Backward Itô's formula for sections of a fibered manifold

By Hiroshi AKIYAMA

(Received April 5, 1989)

1. Introduction.

When a stochastic differential equation on a C^{∞} manifold generates a stochastic flow of diffeomorphisms of the manifold, some geometric backward Itô's formulas related to the stochastic flow are known for tensor fields on the manifold [7], [10]. On the other hand, a forward (usual) Itô's formula was obtained for (local) sections of a fiber bundle [1]. It is, therefore, desirable to get a backward stochastic formula generalized for (local) sections of a fiber bundle or, more generally, of a fibered manifold.

The main purpose of the present paper is to obtain a backward stochastic formula, which we will also call backward Itô's formula, for (local) sections of a fibered manifold (Theorem 3.2) with the use of backward stochastic calculus ([10]). As a corollary, we obtain a backward Itô's formula for sections of a vector bundle (Corollary 4.1). Then, using this formula, we treat certain backward and forward differential equations for sections of a vector bundle (Corollaries 4.3 and 4.4).

Although the formula in Theorem 3.2 is applicable to C^{∞} sections of a general C^{∞} fibered manifold, we are chiefly concerned with sections of fiber bundles; we give applications to the study of the behavior (with respect to the initial-time parameter) of a time-dependent random C^{∞} distribution of a C^{∞} manifold and to backward and forward differential equations for second order (possibly degenerate) linear differential operators on C^{∞} functions on a C^{∞} manifold (§ 5). These applications are done by noting that a C^{∞} distribution of a C^{∞} manifold can be regarded as a section of a Grassmann bundle ([3]), and that each second order linear differential operator on C^{∞} functions on a C^{∞} manifold can be identified with a section of a certain vector bundle associated with the bundle of second order frames of the manifold.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 63740114), Ministry of Education, Science and Culture.

328 H. Akiyama

2. Preliminaries.

Let $(\boldsymbol{W}_0^k, \mathcal{F}, \boldsymbol{\mu})$ be the standard k-dimensional Wiener space: \boldsymbol{W}_0^k is the space of all continuous paths $w:[0,\infty) \ni t \mapsto w(t) = (w^1(t),\cdots,w^k(t)) \in \boldsymbol{R}^k$ such that w(0)=0 endowed with the topology of uniform convergence on every bounded interval, $\boldsymbol{\mu}$ is the standard Wiener measure, and \mathcal{F} is the completion of the Borel σ -field on \boldsymbol{W}_0^k . Thus w(t) is the canonical realization of Brownian motion on the probability space. We set $w^0(t)\equiv t$. Since forward stochastic integrals are well-known, we recall some definitions on backward stochastic integrals for later use.

Let T>0. For $0 \le s < t \le T$, let $\mathcal{F}_s^t(\subset \mathcal{F})$ be the least complete σ -field for which w(u)-w(v), $s \le u \le v \le t$, are measurable. Then $\mathcal{F}_s^t\subset \mathcal{F}_s^{t'}$ if $0 \le s' \le s < t \le t' \le T$. If h(u), $u \in [0, t]$, is a real-valued continuous backward semimartingale relative to \mathcal{F}_u^t , then for each $\lambda=0, 1, \dots, k$, the backward Itô integral of h(u) with respect to $w^{\lambda}(u)$ is defined by

$$\int_{s}^{t} h(u) \cdot \hat{d} w^{\lambda}(u) = \lim_{|A| \to 0} \sum_{i=0}^{m-1} h(t_{i+1}) (w^{\lambda}(t_{i+1}) - w^{\lambda}(t_{i})),$$

where Δ : $s=t_0<\dots< t_m=t$, $|\Delta|=\max_i|t_{i+1}-t_i|$, and l.i.p. denotes "limit in probability"; and the backward Stratonovich integral of h(u) with respect to $w^{\lambda}(u)$ is defined by

$$\int_{s}^{t} h(u) \circ \hat{d} w^{\lambda}(u) = 1 \cdot \lim_{|\Delta| \to 0} \sum_{i=0}^{m-1} \frac{1}{2} (h(t_{i+1}) + h(t_{i})) (w^{\lambda}(t_{i+1}) - w^{\lambda}(t_{i})).$$

We shall use freely concepts and notations in [6] and [10]. As for manifolds, we refer to [3], [9].

3. Backward Itô's formula for sections of a fibered manifold.

All manifolds in this paper are finite dimensional, σ -compact, and of class C^{∞} . For a C^{∞} vector bundle V over a manifold N, we denote by $\Gamma(V)$ the space of C^{∞} global sections of V. Every C^{∞} vector field on N is regarded as an element of $\Gamma(TN)$, where TN denotes the tangent bundle over N.

Let E be a C^{∞} fibered manifold over a manifold M, with projection π : $E \rightarrow M$; that is, π is a C^{∞} surjective submersion and thus has maximal rank everywhere. The fiber $\pi^{-1}(x)$ over $x \in M$ is denoted by E_x .

Let $Y_{\lambda}(t) \in \Gamma(TE)$, $\lambda = 0, 1, \dots, k$, be time-dependent projectable C^{∞} vector fields (with time-parameter $t \in [0, T]$) on E; that is, for each λ , there exists a (unique) time-dependent C^{∞} vector field $X_{\lambda}(t) \in \Gamma(TM)$ on M such that the vector field $Y_{\lambda}(t) \colon E \ni q \mapsto Y_{\lambda}(t, q) \in T_q E$ (=the tangent space to E at q) is π -related to the vector field $X_{\lambda}(t) \colon M \ni x \mapsto X_{\lambda}(t, x) \in T_x M$;

$$\pi_{*,q}Y_{\lambda}(t,q) = X_{\lambda}(t,\pi(q)), \quad q \in E$$

where $\pi_{*,q}: T_q E \to T_{\pi(q)} M$ is the differential of π at q. We let all time-dependent vector fields in this paper be also C^{∞} in the time-parameter t.

Consider following two (forward) stochastic differential equations on E and M, respectively, in the Stratonovich form:

$$d\eta_{t} = \sum_{i=0}^{k} Y_{\lambda}(t, \, \eta_{t}) \circ dw^{\lambda}(t), \qquad (3.1)$$

$$d\theta_t = \sum_{\lambda=0}^k X_{\lambda}(t, \theta_t) \circ dw^{\lambda}(t). \tag{3.2}$$

In the following, we assume that the (maximal) solution $\eta_{s,t}(q)$, $0 \le s \le t < \tau_{\eta}(s, q)$, $\eta_{s,s}(q) = q$, $q \in E$, of the equation (3.1) is strictly conservative [that is, $\mu(\tau_{\eta}(s, q) = T)$ for all (s, q) = 1, where $\tau_{\eta}(s, q)$, $s \le \tau_{\eta}(s, q) \le T$, is the explosion time of $\eta_{s,t}(q)$ and generates a stochastic flow of (C^{∞}) diffeomorphisms of E, a.s.; thus

$$\eta_{s,u}(q) = \eta_{t,u}(\eta_{s,t}(q)), \quad q \in E, \ s < t < u < T, \ a. s.$$

The following lemma shows that $\eta_{s,t}$ induces a stochastic flow of diffeomorphisms of M.

LEMMA 3.1. $\pi(\eta_{s,t}(q))$, $0 \le s \le t < T$, does not depend on the choice of $q \in E_x$ for every $x \in M$, and the stochastic map $\theta_{s,t} \colon M \to M$ defined by

$$\theta_{s,t}(x) := \pi(\eta_{s,t}(q)), \quad q \in E_x, x \in M,$$

is the solution of (3.2). Moreover, $\theta_{s,t}$ defines a stochastic flow of diffeomorphisms of M, a.s.

PROOF. Since $\eta_{s,t}$ is strictly conservative and defines a stochastic flow of diffeomorphisms of E, a.s., the (maximal) solution of the adjoint equation

$$d\,\hat{\eta}_t = -\sum_{\lambda=0}^k Y_{\lambda}(t,\,\hat{\eta}_t) \circ d\,w^{\lambda}(t) \tag{3.3}$$

is also strictly conservative; cf. [10, p. 251, Theorem 9.2]. Since $\pi(\eta_{s,t}(q))$ satisfies

$$\begin{split} d_t \pi(\eta_{s,t}(q)) &= \sum_{\lambda=0}^k \pi_{*, \, \eta_{s,t}(q)} Y_{\lambda}(t, \, \eta_{s,t}(q)) \circ dw^{\lambda}(t) \\ &= \sum_{\lambda=0}^k X_{\lambda}(t, \, \pi(\eta_{s,t}(q))) \circ dw^{\lambda}(t), \qquad s < t < T \,, \end{split}$$

where d_t denotes stochastic differential with respect to the parameter t, the uniqueness of the solution of (3.2) implies that $\eta_{s,t}(q)$ does not depend on the choice of $q \in E_x$ for each $x \in M$, and thus we can define a stochastic map $\theta_{s,t}$: $M \rightarrow M$ by setting

$$\theta_{s,t}(x) = \pi(\eta_{s,t}(q)), \quad q \in E_x, x \in M.$$

Note that $\theta_{s,t}$ is the (maximal) solution of (3.2) and is strictly conservative.

In the same way, since the solution of (3.3) is strictly conservative, the solution of the adjoint equation

$$d\hat{\theta}_t = -\sum_{\lambda=0}^k X_{\lambda}(t, \, \hat{\theta}_t) \circ dw^{\lambda}(t)$$

is also strictly conservative. Therefore the solution $\theta_{s,t}$ of (3.2) defines a stochastic flow of diffeomorphisms of M, a.s. This completes the proof.

Let σ be a $C^{\infty}(\text{local})$ section of E over an open set $\text{Dom}(\sigma)(=\text{the domain})$ of M, so that σ is a C^{∞} map $\sigma: \text{Dom}(\sigma) \to E$ such that $\pi \circ \sigma(x) = x$ for all $x \in \text{Dom}(\sigma)$. We want to obtain a backward Itô's formula for the E_x -valued process $\sigma_{s,t}(x) := \eta_{s,t}^{-1}(\sigma(\theta_{s,t}(x))), x \in \text{Dom}(\sigma)$. Let $\sigma^*TE \to \text{Dom}(\sigma)$ be the pull-back of the tangent bundle $TE \to E$ by σ . For fixed t, define $D_{\lambda}(t)\sigma \in \Gamma(\sigma^*TE)$ by (cf. [1])

$$(D_{\lambda}(t)\sigma)(x) := (D(X_{\lambda}(t), Y_{\lambda}(t))\sigma)(x) = \sigma_{*,x}X_{\lambda}(t, x) - Y_{\lambda}(t, \sigma(x)) \in T_{\sigma(x)}E,$$

$$x \in \text{Dom}(\sigma), \ \lambda = 0, 1, \dots, k.$$

Let $\widetilde{Y}_{\lambda}(t) \in \Gamma(T(TE))$ be the natural lift of $Y_{\lambda}(t)$ to TE, $\lambda = 0, 1, \dots, k$. For each $C^{\infty}(\text{local})$ section ζ of σ^*TE over an open set $\text{Dom}(\zeta) (\subset \text{Dom}(\sigma)) \subset M$, noting that $\zeta(x) \in T_{\sigma(x)}E \subset TE$ for $x \in \text{Dom}(\zeta)$, we let $\zeta^*T(TE) \to \text{Dom}(\zeta)$ be the pull-back of the vector bundle $T(TE) \to TE$ by $\zeta : \text{Dom}(\zeta) \to TE$, and define $\widetilde{D}_{\lambda}(t)\zeta \in \Gamma(\zeta^*T(TE))$ by

$$(\tilde{D}_{\lambda}(t)\zeta)(x) := (\tilde{D}(X_{\lambda}(t), \tilde{Y}_{\lambda}(t))\zeta)(x) = \zeta_{*,x}X_{\lambda}(t, x) - \tilde{Y}_{\lambda}(t, \zeta(x)) \in T_{\zeta(x)}(TE),$$

$$x \in \text{Dom}(\zeta), \ \lambda = 0, 1, \cdots, k.$$

Moreover, for each C^{∞} function $f: E \rightarrow \mathbb{R}$, define a C^{∞} function $G_f: TE \rightarrow \mathbb{R}$ by

$$G_f(X) = \mathbf{d}f(X) = X[f], \quad X \in TE$$

where df denotes the total derivative of f. Then we obtain the following backward Itô's formula.

THEOREM 3.2 (Backward Itô's formula for sections of a fibered manifold). Let $\eta_{s,t}$ and $\theta_{s,t}$ be as above. Let σ be a C^{∞} (local) section of E defined on an open set $Dom(\sigma) \subset M$. Put $\sigma_{s,t} = \eta_{s,t}^{-1} \circ \sigma \circ \theta_{s,t}$. Then for every $x \in Dom(\sigma)$ and every C^{∞} function $f: E \to R$, it holds that

$$f(\sigma_{s,t}(x)) - f(x) = \sum_{\lambda=0}^{k} \int_{s}^{t} (D_{\lambda}(u)\sigma_{u,t})(x) [f] \circ \hat{d}w^{\lambda}(u)$$
 (3.4a)

$$= \sum_{\lambda=0}^{k} \int_{s}^{t} (D_{\lambda}(u)\sigma_{u,t})(x) [f] \cdot \hat{d}w^{\lambda}(u) + \frac{1}{2} \sum_{\alpha=1}^{k} \int_{s}^{t} (\tilde{D}_{\alpha}(u)(D_{\alpha}(u)\sigma_{u,t}))(x) [G_{f}] du$$
(3.4b)

$$= \sum_{\lambda=0}^{k} \int_{s}^{t} (D_{\lambda}(u)\sigma_{u,t})(x) [f] \cdot \hat{d}w^{\lambda}(u) + \frac{1}{2} \sum_{\alpha=1}^{k} \int_{s}^{t} \{X_{\alpha}(u, x) [(D_{\alpha}(u)\sigma_{u,t})[f]] \} du, \quad \tau_{\theta,\sigma}(t, x) < s < t < T, \quad (3.4c)$$

where $\tau_{\theta,\sigma}(t,x)$ is the backward stopping time defined by

$$\tau_{\theta,\sigma}(t, x) := \sup\{u \in (0, t) ; \theta_{u,t}(x) \notin \text{Dom}(\sigma)\}\$$

$$(=0 \text{ if } \{u \in (0, t) ; \theta_{u,t}(x) \notin \text{Dom}(\sigma)\} = \emptyset).$$

PROOF. We first note that $\eta_{s,t}^{-1}$ and $\theta_{s,t}$ satisfy backward equations

$$\hat{d}_{s}\eta_{s,t}^{-1} = \sum_{l=0}^{k} Y_{\lambda}(s, \eta_{s,t}^{-1}) \circ \hat{d}w^{\lambda}(s)$$

and

$$\hat{d}_s\theta_{s,t}(x) = -\sum_{\lambda=0}^k (\theta_{s,t})_{*,x} X_{\lambda}(s,x) \circ \hat{d}w^{\lambda}(s),$$

respectively, where \hat{d}_s denotes backward stochastic differential with respect to the parameter s (see [10, p. 251, Theorem 9.2, and p. 262, Theorem 1.3]). Therefore

$$\hat{d}_{s}(f(\sigma_{s,t}(x))) = \hat{d}_{s}(f \circ \eta_{s,t}^{-1} \circ \sigma \circ \theta_{s,t}(x))
= (\hat{d}_{s}(f \circ \eta_{s,t}^{-1} \circ \sigma))(\theta_{s,t}(x)) + (\hat{d}_{s}\theta_{s,t}(x))[f \circ \eta_{s,t}^{-1} \circ \sigma]
= \sum_{\lambda=0}^{k} Y_{\lambda}(s, \eta_{s,t}^{-1} \circ \sigma \circ \theta_{s,t}(x))[f] \circ \hat{d}w^{\lambda}(s) - \sum_{\lambda=0}^{k} (\theta_{s,t})_{*,x} X_{\lambda}(s, x)[f \circ \eta_{s,t}^{-1} \circ \sigma] \circ \hat{d}w^{\lambda}(s)
= \sum_{\lambda=0}^{k} \{Y_{\lambda}(s, \sigma_{s,t}(x)) - (\sigma_{s,t})_{*,x} X_{\lambda}(s, x)\}[f] \circ \hat{d}w^{\lambda}(s)
= -\sum_{\lambda=0}^{k} (D_{\lambda}(s)\sigma_{s,t})(x)[f] \circ \hat{d}w^{\lambda}(s).$$
(3.5)

Since

$$\int_{s}^{t} \hat{d}_{u}(f(\sigma_{u,t}(x))) = f(\sigma_{t,t}(x)) - f(\sigma_{s,t}(x))$$

and $\sigma_{t,t}(x) = \sigma(x)$, (3.5) implies (3.4a).

Next, using (3.5), we have

$$\hat{d}_{s}(X_{\lambda}(s, x)[f \circ \sigma_{s, t}]) = \frac{\partial}{\partial v}(X_{\lambda}(v, x)[f \circ \sigma_{s, t}])\Big|_{v=s} \cdot \hat{d}s$$

$$-\sum_{\nu=0}^{k} X_{\lambda}(s, x)[(D_{\nu}(s)\sigma_{s, t})[f]] \cdot \hat{d}w^{\nu}(s) \tag{3.6}$$

and

$$\hat{d}_{s}(Y_{\lambda}(s, \sigma_{s, t}(x))[f]) = \hat{d}_{s}(Y_{\lambda}(s)[f](\sigma_{s, t}(x)))
= \left(\frac{\partial}{\partial s}(Y_{\lambda}(s)[f])\right)(\sigma_{s, t}(x)) \cdot \hat{d}_{s} - \sum_{\nu=0}^{k} (D_{\nu}(s)\sigma_{s, t})(x)[Y_{\lambda}(s)[f]] \cdot \hat{d}_{s}w^{\nu}(s). \quad (3.7)$$

By (3.6) and (3.7), we have

$$\hat{d}_{s}((D_{\lambda}(s)\sigma_{s,t})(x)[f])
= \hat{d}_{s}(X_{\lambda}(s, x)[f \circ \sigma_{s,t}]) - \hat{d}_{s}(Y_{\lambda}(s, \sigma_{s,t}(x))[f])
= \left\{ \frac{\partial}{\partial v} (X_{\lambda}(v, x)[f \circ \sigma_{s,t}]) \Big|_{v=s} - \left(\frac{\partial}{\partial s} (Y_{\lambda}(s)[f]) \right) (\sigma_{s,t}(x)) \right\} \cdot \hat{d}s
- \sum_{\nu=0}^{k} \left\{ X_{\lambda}(s, x)[(D_{\nu}(s)\sigma_{s,t})[f]] - (D_{\nu}(s)\sigma_{s,t})(x)[Y_{\lambda}(s)[f]] \right\} \cdot \hat{d}w^{\nu}(s). \quad (3.8)$$

Noting that

$$\sum_{i=0}^{m-1} \frac{1}{2} (a_{i+1} + a_i)(b_{i+1} - b_i)$$

$$= \sum_{i=0}^{m-1} a_{i+1}(b_{i+1} - b_i) - \frac{1}{2} \sum_{i=0}^{m-1} (a_{i+1} - a_i)(b_{i+1} - b_i)$$

for a_i , $b_i \in \mathbb{R}$, $i=0, 1, \dots, m$, and using (3.8) and backward Itô stochastic differentials, we rewrite (3.5) as

$$\hat{d}_{s}(f(\sigma_{s,t}(x))) = -\sum_{\lambda=0}^{k} (D_{\lambda}(s)\sigma_{s,t})(x)[f] \cdot \hat{d}w^{\lambda}(s) - \frac{1}{2}\sum_{\alpha=1}^{k} \{X_{\alpha}(s, x)[(D_{\alpha}(s)\sigma_{s,t})[f]] - (D_{\alpha}(s)\sigma_{s,t})(x)[Y_{\alpha}(s)[f]]\} \cdot \hat{d}s.$$
(3.9)

On the other hand, for λ , $\nu=0, 1, \dots, k$, we have

$$(\widetilde{D}_{\lambda}(s)(D_{\nu}(s)\sigma_{s,t}))(x)[G_{f}]$$

$$= (D_{\nu}(s)\sigma_{s,t})_{*,x}X_{\lambda}(s,x)[G_{f}] - \widetilde{Y}_{\lambda}(s,(D_{\nu}(s)\sigma_{s,t})(x))[G_{f}]. \qquad (3.10)$$

The first term in the right hand side of (3.10) equals

$$X_{\lambda}(s, x)[G_{f}\circ(D_{\nu}(s)\sigma_{s,t})] = X_{\lambda}(s, x)[(D_{\nu}(s)\sigma_{s,t})[f]]. \tag{3.11}$$

If $\rho_{s,t}^{(\lambda)}$ [resp. $\tilde{\rho}_{s,t}^{(\lambda)}$] denotes the (time-dependent) flow of $Y_{\lambda}(\cdot)$ [resp. $\tilde{Y}_{\lambda}(\cdot)$], that is, $(d/dt)\rho_{s,t}^{(\lambda)}(\cdot)=Y_{\lambda}(t,\rho_{s,t}^{(\lambda)}(\cdot))$, $\rho_{s,s}^{(\lambda)}=$ identity, and similar for $\tilde{\rho}_{s,t}^{(\lambda)}$, then for $Y \in TE$ it holds that

$$\begin{split} \tilde{Y}_{\lambda}(s,Y)[G_f] &= \frac{d}{du} G_f(\tilde{\rho}_{s,u}^{(\lambda)}(Y)) \Big|_{u=s} = \frac{d}{du} G_f((\rho_{s,u}^{(\lambda)})_*Y) \Big|_{u=s} \\ &= \frac{d}{du} ((\rho_{s,u}^{(\lambda)})_*Y[f]) \Big|_{u=s} = \frac{d}{du} Y[f \circ \rho_{s,u}^{(\lambda)}] \Big|_{u=s} \\ &= Y \Big[\frac{d}{du} (f \circ \rho_{s,u}^{(\lambda)}) \Big|_{u=s} \Big] = Y[Y_{\lambda}(s)[f]]. \end{split}$$

Thus

$$\widetilde{Y}_{\lambda}(s, (D_{\nu}(s)\sigma_{s,t})(x))[G_f] = (D_{\nu}(s)\sigma_{s,t})(x)[Y_{\lambda}(s)[f]]. \tag{3.12}$$

By (3.10), (3.11) and (3.12), we have

$$(\widetilde{D}_{\lambda}(s)(D_{\nu}(s)\sigma_{s,t}))(x)[G_f]$$

$$= X_{\lambda}(s, x)[(D_{\nu}(s)\sigma_{s,t})[f]] - (D_{\nu}(s)\sigma_{s,t})(x)[Y_{\lambda}(s)[f]]. \tag{3.13}$$

Then (3.4b) and (3.4c) follow from (3.9) and (3.13). This completes the proof of the theorem.

4. Backward Itô's formula for sections of a vector bundle.

Consider next the case where E is a real vector bundle with standard fiber \mathbf{R}^m associated with a principal fiber bundle $P(M, G, \pi_P)$ through a representation of G into $GL(m, \mathbf{R})$ ([9, Vol. I, p. 113]). Let $R_a: P \ni p \mapsto p a \in P$ denote the right-translation by $a \in G$. In this section, we assume the following:

(#) There exist time-dependent vector fields $A_{\lambda}(t) \in \Gamma(TP)$, $\lambda = 0, 1, \dots, k$, which are invariant by R_a for every $a \in G$ such that each $Y_{\lambda}(t)$ is induced from $A_{\lambda}(t)$ in a natural manner (cf. [1]).

Let $\rho_{s,t}^{(\lambda)}$ [resp. $\theta_{s,t}^{(\lambda)}$] be the (time-dependent) flow of $Y_{\lambda}(\cdot)$ [resp. $X_{\lambda}(\cdot)$]. Under the assumption (#), the map

$$\rho_{s,t}^{(\lambda)}|_{E_r}: E_x(=\pi^{-1}(x)) \longrightarrow \pi^{-1}(\theta_{s,t}^{(\lambda)}(x))$$

is **R**-linear for every $\lambda=0$, 1, ..., k and $x\in M$. Let $\sigma\in\Gamma(E)$, so that $\mathrm{Dom}(\sigma)=M$. Define $L_{\lambda}(s)\sigma\in\Gamma(E)$ by (cf. [1])

$$\begin{split} (L_{\lambda}(s)\sigma)(x) &:= (L(X_{\lambda}(s), Y_{\lambda}(s))\sigma)(x) \\ &= \lim_{t \to s} \frac{1}{t} \left\{ (\rho_{s,t}^{(\lambda)})^{-1} \circ \sigma \circ \theta_{s,t}^{(\lambda)}(x) - \sigma(x) \right\} \in E_x, \qquad x \in M. \end{split}$$

We note that (cf. [1]) for a C^{∞} function $f: E \rightarrow \mathbb{R}$,

$$(D_{\lambda}(s)\sigma)(x)[f] = \frac{d}{dt} f((\rho_{s,t}^{(\lambda)})^{-1} \circ \sigma \circ \theta_{s,t}^{(\lambda)}(x)) \Big|_{t=s}, \qquad x \in M.$$

Backward Itô's formulas are known for $\theta_{s,t}$ acting on tensor fields and for stochastic parallel displacement of tensors; see [10, p. 279, Theorem 4.3, and p. 293, Theorem 6.4] (cf. [7]). The following corollary gives a backward Itô's formula for sections of a vector bundle.

COROLLARY 4.1 (Backward Itô's formula for sections of a vector bundle). When E is a vector bundle with standard fiber \mathbf{R}^m associated with a principal fiber bundle $P(M, G, \pi_P)$ through a representation of G into $GL(m, \mathbf{R})$, under the assumption (#), it holds that for $\sigma \in \Gamma(E)$ and $0 \le s < t < T$,

$$\sigma_{s,t} - \sigma = \sum_{\lambda=0}^{k} \int_{s}^{t} L_{\lambda}(u) \sigma_{u,t} \circ \hat{d} w^{\lambda}(u)$$
 (4.1a)

$$= \sum_{\alpha=1}^{k} \int_{s}^{t} L_{\alpha}(u) \sigma_{u,t} \cdot \hat{d} w^{\alpha}(u) + \int_{s}^{t} \left\{ \frac{1}{2} \sum_{\alpha=1}^{k} (L_{\alpha}(u))^{2} + L_{0}(u) \right\} \sigma_{u,t} du.$$
 (4.1b)

PROOF. Let $\pi_{E^*}\colon E^*\to M$ denote the dual vector bundle of E. Let $\phi\in\Gamma(E^*)$. Define a C^∞ function $f_\phi\colon E\to R$ by $f_\phi(q)=\langle \phi(\pi(q)),\,q\rangle,\,q\in E$, where $\langle \ ,\ \rangle$ stands for the canonical pairing between $E_x^*=\pi_{E^*}^{-1}(x)$ and E_x for any $x\in M$. Note that

$$(D_{\lambda}(u)\sigma_{u,t})(x)[f_{\psi}] = \frac{d}{dv} f_{\psi}((\rho_{u,v}^{(\lambda)})^{-1} \circ \sigma_{u,t} \circ \theta_{u,v}^{(\lambda)}(x)) \Big|_{v=u}$$

$$= \frac{d}{dv} \langle \psi(x), (\rho_{u,v}^{(\lambda)})^{-1} \circ \sigma_{u,t} \circ \theta_{u,v}^{(\lambda)}(x) \rangle \Big|_{v=u} \quad [\text{by } \psi(\pi((\rho_{u,v}^{(\lambda)})^{-1} \circ \sigma_{u,t} \circ \theta_{u,v}^{(\lambda)}(x))) = \psi(x)]$$

$$= \langle \psi(x), (L_{\lambda}(u)\sigma_{u,t})(x) \rangle = f_{\psi} \circ (L_{\lambda}(u)\sigma_{u,t})(x). \tag{4.2}$$

Therefore by (3.4a) we have

$$\langle \psi, \sigma_{s,t} - \sigma \rangle = \left\langle \psi, \sum_{\lambda=0}^{k} \int_{s}^{t} L_{\lambda}(u) \sigma_{u,t} \circ \hat{d} w^{\lambda}(u) \right\rangle$$

This proves (4.1a).

Next we notice that by (4.2)

$$X_{\lambda}(u, x) [(D_{\nu}(u)\sigma_{u,t})[f_{\psi}]] = X_{\lambda}(u, x) [f_{\psi} \circ (L_{\nu}(u)\sigma_{u,t})]$$

$$= (L_{\nu}(u)\sigma_{u,t})_{*, x} X_{\lambda}(u, x)[f_{\psi}]. \tag{4.3}$$

For λ , $\nu=0, 1, \dots, k$, fixing u, t, and x, we have

$$(D_{\nu}(u)\sigma_{u,t})(x)[Y_{\lambda}(u)[f_{\psi}]] = (D_{\nu}(u)\sigma_{u,t})(x)\left[\frac{d}{dv}(f_{\psi}\circ\rho_{u,v}^{(\lambda)})\Big|_{v=u}\right]$$

$$= \frac{\partial}{\partial v'}\frac{\partial}{\partial v}f_{\psi}(\rho_{u,v}^{(\lambda)}\circ(\rho_{u,v'}^{(\nu)})^{-1}\circ\sigma_{u,t}\circ\theta_{u,v'}^{(\nu)}(x))\Big|_{v=u,v'=u}$$

$$= \frac{\partial}{\partial v}\frac{\partial}{\partial v'}\langle\psi(\theta_{u,v}^{(\lambda)}(x)), \rho_{u,v}^{(\lambda)}\circ(\rho_{u,v'}^{(\nu)})^{-1}\circ\sigma_{u,t}\circ\theta_{u,v'}^{(\nu)}(x)\rangle\Big|_{v'=u,v=u}$$

$$= \frac{d}{dv}\langle\psi(\theta_{u,v}^{(\lambda)}(x)), \rho_{u,v}^{(\lambda)}\circ(L_{\nu}(u)\sigma_{u,t})(x)\rangle\Big|_{v=u} \quad \text{[by } \mathbf{R}\text{-linearity of } \rho_{u,v}^{(\lambda)}|_{E_{x}}]$$

$$= \frac{d}{dv}f_{\psi}(\rho_{u,v}^{(\lambda)}\circ(L_{\nu}(u)\sigma_{u,t})(x))\Big|_{v=u} \quad \text{[by } \theta_{u,v}^{(\lambda)}(x)=\pi(\rho_{u,v}^{(\lambda)}\circ(L_{\nu}(u)\sigma_{u,t})(x))]$$

$$= Y_{\lambda}(u, (L_{\nu}(u)\sigma_{u,t})(x))[f_{\psi}]. \tag{4.4}$$

From (4.3) and (4.4) it holds that

$$X_{\lambda}(u, x) [(D_{\nu}(u)\sigma_{u,t})[f_{\phi}]] - (D_{\nu}(u)\sigma_{u,t})(x)[Y_{\lambda}(u)[f_{\phi}]]$$

$$= (L_{\nu}(u)\sigma_{u,t})_{*,x}X_{\lambda}(u, x)[f_{\phi}] - Y_{\lambda}(u, (L_{\nu}(u)\sigma_{u,t})(x))[f_{\phi}]$$

$$= (D_{\lambda}(u)(L_{\nu}(u)\sigma_{u,t}))(x)[f_{\phi}] = \langle \phi(x), (L_{\lambda}(u)(L_{\nu}(u)\sigma_{u,t}))(x) \rangle, \qquad (4.5)$$

the last equality being shown as in (4.2). Hence, by (3.4c), (4.2), and (4.5), we obtain (4.1b). This completes the proof.

For a better understanding of Corollary 4.1, we give another proof.

ALTERNATIVE PROOF. Regard each $p \in P$ as the R-linear map $p : R^m \ni \xi \mapsto p\xi \in E_{\pi_P(p)}$. We associate with $\sigma \in \Gamma(E)$ the function $F_\sigma : P \to R^m$ defined by $F_\sigma(p) := p^{-1}(\sigma(\pi_P(p))), p \in P$ ([9, p. 116]). We have

LEMMA 4.2.
$$(L_{\lambda}(s)\sigma)(x) = p(A_{\lambda}(s, p)[F_{\sigma}]), \quad p \in \pi_{P}^{-1}(x), \quad x \in M.$$

PROOF OF LEMMA 4.2. Let $\varphi_{s,t}^{(\lambda)}$ be the (time-dependent) flow of $A_{\lambda}(\cdot)$. Let $\rho_{s,t}^{(\lambda)}$ and $\theta_{s,t}^{(\lambda)}$ be as before. Then $\rho_{s,t}^{(\lambda)}(q) = (\varphi_{s,t}^{(\lambda)}(p) \circ p^{-1})(q)$, $\theta_{s,t}^{(\lambda)}(x) = \pi_P(\varphi_{s,t}^{(\lambda)}(p))$, $p \in \pi_P^{-1}(x)$, $x = \pi(q)$, $q \in E$. Therefore

$$F_{\sigma} \circ \varphi_{s,t}^{(\lambda)}(p) = (\varphi_{s,t}^{(\lambda)}(p))^{-1}(\sigma(\theta_{s,t}^{(\lambda)}(x))) = p^{-1}((\rho_{s,t}^{(\lambda)})^{-1} \circ \sigma \circ \theta_{s,t}^{(\lambda)}(x)), \quad p \in \pi_P^{-1}(x), \ x \in M.$$

Since $p^{-1}: E_x \to \mathbb{R}^m$ is R-linear for $p \in \pi_P^{-1}(x)$ with $x \in M$, it holds that

$$p(A_{\lambda}(s, p)[F_{\sigma}]) = p\left(\frac{d}{du}(F_{\sigma} \circ \varphi_{s, u}^{(\lambda)}(p))\Big|_{v=s}\right) = (L_{\lambda}(s)\sigma)(x),$$

which completes the proof of Lemma 4.2.

Let $\varphi_{s,t}(p)$ be the solution of

$$d\varphi_t = \sum_{\lambda=0}^k A_{\lambda}(t, \varphi_t) \circ dw^{\lambda}(t), \qquad \varphi_s = p \in P.$$

Then we have $\eta_{s,t}(q) = (\varphi_{s,t}(p) \circ p^{-1})(q)$, $\theta_{s,t}(x) = \pi_P(\varphi_{s,t}(p))$, $p \in \pi_P^{-1}(x)$, $x = \pi(q)$, $q \in E$ (cf. [1]). Since

$$\hat{d}_{s}\varphi_{s,t}(p) = -\sum_{i=0}^{k} (\varphi_{s,t})_{*,p} A_{\lambda}(s, p) \cdot \hat{d}w^{\lambda}(s),$$

it holds that

$$\hat{d}_{s}F_{\sigma}(\varphi_{s,t}(p)) = -\sum_{i=0}^{k} A_{\lambda}(s, p) [F_{\sigma} \circ \varphi_{s,t}] \circ \hat{d}w^{\lambda}(s)$$

$$(4.6)$$

and

$$\hat{d}_{s}(A_{\lambda}(s, p)[F_{\sigma} \circ \varphi_{s, t}]) = \frac{\hat{\partial}}{\partial v}(A_{\lambda}(v, p)[F_{\sigma} \circ \varphi_{s, t}])\Big|_{v=s} \cdot \hat{d}s$$

$$-\sum_{\nu=0}^{k} A_{\lambda}(s, p)[A_{\nu}(s)[F_{\sigma} \circ \varphi_{s, t}]] \cdot \hat{d}w^{\nu}(s). \tag{4.7}$$

By (4.6) and (4.7) we have

$$\hat{d}_{s}F_{\sigma}(\varphi_{s,t}(p)) = -\sum_{k=0}^{k} A_{\lambda}(s, p)[F_{\sigma} \circ \varphi_{s,t}] \cdot \hat{d}w^{\lambda}(s)$$

$$-\frac{1}{2} \sum_{\alpha=1}^{k} A_{\alpha}(s, p)[A_{\alpha}(s)[F_{\sigma} \circ \varphi_{s,t}]] \cdot \hat{d}s. \qquad (4.8)$$

Let $p \in \pi_P^{-1}(x)$, $x \in M$. Then

$$\begin{split} p(F_{\sigma}(\varphi_{s,t}(p))) &= \sigma_{s,t}(x), \\ p(A_{\lambda}(s, p)[F_{\sigma} \circ \varphi_{s,t}]) &= p(A_{\lambda}(s, p)[F_{\sigma_{s,t}}]) = (L_{\lambda}(s)\sigma_{s,t})(x), \\ p(A_{\lambda}(s, p)[A_{\nu}(s)[F_{\sigma} \circ \varphi_{s,t}]]) &= (L_{\lambda}(s)(L_{\nu}(s)\sigma_{s,t}))(x). \end{split}$$

Hence by (4.6) and (4.8) we obtain (4.1a) and (4.1b). This completes the proof of Corollary 4.1.

Now it is easy to rewrite the examples in [1, § 4] in order to obtain their backward versions. We give here two examples of Corollary 4.1.

EXAMPLE 1. Consider the case $E=T_q^p(M)$, the tensor bundle of type (p,q) over M. Let δ_{λ} , $\lambda=0$, 1, ..., k, be derivations of the tensor algebra of M, and recall that each δ_{λ} is uniquely decomposed in the form

$$\delta_{\lambda} = \mathcal{L}_{X_{\lambda}} + S_{\lambda}, \quad X_{\lambda} \in \Gamma(TM), \quad S_{\lambda} \in \Gamma(T_{1}(M)),$$

where $\mathcal{L}_{X_{\lambda}}$ denotes Lie differentiation with respect to X_{λ} , and S_{λ} is regarded as a derivation ([9, Vol. I, p. 30, Proposition 3.3]). Take P to be the bundle of linear frames for TM over M. Define $Y_{\lambda} \in \Gamma(TE)$ by

$$Y_{\lambda}(q)[f] = \widetilde{X}_{\lambda}(q)[f] + \frac{d}{d\varepsilon} f(q + \varepsilon S_{\lambda}(\pi(q))[q]) \Big|_{\varepsilon=0}$$

for every $q \in E$ and C^{∞} real function f on E, where \widetilde{X}_{λ} denotes the natural lift of X_{λ} to E and $S_{\lambda}(\pi(q))[\cdot] \in \operatorname{End}(E_{\pi(q)})$ stands for the restriction of the derivation S_{λ} to $E_{\pi(q)}$. (Note that $q + \varepsilon S_{\lambda}(\pi(q))[q] \in E_{\pi(q)}$.) Then each Y_{λ} is π -related to X_{λ} . Moreover, these $Y_{\lambda}(t) := Y_{\lambda}$ in fact satisfy the assumption (#) (cf. [1, § 4]), and for $\sigma \in \Gamma(E)$ we get a backward formula with $L_{\lambda}(u)\sigma_{u,t} = \delta_{\lambda}\sigma_{u,t}$.

EXAMPLE 2. Let E be a vector bundle endowed with a linear connection ∇^E . Let P be the frame bundle for E over M. For $\lambda=0,1,\cdots,k$, let $Y_\lambda\in\Gamma(TE)$ be the horizontal lift of $X_\lambda\in\Gamma(TM)$ to E. Then we see that these Y_λ satisfy the assumption (#), and for $\sigma\in\Gamma(E)$ we obtain a backward formula with $L_\lambda(u)\sigma_{u,t}=\nabla^E_{X_\lambda}\sigma_{u,t}$.

Next we consider certain backward and forward differential equations (terminal and initial value problems) for sections of a vector bundle.

COROLLARY 4.3. Under the same conditions as in Corollary 4.1, let $\sigma \in \Gamma(E)$ be of compact support. Then the expectation $v_{s,t}(x) = E[\sigma_{s,t}(x)]$ is the solution of the terminal value problem of the backward differential equation

$$\begin{cases}
\frac{\partial v_{s,t}}{\partial s} = -\left\{\frac{1}{2}\sum_{\alpha=1}^{k}(L_{\alpha}(s))^{2} + L_{0}(s)\right\}v_{s,t} & (0 < s < t), \\
\lim_{s \uparrow t} v_{s,t} = \sigma.
\end{cases}$$

PROOF. This follows from Corollary 4.1.

COROLLARY 4.4. Under the same conditions as in Corollary 4.1, let $\sigma \in \Gamma(E)$ be of compact support. Let $\hat{\eta}_{s,t}(q)$ be the solution of the backward stochastic

differential equation

$$\hat{d}\hat{\eta}_s = -\sum_{k=0}^k Y_{\lambda}(s, \hat{\eta}_s) \circ \hat{d}w^{\lambda}(s)$$

with the terminal condition $\hat{\eta}_t(q) = q \in E_x$, $x \in M$. Put $\hat{\sigma}_{s,t} = (\hat{\eta}_{s,t})^{-1} \circ \sigma \circ \hat{\theta}_{s,t}$, where $\hat{\theta}_{s,t}(x) := \pi(\hat{\eta}_{s,t}(q))$, $q \in E_x$, $x \in M$; note that $\hat{\theta}_{s,t}$ is well-defined. Set $\hat{v}_{s,t} = E[\hat{\sigma}_{s,t}]$. Then $\hat{v}_{s,t}$ is the solution of the initial value problem of the forward differential equation

$$\begin{cases}
\frac{\partial \hat{v}_{s,t}}{\partial t} = \left\{ \frac{1}{2} \sum_{\alpha=1}^{k} (L_{\alpha}(t))^{2} + L_{0}(t) \right\} \hat{v}_{s,t}, \\
\lim_{t \to s} \hat{v}_{s,t} = \sigma.
\end{cases} (4.9)$$

PROOF. This is proved in the same way as in [10, pp. 297-298, Theorem 7.2 and Theorem 7.3]: Apply Corollary 4.1 to $\hat{\sigma}_{s,t}$, interchanging the forward and backward variables. Then

$$\hat{\sigma}_{s,t} - \sigma = \sum_{\alpha=1}^k \int_s^t L_\alpha(u) \hat{\sigma}_{s,u} \cdot dw^\alpha(u) + \int_s^t \left\{ \frac{1}{2} \sum_{\alpha=1}^k (L_\alpha(u))^2 + L_0(u) \right\} \hat{\sigma}_{s,u} du.$$

Therefore we obtain

$$\boldsymbol{E}[\hat{\sigma}_{s,t}] - \boldsymbol{\sigma} = \int_{s}^{t} \left\{ \frac{1}{2} \sum_{\alpha=1}^{k} (L_{\alpha}(u))^{2} + L_{0}(u) \right\} \boldsymbol{E}[\hat{\sigma}_{s,u}] du.$$

Then it follows that $\hat{v}_{s,t} = E[\hat{\sigma}_{s,t}]$ is the solution of (4.9). This completes the proof.

5. Applications.

5.1. Time-dependent random C^{∞} distribution. Let L(M) be the bundle of linear frames for TM over M. Let r be an integer with $1 \le r < n = \dim M$. Let G(n,r) be the Grassmann manifold of r-planes in \mathbb{R}^n , so that the general linear group $GL(n,\mathbb{R})$ acts on G(n,r) on the left in a natural manner (cf. [9, Vol. II, p. 6]). Let $E(M,G(n,r),GL(n,\mathbb{R}),L(M))$ be the fiber bundle associated with L(M) by this action. The bundle E is called the (unoriented) Grassmann bundle of r-planes over M([3, pp. 48-49]). Since the total space E can be regarded as the collection of r-planes in the tangent spaces of M, the C^{∞} (global) sections of E are in one-to-one correspondence with the E0 distributions of dimension E1 on E2.

Using this correspondence, we define a time-dependent random C^{∞} distribution of dimension r on M as follows: Let \mathcal{D} be a C^{∞} distribution of dimension r on M. Let σ be the C^{∞} section of E corresponding to \mathcal{D} . Given vector fields X_{λ} , $\lambda=0,1,\cdots$, k, on M, we take Y_{λ} in the equation (3.1) to be the natural lift of X_{λ} to E; each Y_{λ} is induced from the natural lift of X_{λ} to E(M) in a natural manner. Let $\tilde{\theta}_{s,t}$ be the solution of the equation (3.1) with $\eta_{s}(q)=q$ for every $q\in E$. Define a time-dependent random C^{∞} distribution $\mathcal{D}_{s,t}$ of

338 H. Akiyama

dimension r on M with the terminal condition $\mathcal{D}_{t,t}=\mathcal{D}$ by specifying the corresponding time-dependent random cross section $\theta_{s,t}^*\sigma:=\tilde{\theta}_{s,t}^{-1}{}_{\circ}\sigma\circ\theta_{s,t}$. The behavior of $\mathcal{D}_{s,t}$ with respect to the initial-time parameter s is just given by Theorem 3.2, where $\eta_{s,t}=\tilde{\theta}_{s,t}$, and now each $D_{\lambda}(u)$ is Lie differentiation with respect to X_{λ} in the sense of Salvioli [11] (see also [4], [5]; in [1], the notation $\hat{L}_{X_{\lambda}}$ is used to denote Lie differentiation with respect to X_{λ} in the sense of Salvioli).

5.2. Backward and forward differential equations for second order linear differential operators on \mathbb{C}^{∞} functions on a manifold. Let $L^2(M)(M, G^2(n))$ be the bundle of second order frames over an n-dimensional manifold M with structure group $G^2(n) = G^2(n, \mathbb{R})$; see [8, p. 36 and p. 139] (cf. [1], [4], [5]). We take $L^2(M)$ as P in the assumption (#) in § 4. Let $F = (\mathbb{R}^n \odot \mathbb{R}^n) \oplus \mathbb{R}^n \oplus \mathbb{R}$ ($\cong \mathbb{R}^m$ with m = n(n+1)/2 + n + 1), where $\mathbb{R}^n \odot \mathbb{R}^n$ is the symmetric tensor product of \mathbb{R}^n with itself. We define a left action of $G^2(n)$ on \mathbb{R}^n by

$$(s_j^i; s_{jk}^i)(a^{ij}; b^i; c) = \left(\sum_{k,l=1}^n s_k^i s_l^j a^{kl}; \sum_{j,k=1}^n s_{jk}^i a^{jk} + \sum_{j=1}^n s_j^i b^j; c\right),$$

where $(s_j^i; s_{jk}^i)$ (with $s_{jk}^i = s_{kj}^i$) and $(a^{ij}; b^i; c)$ (with $a^{ij} = a^{ji}$), $i, j, k = 1, \dots, n$, are natural coordinates in $G^2(n)$ and F, respectively. Then we obtain a vector bundle $E(M, F, G^2(n), L^2(M))$, with standard fiber F and structure group $G^2(n)$, which is associated with $L^2(M)$.

The $C^{\infty}(global)$ sections of the vector bundle E are in one-to-one correspondence with the second order (possibly degenerate) linear differential operators on R-valued C^{∞} functions on M. Each $\sigma \in \Gamma(E)$ is expressed locally as

$$\left(x^{i};\,\left[\left(\frac{\partial^{2}}{\partial x^{i}\partial x^{j}};\,\frac{\partial}{\partial x^{i}}\right),\,\left(a^{ij}(x);\;b^{i}(x);\;c(x)\right)\right]\right),\quad (i,\,j{=}1,\,\cdots,\,n)\,,$$

and the second order (possibly degenerate) linear differential operator \mathcal{A}_{σ} corresponding to σ is expressed locally as

$$\mathcal{A}_{\sigma} = \sum_{i,j=1}^{n} a^{ij}(x) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}} + \sum_{i=1}^{n} b^{i}(x) \frac{\partial}{\partial x^{i}} + c(x).$$

We identify σ with \mathcal{A}_{σ} .

Take each A_{λ} in the assumption (#) (§ 4) to be the natural lift of X_{λ} to $L^{2}(M)$. Then each Y_{λ} is the natural lift \hat{X}_{λ} of X_{λ} to E. Writing the solution $\eta_{s,t}$ of (3.1) as $\tilde{\theta}_{s,t}$, we define $\theta_{s,t}^{*}\sigma:=\tilde{\theta}_{s,t}^{-1}\circ\sigma\circ\theta_{s,t}$. It holds from Corollary 4.1 that $\theta_{s,t}^{*}\sigma$ satisfies

$$\theta_{s,t}^{*}\sigma - \sigma = \sum_{\alpha=1}^{k} \int_{s}^{t} \mathcal{L}_{X_{\alpha}}(\theta_{u,t}^{*}\sigma) \cdot \hat{d}w^{\alpha}(u) + \int_{s}^{t} \left\{ \frac{1}{2} \sum_{\alpha=1}^{k} (\mathcal{L}_{X_{\alpha}})^{2} + \mathcal{L}_{X_{0}} \right\} \theta_{u,t}^{*}\sigma du, (5.1)$$

where each $\mathcal{L}_{X_{\lambda}}$: $\Gamma(E) \rightarrow \Gamma(E)$, $\lambda = 0, 1, \dots, k$, denotes Lie differentiation with respect to X_{λ} (see [1, § 4], [12]).

Let $\sigma \in \Gamma(E)$ be of compact support. Then from (5.1) we see that the expectation $v_{\bullet,t}(x) := E[(\theta_{\bullet,t}^*\sigma)(x)]$ is the solution of the following terminal value problem for second order (possibly degenerate) linear differential operators on R-valued C^{∞} functions on M (see Corollary 4.3):

$$\frac{\partial v_{s,t}}{\partial s} = -\left\{\frac{1}{2}\sum_{\alpha=1}^{k}(\mathcal{L}_{X_{\alpha}})^{2} + \mathcal{L}_{X_{0}}\right\}v_{s,t}, \quad \lim_{s \to t} v_{s,t} = \sigma.$$

Next, consider the solution $\hat{\eta}_{s,t}(q)$ of the backward stochastic differential equation

$$\hat{d}\,\hat{\eta}_s = -\sum_{\lambda=0}^k \hat{X}_{\lambda}(s,\,\hat{\eta}_s) \cdot \hat{d}\,w^{\lambda}(s)$$

with the terminal condition $\hat{\eta}_t(q) = q \in E_x$ with $x \in M$. Let $\hat{v}_{s,t}$ be as in Corollary 4.4 (with $Y_{\lambda} = \hat{X}_{\lambda}$). Then $\hat{v}_{s,t}$ is the solution of the following initial value problem for second order (possibly degenerate) linear differential operators on R-valued C^{∞} functions on M:

$$\frac{\partial \hat{v}_{s,t}}{\partial t} = \left\{ \frac{1}{2} \sum_{\alpha=1}^{k} (\mathcal{L}_{X_{\alpha}})^2 + \mathcal{L}_{X_0} \right\} \hat{v}_{s,t}, \quad \lim_{t \to s} \hat{v}_{s,t} = \sigma.$$

NOTE. In [2, § 3], nonstandard analysis, especially a hyperfinite random walk on a uniform Loeb probability space, has been used for getting nonstandard backward Itô's formulas for (local) sections of fiber bundles.

References

- [1] H. Akiyama, On Itô's formula for certain fields of geometric objects, J. Math. Soc. Japan, 39 (1987), 79-91.
- [2] H. Akiyama, Applications of nonstandard analysis to stochastic flows and heat kernels on manifolds, Geometry of Manifolds (ed. by K. Shiohama), Academic Press, Boston, New York, London, 1989, pp. 3-27.
- [3] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, Academic Press, New York, London, 1964.
- [4] M. Ferraris, M. Francaviglia and C. Reina, A constructive approach to bundles of geometric objects on a differentiable manifold, J. Math. Phys., 24 (1983), 120-124.
- [5] M. Ferraris, M. Francaviglia and C. Reina, Sur les fibrés d'objets géométriques et leurs applications physiques, Ann. Inst. H. Poincaré Phys. Théor., 38 (1983), 371-383.
- [6] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha/North-Holland, Tokyo/Amsterdam, 1981.
- [7] N. Ikeda and S. Watanabe, Stochastic flows of diffeomorphisms, Stochastic Analysis and Applications (ed. by M. A. Pinsky), Adv. Probab. Related Topics, 7, Marcel Dekker, New York, 1984, pp. 179-198.
- [8] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, 1972.
- [9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Interscience, New York, 1963, 1969.
- [10] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'Été de Probab. de Saint-Flour XII-1982 (ed. by P. L. Hennequin), Lecture

340

Н. Акічама

- Notes in Math., 1097, Springer, 1984, pp. 143-303.
- [11] S. Salvioli, On the theory of geometric objects, J. Diff. Geom., 7 (1972), 257-278.
- [12] K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam, 1955.

Hiroshi AKIYAMA

Department of Applied Mathematics Faculty of Engineering Shizuoka University 5-1, Johoku 3 chome Hamamatsu 432 Japan