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Introduction.

Let $H$ be a real Hilbert space with norm denoted by $||\cdot||$ and inner product
by $\langle$ , $\rangle$ . For any $t\in R$ , let $A(t):D[A(t)]arrow H$ be a maximal monotone operator.
We consider the evolution equation

(0.1) $u’(t)+A(t)u(t)\ni O$ .
In the sequel, we denote by $(C_{t})_{\iota\in R}$ the closure in $H$ of the domain $D[A(t)]$ .
It is well known that $C_{t}$ is convex (cf. e. g. [5]).

Under several different types of technical assumptions, it is possible to define
for any $s\in R$ and any $x\in C_{s}$ a unique “weak” solution $u(t)$ of (0.1) on $[s,$ $+\infty[$

such that $u(s)=x$ . In general, $u$ is not differentiable and is constructed by
some approximation procedure (cf. $e$ . $g$ . $[1,2,4,5,6,14,17,20]$ ).

In all the cases in which this construction is possible, $u$ is given by the
formula

(0.2) $\forall t\geqq s$ , $u(t)=E(s, t)x$

where $E(s, t):C_{s}arrow H$ is defined for $t\geqq s$ and satisfies the following properties

(0.3) $\forall s\in R,$ $\forall x\in C_{s},$ $\forall t\geqq s$ , $E(s, t)x\in C_{t}$ .
(0.4) $\forall s\in R,$ $\forall x\in C_{s},$ $\forall t_{2}\geqq t_{1}\geqq s$ , $E(s, t_{2})x=E(t_{1}, t_{2})E(s, t_{1})x$ .
(0.5) $\forall s\in R,$ $\forall t\geqq s,$ $\forall x\in C_{s},$ $\forall y\in C_{s}$ , $||E(s, t)x-E(s, t)y||\leqq||x-y||$ .
Let $J$ be a closed interval of $R$ . We say that a function $u\in C(J, H)$ is a solution
of (0.1) on $J$ if $u$ satisfies

(0.6) $\forall s\in R,$ $\forall t\in J,$ $t\geqq s$ , $u(t)=E(s, t)u(s)$ .
We say that $u$ is a strong solution of (0.1) on $J$ if $u\in W^{1.1}(K, H)$ for any
compact interval $K\subset J$ and for almost all $t\in K,$ $u(t)\in D[A(t)]$ and $u’(t)\in-A(t)u(t)$ .

In this paper, we are mainly interested in the case where $A(t)$ is periodic,
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$i$ . $e$ . for some $\tau>0$ ,

(0.7) $A(t+\tau)=A(t)$ for almost all $t\in R$ .
In the special case where $C_{t}=C_{0}$ for almost all $t\in R$ , in [11] it was established
that any solution $u$ of (0.1) such that

(0.8) $u(R)$ is precompact in $H$

is in fact almost periodic: $Rarrow H$. When $A(t)=\partial\varphi^{t}$ , the subdifferential of a
periodic convex function on $H$ with variable domain, a similar result is established
in [16] without conditions on the domain. Later in [12] it was shown that the
method of [11] is applicable to the general case and can even be extended in
a way to encompass the (non monotone) linear case when $H=R^{N},$ $N\in N$. In
such a case, Floquet’s theory (cf. e.g. [8]) shows that in fact $u$ must be quasi-
periodic: $Rarrow R^{N}$ . The main objective of this paper is to establish a similar
result when $H=R^{N}$ and $A(t)$ is a general, $\tau$-periodic, maximal monotone operator
on $H$.

The paper is organized as follows.
In Section 1, we state the main results after recalling a preliminary result

from [11]. For completeness we give a short proof of the preliminary result.
In Section 2-3, the main results are proved. The main tool is a structure

theorem for the set of bounded solutions of some difference equations.
In Section 4, the main results are shown to be optimal by exhibiting various

counterexamples. We also indicate some possible extensions and related research
problems.

1. Main results.

Let $H,$ $A(t)$ be as in the introduction. First of all we recall the following
general property which is essentially contained in [11].

THEOREM 1. Let $u(t)$ be a solution of (0.1) on $R$ , and assume that $(0.7)-(0.8)$

are satisfied. Then $u$ is almost periodic: $Rarrow H$.

Theorem 1 is an immediate consequence of the following result, established
in [12].

PROPOSITION 1.1. Let $u:Rarrow H$ be any continuous function with $u(R)$ pre-
compact in $H$ and such that for some $\tau>0$ we have

(1.1) The function $t\mapsto||u(t+m\tau)-u(t+n\tau)||$ is non-increasing for all $(m, n)\in$

$Z\cross Z$ . Then $u:Rarrow H$ is almost periodic.

SKETCH OF PROOFS. The hypotheses of Proposition 1.1 imply (cf. the
argument p. 57, (29)$-(31)$ of [12] $)$ that $\bigcup_{m\in Z}\{u(\cdot+m\tau)\}$ is precompact in
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$C_{B}(R, H)$ . Then $u:Rarrow H$ must be uniformly continuous, and a division argu-
ment shows that $\bigcup_{a\in R}\{u(\cdot+a)\}$ is precompact in $C_{B}(R, H)$ .

TO deduce the result of Theorem 1 from Proposition 1.1, it is then sufficient
to note that as a consequence of $(0.4)-(0.5)$ and (0.6), any solution of (0.1) on
$R$ satisfies (1.1).

We now formulate our main results.

THEOREM 2. Let $N\in N-\{0\},$ $H=R^{N}$ and let $u:Rarrow H$ be as in the statement
of Proposition 1.1. Then either $u$ is $\tau$-periodic, or otherwise there exists a non-
empty set $S=\{\lambda_{1}, \cdots , \lambda_{k}\}\subset]0,$ $\pi/\tau]$ such that

(1.2) $u(t)=v_{0}(t)+ \sum_{j=1}^{k}\{v_{j}(t)\cos(\lambda_{j}t)+w_{j}(t)\sin(\lambda_{j}t)\}$ for all $t\in R$ ,

where $v_{0},$ $v_{j},$ $w_{j}$ are all continuous $\tau$-periodic functions: $Rarrow H$, with the same
smoothness properties as $u$ .

If we assume $(v_{j}, w_{j})\neq(0,0)$ for all $j\in\{1, \cdots , k\}$ , then in fact

(1.3) $S=\{\lambda\in]0,$ $\pi/\tau],$ $\exists m\in Z$ , $\lim_{tarrow+\infty}\frac{1}{t}\int_{0}^{t}e^{-i(\lambda+2m\pi/\tau)S}u(s)ds\neq 0\}$

and if we assume that $S$ is ordered increasingly, then the decomposition (1.2)

is unique.
By convention we assume that if $u$ is not $\tau$-periodic, (1.2) is always meant

with $S$ as in (1.3). If $u$ is $\tau$-periodic we have $S=\emptyset$ and we set $k=0,$ $u=v_{0}$ .
Following this notation we have $k\leqq(N+1)/2$ and if $\pi/\tau\not\in S$ , then $k\leqq N/2$ .
Moreover if $\pi/\tau\not\in S,$ $||u(t)||$ is constant and $k=N/2$ , then $v_{0}=0$ .

Theorem 2 implies the following structure theorem for the solutions of (0.1).

THEOREM 3. Assume $H=R^{N}$ and (0.7). Then if (0.1) has a solution $u$ with
$u(R^{+})$ bounded; any solution of (0.1) is asymptotic, as $tarrow+\infty$ , to a quasi-periodic
solution of (0.1) with $r\leqq N/2+1$ basic frequencies. Moreover any solution of (0.1)

which is defined and bounded on $R$ has the form (1.2) with $k\leqq(N+1)/2$ and if
$\pi/\tau\not\in S$ , then $k\leqq N/2$ . Finally if $O\in A(t)O$ for all $t\in R,$ $\pi/\tau\not\in S$ , and $k=N/2$ ,
then $v_{0}=0$ .

When $A(t)$ is a subdifferential, the following more precise result is available.

THEOREM 4. Assume $H=R^{N}$ and $A(t)=\partial\varphi^{t}$ , where $\varphi^{t}$ : $R^{N}arrow$] $-\infty,$ $+\infty$ ] is
a $l.s$ . $c$ . proper convex function such that for some $\tau>0,$ $\varphi^{t+\tau}=\varphi^{t}$ for almost all
$t\in R$ . Assume in addition that any solution (0.1) which is defined on $R$ is a
strong solution. Then the conclusiorts of Theorem 3 remain valid with $N$ replaced
by $(N-1)$ .

REMARK 5. a) Sufficient conditions are known in order for all solutions
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of (0.1) to be strong when $A(t)=\partial\varphi^{t}$ , cf. e.g. [1, 14, 20].

b) In Section 4, it will be shown that the above estimates on $r,$
$k$ are

essentially optimal.

2. Bounded solutions of some difference equations.

For the proof of the main results, we shall rely on the following proposition
which extends to the case of a general Banach space some well-known results
from the scalar theory of linear difference equations (cf. $e$ . $g$ . $[3,18,19]$ ).

PROPOSITION 2.1. Let $X$ be a complex Banach space, $n$ a positive integer
and $\{\alpha_{r}\}_{0\leqq r\leq n-1}$ an $n$-tuple of complex numbers. Let $v\in C(R, X)$ be a solution of

(2.1) $v(t+n)= \sum_{r=0}^{n-1}\alpha_{r}v(t+r)$ , $\forall t\in R$ .

Then there exists an integer $k\leqq n-1$ , a finite sequence $\{\omega_{j}\}_{0\leq j\xi k}$ of complex
numbers, a finite sequence $\{d_{j}\}_{0\leqq j\leqq k}$ of integers, and some 1-periodic continuous
functions $z_{j}.$ . : $Rarrow X$ defined for $0\leqq j\leqq k$ and $0\leqq s\leqq d_{j}$ such that

(2.2) $\forall t\in R$ , $v(t)= \sum_{j=0}^{k}e^{\omega_{J^{t}\sum_{s=0}^{dj}t^{s}z_{j,s}(t)}}$ .

In addition this decomposition is unique in the sense that $v=0$ implies $z_{j,s}=0$ for
$0\leqq j\leqq k$ and $0\leqq s\leqq d_{j}$ . The numbers $\{\omega_{j}\}_{0\leqq j\leq k}$ are arbitrary complex solutions of
(2.3) $e^{n\omega}= \sum_{r=0}^{n-1}\alpha_{r}e^{r\omega}$ , $\omega\in C$ .

Finally for all $j\in\{0, \cdots , k\},$ $d_{j}$ is the order of multiplicity of $\exp(\omega_{j})$ as a
complex root of (2.3).

PROOF. By induction on $n$ .
1) If $n=1$ and $v\in C(R, X)$ satisfies $v(t+1)=\alpha_{0}v(t)$ for all $t$ , then either

$v=0$ , or $\alpha_{0}\neq 0$ . Setting $\alpha_{0}=\exp(\omega_{0})$ , we see that the function $w(t)=\exp(-\omega_{0}t)v(t)$

satisfies
$\forall t\in R$ , $w(t+1)=\exp(-\omega_{0}t)[(\alpha_{0})^{-1}v(t+1)]=w(t)$ ,

therefore $w$ is a 1-periodic continuous function: $Rarrow X$, and (2.2) is valid with
$k=0=n-1$ .

2) If $n>1$ , assume that Proposition 2.1 is already proved for $n-1$ instead
of $n$ . Let $v\in C(R, X)$ be any solution of (2.1): we show that $v$ has the form
(2.2) with $k,$

$\omega_{j}$ and $d_{j}$ as stated. In order to do this, we distinguish two cases
Case 1. $v\equiv 0$ : then (2.2) holds true with $z_{j.S}=0$ for $0\leqq j\leqq k$ and $0\leqq s\leqq d_{j}$ .
Case 2. $v\neq 0$ : then $\alpha_{m}\neq 0$ for some $m\in\{0, \cdot.. , n-1\}$ . In particular the

polynomial $P$ defined by
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$P( \zeta)=\zeta^{n}-\sum_{r=0}^{n-1}\alpha_{r}\zeta^{r}$

has at least a root $\zeta\neq 0$ . We set $\zeta=e^{\omega},$ $\omega\in C$ and we introduce $w(t):=e^{-\omega t}v(t)$ .
Then

(2.4) $w(t+n)= \sum_{r=0}^{n-1}\gamma_{r}w(t+r)$ , $\forall t\in R$

with
(2.5) $\gamma_{r}$ $:=e^{(r-n)\omega}\alpha_{\tau}$ $\forall r\in\{0, \cdots , n-1\}$ .
In particular by the choice of $\omega$ we have

$\sum_{r=0}^{n-1}\gamma_{r}=\zeta^{-n}\sum_{r=0}^{n-1}\alpha_{r}\zeta^{r}=1$ .
We now introduce

$\forall s\in\{0, \cdots n-1\}$ , $\beta_{s}$ $:= \sum_{r=0}^{l}\gamma_{r}$ .

In particular we have $\beta_{n-1}=1$ and

$\forall r\in\{0, \cdots n-1\}$ , $\gamma_{r}=\beta_{r}-\beta_{r-1}$ .
Therefore (2.4) can be rewritten as

$w(t+n)= \sum_{r=1}^{n-1}(\beta_{r}-\beta_{r-1})w(t+r)+\beta_{0}w(t)$

$= \sum_{s=0}^{n-2}\beta_{s}[w(t+s)-w(t+s+1)]+\beta_{n-1}w(t+n-1)$ .

Since $\beta_{n-1}=1$ we obtain

$\sum_{s=0}^{n-1}\beta_{s}[w(t+s)-w(t+s+1)]=0$ , $\forall t\in R$ .

Hence $\varphi(t):=w(t+1)-w(t)$ satisfies the lower order equation

(2.6) $\varphi(t+n-1)=-\sum_{s=0}^{n-2}\beta_{s}\varphi(t+s)$ , $\forall t\in R$ .

By the induction hypothesis, we have

$\forall t\in R$ , $\varphi(t)=\sum_{j=0}^{h}e^{\nu}i^{t}\sum_{r=0}^{cj}t^{r}y_{j.r}(t)$ .

with $h\leqq n-2$ and some 1-periodic continuous functions $y_{J.r}$ : $Rarrow X$ defined for
$0\leqq j\leqq h$ and $0\leqq r\leqq c_{j}$ . For all $j\in\{0, \cdots , h\},$ $c_{j}$ is the order of multiplicity of
$\exp(\nu_{j})$ as a complex root of the polynomial $Q$ defined by the formula

$Q( \zeta)=\zeta^{n-1}+\sum_{s=0}^{n-2}\beta_{s}\zeta^{s}$ .
The equation
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$\forall t\in R$ , $w(t+1)-w(t)= \sum_{j=0}^{h}e^{\nu_{j^{t}}}\sum_{\tau=0}^{c_{j}}t^{r}y_{j,r}(t)$

is readily solved to give

$w(t)- \sum_{j=0}^{h}e^{\nu_{j^{i}}}\sum_{r=0}^{lj}t^{r}z_{j.r}(t)$

(

is l-periodic

with: $d_{j}=c_{j}$ if $\exp(\nu_{j})\neq 1,$ $d_{j}=c_{j}+1$ if $\exp(\nu_{j})=1$ , where the functions $y_{j.r}$ : $Rarrow X$

are linear combinations of the $z_{j.*}$ for $0\leqq s\leqq r$ if $\exp(\nu_{j})\neq 1,0\leqq s\leqq r+1$ if
$\exp(\nu_{j})=1$ . On the other hand a straightforward calculation provides the identity

$e^{-(n-1)\omega}P(\zeta)=(\zeta-e^{\omega})Q(e^{-\omega}\zeta)$ ,

from which the relationship between the zeroes of $P$ and $Q$ follows immediately.
The induction proof can then be easily completed: we obtain formula (2.2) with
$k=h$ or $h+1,$ $\omega_{j}=\omega+\nu_{j}$ for $j\leqq h$ and $\omega_{k}=\omega$ when $Q(1)=0$ (in which case
$k=h+1$ and $\omega$ has multiplicity $>1$ ).

The uniqueness of the decomposition (2.2) is clear as a consequence of the
scalar case.

From the result of Proposition 2.1, it is relatively easy to establish the
following:

PROPOSITION 2.2. Let $X$ be a complex Banach space, $n$ a positive integer
and $\{\alpha_{r}\}_{0\leqq r\leq n-1}$ an n-tuple of complex numbers. Then a function $v\in C_{B}(R, X)$

is a solution of (2.1) if, and only if

(2.7) $\forall t\in R$ , $v(t)= \sum_{j^{=0}}^{k}e^{t\lambda_{j}t}z_{j}(t)$ ,

where $\{\lambda_{j}\}_{0\leqq j\leqq k}$ is a set of solutions of

(2.8) $e^{tn\lambda}= \sum_{r=0}^{n- 1}\alpha_{r}e^{ir\lambda}$ , $\lambda\in R$ ,

and $\{z_{j}\}_{0\leqq j\leqq k}$ is a finite sequence of $l$ -Periodic continuous functions: $Rarrow X$.
PROOF. It is quite straightforward to verify that in order for $v$ to be

bounded on $R$, all the terms $\omega_{j}$ occuring in the decomposition formula (2.2)

must be purely imaginary: therefore we set $\omega_{j}=i\lambda_{j}$ . Then for a similar reason
all monomials $t^{s}$ with $s>0$ must be absent in the decomposition. Since this
kind of argument is fairly standard we omit the details.

REMARK 2.3. Additional information may be obtained through decomposition
formula (2.7). More specifically the following properties are useful.

a) Let $j\in\{0$ , $\cdot$ .. , $k\}$ be such that $z_{j}\neq 0$ . Then we have

$\exists m\in Z$ , $\lim_{tarrow+\infty}\frac{1}{t}\int_{0}^{t}e^{-i(\lambda_{j}+2m\pi)S}v(s)ds\neq 0$ .
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Indeed, from the hypothesis $z_{j}\neq 0$ we deduce

$\exists m\in Z$ , $\lim_{tarrow+\infty}\frac{1}{t}\int_{0}^{t}e^{-2im\pi S}z_{j}(s)ds=:c\neq 0$ .

Then from (2.7) we derive

$\lim_{tarrow+\infty}\frac{1}{t}\int_{0}^{t}e^{-i(\lambda_{j}+2m\pi)s}v(s)ds=\lim_{tarrow+\infty}\frac{1}{t}\int_{0}^{t}e^{-2im\pi s}z_{j}(s)ds=c\neq 0$ .

b) It follows immediately from the method of proof of Proposition 2.1 that
the functions $\{z_{j}\}_{0\leqq j\leqq k}$ are essentially as smooth as the function $v$ . In particular
if $v\in C^{m}(R, X)$ for some $m\in N$, then we have $z_{j}\in C^{m}(R, X)$ for any $j\in\{0, \cdots , k\}$ .

PROPOSITION 2.4 Let $Y$ be a real Banach space, $n$ a positive integer and
$\{\alpha_{r}\}_{0\leqq r\leqq n-1}$ an $n$-tuple of real numbers. Let $v\in C_{B}(R, Y)$ be a solution of (2.1).

Then either $v$ is 1-periodic, or otherwise there exists a finite increasing sequence
$\{\lambda_{j}\}_{1\leq j\leqq k}$ with $0<\lambda_{j}\leqq\pi$ for all $j$ such that

(2.9) $\forall t\in R$ , $v(t)=v_{0}(t)+ \sum_{j^{=}1}^{k}\{\cos(\lambda_{j}t)v_{j}(t)+\sin(\lambda_{j}t)w_{j}(t)\}$ ,

where $v_{0},$ $v_{j}$ and $w_{j}$ are 1-periodic continuous functions: $Rarrow Y.$ In addition all
those functions are as smooth as $v$ is and $||v_{j}(t)||+||w_{j}(t)||$ is not identically zero
for any $j$ . Moreover we have

(2.10) $\bigcup_{1\leqq j\leqq k}\{\lambda_{j}\}=\{\lambda\in]0,$ $\pi],$ $\exists m\in Z,\lim_{tarrow+\infty}\frac{1}{t}\int_{0}^{t}e^{-i(\lambda+2m\pi)S}v(s)ds\neq 0\}=:\Sigma$ .
Concerning the value of $k$ we can distinguish 4 cases as follows

i) If $\pi\in\Sigma,$ $v_{0}=0$ , then $k\leqq(n+1)/2$ .
ii) If $\pi\in\Sigma,$ $v_{0}\neq 0$ , then $k\leqq n/2$ .
iii) If $\pi\not\in\Sigma,$ $v_{0}=0$ , then $k\leqq n/2$ .
iv) If $\pi\not\in\Sigma,$ $v_{0}\neq 0$ , then $k\leqq(n-1)/2$ .
PROOF. Let $X=Y\cross Y\approx Y+iY$ , endowed with the complex Banach structure

such that $(a+ib)(y+iw)=ay-bw+i(aw+by)$ for all pairs $(a+ib, y+iw)\in C\cross X$.
By applying Proposition 2.2 in $X$ to the function $v:Rarrow Y\approx Y\cross\{0\}$ we obtain

$v(t)= \sum_{J^{=0}}^{k}e^{t\lambda_{j}t}(v_{j}(t)+iw_{j}(t))$

where $v_{j},$ $w_{j}$ are the “real” components of the functions $z_{j}\in C(R, Y+iY)$ given
by Proposition 2.2. Therefore, since $v$ is real-valued:

(2.11) $v(t)= \sum_{J^{=0}}^{k}\{\cos(\lambda_{j}t)v_{j}(t)-\sin(\lambda_{j}t)w_{j}(t)\}$ .

In this formula, by combining together the terms of order $r$ such that $\lambda_{r}\pm\lambda_{j}\in$

$2\pi Z$, we may decrease the value of $k$ and achieve, after reordering the terms,
the conditions $0=\lambda_{0}<\ldots<\lambda_{k}\leqq\pi$ . Then by changing $w_{j}$ to $(-w_{j}),$ $(2.11)$ reduces
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to (2.9) with possibly $k=0$ or $v_{0}\equiv 0$ . Finally we eventually reduce the value
of $k$ so that $||v_{j}(t)||+||w_{j}(t)||$ is not identically zero for any $j\in\{1$ , $\cdot$ . , $k\}$ . It is
then immediate to derive (2.10) from Remark 2.3, a). Also the statement on
the regularity of $v_{j},$ $w_{j}$ follows at once from Remark 2.3, b).

Finally let

$P( \zeta)=\zeta^{n}-\sum_{r=0}^{n-1}\alpha_{r}\zeta^{\tau}$ .

Of course $P(\zeta)$ has at most $n$ roots and if $P(\zeta_{0})=0$ , then also $P(\overline{\zeta}_{0})=\overline{P(\zeta_{0})}=0$ .
In particular if $|\zeta_{0}|=1$ , then $1/\zeta_{0}=\overline{\zeta}_{0}$ and therefore the purely imaginary solutions
of (2.3) occur by pairs of opposite numbers. We now consider the 4 cases.

$i$
$)$ If $\pi\in\Sigma$ and $v_{0}=0$ , then the equation $P(e^{i\lambda})=0$ has at most $(n-1)/2$

real roots in ] $0,$ $\pi$ [, hence in this case $k\leqq(n-1)/2+1=(n+1)/2$ .
ii) If $\pi\in\Sigma$ and $v_{0}\neq 0$ , then the equation $P(e^{i\lambda})=0$ has the roots $0$ and $\pi$ ,

therefore we have at most $(n-2)/2$ real roots in ] $0,$ $\pi$ [, and in this case
k$(n $-2$)$/2+1=n/2$ .

iii) If $\pi\not\in\Sigma$ , then $k\leqq\#\{\lambda\in]0, \pi[, P(e^{t\lambda})=0\}\leqq n/2$ in all cases, and in
particular when $v_{0}=0$ .

iv) If $\pi\not\in\Sigma$ and $v_{0}\neq 0$ , then $P(1)=0$ and therefore we find
$k\leqq\#\{\lambda\in]0, \pi[, P(e^{i\lambda})=0\}\leqq(n-1)/2$ .

3. Proofs of the main results.

We start with the proof of Theorem 2, which will now follow rather easily
from Theorem 1 and Proposition 2.4. As a preliminary step, we establish the
following:

LEMMA 3.1. Let $u:Rarrow R^{N}$ be any continuous function such that for some
$\tau>0$ we have
(3.1) $\forall t\in R$ , $||u(t)||=||u(0)||$ ,

(3.2) $\forall(m, n)\in Z\cross Z,$ $\forall t\in R$ , $||u(t+m\tau)-u(t+n\tau)||=||u(m\tau)-u(n\tau)||$ .
Then $u$ satisfies (1.2) with $k$ and $\lambda_{f}$ as in the statement of Theorem 2. Moreover
if $\pi/\tau\not\in S$ and $k=N/2$ , then $v_{0}=0$ in (1.2).

PROOF. From $(3.1)-(3.2)$ it follows immediately, by squaring and taking a
suitable linear combination, that

(3.3) V $(m, n)\in Z\chi Z,$ $\forall t\in R$ , $\langle u(t+m\tau), u(t+n\tau)\rangle=\langle u(m\tau), u(n\tau)\rangle$ .
Since $u(R)\subset R^{N}$ , there exists a non trivial linear relation:

$\sum_{r=0}^{N}a_{r}u(r\tau)=0$ .
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Let $n=Sup\{r\in\{0, \cdots , N\}, a_{r}\neq 0\}$ . Then $n\leqq N$ and assuming $u\neq 0$ , we must
have $n\geqq 1$ and

$u(n \tau)=\sum_{r=0}^{n-1}\alpha_{r}u(r\tau)$ , $\alpha_{r}$ $:=- \frac{a_{r}}{a_{n}}$ .

It follows automatically, as a consequence of (3.3), that we have

$\forall t\in R$ , $||u(i+n \tau)-\sum_{r=0}^{n-1}\alpha_{\gamma}u(t+r\tau)||^{2}=||u(n\tau)-\sum_{r=0}^{n-1}\alpha_{r}u(r\tau)||^{2}=0$ .
Therefore:

$\forall t\in R$ , $u(t+n \tau)=\sum_{r=0}^{n-1}\alpha_{r}u(t+r\tau)$ .

Let $v(\theta):=u(\tau\theta)$ for all $\theta\in R$ . By applying Corollary 2.4 to $v(t)$ with $Y=H$,
we obtain at once (1.2) with $k\leqq(n+1)/2\leqq(N+1)/2$ . Moreover if $\pi/\tau\not\in S$ , then
$\pi\not\in\Sigma$ and therefore $k\leqq n/2\leqq N/2$ , with $k<N/2$ whenever $v_{0}\neq 0$ .

For the proof of Theorem 2, we need an additional observation which is
the object of the next Lemma.

LEMMA 3.2. Let $u\in C_{B}(R, R^{N})$ and assume (3.2). Then there exists $\omega\in$

$C_{B}(R, R^{N})$ such that

(3.4) $\forall r\in R$ , $\omega(t+\tau)=\omega(t)$ ,

(3.5) $\forall t\in R$ , $||u(t)-\omega(t)||=||u(0)-\omega(0)||$ .
PROOF. For all $p\in N-\{0\}$ we define

1 $p$

$\omega_{p}(t):=-\Sigma u(t+j\tau)$ , $\forall t\in R$ .
$pj^{=}1$

It is clear that $\omega_{P}$ is such that $||u(t)-\omega_{p}(t)||$ and $||\omega_{p}(t)-\omega_{q}(t)||$ are constant for
all $P,$ $q\in N-\{0\}$ . Indeed setting $v_{j}(t)=u(t+j\tau)-u(t)$ , we see that $||v_{j}(t)||$ and
$||v_{j}(t)-v_{k}(t)||$ are constant for all $j,$ $k\in N-\{0\}$ , therefore the products
$<v_{j}(t),$ $v_{k}(t)\rangle$ are also constant and since $\omega_{p}(t)-u(t)$ is a convex combination of
$v_{j}(t)$ the property follows easily by expanding the squares of the norms.
Let $p_{n}arrow+\infty$ be such that $\omega_{p_{n}}(0)arrow\omega^{0}$ in $R^{N}$ as $narrow+\infty$ . Then $\omega_{p_{n}}(t)$ converges
uniformly on $R$ to a limit $\omega(t)\in C_{B}(R, R^{N})$ satisfying (3.5). Moreover

$||\omega_{p}(t)-\omega_{p}(t+\tau)||=1/p||u(t)-u(t+(p+1)\tau)||\leqq C/parrow 0$

uniformly on $R$ as $parrow+\infty$ . Therefore $\omega$ also satisfies (3.4).

PROOF OF THEOREM 2. The hypothesis (1.1) and Proposition 1.1 clearly imply
(3.2). Let $\omega$ be as in Lemma 3.2 and set $u_{1}=u-\omega$ . Then $u_{1}$ satisfies the
hypotheses of Lemma 3.1 and therefore $u=u_{1}+\omega$ satisfies (1.2) with $k,$ $\lambda_{j},$

$v_{j},$ $w_{j}$

as in the statement of Theorem 2. Finally if $||u(t)||$ is constant, then by apply-
ing Lemma 3.1 directly to $u$ , we find $v_{0}=0$ whenever $\pi/\tau\not\in S$ and $k=N/2$ .
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PROOF OF THEOREM 3. It is sufficient to note that as a consequence of
$(0.4)-(0.6)$ , any solution $u$ of (0.1) on $R$ satisfies automatically (1.1). If (0.1)

has a solution bounded on $R^{+}$ , then it is classical, since $H=R^{N}$ , to construct
a solution of (0.1) bounded on $R$ . Any such solution satisfies the conclusion of
Theorem 2, and then the result on asymptotic behavior for all solutions follows
classically (cf. $e$ . $g$ . $[12]$ , Theorem 8, p. 56).

Finally if $O\in A(t)O$ for all $t\in R$ , then $||u(t)||$ is constant for any almost
periodic solution of (0.1). Theorem 3 is now an obvious consequence of The-
orem 2.

PROOF OF THEOREM 4. Let $u$ be a solution of (0.1) bounded on $R$ and set

(3.6) $\forall j\in Z$ , $\forall t\in R$ , $u_{j}(t):=u(t+j\tau)$ ,

(3.7) $\forall j\in Z$ , $h_{j}(t):=-u_{j}’(t)\in A(t)u_{j}(t)$ , $a$ . $e$ . on $R$ .
It follows from Theorem 1 and (1.1) that

(3.8) $\forall(J, r)\in Z\cross Z,$ $\forall t\in R$ , $||u_{j}(t)-u_{r}(t)||=||u(j\tau)-u(r\tau)||$ .
By using the trimonotonicity property of $A(t)$ as in [9], proof of Theorem 5,
p. 213, it is classical to deduce from $(3.7)-(3.8)$ :
(3.9) $\forall(j, r)\in Z\chi Z$ , $h_{j}(t)\in A(t)u_{r}(t)$ , $a.e$ . on $R$ .
Since $[A(t)]^{-1}(h_{j}(t))$ is convex in $H$, from (3.9) we deduce for all $p\in N-\{0\}$

(3.10) $\forall j\in Z$ , $h_{j}(t)\in A(t)\omega_{p}(t)$ , $a.e$ . on $R$ ,

with $\omega_{p}(t)$ as in the proof of Lemma 3.2. Since $A(t)\omega_{p}(t)$ is convex, $(3.10\rangle$

implies

(3.11) $\forall p\in N-\{0\}$ , $-\omega_{p}’(t)\in A(t)\omega_{p}(t)$ , $a.e$ . on $R$ .
In particular, $\omega(t)$ is a solution of (0.1), and since by hypothesis any solution is
a strong solution we have
(3.12) $\omega\in W_{1oc}^{1,1}(R, H)$ .
We now define $v:=u-\omega$ and

(3.13) $\forall_{J}\in Z,$ $\forall t\in R$ , $v_{j}(t):=u(t+]\tau)-\omega(t)$ ,

(3.14) $B(t)\cdot:=A(t)\cdot+\omega’(t)=:\partial\psi^{t}\cdot$ ,

(3.15) $k_{j}(t):=h_{j}(t)+\omega’(t)=-v_{j}’(t)$ .
Let also
(3.16) $K_{t}=conv\{v_{0}(t), v_{N-1}(t)\}$ .
Since $[A(t)]^{-1}(h_{j}(t))$ is convex in $H$, from (3.9) we deduce

(3.17) $\forall j\in\{0, \cdots , N\}$ , for a. $e$ . $t\in R,$ $\forall w\in K_{t}$ , $k_{j}(t)\in B(t)w$ .
NOW assume that we have
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(3.18) The vectors $v_{r}(0)$ are linearly independent in $H$ for $r\in\{0, \cdots , N-1\}$ .
From (3.5), (3.8) and the $\tau$-periodicity of $\omega$ it follows that the vectors $v_{r}(t)$ are
also linearly independent in $H$ for $r\in\{0, \cdots , N-1\}$ and all $t\in R$ . In particular
we obtain
(3.19) $\forall t\in R$ , $\Omega_{t}:=Int(K_{t})\neq\emptyset$ .
For any $t\in R$ satisfying (3.17), let $w_{t}\in\Omega_{t}$ and $\rho_{t}>0$ be such that $B(w_{t}, \rho_{t})\subset$

$K_{t}$ . By (3.17) applied with $j=0$ we have
$\forall z\in R^{N},$ $\forall\xi\in R^{N}$ with $||\xi||\leqq\rho_{t},$ $\psi^{t}(z)-\psi^{t}(w_{t}+\xi)\geqq\langle k_{0}(t), z-w_{t}-\xi\rangle$ .

By letting $z=w_{t}$ and applying (3.17) with $j=1$ we find
$\langle k_{0}(t), \xi\rangle\geqq\psi^{t}(w_{t}+\xi)-\psi^{t}(w_{t})\geqq\langle k_{1}(t), \xi\rangle$ , $\forall\xi\in B(O, \rho_{t})$ .

Hence $k_{1}(t)=k_{0}(t)$ for a. $e$ . $t\in R$ , in particular

(3.20) $\forall t\in R$ , $v(t+\tau)-v(t)=v(\tau)-v(O)$ .
Since $v:Rarrow H$ is bounded, (3.20) obviously implies $v(\tau)-v(O)=0$ , which contradicts
(3.18) when $N>1$ . The case $N=1$ is irrelevant here since in such a case
Theorem 2 already implies that $u:Rarrow H$ is $\tau$-periodic. Assuming $N>1$ we now
deduce

$v(t+n \tau)=\sum_{r\approx 0}^{n-1}\alpha_{r}v(t+r\tau)$ , $\forall t\in R$

with $v:=u-\omega$ and $0<n\leqq N-1$ . The rest of the proof is identical to that of
the proof of Theorem 2, with $N$ replaced by $N-1$ .

4. Related results and counterexamples.

4.1. Linear and affine equations. Let us first consider the case where
$H=R^{N}$ and $A(t)\in L_{1oc}^{1}(R, L(R^{N}))$ . In such a case, without positivity condition
on $A(t)$ , the equation (0.1) generates an evolution operator $E(s, t):Harrow H$ defined
for all $\llcorner(s, t)\in R\cross R$ such that the solution of (0.1) with $u(s)=\varphi$ is given
by $u(t)=E(s, t)\varphi$ for all $t\in R$ . When $A(t)$ satisfies (0.7), the classical Floquet
theory implies (cf. [8], Corollary 6.5, p. 101) that any solution $u$ of (0.1) bounded
on $R$ is quasi-periodic. Indeed there exists a $\tau$-periodic non-singular $P(t)\in$

$C(R, L(R^{N}))$ such that the change of unknown:

$u(t)=P(t)y(t)$ , $\forall t\in R$

reduces (0.1) to an autonomous equation: $y’(t)=By(t),$ $\forall t\in R$ .
In this case we recover (1.2) with

$S=$ { $\lambda\in]0,$ $\pi/\tau],$ $i(\lambda+2m\pi/\tau)$ is an eigenvalue of $B$ for some $m\in Z$}.

In the special case where $A(t)=A$ is constant with $A^{*}=-A$ and $\sigma(A)\subset$

$i]0,$ $\pi/\tau$ [, the estimate $k\leqq N/2$ of Theorem 3 is optimal. More precisely:
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If $N$ is even, let $k=N/2$ and for all $z=(z_{1}, , z_{k})\in C^{k}\approx R^{N}$ , define $A(z):=$

$(-i\lambda_{1}z_{1}, \cdots , -i\lambda_{k}z_{k})$ . Then the general solution of (0.1) is given by (1.2) with
$v_{0}=0,$ $k=N/2$ , the coefficients $v_{j}$ and $w_{j}$ being some constant vectors in $R^{N}$ .
Since $A$ is constant, it can be considered as $\tau$-periodic for any $\tau>0$ and in
particular by choosing $\tau<\pi/\lambda_{k}$ , Theorem 3 provides the estimate $\#S\leqq N/2$ .
Here we have $\# S=k=N/2$ for the general solution.

If $N$ is odd, setting $N=2k+1$ we can choose
$A(z_{1}, z_{k} ; x)=(-i\lambda_{1}z_{1}, \cdots -i\lambda_{k}z_{k} ; 0)$

for all $(z;x)=(z_{1}, \cdots , z_{k} ; x)\in C^{k}\cross R\approx R^{N}$ .
The general solution of (0.1) is now given by (1.2) with $k=(N-1)/2$ (the largest
$integer\leqq N/2)$ , with $v_{j}$ and $w_{j}$ some constant vectors in $R^{N}$ . Here $v_{0}=(0;c)$

for some $c\in R$ .
In the general case where $A(t)$ is time-dependent, the decomposition formula

(1.2) becomes in fact rather sharp. Indeed, any vector function of the form
(1.2) with $C^{1}$ components $v_{j}$ and $w_{j}$ which satisfy some non-degeneracy condition
can be considered as a solution of some evolution equation $u’(t)=A(t)u(t),$ $t\in R$ .
Even in the monotone framework it is possible to construct large families of
functions of the form ( $1.2\rangle$ which are actually solutions of some equations (0.1).

For instance if $N=2k$ and we define a curve $z:Rarrow C^{k}\approx R^{N}$ by the formula
$z(t)_{-}\{\rho_{j}\exp(it\lambda_{j})\}_{1\leq j\leq k}$ where $\rho j,$

$\lambda_{j}$ are some real numbers with $0<\lambda_{1}<\cdots<\lambda_{k}<\pi$ ,
then for any 1-periodic matrix $P(t)\in C^{1}(R, L(R^{N}))$ such that

$\forall t\in R$ , $P^{*}P(t)=PP^{*}(t)=IdR^{N}$ ,

the function $u(t)=P(t)z(t)$ is a solution of equation (0.1) with $A(t)$ 1-
periodic and skew-symmetric for all $t\in R$ . Finally if we allow variable operators
of the affine type $A(t)=A+h(t)$ , then in (1.2) $v_{0}$ can be taken arbitrary in
$C^{1}(R, R^{N})$ , since for $A$ skew-symmetric, $u$ a solution of the autonomous equation
$u’+Au(t)=0$ and $v=v_{0}+u$ , we have

$v’(t)+Av(t)=v_{0}(t)+Av_{0}(t)=:f(t)$ , a continuous 1-periodic function.

4.2. The case $A(t)=\partial\varphi^{t}$ . When $N=2$ , Theorem 4 implies that all bounded
solutions are periodic (only one basic frequency since $r\leqq 3/2$ implies $r=1$ ). In
this case we have in fact

PROPOSITION 4.1. When $N=2$ and $A(t)$ satisfies the hypotheses of Theorem
4, any soluiion $u$ of (0.1) bounded on $R$ is in fact $2\tau$-periodic.

PROOF. Either $u$ is $\tau$-periodic and $S=\emptyset$ . Or $S\neq\emptyset$ and $k=1$ . In the
second case $\pi/\tau\in S$ and therefore $S=\{\pi/\tau\}$ . The result then follows at once.

REMARK 4.2. The result of Proposition 4.1 is optimal. Indeed, let $L(t)$ be
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the straight line through $(0,0)$ orthogonal to the vector $(-\sin t, \cos t)$ . We
consider $A(t)=\partial\varphi^{t}$ where $\varphi^{t}$ is given by

$\varphi^{t}(z)=0$ if $z\in L(t)$ , $\varphi^{t}(z)=+\infty$ if $z\not\in L(i)$ .
Then $L(t)$ , hence $A(t)$ is $\pi$-periodic. On the other hand, $u(t):=(\cos t, \sin t)$ is a
$2\pi$-periodic solution of $-u’(t)\in A(t)u(t)=\{L(t)\}^{\perp}$ which is in fact $\pi$-antiperiodic.

REMARK 4.3. The result of Theorem 4 is also optimal when $N\geqq 3$ . Indeed
for $N=3$ it is shown in [15] that in general bounded solutions are not all
periodic. For $N$ odd the example of [15] can be generalized as is shown below.

Let $H=R^{zn+1}$ , and denote a generic point of by $x=(x_{0}, x_{1}, \cdot.. , x_{2n})$ . For
each $k\in\{1$ , $\cdot$ .. , $n\},$ $\theta\in[0,$ $\pi$ [ and $t\in[0,1/2n]$ , we define an operator $R_{k}(\theta, t)$

from the hyperplane $X_{0}=\{0\}\cross R^{2n}$ into $R^{2n+1}$ by

$Vx=(O, x_{1}, \cdots , x_{2n})\in X_{0}$ , $R_{k}(\theta, t)x=(x_{0}(t), x_{1}(t),$ $\cdots$ , $x_{2n}(t))$

with

$\{$

$x_{0}(t)=r_{k}\sin 2n\pi t\sin(\theta-\alpha_{k})$ ,
$x_{2k-1}(t)=r_{k}[\cos\theta\cos(\theta-\alpha_{k})+\sin\theta\sin(\theta-\alpha_{k})\cos 2n\pi t]$ ,
$x_{2k}(t)=r_{k}[\sin\theta\cos(\theta-\alpha_{k})-\cos\theta\sin(\theta-\alpha_{k})\cos 2n\pi t]$ ,
$x_{f}(t)\equiv x_{j}$ for $j\neq 0,2k-1,2k$ ,

where
$x_{2k-1}=r_{k}\cos\alpha_{k}$ , and $x_{2k}=r_{k}\sin\alpha_{k}$ (0$ a $k<2\pi$ ).

$R_{k}(\theta, t)$ acts as the identity on the j-th coordinates for $j\neq 0,2k-1,2k$ , and
the transformation in $R^{3}$ defined by $(0, x_{2k-1}, x_{2k})-(x_{0}(t), x_{2k-1}(t),$ $x_{2k}(t))$ geo-
metrically means the axial rotation with axis $l_{\theta}=\{(x_{0}, x_{2k-1}, x_{2k})\in R^{3}$ ,
$x_{0}=-x_{2k-1}\sin\theta+x_{2k}\cos\theta=0\}$ and angle $2n\pi t$ . From this observation it easily
follows that

(4.1) $R_{k}(\theta, t)$ is a linear isometry from the hyperplane $X_{0}$ onto the hyperplane
$R_{k}(\theta, t)X_{0}$ for each $k\in\{1$ , $\cdot$ .. , $n\}$ , $\theta\in[0,$ $z$ [ and $t\in[0,1/2n]$ . In particular
$R_{k}(\theta, 1/2n)X_{0}=X_{0}$ .
(4.2) For each $x\in X_{0},$ $k\in\{1, \cdots , n\}$ and $\theta\in[0,$ $\pi[,$ $R_{k}(\theta, t)$ is a $C^{\infty}$ function
of $t\in[0,1/2n]$ .
NOW we fix a vector $\Theta=(\theta_{1}, \cdots , \theta_{n})\in R^{n}$ with $0<\theta_{k}<\pi$ for $k\in\{1, \cdots , n\}$ and
we introduce for all $t\in[0,1]$ the operator $S(\Theta, t)$ from $X_{0}$ into $R^{2n+1}$ defined by

$S(\Theta, t)=S_{k+1}(\theta_{k+1}, t-k/n)S_{k}(\theta_{k}, 1/n)\cdots S_{1}(\theta_{1},1/n)$

for 1S k$ $n-1$ and k/n\leqq t$(k+l)/n,

where

$S_{k}(\theta_{k}, t)=\{$

$R_{h}(0, t)$ if $0\leqq t\leqq 1/2n$

$R_{h}(\theta_{k}, t-1/2n)R_{k}(0,1/2n)$ if 1/2n$t\leqq l/n.

Then we extend $S(e, t)$ to the whole line $R$ by the formulas
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$S(\Theta, t)=S(\Theta, t-n)[S(\Theta, 1)]^{n}$ , $n\leqq t\leqq n+1,$ $\forall n\in N$

$[S(\Theta, 1)]^{n}=\{[S(\Theta, 1)]^{-1}\}^{-n}$ $\forall n\in Z,$ $n<0$ .
Let us denote the hyperplane $S(\Theta, t)X_{0}$ by $X(t)$ , then it easily follows from
(4.1), (4.2) and the definition of $S(e, t)$ that

(4.3) $X(t+n)=X(t)$ , $\forall n\in Z,$ $\forall t\in R$ ; In particular $X(n)=X_{0}$ , $\forall n\in Z$ .
(4.4) $S(\Theta, t)$ is a linear isometry from the hyperplane $X_{0}$ onto $X(t)$ .

In addition for any $x=(O, r_{1}\cos\alpha_{1}, r_{1}\sin\alpha_{1}, \cdots , r_{n}\cos\alpha_{n}, r_{n}\sin\alpha_{n})\in X_{0}$ (with
$0\leqq\alpha_{p}<2\pi$ for $p\in\{1, \cdots , n\})$ , we have

(4.5) $S(\Theta, m)x=(O, r_{1}\cos(\alpha_{1}+2m\theta_{1}),$ $r_{1}\sin(\alpha_{1}+2m\theta_{1}),$ $\cdots$

$r_{n}\cos(\alpha_{n}+2m\theta_{n}),$ $r_{n}\sin(\alpha_{n}+2m\theta_{n}))$ .
(4.6) For each $x\in X_{0},$ $S(\Theta, t)x$ is a Lipschitz continuous function on $R$ . More-
over the right (resp. left) derivative $(d^{+}/dt)S(\Theta, t)x$ (resp. $(d^{-}/dt)S(\Theta, t)x\rangle$

exists for every $t\in R$ and

(4.7) $\forall t\in R,$ $(d^{+}/dt)S(\Theta, t)x\in\{X(t)\}^{\perp}$ (resp. $(d^{-}/dt)S(\Theta,$ $t)x\in\{X(t)\}^{\perp}$ ).

It is clear that for all $x\in X_{0}$ , the function $u(t):=S(\Theta, t)x$ is a bounded strong
solution of (0.1) with $A(t)=\partial\varphi^{t}$ where $\varphi^{t}$ is given by

$\varphi^{t}(z)=0$ if $z\in X(t)$ , $\varphi^{t}(z)=+\infty$ if $z\not\in X(t)$ .
However in general, when the numbers $\theta_{p}$ and $2\pi$ are linearly independent
over $Q$ , the function $u(t)$ is quasi-periodic with $n+1$ independent frequencies
$\{2\pi, \theta_{1}, \cdots , \theta_{n}\}$ . Indeed let $e_{k}$ be the unit vector whose k-th component
is 1, and set $u_{j}(t)=S(e, t)e_{2j-1}$ . Then we have

(4.8) $u_{j}(m)=\cos 2m\theta_{j}e_{2j- 1}+\sin 2m\theta_{j}e_{2j}$ , $\forall m\in Z$ .
In particular we get $u_{j}(2)+u_{j}(0)=2\cos(2\theta_{j})u_{j}(1)$ . Since $S(\Theta, t)$ is an isometry,
we deduce

(4.9) $u_{j}(t+2)+u_{j}(t)=2\cos(2\theta_{j})u_{j}(t+1)$ , $\forall t\in R$ .
It then follows from Proposition 2.4 that there exist some 1-periodic functions
$z_{j}(t),$ $v_{j}(t)$ and $w_{j}(t)$ such that

(4.10) $u_{j}(t)=z_{j}(t)+\cos(2\theta_{j}t)v_{f}(t)+\sin(2\theta_{j}t)w_{j}(t)$ , $\forall t\in R$ .
Assuming that $\theta_{j}/\pi$ irrational we deduce

(4.11) $z_{j}(0)=0$ , $v_{j}(0)=e_{2j- 1}$ , $w_{j}(0)=e_{2j}$ .
On the other hand by using the formulas defining $S(\Theta, t)$ we obtain rather
easily

(4.12) $u_{j}(m+(2_{J}-1)/n)=\cos 2m\theta_{j}e_{2j-1}-\sin 2m\theta_{j}e_{2j}$ , $\forall m\in Z$

Since $\theta_{j}/\pi$ is assumed irrational we deduce
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(4.13) 2$j((2j-1)/n)=0$ , $v_{j}((2j-1)/n)=e_{2j-1}$ , $w_{j}((2j-1)/n)=-e_{2j}$ .
AS a consequence the 1-periodic functions $v_{j}$ and $w_{j}$ are linearly independent,
therefore if the numbers $\theta_{f}$ and $2\pi$ are linearly independent over $Q$ , then the
solution $u(t)$ of (0.1) defined by

$u(t):= \sum_{j=1}^{n}u_{j}(t)$ , $\forall t\in R$

cannot be quasi-periodic with $n$ basic frequencies. This remark finishes the
optimality proof in the odd-dimensional case $H=R^{2n+1}$ . Finally in the even-
dimensional case $H=R^{2n+2}$ , it suffices to repeat the argument above in some
$(2n+1)$-dimensional subspace.

4.3. The case of quasi-periodic $A(t)$ . It has been shown in [11], that
the result of Theorem 1 is no longer valid, even for $H=R^{2}$ , if (0.7) is replaced
by an almost periodicity assumption on $A(t)$ . In this section we show that even
if $A(t)$ is linear, quasi-periodic with 2 basic frequencies, the bounded solutions
can fail to be almost periodic. The counterexample is based on the following
generalization of [11], Remark 1.3, (b), pp. 477-478.

PROPOSITION 4.4. Let $\{\epsilon_{k}\}_{k\in N}$ be an infinite sequence of Positive real numbers
such that

(4.8) $\forall k\in N$, $\epsilon_{k+1}\leqq(1/2)\epsilon_{k}$ .
Let us define
(4.9) $\forall t\in R$ , $h(t)= \sum_{k\geqq 0}\epsilon_{k}\sin(\epsilon_{k}t)\cos(\epsilon_{k}t)$ .
Then $h:Rarrow R$ is an almost periodic function for which the only almost periodic
solution $u$ of
(4.10) $\forall t\in R$ , $u’(t)=ih(t)u(t)$

is the trivial solution $u\equiv 0$ .

PROOF. The solutions of (4.10) are given by

(4.11) $u(t)=\exp(iH(t))u_{0}$

with

(4.12) $\forall t\in R$ , $H(t)= \frac{1}{2}\sum_{k\geqq 0}\sin^{2}(\epsilon_{k}t)$ .

Let us establish

(4.13) the function $\exp(iH(t))$ is not almost periodic: $Rarrow C$ .
According to a classical result (cf. $e.g$ . $[8]$ , Lemma 6.7, p. 104), if $\exp(iH(t))$

is almost periodic: $Rarrow C$ , there exists $\alpha\in R$ such that $H(t)-\alpha t$ is almost periodic:
$Rarrow R$ . In particular we have
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(4.14) $H(t)-\alpha t$ is bounded on $R$ .
Let us show that (4.14) is impossible for all $\alpha\in R$ . In order to do this we define
(4.15) $\forall k\in N$, $T_{k}=\pi/\epsilon_{k}$ .
It follows in particular from hypothesis (4.8) that

(4.16) $\exists c>0,$ $\forall k\in N$, $T_{k}\geqq c2^{k}$ .
We also define

$\langle$4.17) $M_{k}:=2 \int_{0}^{\tau_{k}}H(t)dt$ .
Therefore

(4.18) $M_{l}= \sum_{r=0}^{k}\int_{0}^{\tau_{k}}\sin^{2}(\epsilon_{k}t)dt+\sum_{k+1}^{\infty}\int_{0}^{\tau_{k}}\sin^{2}(\epsilon_{k}t)dt=:P_{k}+Q_{k}$ .
It follows from the definition of $T_{k}$ that for all $r\geqq k+1,$ $\epsilon_{r}T_{k}\leqq(\pi/2)2^{-r+k+1}$ and
therefore

$\int_{0}^{\tau_{k}}\sin^{2}(\epsilon_{r}t)dt\leqq T_{k}\cross\epsilon_{r}T_{k}\leqq\frac{\pi}{2}T_{k}2^{-r+k+1}$ .
In particular we find

(4.19) $0<Q_{k}\leqq(\pi/2)T_{k}(1+1/2+\cdots)=\pi T_{k}$ .
For $0\leqq r\leqq k$ we have the formula

$\int_{0}^{\tau_{k}}\sin^{2}(\epsilon_{k}t)dt=\int_{0}^{\tau_{k}}[\frac{1-\cos(2\epsilon_{r}t)}{2}]dt=\frac{T_{k}}{2}-\frac{\sin(2\epsilon_{r}T_{k})}{4\epsilon_{r}}$ ,

and since $\epsilon_{r}\geqq\epsilon_{k}=\pi/T_{k}$ we deduce

$T_{k}( \frac{1}{2}-\frac{1}{4\pi})\leqq\int_{0}^{\tau_{k}}\sin^{2}(\epsilon_{r}t)dt\leqq T_{k}(\frac{1}{2}+\frac{1}{4\pi})$

and in particular we obtain

(4.20) $\forall k\in N$, $[(k+1)/4]T_{k}\leqq P_{k}$ $ $(k+1)T_{k}$ .
First of all since $M_{k}/T_{k}$ tends to infinity as $karrow+\infty,$ $(4.14)$ cannot be satisfied
with $\alpha=0$ . On the other hand, if (4.14) is satisfied with $\alpha\neq 0$ , then necessarily
$\alpha>0$ and we must have

(4.21) $M_{k}\geqq$ a $T_{k}^{2}/4$ for all $k$ large enough.

On the other hand (4.19) and (4.20) imply
$\langle$4.22) $M_{k}\leqq 2kT_{k}$ for all $k$ large enough.

Therefore $(4.21)-(4.22)$ imply witb $C=8/\alpha$ :
$\langle$4.23) $T_{k}\leqq Ck$ for all $k$ large enough.

NOW (4.23) contradicts (4.16): therefore (4.14) is impossible and (4.13) follows.

REMARK 4.5. Let $\lambda$ be any irrational positive number. Then there exists
a sequence of pairs $(m_{k}, n_{k})\in N\cross N$ such that
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(4.24) $\forall k\in N$, $0<m_{k+1}-n_{k+1}\lambda\leqq(1/2)(m_{k}-n_{k}\lambda)$ .
Let $\epsilon_{k}$ $:=(m_{k}-n_{k}\lambda)$ and $h(t)$ as in (4.9): then we have $h(t)=h^{*}(t, \lambda t)$ where $h^{*}$

is a $2\pi$-periodic function in both variables given by

$h^{*}(x, y)= \sum_{k\geqq 0}\epsilon_{k}\sin(m_{k}x-n_{k}y)\cos(m_{k}x-n_{k}y)$ .

Therefore $h$ is quasi-periodic with 2 basic frequencies 1 and $\lambda$ , and Proposition
4.4 shows that the result of Theorem 1 is no longer valid even for $H=R^{2}$ and
$A(t)$ quasi-periodic with 2 basic frequencies.

REMARK 4.6. For a quasi-autonomous equation in $R^{2}$ of the general form
$u’(t)+Au(t)\ni f(t)$ with $f$ almost periodic: $Rarrow R^{2}$ , it has been shown in [13]

that all bounded trajectories are almost periodic. The following problems seem
to be of some interest for future investigation.

1) What happens if $f$ is assumed to be quasi-periodic: $Rarrow R^{2}$ ?
2) What about the equation in $R^{2}$ : $u’(t)+A(t)u(t)\ni f(t)$ with $A(t)$ periodic

and $f$ almost periodic (resp. quasi-periodic): $Rarrow R^{2}$ ?
3) What happens for a quasi-autonomous equation in $R^{N}$ of the form $u’(t\rangle$

$+Au(t)\ni f(t)$ with $f$ almost periodic: $Rarrow R^{N}$ when $N\geqq 3$ ?

ACKNOWLEDGEMENT. The main part of this work was done while the first
author was visiting the Department of Mathematics of Tokai University under
a grant of the Matsumae International Foundation.

References

[1] H. Attouch and A. Damlamian, Strong solutions for parabolic variational inequalities,
J. Nonlinear Analysis, 3 (1978), 329-353.

[2] V. Barbu, Weak solutions for nonlinear functional equations in Banach spaces, Ann.
Mat. Pura. Appl., 87-110 (1970).

[3] P. M. Batchelder, An Introduction to Linear Difference Equations, Dover, New-York,
1967.

[4] P. Benilan and H. Brezis, Solutions faibles d’equations d’\’evolution dans les esPaces
de Hilbert, Ann. Inst. Fourier, 22 (1972), 311-329.

[5] H. Brezis, OP\’erateurs Maximaux Monotones et Semi-Groupes de Contractions dans
les Espaces de Hilbert, Lecture Notes, 5, North-Holland, Amsterdam, London, 1972.

[6] M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel
J. Math., 11 (1972), 57-94.

[7] C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semi-
groups, J. Funct. Anal., 12 (1973), 97-103.

[8] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., 377,
Springer, 1974.

[9] A. Haraux, Equations d’\’evolution non lin\’eaires: solutions born\’ees et p\’eriodiques,
Ann. Inst. Fourier, 28 (1978), 202-220.

[10] A. Haraux, Behavior at infinity for dissipative systems with forcing term in Hilbert
space, in “Trends in applications of pure Mathematics to Mechanics“, 3 (ed. R. J.



294 A. HARAUX and M. \^OTANI

Knops), Pitman Pub. Ltd., 1980, pp. 120-125.
[11] A. Haraux, Asymptotic behavior of trajectories for some non autonomous, almost

periodic processes, J. Diff. Eq., 49 (1983), 473-483.
[12] A. Haraux, A simple almost periodicity criterion and applications, J. Diff. Eq.,

66 (1987), 51-61.
[13] A. Haraux, Asymptotic behavior for two-dimensional, quasi-autonmous, almost

periodic evolution equations, J. Diff. Eq., 66 (1987), 62-70.
[14] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent con-

straints and apPlications, Bull. Fac. Ed. Chiba Univ., 30 (1981), 1-87.
[15] N. Kenmochi and M. \^Otani, Instability of periodic solutions of some evolution equa-

tions governed by time-dependent subdifferential operators, Proc. Japan Acad., 61
(1985), 4-7.

[16] N. Kenmochi and M. \^Otani, Asymptotic behavior of periodic systems generated by
time-dependent subdifferential operators, Funkcial. Ekvac., 29 (1986), 219-236.

[17] R. Martin, Generating an evolution system in a class of uniformly convex Banach
spaces, J. Funct. Anal., 11 (1972), 62-76.

[18] K. S. Miller, Linear Difference Equations, Mathematics monographs series, Benjamin,
New-York, Amsterdam, 1968.

[19] N. E. N\"ordlund, Legons sur les Equations Lineaires aux Differences Finies, Gauthier-
Villars, Paris, 1929.

[20] Y. Yamada, On nonlinear evolution equations generated by the subdifferentials, J.
Fac. Sci. Univ. Tokyo, 23 (1976), 491-515.

Alain HARAUX Mitsuharu OTANI
Analyse Num\’erique, T. 55-65, 5\‘eme \’etage Department of Mathematics
Universite Pierre et Marie Curie Faculty of Science
4 Place Jussieu, 75230 Paris Cedex 05 Tokai University
France Hiratsuka, Kanagawa

Japan


	Introduction.
	1. Main results.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...

	2. Bounded solutions of ...
	3. Proofs of the main ...
	4. Related results and ...
	References

