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§1. Introduction.

Throughout this paper, the letter £ denotes an open subset of R™. No
further restrictions are imposed on £ unless the contrary is explicitly stated.
Other notations used in this paper will be explained at the last part of this
section.

Let f be a measurable function on £ and let 2 and ¢ be positive numbers.
Following A.P. Calderén [1], we define NAf)x), x£, as follows. Fix an
x€$£. For polynomial functions P on R™ of degree less than 4, we set

Nif, PX) = sup ot (o] 1 £0)— PO Iedy) ™
B I s QAT Q1 e '
If there exists a polynomial P of degree less than 2 for which NX(f, P)(x) is
finite, then such P is unique. If this is the case, we denote the unique P by
P, and set

NX(f)x) = NXf, Po)(x).

If Nif, P)(x)=c for all polynomials P of degree less than A, then we set
NUf)(x)=c0.
The following theorem is due to Calderén (see [1; Theorem 4 and Lemma 7]).

THEOREM A. Let k be a positive integer, 1<p< oo, 1<q<p and fe L (Q).
Then NE(f) belongs to LP(Q) if and only if all the weak derivatives 0°f of order
la|=Fk belong to L?(Q).

As a matter of fact, Calderdn’s statement is slightly different from the one
given above. He defined Ni(f)(x) by using balls in place of cubes and stated
the result only for 1<¢<p<oo. Calderén’s argument, however, actually covered
the case g=1 or p=oo, and still holds true if one replaces “balls” by “cubes”.
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search (C63540104), Ministry of Education, Science and Culture, Japan.
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The purpose of the present paper is to generalize Theorem A to the case
p=1. We shall explain a typical one of our results.
Take a function ¢ such that

(L) é < C3(BO, 1)) and Sgb(x)dx =1,
For fe9'(Q), we define [} o(x), x&£2, by

f.0(x) =sup{|<f, (@)(x—)]; 0<t<dis(x, 29}.

For p with 0<p<1, we denote by H?(Q) the set of f=9'(2) for which
f5.0€L?(). The set H?(Q) does not depend on the choice of ¢ (see [9].
(In Section 2, we shall summarize some properties of H?() and other related
spaces.)

One of our main results reads as follows.

THEOREM 1. Let k be a positive integer and 0<p=l, and suppose
1+k/n>1/p. Then

(i) if f is a measurable function on 2 and N%(f)e L?(Q), then f< Li,(R2)
and the weak derivatives 0°f of order |a|=Fk belong to H?(Q);

(ii) conversely, if €D () and 0°f=H?(Q) for |a|=k, then f&LL(2)
and N%(f)eL?(Q).

We also give variants of [Theorem 1, some of which hold in the case
1+k/n<1/p as well. The main results of the present paper will be found in
Section 4.

DeVore and Sharpley [3] introduced a maximal function which is equivalent
to N f) and, using it, studied the properties of the space

CH) = {f€L?(Q); Ny(f)eL (D)}

for &, p>0. Our results will give a characterization of this space in the case
that dis(x, £2°¢), x=£, is bounded and that 2 and p satisfy the conditions of
[Theorem 1l; see Remark h) in Section 4. We shall use some results of [3] in
proving our results; the results of which we need will be summarized
in Section 3. '

Calderén and Scott [2] used the maximal function N%f) and the notion of
Peano derivative to establish Sobolev type inequalities. Our results will give a
relation between the distributional derivative and the Peano derivative; see

[Theorem 4] in Section 4.

NoTATIONS. The following notations are used throughout this paper. The
letter C denotes a positive constant, which may be different in each occasion.
The constant C depends only on the dimension n of the Euclidean space R™
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and other explicitly indicated parameters. The letter NN denotes the set of
positive integers. A cube is a subset of R™ of the form Q={(x;)€R™; a,<x:
<a;+t (=1, ---, n)} with (a;)eR™ and t>0. We denote the sidelength of @
by /(Q)=t and the center of Q by x¢o=(a;+¢/2). If Q isa cube and A is a
positive number, then AQ denotes the cube with the same center as @ and with
(AQ)=AlQ). If a;=2/k; /=1, ---, n)and t=27 with k&, ---, k, and ;j integers,
then the corresponding cube @ is called a dyadic cube. If @ and Q' are
dyadic cubes such that Q. Q’ and (Q’)=2[(Q), then @’ is called the dyadic
double of Q. For x<R™ and ¢>0, the ball B(x,t) is defined by B(x, t)=
{yeR"; |x—y|<t}. For keNU{0}, we denote by P, the set of polynomial
functions on R™ of degree at most .. We use the multi-index notation in the
customary way (see, for example, [6; page XV]). If E is a measurable subset
of R™ and f is a measurable function defined on a set including E, then we

shall abbreviate SEf(x)dx to SEf and define [f],.z 0<p<co, by

£ls.e=({,1£17)""  for 0<p<eo

and by | flle z=¢€ss sup{|f(x)|; x€E}. If E=R", then we shall abbreviate
SEf and | fllp.z to S f and || f|, respectively. The Lebesgue measure of ECR™

is denoted by |E|. If p is a positive number and f is a measurable function
on 2, then M,(f)x), x4, is defined by
1/p
My =sup(e| - 1£12)

If fea'(Q) (i.e., f is a distribution on Q) and ¢=CH(2), then f(¢) is denoted
by <{f, ¢>. For a function f on R™ and for ¢>0, the function (f), is defined
by (f)(x)=t"f(t"'x), xER".

Bz, )ynQ

§2. Hardy spaces over domains.

If ¢ is a function satisfying 0<a=w, 0<b<1 and f=9'(Q), then we
define f3:&°%x), x&2, by

F58%x) =sup{|{f, (@lx—-)p|; 0<t<min{a, b dis(x, 2°}}.

Notice that f3:%' coincides with f} o of Section 1. For x=R", {>0 and

meN, we denote by T, o(x, t) the set of those ¢p=CP(B(x, )N2) such that
[0°glle<st-""'% for |a|<m. If 0<a=<co, m&N and f=9'(2), then we define
kH(x), x€Q, by

¥ o(x) =sup{|<f, Pl ; ngK\tJ@Tm,g(x, D},
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Let ¢ be a function satisfying (1.1}, 0<a, a’<c, 0<b<1 and meN. Sup-
pose that both a and a’ are finite or that both are equal to infinity. If ¢a=a’'=oco,
then we set a’/a=1. The inequality

2.1) [58%x) £ Confh%(x)
is obvious. If 0<¢<1 and m>n/g—n, then
.2) 22 = Chrarra,0.M(F5:50)(x);

this inequality can be easily deduced from the theorem of (cf. in particular
Proof of Corollary 1 at p.58 of [8]). From and using the LP?-
boundedness of the operator M, for ¢g<p, we can deduce the following results.
If 0<p=<co and m>n/p—n, then

2.3) If7ls. 0 = Corarranallf5:8 0. 0.
If 0<p=co, ¢'=CT(B(0, 1)), S¢’=1 and 0<b'<1, then

(2.4) 1f§%% lp.0 < Cograrrannl f5:8°5 0.

This latter result shows in particular that H?(2) defined in Section 1 does not
depend on the choice of the function ¢.

Let 0<p<1. We denote by H?(2) the set of f=9'(2) which have the
following property: For every x=4, there exists an open subset U of @ such
that x U and f|U=H?(U). We denote by h?(Q) the set of f€9'(Q) for
which f§:4'=L?(Q), where ¢ is a function satisfying The inequality
shows that h?(£2) does not depend on the choice of ¢. For f=9'(Q),
we set

1fllp.c5.0 =158 .0 and [fllz. .0 =1/$8" s 2-

For other equivalent definitions of H?(2), h?(2) and HZ.(L2), see the Remarks
a)~c) given below. ‘

For f€9'(2) and x=£2, we say that [f1(x) exists if lim;,o(f, (@)(x—-)>
exists for all ¢ satisfying and if this limit does not depend on ¢; if this
is the case, we set

[£100) = Bm<f, (@)x—->.

In [9], we showed that if 2+#R™ then C3(2) is dense in H?(£2). Hence,
by the standard argument for the almost everywhere convergence (cf. for
example [12; Chapt. I, Theorem 3.12]), we see the following fact: If 0<p<1
and feHE(Q), then [f](x) exists for almost every x=£ and moreover

@.5) im _sup_|¢f, =L Amfg| =0

t&OEngTm'g(.r.
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for m>n/p—n and for almost every x<£. It is well known that if feLL.(2)
then [f](x) exists and is equal to f(x) for almost every x= 8.

REMARKS. a) If 2=R", then our H?(Q) coincides with the usual H?(R")
and our h?(f) coincides with the space h?(R™) of Goldberg [4]. Our HS(R™)
coincides with 4,(R™) of Peetre [10]. Peetre indicated the definition of
4 (M) for arbitrary smooth manifold M. If one considers £ as an open sub-
manifold of R", then our Hj.(2) coincides with Peetre’s 4 ,(Q).

b) Denote by HP?(R™)| 2 (resp. h?(R™)|2) the set of the restrictions f |2
of feH?(R™) (resp. f€h?(R™). In [9], we showed that H?(Q)=H?(R")|Q if
Q satisfies the following condition with some constant A>1: For each x&#
there exists an x'€80° such that dis(x, x’)<Adis(x, £° and dis(x’, 2)>
A~ dis(x, 2°). Proof of this result was based on the atomic decomposition for
H?(2). We can modify the argument of to see that AP(Q) also admit
certain atomic decomposition, and using it we see that AP(Q)=hP(R™)|Q if Q
satisfies the following condition: For x=Q with dis(x, 2°9<A™?, there exists
an x'€0° such that dis(x, x")<Adis(x, 2°) and dis(x’, 2)> A dis(x, 2°) (here
again A is a constant greater than 1).

¢) Inequality shows that feh?(2) if and only if f}&°=L?(Q) for
some a<(0, ) and some b<(0,1]. From this we see that h?(Q)=H?(Q) if
dis(x, 2°), x=Q, is bounded.

§3. Some results of DeVore and Sharpley.

Let f be a measurable function on £ and let 4 and ¢ be positive numbers.
We denote by (1) the largest integer less than A. The maximal function
fh4(x), x=8, is defined by

, _ . 1 1 1/g
fud) = supint o (igrl, /1Y)
([3; p.22]). We define NZ'(f)(x) and fii(x), x=£, in the following way:
The definition of NX(f)(x) (resp. fii(x)) is the same as that of Nf)(x) (resp.
74 4(x)) except that the sup is taken over the cubes @ such that xQC 2 and
(Q)<1.

Theorems B, C and D below are due to DeVore and Sharpley [3]. Although
they state the results only for Ni(f) and f} ,, their argument can be applied to
N4 Y(f) and £} without essential change.

THEOREM B. Let p, q, r and A be positive numbers such that q<r and
1/r+2/n>1/p. Then

”fi,q”p,!) é “f/bl,r“p,Q § Cz,p,q,r”f}.q”p,()
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and
If58ln. 0 S 15t 0 £ Capuarlfitln 0
for all measurable functions f on L.
This theorem follows from [3; Theorem 4.37.
THEOREM C ([3; Theorem 5.3]). If A and q are positive numbers, then
Fhox) £ NUFx) £ Ca.ofhox)
and
fha(x) = NE(f)X(x) S Caofhii(x)
for all measurable functions f on  and for all x= Q.
We shall define the Peano derivative following DeVore-Sharpley [3; pp.
30-31]. Let f be a measurable function on £ and x={. Suppose there exist

positive numbers ¢ and A, an open set UcC® with xU, and a family of
polynomials {Py; @ cube, xQC U} such that suppdeg Py<c and

sl <

(where the supremums are taken over the cubes @ satisfying x=@QcCU). Then,
for multi-indices @ with |a|<<4, we set

D,f(x) = lim 9%Py(x).
1(@)-0
xeQCU
This limit exists and D,f(x) does not depend on 4, ¢, U and the family {Pg}
(see [3; loc. cit.]). We call D,f(x) the a-th Peano derivative of f at «x.

THEOREM D ([3; Lemma 5.2 and Corollary 5.5]). If f is a measurable
Sunction on 2, q and A are positive numbers, x <82 and f} (x)<oo, then the a-th

Peano derivatives of f at x exist for |a|<2 and the polynomial P, that defines
NXf)x) is given by

P.)= 3 Daf(0) 2=

lal<i

§4. Main results.
The following theorems are the main results of this paper.

THEOREM 2. Let f be a measurable function on 2, 0<p<1 and k=N, and
suppose 1+k/n>1/p and f} ,=L?(2). Then

(i) fe LidD);

(ii) the weak derivatives 0°f with |a|=Fk belong to H?(Q) and
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lm2=k“aaf“p.(¢),9 = Clz,p.sb”flz.p”p.!)-

THEOREM 3. Let f be a measurable function on 2, 0<p<1 and k=N, and
suppose 1+k/n>1/p and frL=L?(2). Then

(i) fe Li(D);

(ii) the weak derivatives 0*f with |a|=Fk belong to h?(2) and

3,10 I.c4.0 = Cionsl fliblln
(iii) if, in addition, f< L?(Q), then f<h?(2) and
£ 0p.cp5.0 < Ci.ns . a+1 b5, 0)-

THEOREM 4. Let f€9'(2), 0<p<1 and k=N, and suppose 0°f=HEL(Q)
for |a|=k. Then
(i) if |a|<k, then 0*f€HE(Q) and [0°f1(x) exists almost everywhere
on 2;
(ii) we have
”[f]lt.p”p,!) _S_ Ck.p.;lemE:k”aaf”p.(tﬁ).!)
and
ILf kbl 0 = Ck,p,¢m‘12=.k|]a“fﬂ;'n,<¢>.g

provided that the righi-hand members are finite;

(ili) if |a|<k, then, for almost every x<£2, the a-th Peano derivative
D, [ f1(x) exists and is equal to [0°f](x);

(iv) if we set

Q0= 3,12

al

for almost every x=8Q and if r is a positive number satisfying 1/r+k/n>1/p,
then

lim sup t‘k(t’"g ! [f]—Q;l*)”T < oo

B(z,
for almost every x= Q.

THEOREM 5. Let f€9'(2), 0<p<l and k=N, and suppose 1+k/n>1/p
and 0°f€HE(Q) for |a|=k. Then f€Li(Q).

Proofs of these theorems will be given in Section 5.

REMARKS. d) of Section 1 follows from Theorems C, 2, 4
and 5.

e) The condition 1+%/n>1/p in Theorems 2 and 3 cannot be removed as
we shall show in Section 5.
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f) If dis(x, 2°), x=Q, is not bounded, then, in contrast with
(iii), the estimate

116502 = Crpg oUfllp o+ 152 2llo )

is false; see Section 5.
2 is a generalization of the 1-dimensional result of Krotov [5].
h) Let 2N and 0<p=1. Let c%(2) be the set of f in L?(2) such that
pLe LP(2), and let wh(2) be the set of f in AP(L2) such that 0*f=h?(2) for
la|=Fk. Then, from Theorems 3, 4 and 5, we obtain the following result: If
1+k/n>1/p, then both c%(2) and w’(2) are subsets of Li,.(£2) and c%4(2)=wk(2).
Note that if dis(x, 2°), x= £, is bounded, then c4(£2) coincides with the space
CE(2) of DeVore and Sharpley [3].

§5. Proofs of the main results.

We shall first prove Theorem 3. Before we proceed to the proof, we give
a preliminary result concerning the decomposition of an open subset of R™.

For a>0 and jeNU{0}, we define ¢7=2¢%(2) as follows: g¢ is the set of
maximal dyadic cubes Q such that al(Q)<1 and eQC; if 7>0, then g% is the
set of the dyadic cubes whose dyadic doubles belong to ¢%,. For x=Q, we set
d(x)=min{l, dis(x, £°)}. Then we have the following lemma.

LEMMA 1. If a>6, then g% have the following properties.

(1) For each j, G% is a disjoint family and the union of all the cubes in G%
is equal to Q.

(ii) If Qg% and x=(a/2)Q, then ¢,<2'al(Q)/d(x)=cs.

(iii) If Qeg¢, R=g% and 3QN3R+Q, then ¢, <2%1(Q)/2™I(R)<c,. If in
addition k=m—1, then AQCc;AR for all A=1.

(iv) If 0<A=a/2, then for each j the overlap of the family {AQ; Q=G%}
does not exceed cy(A+1)" (i.e., no point of R™ belong to more than cs(A+1)" of
the cubes AQ, Q<3g9).

(v) For each j, there exists a family of functions {¢h; Q=8GF} such that
PLECT(R™), supp$hC3Q, 0=¢h(x)=1, Zeea?@h(x)=1 for all x<Q, and
10995l <Cl(Q)'*" for all a.

Here ¢,, -+, ¢ are positive constants depending only on the dimension n.

Proof of this lemma is left to the reader (cf., for example, [11; Chapt. VI,
§10).

PROOF OF THEOREM 3. Take a positive number ¢ such that 1+k/n>1/¢>1/p.
We have || f&il, 0<Iftbllp ¢ by Holder’s inequality.
For each cube QC £ with /(Q)<1, take a polynomial w4 in L., such that
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If—mqllaq = Peigf_l\lf—f’liq,q-
Then m, have the following estimates: First,
1/q
G.1) [7allese = Coa 117 1£19)
secondly, if b=1, QCbQ’, Q'ChbQC L and bi(Q)<1, then
1/q
6.2) |7q—Tq lese £ Craal @m0 (£14)0)

Proofs of these estimates are left to the reader (cf., for example, [3; §4, (4.5),

4.9)D).

Take a number a such that a>max{6, c,, 2c;, c2}. Let {¢%} be the partition
of unity as mentioned in Lemma 1. For nonnegative integers j, set

filx)= 2 molx)@h(x), xe .

Qegg
We shall first prove the following: If R=g% and j>m, then
(5.3) ool fmfimsl = Cagem-omiRpyermsn({ | crry) ™
. SR j Jj-11 = k.q CER k,q

In order to prove this, we write

fimfimn= 2 3 (mq—me)Phdl.
QEQ? Q’EQ?_I

If Q=g?, Q'=¢%, and 3QN3Q' =@, then QC¢,Q’ and Q'Cc;Q (Cemma T (iii)),
and hence, by the inequality

mee—me ()] £ Cugl@mn({ (rpe)”

holds for all x=3Q. In particular this inequality holds whenever ¢h(x)g5'(x)=0.
Hence

FA0=F30)] S Cag 3 g1 m({ (i)™

g
Qe

Let Re¢y and j>m. If Q=4% and 3QN3R+Q, then
Q[ = C2m=P*R| and ¢;Q CciR (iii)).

Using these estimates, we obtain

. 1/q
Jpal = F il = CuenmiRyne 3 ({ i)
3Q3R%:D

< (the right-hand member of [5.3)).

(To obtain the last inequality we used also the inequality 3} aY?< (3 a,)"? and

(iv).) Thus we proved [5.3).



82 A. MivAcHI

Since 14+k/n—1/¢g>0 and since fhricL?(Q)CLEL(L2), the estimate
implies that

]_>mS3R| fimfial <.

Hence limj..f; exists in Li.(2). On the other hand lim;..f;(x)=f(x) for
almost every x= 8 (see [3; Lemma 4.1]). Combining these facts, we see that
feLli(2) and that f,—f in L}(2). Thus in particular the assertion (i) of
the theorem is proved. (This proof of (i) is somewhat roundabout since (i)
follows immediately from We need, however, the stronger results
given above in the proof of (ii) and (iii).)

In order to prove (ii) and (iii) of the theorem, we shall prove the pointwise
estimates

(5.4) [3:8°(x) = Chrq g(M(F)x)+M(f2 (%))
and
(5.5) Iﬂgzk(aﬂf)z:ﬁs(x) S Crog oM(fl)(x),

where ¢ is a function satisfying [I.1)and s=c,/a. We can deduce the inequali-
ties in (ii) and (iii) of the theorem from these estimates by using and the
L?-boundedness of the operator M,.

Let ¢ be a function satisfying xe2 and 0<t<c,d(x)/a. Set
¢=(¢)(x—-). Let m be the nonnegative integer such that 2 -""'c,d(x)/a
<t<2 ™c,d(x)/a. Take a cube R such that R=¢% and R>x. Then
,=2™al(R)/d(x)<c, (Lemma 1 (ii)) and, hence, (c./2¢)l(R)<t<I(R). Hence
supppC B(x, t)C3R and [0l Cy ot " '¥' < Cy, (R) ™14,

First we shall estimate Sfmgb and Sfm8ﬁ</) for |B|=k. Using and
(iii), we have
1/q
< w30 = -1 a
m0] = ([191) supimelesg = Conasup (1011 1 £1%)

3QN3R+Q 3QN3R+QD

< Cond(IRI_I1£19)

1/q

Hence
5.6) [£nd| = CovaMilf0).

Let B be a multi-index with |8|=Fk. Since wp=P,-;, it holds that 0°zr=0
and, hence,

[£n0%9 = (~1y# {995/ —a).
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Using Markov’s inequality, and (iii), (iv), (v), we have
Ea 08[(mo(y)—mr(¥NPZ ()]l

10°(f m—7R)l|o, 52 = SUP |
yEIR Qegy,

3QA3R+D

< CadRy P R (| (7)< CuaMlFib).

Combining the estimate S|¢| <Cy4 with the last estimate, we obtain

G.7) [ £20%9| < CrasMlFED0)

for | B|=k.
Next let j>m. Using and the estimate |R|<1, we have

(= rm0| < Il 1 Fi=Fsmal
-Hn n- n-1 ) e
é Ck,q.¢2( Nn+k/ llq)lle/ /q(chR(fz"ll)q>
< Clg 2RO RIN DM (£ ().
Similarly we have, for |B|=k,
[ri=£5-00%0| < 10511\ 1= F1mal
Hn(l n-1 - s /e
< C g g2Cm-Dnctshs /q)(IRI 1chg<f’z"11)q)
é Ck,q, ¢2(m—j)n(1+k/ﬂ—llq)Mq(fz:(ll (x)_

Since 1+k/n—1/¢>0, these estimates imply the following estimates:

.8 2|\ F00] = CoasMtiio),
5.9) B (= £1-09%| = CuasMlFrike),
where |B|=*k.

83

The estimates and now follow from (5.6), [5.7), [5.8), [(5.9) and

the fact that f; converges to f in L}(£2). This completes the proof of Theo-

rem 3.

PrOOF OF THEOREM 2. We modify the definition of ¢% and d(x) as follows:
If 2+R™, then let ¢¢ be the set of maximal dyadic cubes @ such that aQC £,
let G% for ;>0 be defined inductively in the same way as before, and let
d(x)=dis(x, 2°); if 2=R™, then let ¢% be the set of the dyadic cubes with
sidelength 2=/ and let d(x)=a. Then[Lemma I holds true for these modified ¢
and d(x). Using the modified ¢¢ and d(x), one can prove [Theorem 2 in the
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same way as in the proof of [Theorem 3. Details are left to the reader.
For the proofs of Theorems 4 and 5, we use the following lemmas.
LEMMA 2. Let Q be a cube, ¢=CFR"™), A>0 and k, meN. Suppose
supp$Q, Sng:‘O» for all PE@y_, and [0°Pl<ALQ) """ for |a|=<m. Then
there exist functions vg, |Bl=Fk, such that vs< CF(R™), suppvzCQ,

10°vslle £ Cr, m AUQ) 71! for lal<m
and
¢ = Q)" ﬂZ 857).3.
1Bi=k

PrROOF. (The idea of the following proof can be found in [7; Lemma 3.5].)
It is sufficient to consider the case Q=(0, 11" ; the case for general @ can be
reduced to this case by a change of variables. For n=N, let D(n, 0) be the
set of ¢=CF(R™) such that supp¢(0, 11". For n, REN, let D(n, k) be the

set of ¢=D(n, 0) such that Sng:O for all P=®,_,. Take a function g=D(1, 0)
such that Slg(x)dx-—-l. We shall define the linear operators 7" : D(n, 1)—
D(n, 0) (=1, ---, n) by induction. If n=1, then set
T®P(x) = S:ogb(z‘)dt, $=D(n, 1).
Suppose T "~V (=1, ---, n—1) have been defined. Given ¢<=D(n, 1), set
di(x") = So;gb(x’, Hdt, xR,
Then ¢,=D(n—1, 1). Define T* by

T](n)(/)(x) - T;n_l)gbl(x,)g(xn); ]:1’ ) ?’l—l,
and

Tge = [T, D—gwpear,

where x=(x’, x,) with x’€R""* and x,=R. Then it is easy to see that T/
are well-defined linear operators from D(n, 1) to D(n, 0) and that

— z a (n)
(5.10) P(x) = jgl‘a';Tj d(x).
It is also easy to see that T™(D(n, k))CD(n, k—1) for all k=N and that

(6.11) 10°T ¢l < AaﬁZ 10P ..

for all @, where the constant A, depends only on n, g and a«. The assertion ™
of the lemma for @=(0, 1] now follows from repeated application of (5.10)
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and [5.II) This completes the proof,

LEMMA 3. Suppose Q, ¢, A, k and m satisfy the assumptions of Lemma 2.
Also suppose f€D'(Q) and 2DQ. Then

[<fr 1 = ComAUQ) 3 inf @152 ().

This lemma can be easily derived from once it is observed that
QCB(y, vV nlQ)N& for every y=Q.

LEMMA 4. Let k=N. Then for each cube QCR™ there exists a function
@, on R*XR™ which has the following properties.

(1) @g is smooth on R*XR™ and supp Qy(x, -)CTQ* for each x=R™, where
Q! denotes the interior of Q.

(ii) For each f='(QY), the function R"=x—<{f, Py(x, -)) belongs to Py-;.

(i) P(x)ZSP(y)@Q(x, vy for all PE®y-,.

(iv) If A>0 and x=AQ, then [0505D o(x, V) S Ch 4,0, Q) "' 7% for all
multi-indices a and B.

Proor. Take a function ¢,=C5((—1/2, 1/2)*) such that ¢,(x)=0 and SqSo:l.
We regard @,.; as a finite dimensional Hilbert space with the inner product
(P, Q):SPQ'qSO. Let {m;} be an orthonormal basis of this Hilbert space. For

each cube Q, set

Dol ) = U™ B a5 (o) (o)

This @, has all the properties of the lemma. This completes the proof.

We now proceed to the proofs of Theorems 4 and 5.

PROOF OF THEOREM 4. Proof of (i). As shown in Section 2, [0*f](x)
exists almost everywhere if 0°f<HE.(Q). Thus it is sufficient to show that
0°feHE (2) for |a|<k. Without loss of generality we may assume that
0°f=H?(R2) for |a|=Fk. Fix a multi-index § with |8]<% and fix an x=£.
Take r such that 0<r<dis(x, £9/3+/7n and set U=B(x, »). Take a function

$=C5((0, 1)) such that S¢=1 and ng&(y)y“dy:O for 0<|a|<k—1. We shall

show that (aﬁf)g;ﬁ-leLi"(U), which will imply the desired result. Let yeU,
0<t<r and let M be the nonnegative integer which satisfy 2¥r<r<2%+Y, If
j€N and j<M, then, applying Lemma 3 to

¢ = (—1)"#10P((@)ese(y— )= (Phi-1(y—+))

and
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Q = {y+z| ze(—27%, 01"},

we obtain the estimate

(5.12)  1<0°f, (Phiely— ) —(Ples-1:(y—-D| = Ck.'m.,¢,ﬁ(2jt)k—l‘8|'a‘2=k(aaf);'f‘f.ob(y)-

Similarly we have the estimate

(6.13)  [KPf, (@) (y—)—(Phare(y— D < Ck,m,¢.ﬁrk_lﬁlia§k<aaf)#f,?2(y)-

Hence

1KOPf, (@)(y— 0| < 1€G%f, (@)r(y—-)|
+(the left-hand member of (5.13))
+ <ZM(the left-hand member of (5.12))
0<js

< |<o%f, (¢)r(y~-)>l+Ck,m,¢,ﬁrk“ﬁ’la§=}k(8“f oY)
=I(y)+11(y), say.

(Here we used the assumption |B| <k to estimate the sum Xoc;sx.) Thus we
have

@*Nee 'y = oi‘ferf’ (@) e(y—-21 < I(»+I11(y)

for all yeU. The function I(y) is the absolute value of a function which is
smooth in a neighborhood of the closure of U; hence it belongs to L?(U). If
we take m so that m>n/p—n, then the function II(y) also belongs to LP(U)
by virtue of [2.3) Hence (0°f)§:5'<L?(U). This proves (i).

Proofs of (ii), (iii) and (iv). Let @4 be the function of For cubes
Q included in 2, we set Po=<(f, @o(x, +)>. Then Py=P,_,. We shall prove
the following two claims.

The first claim: If |a] <k, then

(5.14) lim 92Py(x) = [0%f1(x)
SR
for almost every x£.

The second claim: If Q is a cube included in 2 and meN, then

(5.15) LI =Pe(0)] < Coml@* 3 @ V57 O)

for almost every x=Q.
For the moment we assume these claims and prove (ii), (iii) and (iv). Take
g such that 0<¢<p. Integrating the ¢-th power of [5.15), we obtain

Q11017 ILF1=Pel?) < Cam(1Q1 ( 2,087 @)) ",

al=k

Taking supremum over the cubes Q such that x€QCQ, with x fixed, we obtain
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[/ Bho®) S Com Mo 3 @ F)5)(5).
Hence, by the L?-boundedness of the operator M,, we have

”l:f:lll;.q”p,!) _S_ Ck,m,q,p

a £y, |
|ag-—lz(a f);kn’g‘lp,!)'

We take m such that m>n/p—n. Then the above inequality, combined with
Theorem B and implies the first inequality of (ii). The second inequality
of (ii) can be proved in a similar way (just use (0°f)% " instead of (8%f)%%).
The assertion (iii) follows from and the definition of the Peano
derivative. The assertion (iv) follows from (ii), (iii) and Theorems B, C and D.
Now we shall prove the first claim. Without loss of generality we may
assume again that 9*f<=H?(Q) for |a|=k. Let |a|<k and let Q be a cube
included in 2. By (iii) and by integration by parts, we see that

SP(y)(aza)Qu, P)—(—1) =3B o(x, 3))dy = 0

for all P€®,.,. From this fact and from Lemma 4 (i) and (iv), we see, using
[Lemma 3, that the estimate

(5.16) [<f(3), 05D q(x, y)—(—1)'*'05Po(x, ¥))]

< Ck,m,al(de—u“ ﬁz_k(aﬁf)ﬂ;{'?gﬁl(())(x)

holds for all x=@. We have

02Po(x) =<f(y), 05D o(x, ¥))
={f(3), (=D)'"05Do(x, Y0+ (3), 05Po(x, y)—(—1)'*'02Do(x, y)>
=I+II, say.

Using we see that, for almost every x< 2, the term I=<(0%f, Dy(x, -)>
converges to [0°f](x) as {(Q)—0 with x€QC®. On the other hand, using
with m>n/p—n, we see that II=0((Q)*'*') almost everywhere. Hence
II converges to zero almost everywhere. Thus[(5.14) holds almost everywhere.
This proves the first claim.

Finally we shall prove the second claim. Let Q be a cube included in £,
and let xQ. Take a sequence of cubes Q; such that Q=0Q,20Q,D -, Q;=>x
and [(Q;)=277l(Q). Using Lemmas 3 and 4, we have

|PQj(X)—PQj_1(.7C)| = l<f) QQj(x; ')—@Qj_l(x) ')>|
= Ck,m(z—jl(Q))k‘ sz(a"‘f)ﬁg,{f“@(x).

Hence
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3 1Po /()= Po, ()] £ Coml@)F 3 @/ @),

This inequality and with a=0 imply Thus the second claim is
also proved. This completes the proof of

PrROOF OF THEOREM 5. Without loss of generality we may assume that
0°fH?(Q) for |a|=k. Take an integer m such that m>n/p—n. Then
@ ks LP(2) for |a|=F by virtue of [2.3). Let ¢ be the same function as
in the proof of (i) of [Theorem 4. For x<® and 0<t<dis(x, Q°), set

f(x, 1) =Lf, (@elx—-)).

Let Q be a cube with 3QCQ, and let jEN. By repeatedly bisecting the sides
of cubes, we can write Q as a union of 2/® cubes each with sidelength 2-7/(Q).
Let R be one of these 2/» cubes. Then using we see that

sup | £(x, IR)=1(x, IR)/2)| < Coum ol(RY 3 ink 0" )52(»)
and, hence,
[ 17, 1RY— 1, 4R)/2) dx
= Comol R 53 (| (@ tr) .
Taking the sum over all R’s, we obtain
|17, 2@ (x, 257UQ) dx
< Coms@ QI+ 33 (1 @ par) .
Since 1+%/n—1/p>0, the above estimate implies that
3 |1/ 2@ = (x, 297HQY) 1dx < oo,

Hence the function f(-, 279(Q)) converges in L}Q) as j=c. On the other
hand, 7(-, 277(Q)) converges to f in 9(Q). Hence, on Q% the distribution f
coincides with an L'-function. Since Q is an arbitrary cube satisfying 3QC2,
this means that f& LL.(2). This completes the proof.

We shall prove the facts mentioned in Remarks e) and f), Section 4.
NOTE ON REMARK e). Let feC3(B(0, 1) and Sf:l, and let B(xo, r)C.

For t>0, set f,(x)=(f)(x—x,). Let 0<p<1 and 2>0. Then the following
estimates hold for 0<t<#/10:

(5.17) 10%fillp. 05,2 = Ca.p.o.»  for each a,
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(5.18) 1fellp.@ = Cyst™2",
(5.19) o If i pllp. 0 S Cypoa, g™/ P 240

(Proofs will be given below.) Hence, -if kh‘/p—n—2>0‘, then, fo'f'rey‘ery'.a,’ there
exist no constant A independent of ¢ such that ‘

10%f el 0.2 < AU Felp a1 5 plpia)e

This fact implies that the condition 1+ k/ n>1/ p in Theorems 2 and 3 cannot
be removed.

We shall prove (5.17)~(5.19). In order to prove (5.17), take a function
P.=C(B(0, 1)) such that 0%@.(x)=1 for |x|<1/2 and Sgﬁa:l Suppose

t<|x—=x,|<r/5. Then for every y<suppf, it holds that [x—y]<2]x—x,]
and, hence, that

(—D)'10%(Padiiz-zgi(x—y) = (4| x—x,|)7 77120,
It also holds that 4|x—x,| <min{r, dis(x, 2°)}. Hence

@ FO5780 2 || FloX=1)M105(@ade -y (1= 3)y| = Al x— 0]y P12,

From this estimate, we can deduce (5.17) by using (2.4). The equality (5.18)
can be proved by a sunple change of variables. Finally (5.19) follows from the

eStlmate
(foho(x) S Cppat (L4171 x— x| )42,

PrRoOF OoF REMARK f). Let f,, x,, #, p and A be the same as in Note on
Remark e). Suppose r>10. Then, as shown above, the following estimates
hold:

1filpe=Crp, I Dioloo=Crap,

(58 (x) Z @lx—xo])™ if 1<]x—x,|<7/5,

where ¢ is a function satisfying ¢(x)=1 for |x|<1/2 as well as the condition
(1.1). From the last estimate, it follows that

[ fillp, 2.0 = C<S

The right-hand member of this inequality tends to infinity as r—oo since p<1.
This implies the assertion of Remark f).

1/p
]x~x0|‘"pdx)

1l -2gi<r/5
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