, III, 1%, IIT*, 1%,.
(2) All sections of ¢ are special nodal curves.
PRrRoOOF. If O is either I, (3<b) or IV* in (2.2), then @ cannot meet any

special nodal curves. Then (1) holds. Hence all the simple components of &
are ordinary nodal curves. Then (2) holds by (1.7). 0
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We continue the proof of (2.1), and consider the following two cases
separately :

Case (1). At least one of singular fibers of ¢ is either of type 1, or of type
II1.

Case (2). Otherwise.

Case (1). We can see at once that either (&) or (%) holds:

(¢) Al the sections of ¢ are Gs, Gy, Hs, H, and the remaining G,, G,, H,, H,
are in some fibers of ¢.

(8%) All the sections of ¢ are Hy; and H,. The curve G, is a 2-section of ¢.
The remaining Gi, Gy, Gs, Hy, H, are in some fibers of ¢.

LEMMA (2.6). Let ¢ be a Jacobian fibration satisfying (§). (We do not
assume that one of the singular fibers of ¢ is of type I, or of type IIl.) Then
pEgs or o=, holds, and (2.1) (2) holds for this .

ProOOF. By the condition (#), any singular fiber of ¢ is one of the follow-
ing types in (2.5); I, IlI, I;, I¥, I¥. (Remark that ¢ has no singular fibers of type
II because M, (X) has a torsion element.) Then ¢ has either two singular fibers
of type I¥ or one singular fiber of type I¥. As for the latter case, putting
a=4l,, p=4lll, r=#I,, we get by (2.4):

16 = 10+a+8, 24 = 12+2a+3B-+7r, and then, =7 =0, a =6.

Hence we have ¢=4;. We show that (2.1) (2) holds for this ¢. Since
#M,(X)=4, and the group structure of I¥ is CX(Z/2Z)*, we have M, (X)=
(Z/2Z ). Each of six singular fibers of type I, meets four sections like either

)] G, G, or (2) Gs G,
o.. .0 o., .0

H, .o==."H, H, io==: H,
°o -o oo 'o

and a singular fiber of type I¥ meets four sections like

H, G,

Oesvee Gx Hl 62 H2 ceeeQ

H, >0—0—0—0—0—0—a( G,

Qeveo ERTRY- TN
Put the number of singular fibers of type I, like (1) (resp. like (2)) m (resp. n).
Let us take f&M,(X) such that f(H,)=G, Then we have f(H,)=G,, and f
has at least 2 fixed points on each of ml,, and on I¥*. Then we get 2m+2<8
by (1.15). Similarly, by taking g&M,(X) such that g(H,)=G,, we get 2n4-2=<8.

Hence we have n=m=3. (Remark that m+n=6.) For the former case, the
proof is similar. ‘ O
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By a similar argument to (2.6), we get the following.

LEMMA (2.7). Let ¢ be a Jacobian fibration satisfying (4%). Then @&,
holds and (2.1) (2) holds for this ¢.

Case (2). Without loss of generality, we may assume that H, is a section
of ¢.

LEMMA (2.8). O is one of the following form in (2.2).

(1) >§< (2) ::G H c:
(3‘)::GHGHGi: (4) 6 H G H

Proor. If @ is neither of (1), (2), (3), (4), @ is either (5) or (6).

(5) G 51<: (6) 6 H ¢
:: I .

If O is either (5) or (6), we easily show that ¢ satisfies either (§) or (4%), and
then ¢ has a singular fiber whose type is either I, or Ill. Hence (2.8) holds.
O

LEMMA (2.9). If ¢ has a singular fiber of type (4) in (2.8), then < 4, holds
and (2.1) (2) holds for this ¢.

Proor. Immediate. O

LEMMA (2.10). If ¢ has a singular fiber of type (3) but not of type (4) in
(2.8), then @<= 41, holds and (2.1) (2) holds for this ¢.

Proor. Immediate. O

LEMMA (2.11). If ¢ has a singular fiber of type (2) but neither of type (3)
nor of type (4) in (2.8), then either 9<%, or ¢=41, holds and (2.1) (2) also holds
for this ¢.

PrOOF. We easily show that all the singular fibers of ¢ which are neither
of type I, nor of type Il are either (a) I¥, I¥ or (b) I¥, I¥, I¥. When (a) holds,
obviously we have p= 4, and (2.1) (2) holds. When (b) holds, we easily see
that H,, H, are sections of ¢ and H, is a 2-section of ¢ (by a suitable naming)
and a configuration of a singular fiber of type I¥ and H,, H,;, and H, is either
(c) or (d):
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(c) H

: ¢ H G : H, : G H G :o
H, o
Ooreee . . H

..
ce.
..

Assume that (c) holds. Take f&M/(X) such that f(H,)=H,. Then f has at
least 10 fixed points on X. But this is impossible by (1.15). Hence (d) holds.
Since M(X)=Z/2Z, ¢ has no singular fibers of type I. Therefore the remain-
ing singular fibers of ¢ are two singular fibers of type I.. O

LEMMA (2.12). If ¢ has a singular fiber of type (1) but neither of types (2),
(3), (4) in (2.8), then =4, holds and (2.1) (2) holds for this ¢.

Proor. Immediate. O

Hence (2.1) (1) is proved. And except for 4,, 4, and 4,, (2.1) (2) is also
proved. We prove the rest in §3. Q.E.D.

REMARK (2.13). Any 4. (m=1, ---, 11) is non-empty. In fact we can con-
struct elements @®=0® g, belonging to each 4, as follows. Here O is represented

by bold-faced lines. Dotted lines (resp. dotted lines with index m) stand for
sections (resp. m-sections).

& & cu
6. — ||| A4 G, — | —f—-‘——/ﬁﬁ
cu/ oLk Cu‘ Cu’ fold Yoilld Foilke
Gy — || A | A= |~ Gy e | e | e | i
c] e c* fol it C,gl c»4 o
C:z/ c24 csz/ C"', cn/ cu‘ e
Gl — ﬁ k IP #’ Gl e | com— k”#
cu‘ Cnl an*cu/' Cnl C:n/ ci

H  H, Hy¢ H, H, H. H, H,

Hy4-C3 4G+ C¥H4+-G,+CH4+-H,4+-C*® is an- By (2.1) (1), there exists a nodal curve

other singular fiber of type Iz of @. C%, A* such that G,+C*4-A%4H, is another

C¥, C2, Cc¥, C4, C®, C4, and C% are singular fiber of type I, of @. CY, C%,

sections of @ which do not meet one another. C¥, C4, C®, C* are sections of @ which
do not meet one another.



G4 —
Cu/

G,
Cl!
G,
cli

Gl_—_

CH

s
L

C*!M?hl
.’..’_V..t_’__
c’l ¢
cu| ¢
V. ,.4_’_
’ C“,

CS!'
Hl H2 HS

7/

,L.
o o

74__
oy
CcH/

H,

4

-
A
7

cn 1

/|
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- -

GI+G2+Ga+2(C4l+C42+C4S> +3H4 is an-
other singular fiber of type IV* of @. C¥
(1=<7,j<3) are sections of ¢ which do not

meet one anot

her.

G4-_--__
C2
Gs---}--
c
Gz_...r‘
cud c
Gl —f—
Cu/
H,
&1 | 9
Go—|——i—i—
Gg_""‘ —:'—_":——:_—
1 1 1
G c— #ll—l 1
: C12/ X cn4, C“/
1 ] t

G — ‘*- —-|A
! Cn/ cy EC“ X
H H, H, H,

I
1C* M “
Gi---Pf-1~ "// %y/’M
C“A Cc*] .
\C M"
T i G
cr ces/ M”
: cn/ C* . CcN
G, e | pfee | e ,L.. ’L
“od [ enfcud
H, H, Hy H,
By (2.1), there exist four nodal curves

Mt (3<i, j<4) such that C¥4M3, C44
M3, C%34 M4, C44+ M3 are other singular
fibers of type I, of @. C%4+C284-C%24-C424
2(H,+C?4-G,) is another singular fiber of
type I,*. We note that M#* does not meet
Ccms (1<m, s=4) except for C*, C2 and
cr,
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&
12 ' 3C“A7u
G, — prAay yauy
‘ CH-1C¥1 “
Gy — —:—%4—
1 |
G an—— Al_'
: Cn/ CHJ : ce4
4 1 '
Ci Cn/ cH : ;
# H, Hy¢ H, H,  H, H, H,

By (2.1), there exist nodal curves N* and M* is a nodal curve in the figure of 4,
P4 guch that 2G,+C¥+C44N#4PH4 s above.

another singular fiber of type [;* of @. We

note that C?*is 2-section of @, and C? does

not meet N,

3 (ond]

Fu
' ' N4
G s | cn— A ——
‘ :cu/ 4
P

G i 1

s T b B
cilien | cn4

Gl _:__._.. ___.:___

Hl Hz Ha Ht

N* is a nodal curve in the figure of 4,
above.

REMARK (2.14). We could not determine the value of ¢ and b except for

4, and 4.

As for 4, we could not determine which of II*+I,*+3[,+1, and

I*4-I*+-2L, 4111 actually occurs.

§3. A minimal complete set of representatives of 4,/Aut(X) (m=1, 2, 3).

In this section we find a minimal complete set of representatives (M.S.R.)
of the orbit space F,/Aut(X) and prove (2.1) (2) for m=1, 2, 3. The cases for
m=4, ---, 11 will be treated in the next section.

We use the following notation in §3, 4.

{i, 7, R} = {p, q, v} = {2, 3, 4}.

For E; (see (1.11)), P, ---, P, stand for the following 2-torsion points of FE..
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3
P P,

PP

0 1

We say X is of type (i), (ii), (iii) or (iv) if EXF is isomorphic to E, =X E,,
E,XE,, Ey=XE,, or E,XE,. (See (1.11).)

We say an effective divisor D on X is extendable if there exists a double
Kummer pencil divisor K, such that Supp DC K.

THEOREM (3.1). (I) Put <p§}.?:q).9;gl where

@1(};) = F+Cu+E+Ciuy+Fi+Cip+E+Cyp and 2<i, p<4.

(1) The set {@}ici.psa 18 an M.S.R. of &./Auty(X).
(2) An M.S.R. of 4./Aut(X) is given as follows where ¢;p:=¢p.

1 Type of X . (i) ] (ii) (iii) | (iv)
M.S.R. of @ oF 04 o1
IRt (X) | o | i=2,34 | i=23 |i=2.3,4

$=2,3,4 | p=2,3,4

(D) Put 3= .63, where
08, = Es+Cis+Fi+Ciuy+E+Ciu+Fi+Cu+E+4Cri+Fr+Cho and
{7, 7, k} = {2, 3, 4}.

(1) The set {Sogf)k}(i,j,k)=(2,3.4) is an M.S.R. of &s/Auty(X).
(2) An M.S.R. of 4./Aut(X) is given as follows where @;jr:=@%.

| Typeot X | (i) | i) (iif) (iv)
M.S.R. of Q234 | PDos4, P24 | P234, P324, Psa2 . %51 3
l gZ/AUt(X) {Z’]:k}:{2)374}

() Put ¢®P=0 g, where O =F +F;+F;+2(C1,+Cp+Cs)+3E,, then
{o®} is an M.S.R. of both 4,/Auty(X) and /Aut(X).

ProOF. We give the proof only for (II), since the other cases are similar
and easier. Assume ¢&4,. Then by a suitable G;, H; and D™, we have ¢=0 g,

where
0 = G,+D*+H,+D*+G;+ D+ H,+D*+G,+ D**+ H;+ D*.

The other singular fiber of type I, of ¢ can be written as follows: @'=
G.,+D*+H+R*. Since ¢ has at least one section, we put this section D™
without loss of generality. (As for D** and R** see §2.)
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—_— | — DT4/L G.

Dy R
___A/,Z_ —|— G,
st/ Dzs/

— || — | — G.
D Dsz/

T 5:/ sz/ __ G‘

H,  H, Hs H,

CrLaiM (3.2). 6 is extendable.

PROOF of (3.2). We consider the elliptic fibration @,,,, where L=
D24 DB+ 2(H,+D"+G,)+D*+R*. Then, G, and G, become sections of @,,,
and H, becomes a 2-section. Hence we have @,;,, €4, By the way, any
component of a connected divisor D=D?*+H,+D*4-G,+D*+H,+D* does not
meet L, and hence D is contained in one singular fiber L’ of @,;,. By The-
orem (2.1) L’ must be of type III*, and then there exists a nodal curve D*.
Moreover, there exist at least two singular fibers of type I, say, @**+D**, and
Q*+4D**. Then we have @y, puspeipsspu €4, Hence, there exist nodal
curves DY, D¥?, D* D*, and Kg=\Ui s-1D"*"UB becomes a double Kummer
pencil containing Supp®. Therefore the claim is proved. O

Hence, by (1.13), there exists A< Auty(X) such that h(Kg)=Kn... Then,
putting ©@'=h(0) (as a divisor), we have Supp®'CK... So, if necessary,
composing a suitable g€ Auty(X) induced by a translation on EXF, we get
g(0")=0,,, for some 7, j, k. Therefore, to prove (1), it is sufficient to show
that if ¢;; and @i ;. are in the same orbit, then /=7, j=;’, and 2=£k’ hold.
Under the above assumption, we have f(O; ;' )=6;;, by some f&Auty(X).
Since we have f(B)=DB, we get the following:

f(Cirs+Cis+Ciy+CristCriptCis) = CistCps+Ciu4CritCretCoo

By the way, since C;i3+Cjis+Cjy+Cry+Cr o+ Cie satisfies the condition on
(1.10), we have the following:

CorsFCiatCiatCrateratcostcuntcptcutcrtcrntc,=0 (mod2-Sy).
Since {/, j'}N{Z, 11+ @, {7, R'IN{J, k}+=D, {F',i'}N{k, i} =@, we can put,
', ' =Ax, 3}, /L RY={u, v},  {F, 7} ={a, B},

{7, j} = {x, 2}, {7, k} = {u, w}, {k, i} = {a, 7}.

Then we get, c.s+CystCwitcutcptcsp=0 (mod2-Sx). Therefore by (1.14),
we get C,;=C,s, Cupy=Cy, C;2=Cp, i.e., z=y, w=v, y=f. Hence k=Fk’,
i=i' and j=;’ hold. Next we prove (2). Since we have Aut(X)=Autxy(X) <&
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(cf. (1.11)), once an M.S.R. of 4./Auty(X) is found, we can find an M.S.R.
of 4;/Aut(X) by only examing how & acts on 4;/Auty(X). The automorphism
& acts on 4./Auty(X) as follows.

—
Type (1): P2 7 > Psoy 7 > Qs 7 > Qs R > (Py2s 7 > (Pasz

3 3
.. S R —— e
Type (ii): Pase ——E_-"" Pazs T) Pz Py ——> Psuy —> Pusz
Type (iii): P =% Qus, P T35 Pa Puz T35 Paze
Type (iv): &=0 acts as an identity on Fy.

Q.E.D.

Finally we prove the rest of (2.1) (2) for 4, and 4.. As for 4,, the proof
is similar for 4, and then omitted.

As for 4,, by (3.1) and (2.3) it is enough to show that Tor M,(X)=Z/2Z
for

© = @9H1+012+c;2+032+113+031+G1+021+H2+c2s+as+013s .

Note that ¢ has six sections C', C*, C*, C*, C*#, C*. By (1.15) in
Cox and Zucker [9], p. 8, f&M,(X) defined by f(C'*)=C* is a torsion element.
Hence ¢ has no singular fibers of type Il and then, by (2.3), ¢ has eight
singular fibers of type I,. Therefore any element of M,(X) has at least 8 fixed
points on X and then Tor M,(X) is 2-elementary. If f and g are 2-torsion
elements in M,(X), feg acts on singular fibers of typel, as an identity. Hence
by (1.15), feg isan identity on X. Then we have f=g. Therefore Tor M,(X)
=Z/2Z holds.

As for 4, if M,(X) has a torsion, we get Tor M,w(X)=Z/2Z like as
above. But this does not happen since the group structure of @ is C X Z/3Z.

|
COROLLARY (3.3). Let D™ (1=n+s=4) be 12 disjoint nodal curves for
arbitrarily fixed H,, G, (n=1, 2, 3, 4). (As for D** see §2.) Then there exists
o€ Auty(X) such that o(Hz)=G,, 0(G,)=H, and o(D"*)=D" for all n, s with
1=<n+s<4. Especially, there exists ¢’ SAuty(X) such that ¢'(H,)=G,, ¢'(G,)
=H, and o' (C")=C*" for all n, s with 1<n+#s<4.

Proor. We consider the Jacobian fibration ¢p=0@,, where

A= | D¥+4 Hy+ D"+ G+ D+ Hy+ D+ Gyt D+ H 4 DS+ G
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Then D', D, D, D*, D** and D* are sections of ¢ and we have ¢=4,. Let
us take three elements f, (n=2, 3, &M (X) such that f,(D'*)=D". By Cox
and Zucker (loc. cit.), f,, fs and f, are torsion elements of M,(X). Therefore
we have f,=f;=f, Putting o=f,=f.=f,, we have o(H,)=C,, o(G,)=H,
and o(D*)=D*" for all n, s with 1<n+s<4. O

COROLLARY (3.4). Let A', B, D', D (2<s<4) be 8 disjoint nodal curves
on X for arbitrarily fixed H,, G, (n=1,2,3,4). Then,

1) Di:= D 145t _,p1s42n,1 andDy:i= D gyt pisiem, are elements of 4.

(2) If any non-singular fiber of @, is isomorphic to E, then any non-singular
fiber of @, is isomorphic to F.

ProoF. (1) is obvious. Let us consider the Jacobian fibration @,:=
D 145114 m,40) EF2, and the involution ¢ &My (X). Without loss of generality,
we may assume that there exist 6 nodal curves D" 2<n#s=<4) and
S o(Hpy+Gr)+Docnzs<a D™ is another singular fiber of type I; of @,. By Cox
and Zucker (loc. cit.), 6 sections D¢, D! (s=2, 3, 4) satisfy ¢(D'*)=D*'. More-
over we have ¢(B'")=A" and ¢(H,)=G,. Therefore ¢ translates a Jacobian
fibration @, to a Jacobian fibration @,:=® 4145 ps1+26,;. On the other hand,
it is clear that if any non-singular fiber of @, is isomorphic to E, then any
non-singular fiber of @, is isomorphic to F by (1.13) since A™M\ U\ Ji_o(D*$\U D)
is extendable to a double Kummer pencil divisor. O

§4. A minimal complete set of representatives of 4.,,/Aut(X) (m=4, ---, 11).

LEMMA (4.1). For a fixed ordered pair (i,7,k, p, q, v) where {i,j, k}=
{p, q, r}=1{2, 3, 4}, there exists a unique nodal curve Rijzpqr Such that Rijipgr
meets both E, and F, and does not meet any C,s (1=n, s<4) except for Cip,
Cjoand Cy,. Moreover Rijnpqr is characterized in Sy by the following equality.

Tijrpgr =€+ f—Cip—Cjqo—Cpr.

Proor. The curve M** in (2.13) satisfies the condition on R;jz,, if we
put H,=F,, G,=E, H,=F,, G.,=FE,, H,=F, G,=E, H;=F, and G,=E,.
Let us show the uniqueness of R;jiper. Put 7ijrper=ae+bf+3n sXnsCns Where
a, b, x,s=Q. By the condition on Rijzp., and R?j;,.=—2, and 3), we
get Fijepgr==(e+f—Cip—Cjq—Crr). Since Rijiper-E=0, we have 7ijp0r=
e+ f—cip—Cjp—Crr. Hence by (1.5), Rijip,r IS unique. O

THEOREM (4.2). (IV) Put o=@ ¢®, (i=1, 2) where O{*=2F,+C;,+Cy;
+C1s+Cis, OM=2E,+C;;+Cp;+C3s1+Cysi. Then {‘le: 902(“} is an M.S.R. of
both 4./Auty(X) and 4./Aut(X).
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(V) Put 90‘5’—(15.9;;). where

@(5) = Ck1+cj1+clq+clr+2(E1+Ci1+Fi+Cip+Ep+clp+F1) and
2<i, p=4.

(1) The set {3 }esi,p<a ts an S.R. (a non-minimal set of representatives)
of &s/Auty(X).
(2) The set {3} is an M.S.R. of both 4s/Auty(X) and &s/Aut(X).

(VI) Put go‘s’—@.@;g, where

i(ep) = Ck1+cj1+C1q+clr+2(El+Cll+Fl) and 2514, p<4.

(1) The set {98 }eci,pss is an M.S.R. of 4¢/Auty(X).
(2) An M.S.R. of 4¢/Aut(X) is given as follows where ¢;p:=¢@%.

l Type of X | (i) | (i) (iif) (iv) ‘
M.S.R. of (2] ©i ®i
FIAUEX) | o | i=2.3,4 | i29'3 | i=2.5,4 ]

p=2,3,4| p=2,3,4

(VII) Put goé})pz@l@g})p, where

@ﬂ}) = Cip+Ckp+cj1+Ck1+2(Ep+Clp+F1+cll+El) and
25i+7<4, 25p <.
(1) The set {@{ip}esizjss.2sp<s 1S an S.R. of 4./Auty(X).

(2) The set {@iPptesic<isa.2spss 1S an M.S.R. of &./Auty(X).
(3) An M.S.R. of 4./Aut(X) is given as follows where @;;p:=¢}p.

Type of X ' (i) ' (ii) (iii) (iv) ;
|
M.S.R. of | 9034;0 Pij2 Pijp
F1/Aut(X) 50343 $=2,3,4 Vijs 2<i<js4
2<z<]<4L $=2,3,4

(VID)  Put oa=0 68, where

@tgg)pq = C;p+2E,+3C,p+4F,+3C1+2E,+C;;+2C,, and
2=i#5=4, 25 p+g=4.
(1) The set {Qi5patesizisa.2sprqss 1S an S.R of &s/Auty(X).

(2) The set {pShs}acizise s an M.S.R. of 4¢/Auty(X).
(3) An M.S.R. of 4o/Aut(X) is given as follows where ¢;jo5:=0%.
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Type of X !A(i) (i) | (i) o ‘

M.S.R. of 2323 | Q2323
Fs/Aut(X) Q2423

©Cije ©Vij2
2<i1d) =4 | 2<itj<4 \

(IX) Put ¢3=0 6%, where

@;g%; = ij+2Ep+3Cxp+4F1+5C11+6F1+3Ck1+4C11+2F1, and
2<i#7<4, 2£p <.
(1) The set {@{Pp}osizisa.2spss 1S an S.R. of Fo/Auty(X).
(2) The set {p$} is an M.S.R. of both Fy/Auty(X) and 4,/Aut(X).

X) Put ¢{i%per=0 16010, where

z(,lig)pqr - C1q+clq+C11+Rijkpqr+2(Eq+qu+Fk+Ckp+Ep+cjp+Fj+cjl+E1>

and {i, j, k}={p, ¢, r}=12, 3, 4}.

(1) The set {(p%gﬁ,qr}(i_j,k,ﬂp,q,” s an S. R- of glo/AutN(X)'
(2) The set {¢§}2%34}(i.j.k)=(2.3,4) is an M.S.R. of &../Auty(X).
(3) An M.S.R. of 4.0/Aut(X) is given as follows where Qijress:= Qfjiras

iType of X | () | ap | i) ‘ (iv) {
|

M.S.R. of | (asaess | @asszss | Qosazse | Qijrasa
F1o/Aut (X) 0324234 Q324234 | {¢,7, k}
Pags2ss  — {2, 3,4}

(XI) Put SD%}Z;WT:@@%%W\ where

Soer = Cun+Cig+Cui+Rijrpgr +2(Fi+Cir +E+Cy+Fy) and
{i, 7, k}=1{p, ¢, r}=1{2, 3, 4}.
(1) The set {Q{iper} 7s an S.R. of F1/Auty(X).

(2) The set {(P%i)pqr}zgi<ks4,2$p<rs4 s an M S.R. Of gu/AutN(X).
(3) An M.S.R. of 4. /Aut(X) is given as follows where Qijuper =@k pgr-

Type of X (i) (ii) (iii) (iv)

M.S.R. of V234234 ©234234 234234 324324 Pijkpgr
Fu/Aut(X) | Qaouses | ©aoasea | Qazazie  Qoseas | 2Si<k=4
Qoaspas | Qosaszs  Qanans | 2S5p<<r=4

COROLLARY (4.3). For each §n, #(Fn/Aut(X)) (the number of non-isomorphic

elements) is as follows.
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Type | 1 F2 Fs Fs Fs Fo F1 Fs Fo Fro Fu | Total
(i) 2 1 1 2 1 2 2 1 1 1 2 16

(i) |3 2 1 2 1 3 3 2 1 2 3 23
Gi) | 6 3 1 2 1 6 6 3 1 3 6 38
Gv) |9 6 1 2 1 9 9 6 1 6 9 59

Proor. We give a proof for (VII) and (X). For other cases, we only
mention key claims because the verification of them is similar.

Proor of (VII). Obviously, we have ¢{7,=4,. First we prove (1). Let
¢=0 6, be an element of 4,, We may assume that O is of type I¥ and that
O can be represented as follows:

8 — D13+D43+2<03+D23+H2+D21+Gl)+D31+D41.

Then H,, H, are sections and H, is a 2-section of ¢. By a similar method in
the proof of (3.1), we see easily that @ is extendable (to a double
Kummer pencil divisor). Hence there exists f&Auty(X) such that Supp f(O)
CK,a.. By the way, by (1.7), for any heAut(X), either h(JH,)=\UE, and
h(JGr)=\UF, or h( JG,)=\UE, and h(\JH,)=\UF, hold. Then (if necessary,
composing a suitable element of Auty(X;\U. sCrs) We see that f(6) becomes
either (a) or (b) for some feAuty(X):

@ —L e O e
YT YT
_/74— /’L//é— //L E, _—/"-/,4-/"-/74
preealls s

Assume that f(@) is of type (b). Then, by composing a suitable automorphism
g of X, constructed in the corollary (3.3), we see that g-f(0)Yis of type (a).
Therefore (1) is proved.

Next we prove (2). It is sufficient to show the following.

CLAIM (4.4). The fibrations ¢}, and ¢, are in the same orbit of 4./
Auty(X) if and only if p=p’, {7, j}={, j'} hold.

ProoF oF (4.4). If part: Choose g=Auty(X; \Un sCrs) such that
E,«—E,, E,«—FE,, and F,<—>F, (=1, - ,4,{p, q, r}={2, 3, 4}).
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Then we have g(@{)=0%,.

Only if part: Since O}, is a unique singular fiber of ¢, of type I¥,
fO)=060{, holds for some feAuty(X). Then we easily see that
f(CUC pUC\JCrp)=C1,\UC,p\UCy\UChp. Hence, by (1.10), we have
Cu4Cip4+Cri+Crp+Cii+Cip+Cri+Chrp=0(mod2-Sx). Therefore, by (1.14),
the claim holds. 0

By the same method as in (3.1), we immediately see that (3) also holds.

PROOF OF (X). Obviously we have ¢{itprEF10. Let ¢=0 6, be an element
of 45,.. We may assume that @ is of type I¥ and represented as follows:

@ — Dll+Qll+D13+D23+2(G1+D31+H3+D32+G2+D42+H4+D48+Gs).

Let us consider the Jacobian fibration ¢'=® piiigllic+m, 1 EF. Since D' and
D* are sections, there exist nodal curves D?* and D** such that another singular
fiber of type I, of ¢’ is G;+ D**+Hy+D*+ G+ D**+Hy+D*+ G+ D*+ H,+ D*.
By the way, since D* is a section of ¢’ and ¢'©4,, there exist 6 disjoint
sections D'®, D2, D' D'?') D'** and D’*' as was seen in the proof (2.1) (2) for
&.. Let us consider two elements ¢ and ¢’ of M, (X) such that ¢(D'*)=D%,
¢’ (D'*)=D"*!, By Cox and Zucker (loc. cit.), both ¢ and ¢’ are torsion elements
of M, (X). Therefore ¢6=¢’ and D¥*=D’*" hold. So we can put D'**=D%,
D'*=Dp%, D'**=D?, and D'“'=D*. By (3.4), if any non-singular fiber of
D, :=0 puipiespisipresen, EF, Is isomorphic to E, any non-singular fiber of
D g114p124 D134 D144 m, is isomorphic to F. Thus, if necessary, changing the names
of D' and @', we may assume that any non-singular fiber of @, is isomorphic
to F. By @,,0—Q" is extended to a double Kummer pencil divisor
Kp=\Uisnzsca DD UD?*UD*UD*UB. Then, by the assumption on @,,
there exists feAuty(X) such that f(Kp)=Kna, [f(D'M)=Cy, f(O—QM)=
O ar—Rijrper for suitable (z, 7, k, p, ¢, 7) and f(Q*) meets both E, and F,
and does not meet any C,, except for C;,, C;, and C,,. Hence by (4.1), we
have f(Q")=R;jrpqer and (1) holds.
Next we prove (2). It is sufficient to show the following.

CLAIM (4.5). Let &, be the permutation group of 3 letters 2,3,4. The
Sibrations @%%er and QPP p g, are in the same orbit of 4,0/Auty(X) if and

only if ( ] k ‘z, q’ r) holds as an element of &,.

PROOF. Only if part: If @{iper and @#9, . are in the same orbit of
F1o/Auty(X), g(Rijeper\IC1)=Rijprprgr\JCy; holds for some geAuty(X).
Then, by (1.10)and (1), we get C;p+Cj;+Chr+Cirpr+Cjg +Crr =0 (mod 2- Sy).
Hence only if part holds.
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If part: 1t is sufficient to construct the following symplectic automorphisms :
1(@1(}%("):6}}29(’"1,, p<81(}g)pqr): lg}g;qp-

7: Make a Jacobian fibration @, where 2=Cy;+Rijrper+E1+F1.
Then @,o, is in 4, and the other singular fiber of @ o, of type I, is
Q=Fi+Ciy+E+Cr+Fi+Cip+Ep+Cip+F;+Cj+E,+C;ir and Cyy, Cjy, Chy,
Cip, Cy, Cir are sections. Take t&Mp,, such that #(C;)=Cs. Then by the
group structures of 2 and 2’, we have

(C) = Cyy, T(ij) = Chyq, 7(Crp) = Cjg,
T(Rijkpqr) = Rijkpqr = Rjkiqpr ’ T(qu) = Cir ’ T(Ciq) = CJ'T .

Since for the torsion element ¢ €M, , the equalities ¢(C.)=C;; and o(Cy,)=
C;: hold, we have 7(C,)=C,,. Hence t(0{pe)=0§}%)-, holds for this 7.

p: Make a Jacobian fibration @,;, where L=C,+R;jpgr+ Cigt Crg+2(F,
+Cigt+Ey).

So we have @,,,€4,, and F; and F, are sections of @,;,. Take p&Mp, (X)
such that p(F;)=F,. Then, by a similar consideration as above, we see that
(08, )=082,, holds for this p. O

Since 7;jzper 1S explicitly represented in Sy, by the same method as in (3.1),
we easily show (3).

Finally we mention key claims to find an M.S.R. of In/Auty(X) from an
S.R. of 4,./Auty(X) for the other cases.

CLAIM (4.6). All ¢{2) are in the same orbit of 4s/Auty(X).
(Make a Jacobian fibration in 4., and take suitable translation automorphisms
of it.)

CLamM (4.7). If ¢ff and ¢y are in the same orbit of &./Auty(X), then
i=1i" and p=p’.
CLAIM (4.8). ¢35 and @y pr¢ are in the same orbit of §s/Auty(X) if and

only if the ordered pair (', j/, p’, q') is one of the following six ordered pairs:

@G inbe, Ui, pr), G, kg, ), (R j,a, D), GRraq, (Rir D).

(For if part, make a Jacobian fibration in 4,, and take a suitable translation
automorphism f of it. Then we have f(O{%)=6), By taking a suitable
geAuty(X; Un.:Cns), we have g(B)=03-.)

CLamM (4.9). Al ¢ are in the same orbit of &,/Auty(X).
(Make a suitable Jacobian fibration in 4, Then f(O{%)=6%, holds for a
suitable translation automorphism f of it. Make a suitable Jacobian fibration
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in 4,. Then the equalities g(@&)=0) and A(O)=60) hold for suitable
translation automorphisms g and A of it.)

CLAIM (4.10). The fibrations @{iiper and @33 prg+ are in the same orbit of
Fu/Auty(X) if and only if j=j and g=¢q’ hold.
(The other singular fiber of type I¥ of ¢{jiher is
(11

Skver = Cj4Sijeper +Cini+Copg+2(F;4+Cip+Ep+Cip+Fp).

Here Sijiper is @ nodal curve characterized by s;jeper=0-+f—Ci1q—Cip—Crr-

If part: By taking a suitable element r=Auty(X; U, sCrs), wWe have
(O ) =141 By making a suitable Jacobian fibration in 4, and taking a
suitable translation automorphism p of it, we have p(@ {10 )=6{ep.)

As for 4,, the statement is trivial since F and F are not mutually isoge-
nous. This completes the proof. Q.E.D.
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