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1. Introduction.

When a stochastic differential equation on a C= manifold generates a
stochastic flow of diffeomorphisms of the manifold, some geometric backward
It6’s formulas related to the stochastic flow are known for tensor fields on the
manifold [7], [10]. On the other hand, a forward (usual) Itd’s formula was
obtained for (local) sections of a fiber bundle [I]. It is, therefore, desirable to
get a backward stochastic formula generalized for (local) sections of a fiber
bundle or, more generally, of a fibered manifold.

The main purpose of the present paper is to obtain a backward stochastic
formula, which we will also call backward It6’s formula, for (local) sections of
a fibered manifold (Theorem 3.2) with the use of backward stochastic calculus
([10]). As a corollary, we obtain a backward Itd’s formula for sections of a
vector bundle (Corollary 4.1). Then, using this formula, we treat certain
backward and forward differential equations for sections of a vector bundle
(Corollaries 4.3 and 4.4).

Although the formula in is applicable to C= sections of a
general C*= fibered manifold, we are chiefly concerned with sections of fiber
bundles; we give applications to the study of the behavior (with respect to the
initial-time parameter) of a time-dependent random C= distribution of a C*
manifold and to backward and forward differential equations for second order
(possibly degenerate) linear differential operators on C= functions on a C*
manifold (§5). These applications are done by noting that a C= distribution
of a C~ manifold can be regarded as a section of a Grassmann bundle ([31),
and that each second order linear differential operator on C* functions on a C*
manifold can be identified with a section of a certain vector bundle associated
with the bundle of second order frames of the manifold.

This research was partially supported by Grant-in-Aid for Scientific Research (No.
63740114), Ministry of Education, Science and Culture.
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2. Preliminaries.

Let (W¢, 9, ) be the standard k-dimensional Wiener space: W§ is the
space of all continuous paths w: [0, oo)=2t—w@)=(w{), ---, w*@#))eR* such
that w(0)=0 endowed with the topology of uniform convergence on every
bounded interval, p is the standard Wiener measure, and & is the completion
of the Borel o-field on W% Thus w(t) is the canonical realization of Brownian
motion on the probability space. We set w°(?#)=t¢. Since forward stochastic
integrals are well-known, we recall some definitions on backward stochastic
integrals for later use.

Let T>0. For 0=s<t<T, let F(CF) be the least complete o-field for
which w(u)—w@), sSu<v<t, are measurable. Then FiC Tl if 0<s/'Ss<t<t
<T. If h(u), us[0,t], is a real-valued continuous backward semimartingale
relative to &%, then for each 2=0, 1, ---, %k, the backward It6 integral of A(u)
with respect to w*(u) is defined by

[ #Gw dwi) = 1i.p. 'S bt ) —w (1),

where 4: s=t,<---<tp=t, |4|=max;|t;;,—1;|, and L. i. p. denotes “limit in prob-
ability”; and the backward Stratonovich integral of A(u) with respect to w*(u)
is defined by

[\ by dwi = 1i.p. "S5 (it b o) —wt).

We shall use freely concepts and notations in and [10]. As for manifolds,
we refer to [3], [9].

3. Backward It6’s formula for sections of a fibered manifold.

Al manifolds in this paper are finite dimensional, o¢-compact, and of class
C=. For a C= vector bundle V over a manifold N, we denote by I'(V) the
space of C= global sections of V. Every C= vector field on N is regarded as
an element of /(T N), where TN denotes the tangent bundle over N.

Let E be a C> fibered manifold over a manifold M, with projection «:
E—M; that is, = is a C= surjective submersion and thus has maximal rank
everywhere. The fiber #7*(x) over x&M is denoted by E..

Let Y.,(t)el'(TE), A=0, 1, ---, k, be time-dependent projectable C* vector
fields (with time-parameter t<[0, T]) on E; that is, for each A, there exists a
(unique) time-dependent C>= vector field X;(t)el'(TM) on M such that the
vector field Y ;(t): E=2¢—Y (t, 9)=T,E (=the tangent space to E at g¢) is =n-
related to the vector field X;(t): M3x—X,;(¢, x)eT . M;
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Ty oY (8, 9) = Xa(t, n(q)), ¢<F,

where 7y, TE—T M is the differential of = at g. We let all time-dependent
vector fields in this paper be also C* in the time-parameter t.

Consider following two (forward) stochastic differential equations on F and
M, respectively, in the Stratonovich form:

dne= 2V lt, p)edw’(®), 3.1
49, = 12:]0)(;(1‘, 0,)dw (). (3.2)

In the following, we assume that the (maximal) solution %, :(g), 0<s<t<7,(s, q),
7s.9)=q, g€ E, of the equation is strictly conservative [that is, p(r,(s, ¢)
=T for all (s, ¢))=1, where 7,(s, q), s<t,(s, 9)<T, is the explosion time of
75,¢(¢)] and generates a stochastic flow of (C=) diffeomorphisms of E, a.s.; thus

o, u(@) = e u(95,:(q), ¢g=E, s<t<u<T, a.s.

The following lemma shows that 7, . induces a stochastic flow of diffeomor-
phisms of M.

LEMMA 3.1. #(9s.:(q)), 0<s<t<T, does not depend on the choice of g=E,
for every x=M, and the stochastic map 0 ,: M—M defined by

0s.(x) :=7w(ns,..(q), qgq<=E., x&M,

is the solution of (3.2). Moreover, s, defines a stochastic flow of diffeomorphisms
of M, a.s.

PrOOF. Since 7, is strictly conservative and defines a stochastic flow of
diffeomorphisms of E, a.s., the (maximal) solution of the adjoint equation

k
die = — BYalt, 10-dwi(®) (3.3)

is also strictly conservative; cf. [10, p. 251, Theorem 9.2]. Since z(7s,:(q))
satisfies

dm(De @) = 2 T ny ¥ 2(t, 70, (@))dw(t)
A=0
= DX, 7 g0 dwi®),  s<t<T,

where d, denotes stochastic differential with respect to the parameter ¢, the
uniqueness of the solution of implies that %, .(¢g) does not depend on the
choice of g€ E,; for each x&M, and thus we can define a stochastic map 6, ;:
M—M by setting

0:.(x) =7m(9:,:(q)), qgqEE;, xeM.
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Note that 6, . is the (maximal) solution of and is strictly conservative.

In the same way, since the solution of is strictly conservative, the
solution of the adjoint equation

b, = — p Xat, 6.)e dw(t)

is also strictly conservative. Therefore the solution 6, , of defines a
stochastic flow of diffeomorphisms of M, a.s. This completes the proof.

Let ¢ be a C>(local) section of E over an open set Dom(¢)(=the domain
of ¢) of M, so that ¢ is a C* map ¢: Dom(¢)—E such that m-g(x)=x for all
x<Dom(e). We want to obtain a backward It6’s formula for the E ,-valued process
0s,:(x) 1= 7;7.(a(f;,(x))), x&€Dom(s). Let ¢*T E—Dom(s) be the pull-back of
the tangent bundle TE—FE by o¢. For fixed ¢, define D,;(t)e = (¢*TE) by
(cf. [1D

(D:()a)(x) 1= (D(Xa(D), ¥ 2())a)x) = 04, . Xa(t, x)=Yi(t, 0(x)) € TonE,

x<Dom(e), 1=0, 1, ---, k.
Let V,()el(T(TE)) be the natural lift of ¥ ;(t) to TE, 2=0, 1, ---, k. For
each C= (local) section { of ¢*TE over an open set Dom({)(CDom(e¢))CM,
noting that {(x)ET 4y ECTE for xDom({), we let {*T(T E)~Dom({) be the
pull-back of the vector bundle T(TE)—-TE by {: Dom({)»TE, and define
D¢ elC*T(TE)) by
(Da)X)x) 1= (DXa), Va))(x) = Lu o Xalt, 0)—=Tit, LUx)) € Teears(TE),
xeDom({), 2=0, 1, ---, k.

Moreover, for each C* function f: E—R, define a C* function G;: TE—R by
Gy(X)=df(X)=X[f], XeTE,

where df denotes the total derivative of f. Then we obtain the following
backward It6’s formula.

THEOREM 3.2 (Backward It6’s formula for sections of a fibered manifold).
Let %5, and 0, be as above. Let ¢ be a C= (local) section of E defined on an
open set Dom(a)CM. Put o5,=%5%°0°0;,. Then for every x<Dom(ec) and
every C= function f: E—R, it holds that

f@u =) = 2 [ (Diwaw DL F-dwiw) (3.4

A=0

= 3 {Diwe -0+ 5[ B Dalwia . KRG Tdu
(3.4b)
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= 5[ Diwew. )01 Gt 5 B[ (X, Do L]
—(De(u)0u, JY ()L f11 du, 74,408, 0)<s<t<T, (3.4c)
where T4, ,(t, x) is the backward stopping time defined by
7g,4(t, x) :=sup{us(0, t) ; 8, .(x)EDom(a)}
(=0 if {ue(0, 1) ; 04, (x)EDom(a)} =@).
Proor. We first note that %5} and 6, . satisfy backward equations
dnst = gms, 750 dw(s)
and

- k -
dses,t(x) = - 2 (0s,t)*,zXZ(sy x)“’dwz(s)’
A=0

respectively, where d, denotes backward stochastic differential with respect to
the parameter s (see [10, p. 251, Theorem 9.2, and p. 262, Theorem 1.3]).
Therefore

A(f(00, (X)) = d(fons}oae05,u(x)

= (£ 0752 ONOs LN +(dsbs (XN f o750 0]

= 175, 54000 L)L F1oA0HS)— B (04 s2Xils, DL fo75100TodwH(s)

A=0

SV (5, 00l (04, 0x 2 Xils, DI Todw(s)

— B (D)0, XD f1edw (), (35)
Since
.2 f(@u. i) = flo, (D= F(00.(x)

and ¢, (x)=0(x), (3.5) implies (3.4a).
Next, using we have
Xk, DUfo00D) = 2 (Xolo, D o0, D] _-ds

— B Xi(s, DD N Tdus)  (36)
and

dy(Y i(s, 05, (Nf]) = do(¥ 2()[f1(04.4(x)))

= (‘aa_s‘(yl(s>[f:|)>(as, t(x»- C?S— yé} (DV<S)03.Z)<x)[YZ(3)[f]:|°6§wy(5) . (3'7)

By (3.6) and (3.7), we have
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d{(Dx(s)as X X)F])
= d(Xa(s, X)[fo0s D)=« 1(s, @5 (XN

= {2 %0, 0 fo00D)|_ ~(2 WO D)an ) ds
— 3 (X5, DL LA ~(DUAT Y 2N o). (38)
Noting that
S (it a )b

=S dsben—bd— 5 B (@er—adbia—b)
i=0 i=0
for a;, b;=R, i=0, 1, ---, m, and using (3.8) and backward It6 stochastic differ-
entials, we rewrite as
dy(f(as,{(x)))
= — 2 (D0 D1 dw(s)= 5 3 (Xels, DUD)0, 1]
—(Da(8)00, X X)Y o) £11} - ds. (3.9)
On the other hand, for 4, v=0, 1, ---, b, we have
(Da(s)Du(s)4, )N x)[Gy]
= (Du8)0s. )%, : Xa(s, £)[G;1—Y i(s, (Dus)os, NxN[G,].  (3.10)
The first term in the right hand side of (3.10) equals
Xi(s, ©)[Gso(Du(s)as,0)] = Xa(s, x)[(Dy(s)as, )L f]]. (3.11)

If o [resp. $A] denotes the (time-dependent) flow of Y ;(-) [resp. ¥i(-)], that
is, (d/dt)pd()=Y;@, p{P(+), pih=identity, and similar for g, then for Y&
TE it holds that

Pils, VG =G| = G omnn|

d
=~ BV TD| = ¥Ifo]

u=3s

d
— y[_d?(fopgfg u=3] =Y[Y.(s)[f1].

Thus
Ya(s, (Du(8)as, Xx)DLG r] = (Dy(s)as, X X)LV 2(s)[ 1] (3.12)

By (3.10), [(3.11) and [3.12), we have
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(Da(sXDUAs)as, )N X)[G ]
= Xu(s, ©)(Dus)0s, ) f11—(Dus)as, )Y 2()[ £1]. (3.13)

Then (3.4b) and follow from [3.9) and [3.13) This completes the proof
of the theorem.

4. Backward Ito’s formula for sections of a vector bundle.

Consider next the case where E is a real vector bundle with standard fiber
R™ associated with a principal fiber bundle P(M, G, np) through a representa-
tion of G into GL(m, R)([9, Vol. I, p. 113]). Let R,: P=p—pa=P denote
the right-translation by a=G. In this section, we assume the following:

(#) There exist time-dependent vector fields A;¢)el (TP), 2=0, 1, ---, &,
which are invariant by R, for every a=G such that each Y ;(¢) is induced from
A;(#) in a natural manner (cf. [1]).

Let p [resp. 647 be the (time-dependent) flow of Y ;(-)[resp. X;(-)].
Under the assumption (#), the map

o& g, P Ed(=1"Y(x)) —> m Y0P (x))
is R-linear for every 4=0,1, .-, 2 and x=M. Let o=l (E), so that Dom(c)=
M. Define L;(s)e=I'(E) by (cf. [I])

(La(s)oXx) 1= (L(Xa(s), Ya(s)a)x)

= lIm T (o) 100 —0(x)} € E.,  xEM.
We note that (cf. [1]) for a C* function f: E—R,
(DASANDLS] = = f(pr o 0B)|  xeM.

=3

Backward It6’s formulas are known for 6, . acting on tensor fields and for
¢ stochastic parallel displacement of tensors; see [10, p. 279, Theorem 4.3, and
p. 293, Theorem 6.4] (cf. [7]). The following corollary gives a backward It&’s
formula for sections of a vector bundle.

COROLLARY 4.1 (Backward Itd’s formula for sections of a vector bundle).
When E is a vector bundle with standard fiber R™ associated with a principal
fiber bundle P(M, G, mp) through a representation of G into GL(m, R), under
the assumption (#), it holds that for e<I'(E) and 0<s<t<T,

s —0 = ﬁ S:L;(u)ou,wﬁwi(u) (4.1a)

= 3 (' Lo dw ({5 B L+ Lwlowdu.  @1b)

a=1Js
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PROOF. Let zg.: E*—M denote the dual vector bundle of E. Let p=I" (E*).

Define a C> function f,: E—R by f,(g)=<¢(n(q)), ¢, gE, where { , > stands
for the canonical pairing between E*==z!(x) and E, for any x=M. Note that

(Da(w)ow, X2 fyl = Efga((p&f’v)"wu,w01‘},’1)(76))

v=u

—<¢'(x), (0Pw)” ‘°0u,z°0&‘.’v(x)>’v=u [by ¢(@({(0Po) o0 u, 00 Pu(x)))=¢(x)]
= L(x), (La(w)au, o X2 = fyo(La(u)au,:)(x). 4.2)
Therefore by (3.4a) we have
. k t -~
P, 05,0—0)> = <¢, > S8L1<u)au,z°dw*(u)>.

A=0
This proves
Next we notice that by

Xa(u, D)Du(w)a . )L fp1] = Xa(u, £)[fpo(Lu(1)G4.+)]
= (Lu(w)0u,)x, s Xa(u, x)[fy]. (4.3)

For 2, v=0, 1, .-, k, fixing u, ¢, and x, we have

(D)0, XY 200 f,]] = (Du)a, :)<x>[——(f¢ Yl

0 0
=7 5y [ #0808 "°0u,t°0&”,’v'(x))lvﬂ'v,:u
0 0

= o HODR, PP (PD) oo 0L D[
= L HOP), pPr(Liwaw, )| [by Relinearity of p2,ls,]

——*f¢(p“’ o(L(u)o, z)(x))) [by 0Lu(x)=a(pLoe(L(u)au,e)(x))]

=Y a(u, (L(w)o ., Xx)[fy]. (4.4)
From and it holds that
Xa(u, 2)[(Dw)0u, )L f4]1—(D(u)a o, )(2)LY 2(u)[ f¢]]
= (L w)a )%, : Xa(u, X)L fg]—=Y 2(u, (L w)ou, X x)Lfy]
= (D2(u)L(u)a o, )X x)[ fp] = {P(x), (Li(u) L u)ou,))x)>, (4.5)

the last equality being shown as in [4.2). Hence, by [(3.4c), [(4.2), and (4.5), we
obtain (4.1b). This completes the proof.

For a better understanding of [Corollary 4.1, we give another proof.
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ALTERNATIVE PROOF. Regard each p=P as the R-linear map p: R™">&—
p&EE,,P<,,>. We associate with e<I'(E) the function F,: P—R™ defined by
Fo(p) := p~Xa(zps(p))), pEP ([9, p. 116]). We have

LEMMA 4.2. (L(s)o)(x) = p(Aai(s, PIF,]),  pErs(x), xEM.

PrOOF OF LEMMA 4.2. Let ¢ be the (time-dependent) flow of A;(-). Let

o and 6 be as before. Then pA(g)=(p{A(p)ep~)q), 05 (x)=mpA(D)), pE
np'(x), x=mn(g), gE. Therefore

Foop (D) = (@ B(p) W o(0A(x) = pH(pf) ea-0(x)), perp'(x), xEM.

Since p~!': E,—R™ is R-linear for p=np!(x) with x&M, it holds that
d
P(As, IR = p(—1—(Foop@up))] ) = (La(s)a)),

which completes the proof of

Let ¢;,(p) be the solution of

k
do, = EoAz(t, @) dw(), p.=pc&P.

Then we have %, .(q)=(@s, (D)o D'NQ), Os.(x)=7p(ps.:(p)), pERF(X), x=2(q), ¢
€FE (cf. [1]). Since

A k A
dsps. (D) = — 2 (@, )x. p Aa(s, Pedwi(s),
it holds that

diF o0, D) = — 3, Ax(s, D) Foops,JodwA(s) (4.6)
and

G A, DLFsepuid) = o (Axv, D FoognD|_-ds
— 2 As(s, DLAS)FoopsilleduX(s).  @D)
By and (4.7) we have

@0 dp) = — 3 As(s, PYFepuid-du(s)

2 B A, DLALS oy, T3+ “8)
Let penz!(x), x&M. Then
D(Fo(@0 D)) = 01.ix),

DA, PILFse@s,i]) = p(Aa(s, P)LFe,, 1) = (La(s)o4s,e)(x),
p(Ax(s, PILALS)Feops,e]1]) = (La(sXLi($)0s,0))%)s
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Hence by and we obtain and (4.1b). This completes the proof
of [Corollary 4.1

Now it is easy to rewrite the examples in [1, §4] in order to obtain their
backward versions. We give here two examples of (Corollary 4.1

ExAMPLE 1. Consider the case E=T%(M), the tensor bundle of type (p, q)
over M. Let d;, A=0, 1, :--, k, be derivations of the tensor algebra of M, and
recall that each d; is uniquely decomposed in the form

0= Lx;+S;, X el(TM), S;el(T{M)),

where Lx, denotes Lie differentiation with respect to X;, and S; is regarded
as a derivation ([9, Vol. I, p. 30, Proposition 3.3]). Take P to be the bundle
of linear frames for TM over M. Define Y ,=l'(TE) by

V@1 = B@UF 15 flgteSata@iiad)]|

for every g E and C* real function f on E, where X, denotes the natural
lift of X; to E and Si(n(¢))[-]1=End(E.) stands for the restriction of the
derivation S; to E.q. (Note that ¢+eS:(w(g)[¢]l€Erg.) Then each Y; is 7-
related to X;. Moreover, these Y ;(t) :=Y; in fact satisfy the assumption (#)
(cf. [1, §4]), and for o¢=I'(E) we get a backward formula with L(u)o. .=
520u,;.

ExAMPLE 2. Let E be a vector bundle endowed with a linear connection
VE Let P be the frame bundle for E over M. For 1=0,1, ---, &k, let Y,
I'(TE) be the horizontal lift of X; I (TM) to E. Then we see that these Y,
satisfy the assumption (#), and for ¢=I'(E) we obtain a backward formula
with L(u)04,:=V%,04,..

Next we consider certain backward and forward differential equations

(terminal and initial value problems) for sections of a vector bundle.

COROLLARY 4.3. Under the same conditions as in Corollary 4.1, let eI (E)
be of compact support. Then the expectation vs (x)=FE[cs (x)] is the solution of
the terminal value problem of the backward differential equation

Wt (L S L+ Lofone  (0<s<D),

limvg,=0.
Sttt

ProOOF. This follows from [Corollary 4.1,

COROLLARY 4.4. Under the same conditions as in Corollary 4.1, let sl (E)
be of compact support. Let 1), .(q) be the solution of the backward stochastic
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differential equation
-~ k PN
dne=— B Y ils, 9)-dwi(s)

with the terminal condition 7,(q)=q¢SE., xEM. Put &, ,=(%s,.) 00, where
0s,:(x) 1= 7(35..(q)), gEE ., xEM; note that b, is well-defined. Set 0, ,=E[8;,.].
Then D, is the solution of the initial value problem of the forward differential
equation
aﬁs,t . 1 L 9 ~
= {2 S LaOP+ L),

limﬁs't = 0.
tis

(4.9)

ProOOF. This is proved in the same way as in [10, pp. 297-298, Theorem

7.2 and Theorem 7.3]: Apply to &s,., interchanging the forward
and backward variables. Then

prim0 = 3| L dw+ ('3 B L@+ Liw}o, udu.

a=1

Therefore we obtain

tr] %
E(3,0—0 = | {5 2 (L(w)+ L} EL6,,.]du.
Then it follows that 9, ,=FE[&;,.] is the solution of (4.9). This completes the

proof.

5. Applications.

5.1. Time-dependent random C= distribution. Let L(M) be the bundle of
linear frames for TM over M. Let » be an integer with 1<r<n=dim M. Let
G(n, r) be the Grassmann manifold of »-planes in R", so that the general linear group
GL(n, R) acts on G(n, r) on the left in a natural manner (cf. [9, Vol. I, p. 6]).
Let E(M, G(n, r), GL(n, R), L(M)) be the fiber bundle associated with L(M) by
this action. The bundle E is called the (unoriented) Grassmann bundle of r-
planes over M ([3, pp. 48-49]). Since the total space E can be regarded as the
collection of r-planes in the tangent spaces of M, the C> (global) sections of F
are in one-to-one correspondence with the C= distributions of dimension » on M.

Using this correspondence, we define a time-dependent random C* distribu-
tion of dimension » on M as follows: Let @ bea C= distribution of dimension
r on M. Let ¢ be the C> section of E corresponding to &. Given vector
fields X;, 2=0, 1, ---, k, on M, we take Y; in the equation [3.I)] to be the
natural lift of X; to E; each Y ; is induced from the natural lift of X; to L(M)
in a natural manner. Let §,, be the solution of the equation with 2,(g)
=¢q for every ¢g=E. Define a time-dependent random C= distribution 9, , of
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dimension » on M with the terminal condition 9, ;=9 by specifying the cor-
responding time-dependent random cross section 0%, := §7%4°0-6,,. The be-
havior of 9,. with respect to the initial-time parameter s is just given by
where %, =6, ., and now each D;(u) is Lie differentiation with
respect to X, in the sense of Salvioli (see also [4], [5]; in [1], the nota-
tion Lx, is used to denote Lie differentiation with respect to X; in the sense
of Salvioli).

5.2. Backward and forward differential equations for second order linear
differential operators on C= functions on a manifold. Let L¥M)M, G¥n))
be the bundle of second order frames over an n-dimensional manifold M with
structure group GXn)=G¥n, R); see [8, p. 36 and p. 139] (cf. [1], [4], [5D)-
We take L% M) as P in the assumption (#) in §4. Let F=(R"OR")(PR"PBR
(=zR™ with m=n(n+1)/2+n-+1), where R*"© R™ is the symmetric tensor product
of R™ with itself. We define a left action of G*n) on F by

. . n . . n Iy n . -
(s3; sie)a¥; b*; C)=( > sishatt 5 X shalt+ 3 sib; 6),
k,1=1 J k=1 j=1
where (si; si) (with si,=s};) and (a*; b*; ¢) (with a¥=a?), i, j, k=1, -, n,

are natural coordinates in G*n) and F, respectively. Then we obtain a vector
bundle E(M, F, G¥n), L¥M)), with standard fiber F and structure group G*n),
which is associated with L2(M).

The C=(global) sections of the vector bundle E are in one-to-one corre-
spondence with the second order (possibly degenerate) linear differential operators
on R-valued C= functions on M. Each ¢=I'(E) is expressed locally as

(x‘; [(—a—x—%—g -5%) (a*(x); b (x); C(x))D, G, j=1, -, n),

and the second order (possibly degenerate) linear differential operator 4, cor-
responding to ¢ is expressed locally as
2

n . 0 n 0
— i i)
As = '.%10 (x) oxox’ +i§1b (x) ox? +elx).

(2

We identify ¢ with ,.

Take each A; in the assumption (#) (§4) to be the natural lift of X; to
LM). Then each Y, is the natural liftt X; of X; to E. Writing the solution
05,0 Of as 0,.., we define 6%,0:=0;1°0°0,,. It holds from

that 8% .0 satisfies

¥ s~ (f # J1p® (1l 2 ¥
0t0—0= 3| Lx(01.0)dww+[ {5 B (Lxp+Lx}000du, G

=1

where each Lx,: I'(E)-»I[(E), 2=0, 1, .-+, k, denotes Lie differentiation with
respect to X; (see [1, §4], [12]).
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Let ¢=I'(E) be of compact support. Then from (5.1) we see that the ex-
pectation v, (x):=E[(0f.0)(x)] is the solution of the following terminal value
problem for second order (possibly degenerate) linear differential operators on
R-valued C= functions on M (see [Corollary 4.3):

aUSJ . 1 £ 2 .
St = {5 R Lx L, limo=a.

Next, consider the solution 7;,,(¢) of the backward stochastic differential
equation

- E oA R
dijs = — 2 Xals, fs)edw(s)

with the terminal condition 4,(¢)=¢<E, with xM. Let 9, be as in[Corollary|
4.4 (with Y1=X1). Then 7. is the solution of the following initial value
problem for second order (possibly degenerate) linear differential operators on
R-valued C*~ functions on M:

aﬁg't _ 1 k . ) ) B
o =g B Lafon,  lmo=o.

NoTE. In [2, §3], nonstandard analysis, especially a hyperfinite random
walk on a uniform Loeb probability space, has been used for getting nonstandard
backward Itd’s formulas for (local) sections of fiber bundles.
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