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1. Introduction.

The main purpose of this paper is to study what kind of space contains a
(closed) copy of $Q$, where $Q$ is the space of rationals with the usual topology.
We show that every non-scattered La\v{s}nev space contains a copy of $Q$ and every
non-scattered sequential space with character less than $b$ contains a copy of $Q$,
where $b$ is the minimum cardinal of an unbounded subfamily of $\omega\omega$ (see [2]).

In addition, let $X_{n}(n<\omega)$ be arbitrary regular topological spaces. If $Q$ is em-
bedded in $\Pi_{n<\omega}X_{n}$ as a closed subset, then there exists an $n<\omega$ such that $X_{n}$

contains a copy of $Q$, where $\omega$ is the first infinite ordinal number. Moreover
if we assume Martin’s axiom (MA), the statement holds for any infinite cardinal
number rc less than $c(=2^{\omega})$ instead of $\omega$ . The following theorems are of similar
form to the last theorem.

(1) If $\beta\omega$ is embedded in $\prod_{\alpha<\kappa}X_{\alpha}$ (rc $<cf(c)$), then there exists an $\alpha<\kappa$ such
that $X_{a}$ contains a copy of $\beta\omega$, where $\beta\omega$ is the $Stone-\check{C}ech$ compactification of
$\omega$ with the discrete toPology.

This theorem was proved by Malyhin [6] for the case $\kappa=\omega$ and by van
Douwen-Przymusinski [3] for the other case.

(2) (Nogura-Tanaka [8]) If $S(S_{2})$ is embedded in $\Pi_{\alpha<\iota}X_{a}(\kappa<b)$ , then there
exist $\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{n}$ such that $\Pi_{i=1}^{n}X_{a_{i}}$ contains a coPy of $S$ ( $S$ or $S_{2},$ resPectively),

where $S$ is a sequential fan and $S_{2}$ is Arens’ sPace (see [1] or [8]).

We note that the closedness of embedding in our last theorem can not be
dropped, because the product of infinitely many non-degenerate topological spaces
contains a copy of $Q$ .

By a mapping we mean a continuous, surjective function and by a space a
regular $T_{1}$ topological space.
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2. Nowhere dense mappings.

A mapping $f:Zarrow X$ is said to be nowhere dense if int $f^{-1}(x)=\emptyset$ for all $x\in X$.
It is easy to see that if $f$ is nowhere dense then $Z$ and $X$ have no isolated
point.

The following lemma is used throughout this paper.

LEMMA 2-1. Let $f:Qarrow X$ be a nowhere dense mapping. Then $X$ contains a
copy of $Q$ .

PROOF. Let $Seq=$ { $\langle n_{1},$
$n_{2},$

$\cdots$ , $n_{k}\rangle:n_{i}<\omega$ , l;l$i\leqq k, $k<\omega$ }. For $s=\langle n_{1},$ $n_{2}$ ,
... , $n_{k}\rangle$ $\in Seq$ we say that the length of $s$ is $k$ , and for $n<\omega s*\langle n\rangle$ denotes the
sequence $\langle n_{1}, n_{2}, \cdots , n_{k}, n\rangle$ .

By induction on the length of elements of Seq, for each $s\in Seq$ we shall
define a point $q_{s}\in Q$ , an open neighborhood $U_{s}$ of $q_{s}$ in $Q$ and an open neigh-
borhood $V_{s}$ of $f(q_{s})$ in $X$ as follows. Choose $q_{\langle\rangle}=0,$ $U_{\langle\rangle}=Q,$ $V_{\langle\rangle}=X$, where
$\langle\rangle$ is the empty sequence. Suppose that we have gotten $q_{s},$

$U_{s}$ and $V_{s}$ for $s\in$

Seq with the length less than or equal to $k$ satisfying $f(U_{s})\subset V_{s}$ . Choose a
sequence $\{q_{s*\langle n\rangle} : n<\omega\}$ satisfying:

(1) $\{q_{s*\langle n\rangle} : n<\omega\}$ converges to $q_{s}$ ,
(2) $\{q_{s*\langle n\rangle}:n<\omega\}\subset U_{s}$ ,
(3) $f(q_{s*\langle n\rangle})\neq f(q_{s})$ for $n<\omega$ and $f(q_{s*\langle n\rangle})\neq f(q_{s*\langle m\rangle})$ for $n\neq m$ .

We show the existence of such a seqence. Let $\{U_{n} : n<\omega\}$ be an open neigh-
borhood base of $q_{s}$ in $Q$ such that $U_{n+1}\subset U_{n}\subset U_{s}$ and $U_{n}\backslash \overline{U_{n+1}}\neq\emptyset$ for all $n<\omega$.
Since $f$ is nowhere dense, we can take $q_{s*\langle 0\rangle}\in(U_{0}\backslash \overline{U}_{1})\backslash f^{-1}\{f(q_{s})\}$ and $q_{s*\langle n\rangle}\in$

$\langle$ $U_{n}\backslash \overline{U_{n+1}})\backslash f^{-1}\{f(q_{s})\}\cup f^{-1}\{f(q_{s*\langle k\rangle}):k<n\}$ inductively. It is easy to see that
the sequence $\{q_{s*\langle n\rangle} : n<\omega\}$ has the properties (1)$-(3)$ . Take an open neighbor-
hood $V_{s*\langle n\rangle}$ of $f(q_{s*\langle n\rangle})$ so that

(4) $V_{s*\langle n\rangle}\cap V_{s*\langle m\rangle}=\emptyset$ for $n\neq m$ and $f(q_{s})\not\in\overline{V_{s*\langle n\rangle}}$ for $n<\omega$ .
(Note that $\{f(q_{s*\langle n\rangle}):n<\omega\}$ is a discrete subspace of $X.$ ) Next, take open sets
$U_{s*\langle}.{}_{\rangle}CU_{s}$ satisfying:

(5) $q_{s*\langle n\rangle}\in U_{s*\langle n\rangle}$ ;
(6) $f(U_{s*\langle n\rangle})\subset V_{s*\langle n\rangle}$ ;
(7) The diameter of $U_{s*\langle\cdot\rangle}$ is less than $1/n$ .

NOW we have gotten $q_{s},$
$U_{s}$ and $V_{s}$ for all $s\in Seq$.

Let $Y=\{q_{s} : s\in Seq\}$ . Since $Y$ is a countable metrizable space without an
isolated point, $Y$ is homeomorphic to $Q$ . We show that the restriction of $f$ ,
$i.e$ . $f|Y:Yarrow f(Y)$ , is a homeomorphism. Clearly $f|Y$ is one-to-one and con-
tinuous. We show that $f|Y$ is open. Let $U$ be an open neighborhood of $q_{s}$ .
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Then, there exists an $n<\omega$ such that $\cup\{U_{*\langle n\}\rangle} : m\geqq n\}\subset U$ by (1) and (7). By
(4), $f(q_{s})\not\in\overline{\cup\{V_{s*\langle k\rangle}:k\leqq n-1\}}$ . By (3) and (4), we get

$f(q_{s})\in f(Y)\cap(V_{s}\backslash U\{V_{s*\langle k\rangle} : k\leqq n-1\})$

$\subset f(Y)\cap(V_{\epsilon}\backslash \cup\{f(U_{s*\langle k\rangle}):k\leqq n-1\})\subset f(Y)\cap f(U\cap U_{s})$ .
Hence $f|Y$ is an open mapping. The proof is complete.

Any first countable space without an isolated point has a countable dense
in itself subset. Therefore we get,

PROPOSITION 2-2 (Folklore). Let $X$ be a non-scattered first countable sPace.
Then $X$ contains a copy of $Q$ .

A closed image of a metrizable space is said to be La\v{s}nev. It is known
that there exists a La\v{s}nev space which has no first countable point [5]. Neverthe-
less we have the following theorem.

THEOREM 2-3. Let $X$ be a $La\xi nev$ space. If $X$ is not scattered, then $X$ con-
tains a copy of $Q$ .

PROOF. Let $f:Marrow X$ be a closed map from a metric space $M$. Without
loss of generality we may assume that $X$ has no isolated point. By Theorem
4 of [5], we may also assume that $f$ is irreducible. (A map $f$ is said to be
irreducible if any non-empty open set of $M$ contains the full pre-image of some
point $x\in X.$ ) Choose $m(x)\in f^{-1}(x)$ for all $x\in X$ and put $Y=\{m(x):x\in X\}$ . We
show that $Y$ has no isolated point. Assume the contrary and let $m(x_{0})$ be an
isolated point in Y. There exists an open neighborhood $U$ of $m(x_{0})$ in $M$ such
that $U\cap Y=\{m(x_{0})\}$ . Since $f$ is irreducible and $f|Y$ is one-to-one, $f^{-1}(x_{0})\subset U$

and $f^{-1}(x)\cap U=\emptyset$ for every $x\neq x_{0}$ . Thus $X\backslash f(X\backslash U)=\{x_{0}\}$ is an open set.
This is impossible since $X$ has no isolated point. Thus $Y$ has no isolated point.
By Proposition 2-2 $Y$ contains a subspace $Z$ homeomorphic to $Q$ . Now it is
easy to show that $f|Z:Zarrow f(Z)$ is a nowhere dense mapping. Therefore, $f(Z)$

contains a copy of $Q$ by Lemma 2-1.

A space $X$ is sequential, if the following hold: A subset $A$ of $X$ is closed
if and only if the limit point of any convergent sequence in $A$ also belongs to
$A$ . The character $\chi(x)$ of $x(\in X)$ is the least cardinal of a neighborhood base
of $x$ .

THEOREM 2-4. Let $X$ be a sequential space without isolated points. If the
character $\chi(x)<b$ for each $x\in X$, then $X$ contains a copy of $Q$.

PROOF. By the sequentiality of $X$, we can get $x_{s}\in X$ and an open neigh-
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borhood $U_{s}$ of $x_{s}$ for each $s\in Seq$ so that the following hold:
(1) $\{x_{s*\langle k\rangle} : k<\omega\}$ converges to $x_{s}$ and $\{x_{\*\langle k\rangle} : k<\omega\}\subset U_{s}$ ;
(2) $U_{s*\langle k\rangle}\subset U_{s}$ for any $k<\omega$ and $U_{s*\langle j\rangle}\cap U_{s*\langle k\rangle}=\emptyset$ for $j\neq k$ .
From now on we work in the subspace $\{x_{s} : s\in S\}(=X^{*})$ and hence we let

$\{U_{a} : \alpha<\kappa\}$ be a base of $x*,$ $where\kappa<b$ . For each $\alpha<\kappa$, define $f_{\alpha}$ : $Seqarrow\omega$ by:

$f_{\alpha}(s)= \min$ { $k<\omega:x_{s}\in U_{\alpha}$ implies $x_{s*\langle j\rangle}\in U$. for every $j\geqq k$ }.

Since $\kappa<b$, there exists $h:Seq--\omega$ such that $f_{\alpha}(s)\leqq h(s)$ for almost all $s\in Seq$

for each $\alpha$ . Now, let

$T=$ { $s\in Seq:h(s|i)\leqq s_{i}$ for every $i\leqq lh(s)$ } and $Y=\{x_{s} : s\in T\}$ ,

where $lh(s)$ is the length of $s(=(s_{1}, \cdots , s_{lh(S)}))$ and $s|i=\langle s_{1}, \cdots , s_{i-1}\rangle$ . By de-
finition, $\langle\rangle$ belongs to $T$ and $s*\langle k\rangle\in T$ for almost all $k$ for each $s\in T$ .
Therefore, $Y$ is nonempty and without isolated points. We want to show that
$Y$ is first countable, but the next claim assures it.

CLAIM. For any $s\in T,$ $\alpha<\kappa,$ $x_{s}\in U_{a}$ , there exists $k<\omega$ such that $s*\langle]\rangle*t\in T$

implies $x_{s*\langle j\rangle*t}\in U_{\alpha}$ for any $j\geqq k$ and $t\in Seq$ .

By the dePnition of $h$ , there exists a finite subset $H$ of Seq such that $f_{\alpha}(t)$

$h(t) for every $t\in Seq\backslash H$. Pick $k$ so that f\alpha (s)$k and for any $j\geqq k$ any ex-
tension of $s*\langle j\rangle$ does not belong to $H$. We show this $k$ is the desired one in
the claim by induction on the length of $t\in Seq$ . Let illl $k$ . In case $t=\langle\rangle$ , the
conclusion clearly holds. In case $t=\overline{t}*\langle m\rangle$ and $s*\langle j\rangle*\overline{t}*\langle m\rangle\in T,$ $s*\langle j\rangle*\overline{t}\in T$ and
hence $x_{s*\langle f\rangle*i}\in U_{a}$ by induction hypothesis. Then, $x_{s*\langle j\rangle*\overline{t}*\langle t\rangle}\in U_{\alpha}$ holds for any
$i\geqq f_{\alpha}(s*\langle j\rangle*\overline{t})$ . By the property of $k,$ $s*\langle j\rangle*\overline{t}$ does not belong to $H$ and hence
$f_{\alpha}(s*\langle j\rangle*\overline{t})\leqq h(s*\langle j\rangle*\overline{t})\leqq m$ , which implies the conclusion.

REMARK 2-4. Every La\v{s}nev space is Fr\’echet. (A space $X$ is said to be
Fr\’echet if $x\in\overline{A}$ for $A\subset X$, then there exists a sequence in $A$ converging to the
point $x.$ ) Therefore it is natural to ask whether every non-scattered Fr\’echet
space contains a copy of $Q$ . In the appendix we shall show the existence of a
non-scattered Fr\’echet space containing no copy of $Q$ in a strong sense under
the continuum hypothesis. We do not know whether the set theoretic hypo-
thesis is necessary or not. On the other hand, if one drops the condition about
the cardinality of characters in Theorem 2.4, one can easily get a sequential
space which has no isolated point but does not contain a copy of $Q$ . In fact
the space $S_{\omega}$ defined in [1] has such a property. We leave its easy proof to
the reader.
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3. Embedding to product spaces.

THEOREM 3-1. Let $X$ and $Y$ be spaces. If $X\cross Y$ contains a copy of $Q$, then
either $X$ or $Y$ contains a copy of $Q$ .

PROOF. Assume $QcX\cross Y$ . Let $p_{X}$ and $p_{Y}$ be the projections from $X\cross Y$

to $X$ and $Y$ respectively. Let $p_{X}|Q:Qarrow X$ be the restriction of $p_{X}$ to $Q$ .
Without loss of generality we may assume $p_{X}|Q$ is surjective. If $int_{Q}p_{X}|Q^{-1}(x)$

$\neq\emptyset$ for some $x\in X$, then $p_{X}|Q^{-1}(x)$ contains a copy of $Q$ , therefore $Y$ contains
a copy of $Q$ . We have nothing to do in this case. Assume $int_{Q}p_{X}|Q^{-1}(x)=\emptyset$

for every $x\in X$. Then $p_{X}|Q$ is a nowhere dense mapping. Therefore, $X$ con-
tains a copy of $Q$ by Lemma 2-1.

A space $X$ satisfies the countable chain condition, if there exists no uncount-
able pairwise disjoint family of non-empty open subsets.

LEMMA 3-2 (MA). Let $Z$ be a space of cardinality less than $c$ which has no
isolated points and satisfies the countable chain condition, and $X_{\alpha}(\alpha<\kappa)$ be arbitrary
spaces, where $\kappa<c$ . If $Z$ is embedded in $\Pi_{\alpha<K}X_{\alpha}$ as a closed subset, then there
exzst a non-empty open set $U$ of $Z$ and an index $\alpha\in\kappa$ such that the mapping
$p_{\alpha}|U$ . $Uarrow p_{\alpha}(U)$ is nowhere dense, where $p_{a}$ : $\Pi_{a<K}X_{\alpha}arrow X_{\alpha}$ is the projection.
Moreover, if $Z$ is countable and $\kappa=\omega$, we do not need MA.

PROOF. Assume the contrary, $i.e.$ , for any $\alpha<\kappa$ and non-empty open sub-
set $U$ of $Z$ there exists $x\in p.(U)$ such that $int_{Z}p_{\alpha}|U^{-1}(x)\neq\emptyset$ . Then
$\cup\{int_{Z}p_{\alpha}|Z^{-1}(p_{\alpha}(z)):z\in Z\}$ is a dense open subset of $Z$ for each $\alpha<\kappa$ . Let $\mathscr{F}$

be the set of all finite subsets of rc and for each $F\in \mathscr{F}$ let $\pi_{F}$ : $Zarrow\Pi_{\alpha\in F}X_{\alpha}$ be
the restriction of the projection to $Z$ . Then,

$int_{Z}\pi_{F}^{-1}(x)=\bigcap_{i=1}^{n}int_{Z}p_{\alpha_{i}}^{-1}(x_{\alpha_{i}})$

for each $x=(x_{\alpha_{1}}, x_{\alpha_{3}}, \cdots , x_{\alpha_{n}})\in\pi_{F}(Z)$ . Consequently,
(1) $U\{int_{Z}\pi_{F}^{-1}(\pi_{F}(z)):z\in Z\}$ is also dense open.

Let $P=\{p\in\Pi_{\alpha\in F}X_{\alpha} : int_{Z}\pi_{F}^{-1}(p)\neq\emptyset, F\in \mathscr{F}\}$ and $p\leqq q$ if and only if $p$ is an ex-
tension of $q$ for $p,$ $q\in P$. Note that $p$ is incompatible with $q$ if and only if

$int_{Z}\pi_{domp}^{-1}(p)\cap int_{Z}\pi_{domq}^{-1}(q)=\emptyset$ ,

where dom $p$ denotes the domain of $p$ . Then, $P$ satisfies the countable chain
condition by the countable chain condition of $Z$ . Set $D_{z}=\{p:\pi_{domp}(z)\neq p\}$ for
$z\in Z$ and $D_{a}=\{p:\alpha\in domp\}$ for $\alpha\in\kappa$ . We first show that $D_{z}$ is dense in $P$

for all $z\in Z$ . Let $p\in P\backslash D_{z}$ . Then $\pi_{domp}(z)=p$ . Since $Z$ has no isolated point
and $int_{Z}\pi_{dom_{P^{-1}}}(p)$ is a non-empty open subset of $Z,$ $int_{Z}\pi_{domp}^{-1}(p)\backslash \{z\}$ is non-
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empty. Hence there exist $F\in \mathscr{F}$ and an open set $U$ in $\Pi_{\alpha\in F}X_{\alpha}$ such that
(2) dom $p\subset F$,
(3) $\emptyset\neq\pi_{F^{-1}}(U)cint_{Z}\pi_{domp}^{-1}(p)$ ,
(4) $z\not\in\pi_{F^{-1}}(U)$ .

Using (1) we get $z’\in Z$ such that $\pi_{F^{-1}}(U)\cap\pi_{F^{-1}}(\pi_{F}(z’))\neq\emptyset$ . Put $q=\pi_{F}(z’)$ .
Then $q\in U$ and hence $q\leqq pby(2)and(3)$ . Since $\pi_{F}(z)\neq q$ by (3) and (4), $q\in D_{z}$ .
These show that $D_{z}$ is dense in $P$. Next we show that $D_{\alpha}$ is dense in $P$ for
each $\alpha<\kappa$ . Let $p\in P$ and $F=\{\alpha\}\cup domp$ . By (1), there exists $z\in int_{Z}\pi_{F^{-1}}(\pi_{F}(z))$

$\cap int_{Z}\pi_{dom_{P^{-1}}}(p)$ . Let $q=\pi_{F}(z)$ . Then $q\in P$, dom $q=F$ and $int_{Z}\pi_{F^{-1}}(q)\subset$

$int_{Z}\pi_{domp}^{-1}(P)$ . We get $q\leqq P$ and $q\in D_{\alpha}$ , therefore $D_{\alpha}$ is dense in $P$.
Put $\Delta=\{D_{z} : z\in Z\}\cup\{D_{\alpha} : \alpha<\kappa\}$ . Then $\Delta$ is a family of dense subsets of

$P$ with $card\Delta\leqq\kappa<c$ . Let $G$ be a generic filter for $\Delta$ . (In the case $\kappa=\omega$, we
do not need MA because $\Delta$ is countable.) Then $UG\in\Pi_{\alpha<\kappa}X_{\alpha}$ because, for each
$\alpha\in\kappa$, there exists $p\in G$ satisfying $\alpha\in domp$ . For each $z\in Z$, choose $p\in G\cap D_{z}$ ,
then $P\neq\pi_{domp}(z)$ . Thus $\cup G\not\in Z$. On the other hand, let $F=\{\alpha_{1}, \alpha_{2}, \cdot , a_{n}\}$

$\in \mathscr{F}$ . Choose $p_{i}\in G$ such that $\alpha_{i}\in domp_{t}$ for $i=1,2,$ $\cdots$ , $n$ and then there exists
$p\in G$ satisfying $p\leqq p_{i}$ for $i=1,2,$ $\cdots$ , $n$ . Then $F\subset$dom $p$ . There exists $z\in Z$

such that $\pi_{F}(UG)=\pi_{F}(z)$ . This shows $UG\in\overline{Z}=Z$, which is a contradiction.
The proof is complete.

THEOREM 3-3. Let $Z$ be a countable sPace without an isolated Point. Then,
(1) $Z$ can not be embedded in the product of countably many scattered spaces

as a closed subset.
(2) (MA) $Z$ can not be embedded in the product of $\kappa$-many scattered spaces

as a closed subset, where $\kappa<c$.
PROOF. (1) If $Z$ is embedded in $\Pi_{n<\omega}X_{n}$ as a closed subset, where $X_{n}(n<\omega)$

are scattered spaces. By Lemma 3-2 there exist an $n\in\omega$ and a non-empty open
set $U$ of $Z$ such that the mapping $p_{n}|U:Uarrow p_{n}(U)$ is nowhere dense. It is
impossible because the image of a space by a nowhere dense mapping has no
isolated point. The proof of the case (2) is similar.

THEOREM 3-4. (1) If $Q$ is embedded in $\prod_{n<\omega}X_{n}$ as a closed subset, then at
least one factor space $X_{n}$ contains a copy of $Q$ , where $X_{n}(n<\omega)$ are arbitrary
spaces.

(2) (MA) If $Q$ is embedded in $\Pi_{\alpha<\kappa}X_{\alpha}$ as a closed subset, then at least one
factor space $X_{\alpha}$ contains a $coPy$ of $Q$, where $\kappa<c$ and $X_{\alpha}(\alpha<\kappa)$ are arbitrary
spaces.

PROOF. (1) If $Q$ is embedded in $\Pi_{n<\omega}X_{n}$ as a closed subset, then by Lemma
3-2 there exist $n<\omega$ and an open subset $U$ of $Q$ such that the mapping $p_{n}|U$ :
$Uarrow p_{n}(U)$ is nowhere dense. Since $U$ is homeomorphic to $Q,$ $p_{n}(U)$ contains a
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copy of $Q$ by Lemma 2-1. The proof is complete. The proof of (2) is similar.

In Theorem 3-4, we have concluded that at least one factor space contains
a copy of $Q$ . It is natural to ask whether the factor space contains a “closed”
copy of $Q$ ? We show that it is impossible.

EXAMPLE 3-5. There exists a space $X$ which does not contain a closed
copy of $Q$ , but $X^{2}$ contains a closed copy of $Q$ . Let $X=R$ ( $=the$ set of reals)

and retopologize $X$ as follows. The set of $\{\{x\in R:q-1/n<x<q+1/n\}:n<\omega\}$

is a neighborhood base of $q$ in $X$ for $q\in Q$ and the set of { $\{x\in R:P\leqq x<P+1/n\}$ :
$n<\omega\}$ is a neighborhood base of $P$ in $X$ for $p\in R\backslash Q$ . Clearly $X$ does not con-
tain a closed copy of $Q$ but the set $\{(-q, q):q\in Q\}$ is a closed subset in $X^{2}$

which is homeomorphic to $Q$ .
REMARK 3-6. Hechler ([4], see [2, \S 8]) showed that $Q$ is embedded in $d\omega$

as a closed subset but not in $\kappa\omega$ for any $\kappa<d$, where $d$ is the minimum cardinal
of a dominating family of $\omega\omega$ . Is our Theorem 3-4 (2) provable for $\kappa<d$ within
ZFC :

Appendix.

Here, under the assumption of the continuum hypothesis (CH), we show the
existence of a Fr\’echet space without isolated points which does not contain $Q$

in any generic extension obtained by adjoining Cohen reals. Let $P$ be the poset
adjoining a single Cohen real ($i.e$ . $P=\{p|p:narrow 2$ , for some $n<\omega\}$ ). Since any
subset of $\omega$ in a Cohen extension is in some generic extension by $P$, it suffices
to show the existence of a base 9 of a space on $\omega$ which satisfies the follow-
ing (1) $\sim(3)$ .

(1) $(\omega, 9)$ is a space without isolated points.
(2) $|\vdash_{P}(\omega, 9)$ is a Fr\’echet space”.
(3) $|\vdash_{P}Q$ is not embeddable in $(\omega, 9)$ .

In order to guarantee the condition (3), we introduce a certain topological pro-
perty (say $E$-property). A space $X$ has E-property, if for any convergent
sequences $\langle x_{k}|k<\omega\rangle,$ $\{\langle y_{n}^{k}|n<\omega\rangle:k<\omega\}$ of $X$ with $\lim_{narrow\omega}y_{n}^{k}=x_{k}(k<\omega)$ , there
exists a function $f:\omegaarrow\omega$ such that { $y_{n}^{k}$ : $k<\omega$ &n<f(k)} does not converge.
It is easy to see that $Q$ is not embeddable to any space $X$ with E-property.
We shall construct the space $(\omega, 9)$ such that

(3) $|\vdash_{P}(\omega, 9)$ has E-property”.

Henceforth, we assume CH. Let us assume that we can construct $9_{\alpha}$ and $8_{\alpha}^{n}$

$(n<\omega, \alpha<\omega_{1})$ which satisfy the following (4) $\sim(11)$ .
(4) $9_{a}$ is a countable Boolean subalgebra of $P(\omega)$ , where $P(\omega)$ is the power
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set of $\omega$ .
For each $n<\omega$, set $9_{\alpha}^{n}=\{a\in 9_{\alpha} : n\in a\}$ .

(5) $\mathcal{E}_{\alpha}^{n}$ is a countable ideal of $P(\omega)$ .
(6) $9_{\alpha}\subset 9_{\beta}$ and $\mathcal{E}_{\alpha}^{n}\subset \mathcal{E}_{\beta}^{n}$ for $n<\omega,$ $\alpha<\beta<\omega_{1}$ .
(7) Any nonempty $a\in 9_{a}$ is infinite.
(8) For any distinct $n,$ $m<\omega$, there exists an $a\in 9_{0}^{n}$ such that $n\in a$ and

$m\in\omega\backslash a$ .
(9) $b\subset a(mod.f)$ for any $a\in 9_{a}^{\eta}$ and $b\in \mathcal{E}_{\alpha}^{n}$ , where $b\subset a(mod.f)$ means that

$b\backslash a$ is finite.
(10) For any $n<\omega,$ $P$-name $x$ and $p\in P$, if $P\vdash-Px\subset\omega’$ , then there are

$\alpha<\omega_{1}$ and $q\leqq P$ such that
(10.1) There exists an $a\in 9_{\alpha}^{n}$ so that $q|\vdash_{P}x\cap a$ is finite” ;

or
(10.2) There exists an infinite $b\in \mathcal{E}_{\alpha}^{n}$ so that $q|\vdash_{P}b\subset x’$ .

(11) For any $n<\omega,$ $p\in P$ and $P$-names $x,$ $f$ , if $P$ forces
(11.1) $xC\omega\ f=\langle y_{k}|k\in x\rangle:xarrow P(\omega)$ ;
(11.2) $x,$ $y_{k}$ are infinite and $x\cap y_{k}=\emptyset$ for any $k\in x$ ;
(11.3) $y_{k}\cap y_{l}=\emptyset$ for any distinct $k,$ $l\in x$ , then there are $\alpha<\omega_{1}$ and $q\leqq P$

such that
(11.4) There exists an $a\in 9_{\alpha}^{n}$ so that $q|\vdash_{P}x\backslash a$ is infinite”

or
(11.5) There exist an $a\in 9_{\alpha}^{k}$ and $k<\omega$ so that $q1\vdash_{P}k\in x\ y_{k}\backslash a$ is infinite’

or
(11.6) There exists an $a\in 9_{\alpha}^{n}$ so that $q|\vdash_{P}$

“
$y_{i}\backslash a\neq\emptyset$ for infinitely many

$k\in x’$ .
Set $9=\bigcup_{\alpha<\omega_{1}}9_{\alpha}$ and $\mathcal{E}^{n}=\bigcup_{\alpha<\omega_{1}}\mathcal{E}_{\alpha}^{n}$ . Since 9 is a Boolean algebra, (8) implies
that $(\omega, 9)$ is a $0$-dimensional Hausdorff space. Moreover, every non-empty ele-
$ment\leq of9^{n}$ is infinite and hence $(\omega, 9)$ satisfies (1). It follows from (10) and
(11) that $(\omega, 9)$ also satisfies (2) and (3). Hence, it suffices to show the ex-
istences of such $9_{\alpha}$ and $\mathcal{E}_{\alpha}^{n}(n<\omega, \alpha<\omega_{1})$ . Let $X$ be the set of all $(n, x, p, f)s$

which satisfy the assumptions of (10) or (11). Since CH is assumed, the cardi-
nality of 3: is $\omega_{1}$ . Let $(n_{\alpha}, x_{\alpha}, p_{\alpha}, f_{a})(\alpha<\omega_{1})$ be an enumeration of Eie. By
induction on $\alpha<\omega_{1}$ we shall construct $9_{\alpha}$ and $\mathcal{E}_{\alpha}^{n}$ (for $n<\omega_{1}$ ) which satisfy
(4) $\sim(9)$ and (10), (11) in case $(n, x, p, f)$ is $(n_{\alpha}, x_{\alpha}, p_{\alpha}, f_{\alpha})$ . The following
lemma gives each step of the inductive construction.

LEMMA (CH). Suppose that we are given a system $(\ovalbox{\tt\small REJECT}, \mathscr{I}^{n} : n<\omega)$ where $B$

is a countable Boolean subalgebra of $P(\omega)$ and $\mathscr{I}^{n}$ are countable ideals of $P(\omega)$

with the following:
(CO) For distinct $n$ and $m$ , there exist $a\in S^{n}$ and $b\in B^{m}$ such that $a\cap b$
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$=\emptyset$ , where $B^{k}$ denotes the set $\{a\in B:k\in a\}$ ;
(C1) Any nonempty $a\in B$ is infinite;
(C2) $b\subset a(mod.f)$ for any $a\in B^{n},$ $b\in \mathscr{I}^{n}(n<\omega)$ .

Then, the following (C3) and (C4) hold.
(C3) Suppose that $n<\omega,$ $p\in P$ and $P$-name $x$ satisfy $p|\vdash xC\omega$ &a\cap x is

infinite for any $a\in B^{n}$ . Then, there exist $q\leqq p$ and $b\subset\omega$ such that
(C3.1) $(B,\overline{\mathscr{I}}^{i} : i<\omega)$ satisfies (CO), (C1) and (C2);
(C3.2) $q|\vdash b\cap x$ is infinite;

where $\overline{\mathscr{I}}^{n}$ denotes the ideal generated by $\mathscr{I}^{n}\cup\{b\}$ and $\overline{\mathscr{I}}^{i}=\mathscr{I}^{i}$ for $i\neq n$ .
(C4) Suppose that $n<\omega,$ $p\in P$ and $P$-names $x,$ $f$ satisfy

(C4.1) $|\vdash x\subset\omega,$ $x$ is infinite and $f=\langle y_{k}|k\in x\rangle$ ;
(C4.2) $|\vdash x\cap y_{k}=\emptyset$ and $y_{k}$ is infinite for any $k\in x$ ;
(C4.3) $|\vdash y_{k}\cap y_{l}=\emptyset$ for distinct $k,$ $l\in x$ ;
(C4.4) $p|\vdash x\subset a(mod.f)$ for any $a\in B^{n}$ ;
(C4.5) $p|\vdash y_{k}\subset a(mod.f)$ for any $a\in S^{k}$ and $k\in x$ .

Then there are $q\leqq p$ and $n\in a\subset\omega$ such that
(C4.6) $(\mathfrak{B}, \mathscr{I}^{i} : i<\omega)$ satisfies (CO), (C1) and (C2);
(C4.7) $q|\vdash y_{k}\backslash a\neq\emptyset$ for infinitely many $k\in x$ ;

where ta denote the Boolean subalgebra generated by $B\cup\{a\}$ .
PROOF. (C3) Suppose that $n<\omega,$ $p\in P$ and a $P$-name $x$ satisfy the assump-

tions of (C3). Let $\langle a_{i}|i<\omega\rangle$ be an enumeration of $B^{n}$ and $\langle p_{i}|i<\omega\rangle$ an enumera-
tion of $\{q\in P:q\leqq p\}$ such that for any $q\leqq p$ there are infinitely many $i<\omega$ such
$that_{A}^{\vee}q=p_{i}$ . Since $p|\vdash x\cap a$ is infinite for any $a\in\ovalbox{\tt\small REJECT}^{n}$ , by induction on $i<\omega$

we can take $k_{i}<\omega$ and $q_{i}\leqq p_{i}$ so that $k_{i}<k_{i+1}$ and $k_{i} \in\bigcap_{j\leq i}a_{j}$ and $q_{i}|\vdash k_{i}\in x$ .
Set $b=\{k_{i} : i<\omega\}$ . It is easy to see that $p$ and $b$ are the desired ones.

(C4) Suppose that $n<\omega,$ $p\in P$ and $P$-names $x,$ $f$ satisfy the assumptions
of (C4). Since there are no problems in the case that there exist q$P and
$a\in\ovalbox{\tt\small REJECT}^{n}$ such that $q|\vdash y_{k}\backslash a\neq\emptyset$ for infinitely many $k\in x’$ , we may assume that
$p|\vdash$ For any $a\in B^{n}\{k\in x:y_{k}\backslash a\neq\emptyset\}$ is finite”.

CLAIM 1. There exists a $c\subset\omega$ such that n\’e $c,$ $p|\vdash c\cap y_{k}\neq\emptyset$ for infinitely
many $k\in x’,$ $c\cap b$ is finite for any $b\in U_{i<\omega}\mathscr{I}^{i}$ and $c\subset a(mod.f)$ for any $a\in B^{n}$ .

PROOF OF CLAIM 1. Since $\langle B, \mathscr{I}^{i} : i<\omega\rangle$ satisfy (CO) and (C2) also in the
generic extension by $P,$ $p|\vdash y_{k}\cap b$ is finite for any $\in \mathscr{I}$“”. Hence, we can take
a $P$-name $z$ so that

$p|\vdash z\subset U_{k\in x}y_{k}$ & $|z\cap y_{k}|_{-}1$ for any $k\in x’$ ,
$p|\vdash z\cap b$ is finite for any $b\in \mathscr{I}^{n}$ ,
$p|\vdash z$ is infinite”.

Then, $p|\vdash z\subset a(mod.f)$ for any $a\in B^{n}$ . Similarly as in the proof of (C3),

we can take $c\subset\omega$ so that $n\not\in c,$ $c$ is infinite, $c\cap b$ is finite for any $b\in \mathscr{I}^{n},$ $c\subset a$
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$(mod.f)$ for any $a\in S^{n}$ and $p|\vdash c\cap z$ is infinite”. This $c$ is the required one.
The proof of Claim 1 is complete.

Let $c$ be one as in Claim 1.

FACT [7, 1.1.2 Lemma]. Let ec and $0\oint$ be countable subsets of $P(\omega)$ such
that $x\cap y$ is finite for each $x\in X$ and $y\in y$ . Then, there exists an $a\subset\omega$ such
that $x\subset a(mod.f)$ for any $x\in X$ and $a\cap y$ is finite for any $y\in\eta$ .

Applying this fact to $\mathscr{I}^{i}$ and $\{c\}\cup\{e_{j} : j<i\}\cup U_{j>i}\mathscr{I}^{j}$ inductively, we get
the following sequence $\langle e_{i}|i<\omega\rangle$ .

CLAIM 2. There exists a sequence $\langle e_{i}|i<\omega\rangle$ such that $n\in e_{n}$ and $\langle e_{i}|i<\omega\rangle$

is a partition of $\omega\backslash c$ and $b\subset e_{i}$ (mod.f) for any $b\in \mathscr{I}^{i}(i<\omega)$ .
Let $\langle e_{i}|i<\omega\rangle$ be one as in Claim 2 and define $s_{i}(i<\omega)$ by: $s_{0}=\omega\backslash c$ and

$s_{i+1}= \bigcup_{j\in S}e_{f}i$ for each $i<\omega$ . Set $a= \bigcap_{j<\omega}s_{j}$ . Then, the following hold: $n\in a$

and $a\cap c=\emptyset$ ; $e_{i}\subset a$ for any $i\in a;e_{i}\subset\omega\backslash a$ for any $i\in\omega\backslash a$ .
NOW, $q=P$ and $a$ satisfy (C.4.6) and (C.4.7) and the proof of Lemma has

been completed.
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