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0. Introduction.

Let $f:Marrow N$ be a minimal immersion of a manifold $M$ into a Riemannian
manifold $N$. We say that $M$ is stable if the second variation of the volume
functional of $M$ is positive for every variation of $f$ which leaves the boundary
values fixed. Let $N^{n}(a)$ denote the n-dimensional simply-connected space form
of constant curvature $a$ . Barbosa and do Carmo [1], [2] discussed the stability
of simply-connected compact minimal surfaces with piecewise $C^{1}$ boundary in
$N^{n}(a)$ , whose result was improved in our previous paper [9] as follows.

THEOREM 0.1 ([9]). Let $f:Marrow N^{n}(a)$ be a mimmal immersion of a 2-
dimensional $\alpha mply$-connected compact manifold $M$ with triecewise $C^{1}$ boundary into

$N^{n}(a)$ . If the second fundamental form $A$ of $f$ satisfies $\int_{M}(|a|+(1/2)|A|^{2})dM<$

$(4/3)\pi$ , then $M$ is stable.

When $a\geqq 0$, Theorem 0.1 is proved in a little different way (cf. [1], Hof-
fman and Osserman [6]). In [2] it is asked if the argument of Theorem 0.1
can be generalized or not for a general ambient space. The first aim of this
paper is to give a positive answer to this question. Let $G_{2}N$ denote the Grass-
mann bundle over a Riemannian manifold $N$ of 2-dimensional tangent subspaces

to $N$. The Riemannian structure of $G_{2}N$ is defined in Section 1.

THEOREM 0.2. Let $f:Marrow N$ be a mimmal immersion of a 2-dimensional
$\alpha mply$-connected compact manifold $M$ with Pecewise $C^{1}$ boundary $\partial M$ into a Rie-
mannian mamfold N. SuPpose that the sectional curvature of $N$ is bounded and
the sectional curvature of $G_{2}N$ is bounded from above. Then there is a Positive
constant $c_{1}$ dependjng only on $N$ such that if the second fundamental form $A$ of
$f$ satisfies $\int_{M}(1+(1/2)|A|^{2})dM<c_{1}$ , then $M$ is stable.

If we omit the hypothesis that $M$ is simply-connected and assume the posi-
tivity of the injectivity radius of $G_{2}N$, we obtain the following estimate (cf.
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Hoffman [5], Tanno [12]).

THEOREM 0.3. Let $f:Marrow N$ be a minimal immersion of a 2-dimensional
compact manifold $M$ with lnecewise $C^{1}$ boundary $\partial M$ into a Riemannian mamfold
N. SuPpose that the sectional curvature of $N$ is bounded, the sectional curvature
of $G_{2}N$ is bounded from above, and the injectivity radius of $G_{2}N$ is posjtjve.
Then there is a positive constant $c_{2}$ depending only on $N$ such that if the second

fundamental form $A$ of $f$ satisfies $\int_{M}(1+(1/2)|A|^{2})dM<c_{2}$ , then $M$ is stable.

The definitions of $c_{1}$ and $c_{2}$ are given in Section 3, and we can see that $c_{1}$

is greater than $c_{2}$ for each ambient space.
As in the case of a minimal immersion, a harmonic map is called stable if

the second variation of the energy functional is positive for every variation of
the map which leaves the boundary values fixed. In Section 4 we use the
method in [1], [2] and prove the following estimate on the stability of some
harmonic maps from 2-dimensional simply-connected compact Riemannian mani-
folds with piecewise $C$ ‘ boundary.

THEOREM 0.4. Let $f:(M, ds^{2})arrow N$ be a harmomc maP from a 2-dimensional
simply-connected compact Riemanman manifold $(M, ds^{2})$ with tnecemse $C^{1}$ boundary
$\partial M$ to a Riemannian manifold $N$ such that $|df|$ vanishes only at isolated points,
and assume that the sectional curvature of $N$ is not greater than $a>0$ . If
$(1/2) \int_{M}|df|^{2}dM<(2/a)\pi$ , then $f$ is stable.

The author would like to express his hearty thanks to Professor S. Tanno
for his constant encouragement and advice, and to the referee for useful
comments.

1. The Gauss map.

In this section we follow [7] and recall the definition and some properties
of the Gauss map. We use for positive integers $m,$ $n(m<n)$ , the following
ranges of indices:

(1.1) $1\leqq i,$ $j,$ $k,$ $\cdots\leqq m$ , $m+1\leqq\alpha,$ $\beta,$ $\cdots\leqq n$ , $1\leqq B,$ $C,$ $\cdots\leqq n$ .
Let $N$ be an n-dimensional Riemannian manifold. Denote its $O(n)$-bundle

of orthonormal frames by $0(N)arrow N$ on which the canonical form $\theta=(\theta^{B})$ and
the Levi-Civita connection form $\omega=(\omega_{C}^{B})$ are chosen. Let $G_{m}Narrow N$ be the Grass-
mann bundle over $N$ of m-dimensional tangent subspaces to $N$. Let $\{e_{B}\}$ be the
local orthonormal frame of $N$ which is dual to $\{\theta^{B}\}$ . Set $\varphi^{B}=\theta^{B}$ and $\varphi^{ai}=\omega_{i}^{\alpha}$

at $(x, [e_{1}, \cdots , e_{m}])\in G_{m}N$. Then $\{\varphi^{B}, \varphi^{ai}\}$ is a local orthonormal coframe of
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$G_{m}N$. We denote by $\{E_{B}, E_{ai}\}$ the local orthonormal frame of $G_{m}N$ which is
dual to $\{\varphi^{B}, \varphi^{\alpha i}\}$ .

Let $f:Marrow N$ be an isometric immersion of an m-dimensional Riemannian
manifold $M$ into $N$, and let $T_{p}M$ denote the tangent space of $M$ at $l$ . Then
the Gauss map $\gamma_{f}$ : $Marrow G_{m}N$ of $f$ is defined by $\gamma_{f}(p)=f_{*}T_{p}M$ for $p\in M$. We
choose $\{\theta^{B}\}$ such that $f^{*}\theta^{\alpha}=0$ for all $\alpha$ on $M$. Let $h_{ij}^{\alpha}$ be the components of
the second fundamental form of $f$. Let $ds^{2}$ be the metric of $M$. We denote
by $R$ the curvature tensor of $N$. Then the metric $d_{S^{2}}^{\sim}$ on $M$ induced by $\gamma_{f}$

from $G_{m}N$ is given as follows:

(1.2) $d \hat{s}^{2}=ds^{2}+\sum_{i.j.ka}.h_{ij}^{\alpha}h_{ik}^{\alpha}f^{*}\theta^{j}\otimes f^{*}\theta^{k}$ .
The tension field $\tau(\gamma_{f})$ of $\gamma_{f}$ is given as follows:

(1.3)
$\tau(\gamma_{f})=\sum_{i.j.\alpha B}.R_{ijB}^{\alpha}h_{ij}^{\alpha}E_{B}+\sum_{i.\alpha}h_{ii}^{a}E_{\alpha}+\sum_{i.j.a}(h_{jji}^{\alpha}-R_{jij}^{\alpha})E_{\alpha i}$ ,

where $h_{ijk}^{\alpha}$ are the components of the covariant derivative of the second funda-
mental form of $f$.

2. A priori estimates.

In this section we show two lemmas for proving Theorems 0.2 and 0.3. In
the following we shall use the range (1.1) of indices for $m=2$ , unless otherwise
stated.

LEMMA 2.1. Let $f:Marrow N$ be a minimal immersion of a 2-dimensional mani-
fold $M$ into an n-dimensional Riemannian manifold $N$, and let A denote the second
fundamental form of $f$. Assume that the sectional curvature of $N$ is bounded
from above by $a$ and below by $b$ . Then

$| \tau(\gamma_{f})|^{2}\leqq(\frac{32n-69}{18})(a-b)^{2}|A|^{2}+\frac{1}{2}(n-2)(a-b)^{2}$ .

PROOF. We may choose an orthonormal basis $\{e_{B}\}$ for $T_{f(p)}N$ for each
$p\in M$ such that $e_{1},$ $e_{2}$ are tangent to $f(M)$ and the components $h_{ij}^{\alpha}$ of $A$ satisfy

(2.1) $(h_{ij}^{3})=(\begin{array}{ll}\lambda 00 -\lambda\end{array})$ , $(h_{\ell j}^{4})=(\begin{array}{ll}0 \mu\mu 0\end{array})$ , $(h_{ij}^{5})=$ $=(h_{ij}^{n})=0$

for some $\lambda$ and $\mu$ (see [9]). Using this fact with (1.3) we have at $P$

(2.2)
$| \tau(\gamma_{f})|^{2}=\sum_{B}(\sum_{i.j.a}R_{ijB}^{\alpha}h_{ij}^{\alpha})^{2}+\sum_{i.a}(\sum_{j}R_{jij}^{\alpha})^{2}$

$=(-R_{221}^{3} \lambda+R_{121}^{4}\mu)^{2}+(R_{112}^{3}\lambda+R_{212}^{4}\mu)^{2}+\sum_{\alpha}\{(R_{11a}^{3}-R_{22\alpha}^{3})\lambda$

$+(R_{12\alpha}^{4}+R_{21\alpha}^{4}) \mu\}^{2}+\sum_{a}\{(R_{212}^{\alpha})^{2}+(R_{121}^{\alpha})^{2}\}$ ,
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where $R$ denotes the curvature tensor of $N$. From the hypothesis for the sec-
tional curvature of $N$,

(2.3) $|R_{CBD}^{B}| \leqq\frac{1}{2}(a-b)$ , $|R_{CDE}^{B}| \leqq\frac{2}{3}(a-b)$

if $B,$ $C,$ $D$ and $E$ are different from one another (see [3]). By (2.2) and (2.3)

we have

$| \tau(\gamma_{f})|^{2}\leqq\{\frac{3}{2}(a-b)^{2}+\frac{16}{9}(n-3)(a-b)^{2}\}(|\lambda|+|\mu|)^{2}+\frac{1}{2}(n-2)(a-b)^{2}$

$\leqq(\frac{32n-69}{18})(a-b)^{2}(2\lambda^{2}+2\mu^{2})+\frac{1}{2}(n-2)(a-b)^{2}$

which implies our assertion. Q. E. D.

REMARK. If we do not use (2.1), we have a worse estimate (cf. [2], [9],

[10]).

Under the same notation and condition as in Lemma 2.1, let $ds^{2}$ be the
metric on $M$ induced by $f$ from $N$, and let $d_{S^{2}}^{\sim}$ be the metric on $M$ induced by
$\gamma_{f}$ from $G_{2}N$. We denote by $R$ and ICr the Gaussian curvature of $(M, d_{S^{2}}^{\sim})$ and
the mean curvature vector of the isometric immersion $\gamma_{f}$ : $(M, d3^{2})arrow G_{2}N$, respec-
tively. Assume that the sectional curvature of $G_{2}N$ is not greater than $d>0$ .

LEMMA 2.2. Under the same notation and condition as above,

(i) $d_{S^{2}}^{\sim}=(1+ \frac{1}{2}|A|^{2})ds^{2}$

(ii) $| \tilde{H}|\leqq c=\frac{(a-b)(32n-69)}{6(110n-240)^{1/2}}$ ,

(iii) $\tilde{K}\leqq c^{2}+d$ .
PROOF. The first statement is easily shown from (1.2) and the minimality

of $f$.
Let $\{\epsilon_{i}\}$ be a local orthonormal frame of $(M, ds^{2})$ , and set $\epsilon_{i}’=$

$\epsilon_{i}/(1+(1/2)|A|^{2})^{1/2}$ . Then we can see from (i) that $\{\epsilon_{i}’\}$ is a local orthonormal
frame of $(M, d_{S^{2}}^{\sim})$ . Let $G\nabla$ and $M\nabla$ be the Riemannian connection of $G_{2}N$ and
$(M, ds^{2})$ , respectively. We denote by $($ $)^{\perp}$ the projection to the normal space of
$(M, d_{S^{2}}^{\sim})$ in $G_{2}N$. Then we calculate

(2.4) $2H=\sum_{i}(G\nabla_{\gamma_{f*\epsilon_{i}’}}\gamma_{f*}\epsilon_{i}’)^{\perp}=\frac{1}{1+(1/2)|A|^{2}}\sum_{i}(G\nabla_{\gamma_{f*\epsilon_{i}}}\gamma_{f*}\epsilon_{i})^{\perp}$

$= \frac{1}{1+(1/2)|A|^{2}}\sum_{l}\{G\nabla_{\gamma_{f*\epsilon_{i}}}\gamma_{f*}\epsilon_{i}-\gamma_{f*}(M\nabla_{\epsilon_{t}}\epsilon_{i})\}^{\perp}=\frac{\tau(\gamma_{f})^{\perp}}{1+(1/2)|A|^{2}}$ .
Therefore from (2.4) and Lemma 2.1 we have



Stability of minimal surfaces 645

$| \tilde{H}|\leqq\frac{|\tau(\gamma_{f})|}{2+|A|^{2}}\leqq\frac{(a-b)\{(64n-138)|A|^{2}+18(n-2)\}^{1/2}}{6(2+|A|^{2})}$

$\leqq\max_{t\geq 0}\frac{(a-b)\{(64n-138)t+18(n-2)\}^{1/2}}{6(2+t)}$ ,

which implies (ii).

We choose a local orthonormal frame $\{F_{i}, F_{a}\}$ of $G_{2}N$ such that $F_{i}=\gamma_{f*}\epsilon_{i}’$

on $\gamma_{f}(M)$ , where $3\leqq\alpha\leqq 3n-4$. Let $\tilde{h}_{ij}^{a}$ be the components of the second funda-
mental form of $\gamma_{f}$ : $(M, d\tilde{s}^{2})arrow G_{2}N$. Then by the Gauss equation and (ii) we
have

$\tilde{K}\leqq d+\sum_{a}\{\tilde{h}_{11}^{a}\tilde{h}_{22}^{\alpha}-(\hslash_{12}^{\alpha})^{2}\}\leqq d+\sum_{\alpha}\frac{1}{4}(\tilde{h}_{11}^{\alpha}+\tilde{h}_{22}^{\alpha})^{2}\leqq c^{2}+d$ .

Thus the proof is complete. Q. E. D.

REMARK. It seems hard to obtain an estimate like (iii) by the same method
as in [1], [2] and [9].

3. Stability of minimal surfaces.

PROOF OF THEOREM 0.2. Let $\psi$ be a piecewise smooth function on $M$ such
that $\psi=0$ on $\partial M$, and let $\nu$ be a unit normal vector field to $f(M)$ . We shall
consider the second variation $I(\psi\nu, \psi\nu)$ of the area functional of $M$ for the
variational vector field $\psi\nu$ . Let $ds^{2}$ and $d_{S^{2}}^{\sim}$ be defined as in Section 2. We
denote by $M\nabla$ and $\perp\nabla$ the Riemannian connection of $(M, ds^{2})$ and the normal
connection of the normal bundle of $(M, ds^{2})$ induced by $f$, respectively. Let
$\{\epsilon_{i}\}$ be a local orthonormal frame of $(M, ds^{2})$ and let $R$ be the curvature tensor
of $N$. From the hypothesis we may assume that the sectional curvature of $N$

is bounded from above by $a$ and below by $b$ . Then by the second variational
formula for minimal submanifolds, we have

(3.1) $I( \psi\nu, \psi\nu)=\int_{M}(|^{\perp}\nabla(\psi\nu)|^{2}-\sum_{i}\langle R(\psi\nu, \epsilon_{i})\epsilon_{i}, \psi\nu\rangle-|A^{\psi v}|^{2})dM$

$\geqq\int_{M}\{|^{M}\nabla\psi|^{2}-(2a+|A|^{2})\psi^{2}\}dM$ .

Let $M\tilde{\nabla}$ and $d\tilde{M}$ denote the Riemannian connection of $(M, d_{S^{2}}^{\sim})$ and the area ele-
ment of $(M, d\tilde{s}^{2})$ , respectively. Then by Lemma 2.2 (i)

(3.2) $|^{M} \tilde{\nabla}\psi|_{1}^{2}=\frac{1}{1+(1/2)|A|^{2}}|^{M}\nabla\psi|^{2}$ , $d \tilde{M}=(1+\frac{1}{2}|A|^{2})dM$ .

Here and in what follows, $||_{1}$ is the norm with respect to $d_{S^{2}}^{\sim}$ . From (3.1) and
(3.2) we have
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(3.3) $I( \psi\nu, \psi\nu)\geqq\int_{M}(|^{M}\tilde{\nabla}\psi|_{1}^{2}-\frac{2a+|A|^{2}}{1+(1/2)|A|^{2}}\psi^{2})d\tilde{M}\geqq\int_{M}(|^{M}\tilde{\nabla}\psi|_{1}^{2}-\eta\psi^{2})d\tilde{M}$ ,

where

$\eta=\eta(a)=\{2a2$ $a<1a\geqq 1$

.
Let $\overline{\lambda}_{1}(M)$ denote the first eigenvalue of the Laplacian of $(M, d_{S^{2}}^{\sim})$ . The in-
equality (3.3) says that if $\tilde{\lambda}_{1}(M)>\eta$ , then $M$ is stable.

We assume that $N$ is n-dimensional. Let $c$ and $d$ be defined as in Lemma
2.2. Set

$c_{1}=$ min $\{\frac{8\pi}{2c^{2}+2d+\eta}$ , $\frac{4\pi}{\eta}\}$ ,

which is positive and depends only on the geometry of $N$. Using Proposition
3.3 and 3.10 of [1] with Lemma 2.2(iii) we can see that $\tilde{\lambda}_{1}(M)>\eta$ if $\overline{a}(M)<c_{1}$ ,

where $\tilde{a}(M)$ denotes the area of $(M, d\tilde{s}^{2})$ . It is obvious that $\tilde{a}(M)=$

$\int_{M}(1+(1/2)|A|^{2})dM$. Therefore, Theorem 0.2 is proved. Q. E. D.

For the proof of Theorem 0.3, we recall a theorem for the estimate of the
first eigenvalue of the Laplacian.

Let $f:Marrow L$ be an isometric immersion of a 2-dimensional compact Rie-
mannian manifold $M$ with piecewise $C^{1}$ boundary into a Riemannian manifold
$L$ . Let $H$ be the mean curvature vector of $f$ and let $R(L)$ be the injectivity
radius of $L$ . We denote by $a(M)$ and $\lambda_{1}(M)$ the area of $M$ and the first eigen-
value of the Laplacian of $M$, respectively. Set $F(i)= \min\{t, \pi/2\}$ for $t\in R$ .

THEOREM 3.1 ([12]). Under the same notation as above, assume that the
sectional curvature of $L$ is not greater than $\xi^{2}$ where $\xi>0$ . SuppOse the following:

$2|H|\leqq\kappa$, $a(M) \leqq\frac{\pi(1-t)}{\xi^{2}}\{\sin(F(\frac{\xi R(L)}{2}))\}^{2}$ ,

$\kappa\cdot\arcsin(\xi(\frac{a(M)}{\pi(1-t)})^{1/2})\leqq\frac{\xi t}{2(3-t)}$

for some $t$ such that $0<t\leqq t_{0}=(9-\sqrt{57})/2$ . Then

$\lambda_{1}(M)\geqq\frac{1}{4}[\frac{\xi t}{2(3-t)}\{\arcsin(\xi(\frac{a(M)}{\pi(1-t)})^{1/2})\}^{-1}-\kappa]^{2}$

PROOF OF THEOREM 0.3. We use the same notation as in the proof of
Theorem 0.2. Let $t_{0}$ be as in Theorem 3.1. Set

$c_{3}= \frac{\pi(1-t)}{d}\{\sin(F(\frac{\sqrt{d}t}{4(\sqrt{\eta}+c)(3-t)}))\}^{2}$, $c_{4}= \frac{\pi(1-t)}{d}\{\sin(F(\frac{\sqrt dR(G_{2}N)}{2}))\}^{2}$ ,

and
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$c_{2}= \max_{0<t\leq t_{0}}\min$
$\{c_{3}, c_{4}\}$ .

Apparently $c_{2}$ is positive under the hypothesis and depends only on the geometry
of $N$. We may apply Theorem 3.1 to the isometric immersion $\gamma_{f}$ : $(M, d_{S^{2}}^{\sim})arrow$

$G_{2}N$ because we have Lemma 2.2(ii). Then we find that if $\tilde{a}(M)<c_{2}$ , then
$\tilde{\lambda}_{1}(M)>\eta$ , which implies the stability of $M$ by (3.3). Thus the proof is com-
plete. Q. E. D.

Next we consider the value of $c_{2}$ in Theorem 0.3 when the ambient space
is the unit sphere by use of another Gauss map. In this case the value of $c_{1}$

in Theorem 0.2 is $4\pi/3$ (see Theorem 0.1).

PROPOSITION 3.2. Let $f:Marrow S^{n}$ be a mimmal immersion of a 2-dimensional
compact onented mamfold $M$ wzth $\mu eceunseC^{1}$ boundary $\partial M$ into the n-dimensional
unit sphere $S^{n}$ . There is a positive number $c_{5}$ such that if the second fundamental
form $A$ of $f$ satisfies $\int_{M}(1+(1/2)|A|^{2})dM<c_{5}$ , then $M$ is stable.

PROOF. We use the same notation as in the proof of Theorem 0.2, except
for the replacement of $N$ by $S^{n}$ and the definition of $d_{S^{2}}^{\sim}$ . Let $G_{2}(n+1)$ denote
the Grassmann manifold of 2-dimensional oriented planes through the origin in
$R^{n+1}$ , and let $\phi:S^{n}arrow R^{n+1}$ be the inclusion. Then the Gauss map $g:Marrow$

$G_{2}(n+1)$ of $\phi\circ f:Marrow R^{n+1}$ is defined naturally. We identify $G_{2}(n+1)$ with the
complex hyperquadric $Q_{n-1}=\{[Z]\in CP^{n} ; Z\in C^{n+1}, Z^{2}=0\}$ in the n-dimensional
complex projective space $CP^{n}$ of constant holomorphic sectional curvature 2. We
denote by $d_{S^{2}}^{\sim}$ the metric on $M$ induced by $g$ from $G_{2}(n+1)$ . The map $g$ is a
conformal harmonic map satisfying $d_{S^{2}}^{\sim}=(1+(1/2)|A|^{2})ds^{2}$ (see $[$4, $P$ . 18 $]$ , [6, $p$ .
446]). Therefore we find as in Lemma 2.2(ii) that $g:(M, d_{S^{2}}^{\sim})arrow G_{2}(n+1)$ is a
minimal immersion (cf. [4, p. 16]). Computing as in (3.1), (3.2) and (3.3) we have

$I( \psi\nu, \psi\nu)\geqq\int_{M}\{|^{M}\nabla\psi|^{2}-(2+|A|^{2})\psi^{2}\}dM\geqq\int_{M}(|^{M}\tilde{\nabla}\psi|_{1}^{2}-2\psi^{2})d\tilde{M}$ .
So the condition $\tilde{\lambda}_{1}(M)>2$ implies the stability of $M$.

As $G_{2}(n+1)$ is a simply-connected symmetric space (see [13, p. 284]) and its
maximum of the sectional curvature is 2 (see [8, p. 82]), the injectivity radius
of $G_{2}(n+1)$ is equal to $\pi/\sqrt{2}$ . We use Theorem 3.1 for the isometric immer-
sion $g:(M, d_{S^{2}}^{\sim})arrow G_{2}(n+1)$ . Then we find that the inequality

$\int_{M}(1+\frac{1}{2}|A|^{2})dM<c_{5}=\max_{0<t\leqq t_{0}}\frac{\pi(1-t)}{2}(\sin\frac{t}{4(3-t)})^{2}$

yields $\tilde{\lambda}_{1}(M)>2$ . Thus the proof is complete. Q. E. D.

REMARK. (i) In [5] and [12], under the same notation as in Theorem 0.3,

the integral $\int_{M}(a+(1/2)|A|^{2})^{2}dM$ is used for the estimate instead of



648 M. SAKAKI

$\int_{M}(1+(1/2)|A|^{2})dM$, where $a$ is chosen to be nonnegative.

(ii) By the computation we can see that $c_{\text{\’{o}}}$ in Proposition 3.2 is a little
greater than 0.0027. So Proposition 3.2 is better than Corollary of [12] as a
uniform estimate.

(iii) The same method as above is not available to the stability of surfaces
with constant mean curvature, because their Gauss map may not be conformal
and we cannot obtain a uniform estimate like Lemma 2.2.

4. Stability of harmonic maps.

For the proof of Theorem 0.4, we need the following lemma.

LEMMA 4.1. Let $f:(M, ds^{2})arrow N$ be a harmomc map from a 2-dimensional
Riemannian manifold $(M, ds^{2})$ to a Riemannian manifold $N$ such that dfl vanishes
only at isolated Points, and assume that the sectional curvature of $N$ is not greater
than $a>0$ . Let $\overline{K}$ be the Gaussian curvature of $(M’, d\overline{s}^{2})$ , where $d\overline{s}^{2}=(1/2)|df|^{2}ds^{2}$

and $M^{f}$ is the subset of $M$ where $|df|$ is non-zero. Then $\overline{K}\leqq a$ on $M’$ .
PROOF. Let $K$ be the Gaussian curvature of $(M, ds^{2})$ and let $\Delta$ be the

Laplacian of $(M, ds^{2})$ . Let $M\nabla$ and $N\nabla$ be the Riemannian connection of $(M, ds^{2})$

and $N$, respectively. We use $\nabla$ to denote the connection on $T^{*}M\otimes f^{-1}TN$ in-
duced from $M\nabla$ and $N\nabla$ . Then $\overline{K}$ is given by

(4.1) $\overline{K}=\frac{2}{\overline{|df|^{2}}}K+\frac{2}{|df|^{4}}(-\frac{r_{1^{q}}}{2}\Delta|df|^{2}+\frac{2}{|df|^{2}}|\frac{1}{2}M\nabla|df|^{2}|^{2})$ .
By the Weitzenbock formula (see [4])

(4.2) $- \frac{1}{2}\Delta|df|^{2}=-|\nabla df|^{2}+\sum_{i.j}\langle R(f_{*}\epsilon_{i}, f_{*}\epsilon_{j})f_{*}\epsilon_{j}, f_{*}\epsilon_{\ell}\rangle-K|df|^{2}$ ,

where $R$ is the curvature tensor of $N$ and $\{\epsilon_{i}\}$ is an orthonormal basis for $T_{p}M$

with respect to $ds^{2}$ at a point $P$ under consideration on $M’$ . We assume that $N$

is n-dimensional. We choose an orthonormal basis $\{e_{B}\}$ for $T_{f(p)}N$, and set
$f_{t}^{B}=(df)_{i}^{B}$ and $f_{ij}^{B}=(\nabla df)_{ij}^{B}$ . From (4.1), (4.2) and the hypothesis

(4.3) $\overline{K}\leqq a+\frac{4}{|df|^{6}}\{-\frac{1}{2}|df|^{2}\sum_{i.j.B}(f_{\ell j}^{B})^{2}+\sum_{j}(\sum_{i.B}f_{i}^{B}f_{ij}^{B})^{2}\}$ .
Set $T^{BC}=\Sigma_{i}f_{i}^{B}f_{i}^{c}$ . Then the $(nXn)$-matrix $(T^{BC})$ is symmetric and can be

assumed to be diagonal for a suitable choice of $\{e_{B}\}$ . Then $\Sigma_{i}f_{i}^{B}f_{i}^{c}=\delta^{BC}\lambda_{B}$ for
some $\lambda_{B}$ . This equation implies that the vectors $(f_{i}^{B})=(f_{1}^{B}, f_{2}^{B})$ are orthogonal
to one another in $R^{2}$ . So we may choose $\{\epsilon_{i}\}$ and $\{e_{B}\}$ such that

\langle 4.4) $(f_{i}^{1})=(\lambda, 0)$ , $(f_{i}^{2})=(0, \mu)$ , $(f_{i}^{3})=\ldots=(f_{i}^{n})=0$

for some $\lambda$ and $\mu$ . Using that $f_{11}^{B}+f_{22}^{B}=0,$ $f_{12}^{B}=f_{21}^{B}$ and (4.4) we can see that
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(4.5) $- \frac{1}{2}|df|^{2}\sum_{i.j.\beta}(f_{tj}^{B})^{2}+\sum_{J}(\partial_{B}^{f_{i}^{B}f_{ij}^{B})^{2}}$

$\leqq-(\lambda^{2}+\mu^{2})\{(f_{11}^{1})^{2}+(f_{12}^{1})^{2}+(f_{11}^{2})^{2}+(f_{12}^{2})^{2}\}+(\lambda f_{11}^{1}+\mu f_{12}^{2})^{2}+(\lambda f_{12}^{1}-\mu f_{11}^{2})^{2}$

$=-(\lambda f_{11}^{2}+\mu f_{12}^{1})^{2}-(\lambda f_{12}^{2}-\mu f_{11}^{1})^{2}\leqq 0$ .
Hence by (4.3) and (4.5), $\overline{K}\leqq a$ on $M’$ . Q. E. D.

REMARK. The author could not show the inequality (4.5) only from that
$f_{11}^{B}+f_{22}^{B}=0$ and $f_{12}^{B}=f_{21}^{B}$ (cf. [9]).

PROOF OF THEOREM 0.4. Let $\psi$ be a piecewise smooth function on $M$ such
that $\psi=0$ on $\partial M$, and let $\nu$ be a unit section of $f^{-1}7N$. We shall consider the
second variation $I(\psi\nu, \psi\nu)$ of the energy functional for the variational vector
field $\psi\nu$ . Let $M\nabla,$ $N\nabla,$ $R$ and $\{\epsilon_{i}\}$ be defined as in the proof of Lemma 4.1.
We denote by $f\nabla$ the connection on $f^{-1}TN$ induced from $N\nabla$ . Then by the
second variational formula for harmonic maps, we have

$I( \psi\nu, \psi\nu)=\int_{M}(|^{f}\nabla(\psi\nu)|^{2}-\sum_{i}\langle R(\psi\nu, f_{*}\epsilon_{i})f_{*}\epsilon_{i}, \psi\nu\rangle)dM$

$\geqq\int_{M}(|^{M}\nabla\psi|^{2}-a\psi^{2}|df|^{2})dM$ .

Let $M\overline{\nabla}$ and $d\overline{M}$ be the Riemannian connection of $(M, d\overline{s}^{2})$ and the area element
of $(M, d\overline{s}^{2})$ , respectively, where $d\overline{s}^{2}$ is defined as in Lemma 4.1. Then as in the
proof of Theorem 0.2, we have

(4.6) $I( \psi\nu, \psi\nu)\geqq\int_{M}(|^{M}\overline{\nabla}\psi|_{2}^{2}-2a\psi^{2})d\overline{M}$ ,

where $||_{2}$ is the norm with respect to $d\overline{s}^{2}$ . We denote by $\overline{a}(M)$ and $\overline{\lambda}_{1}(M)$ the
area of $(M, d\overline{s}^{2})$ and the first eigenvalue of the Laplacian of $(M, d\overline{s}^{2})$ , respec-
tively. Using Proposition 3.3 and 3.10 of [1] with Lemma 4.1 we find that if
$\overline{a}(M)<2\pi/a$ , then $\overline{\lambda}_{1}(M)>2a$ , which implies the stability of $f$ by (4.6). The

fact that $\overline{a}(M)=(1/2)\int_{M}|df|^{2}dM$ completes the proof. Q. E. D.

EXAMPLE. Let $f:S^{2}arrow S^{3}$ be the inclusion of $S^{2}$ as an equator of $S^{3}$ . Then
$f$ is harmonic. For any $\epsilon>0$ , let $D_{\epsilon}$ be a geodesic disk on $S^{2}$ with area $2\pi+\epsilon$ .
Then it is easy to see that $f$ is unstable on $D_{\epsilon}$ for any $\epsilon>0$ . By choosing $\epsilon$

arbitrarily close to $0$ , we find that Theorem 0.4 is strict in this case.

Let $f:(M, ds^{2})arrow N$ be a conformal harmonic map from a 2-dimensional Rie-
mannian manifold $(M, ds^{2})$ to a Riemannian manifold $N$ (for example, the Gauss
map of a minimal surface in a space form). Then the map $f:(M, d\overline{s}^{2})arrow N$

becomes a minimal immersion, where $d\overline{s}^{2}=(1/2)|df|^{2}ds^{2}$ . Applying Theorem 3.1
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to this isometric immersion, we find easily the following fact.

PROPOSITION 4.2. Let $f:Marrow N$ be a conformal harmonic map from a 2-
dimensional compact Riemanman manifold $M$ with piecewise $C^{1}$ boundary to a
Riemanman mamfold $N$, and assume that the sectional curvature of $N$ is bounded
from above and the injectivity radius of $N$ is posztive. Then there is a positive

constant $c_{6}$ depending only on $N$ such that if $(1/2) \int_{M}|df|^{2}dM<c_{6}$ , then $f$ is stable.
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