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0. Introduction.

In Nelson [10], it is shown that for each solution of a Schrodinger equation

(x, 1), x€R?, t=0, with [¢]=1, there exists a diffusion process which has

. probability density at time ¢ given by [¢(x, t)|?, if ¢ has sufficient regularity.

More precisely the following is shown in [10]: suppose that we are given a

real valued function V(x), xeR¢% and a complex valued function ¢y(x), x=R?,
with [l¢]l=1, and consider the Schrédinger equation

;0gx, 1)

ot :(_—I-A+V(X>)¢(x, B, t>0, xeR?, with ¢(x, 0)=¢(x).

2
For such ¢, let b(x, )=Im{V¢(x, )/¢(x, )} +Re{V¢(x, t)/¢(x, t)}. Then, under
the assumption that ¢ and b are sufficiently regular, there exists a diffusion
process {X.}, =0, with initial density |¢o(x)|? and generator (1/2)A+b(x, t)-V
such that the probability density of this diffusion at time ¢=0 is |¢(x, £)|% In
addition, in it is also shown that the diffusion process {X.}, t=0, solves
the second order stochastic differential equation (1/2YDx«D+DD)X,=—-VV(X,),
where D and D, are Nelson’s forward and backward stochastic derivatives.

Generally speaking, the functions ¢ and b may be singular, and the existence
of the corresponding diffusion process must be studied carefully. Carlen [1, 2],
Meyer and Zheng and Nagasawa [9] considered rigorously the construction
of a diffusion process with a given initial density and a generator. In order to
construct a Markovian propagator for the diffusion process, Carlen [1, 2] used
partial differential equation methods. Meyer and Zheng restricted themselves
to the case when ¢(x, t)=¢(x), =0, and considered the construction of the
diffusion process through the relationships between Markov processes and
Dirichlet forms. We may consult Nagasawa about recent developments of
this area.

In Carlen [1], it is assumed that V(x), x€R¢, is a Rellich class potential
and |V¢ol|*<oo, and shown that there exists a diffusion process {X:}, 120, which
has the probability density |¢(x, t)|* at time {=0 and admits the representation
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of stochastic differential equation: Xt———Xo—}—S:b(Xs, s)ds+ B;, t=0, where {B.},

t=>0, is a standard Brownian motion process and b is a modification of 5. In
this paper we restrict ourselves to the case when d=1, one dimensional case,
and consider the Schrédinger equation with boundary condition :

LO(x, 1) 1

Z—a_t—_ (—?A-FV(?C))Q[)(X: t); t>0y xe(a: ﬁ),
with

¢z, 0)=g¢o(x), and ¢'(a, H—a.la, )= ¢(B, )+oud(B, 1) =0, t=0,

where —co<a<f<c and g,, 6,=0 are given constants, V is a given Rellich
class potential and ¢o=H*(a, B)), llh[=1. In Section 1 following Carlen [1],
for each given V and ¢, we shall construct a Markovian propagator, and in
Sections 2 and 3 we shall show that there exists a Markov process, which has

probability density at time ¢ given by [¢(x, t)|?, and that the Markov process
has the representation :

t t
Xo = Xt | 0(Xe, s+ But || (LX) =I5 (XD, 120,

where {B.}, =0, is a standard Brownian motion process and {&:}, =0, is a
continuous increasing process which increases only on {a}\U{B}, and I is the
indicator function. Since [¢||=1 when [¢,]|=1 for a Rellich class potential V,
the Markov process {X.}, t=0, must be a conservative process. Under the con-
dition that ¢'(a, t)—a:f(a, t)=¢'(B, 1)+ 0B, )=0, |(a, t)| and |H(B, t)| may

be strictly positive. It is easy to expect that the conservative Markov process
{X.}, t=0, has the above representation.

1. Construction of Markovian propagator.

Let D=(a, B)CR', an open bounded interval of R!, and ['={a}\U{B}. We
define two sets of complex-valued functions as follows:

D) = {91 g HAD), —ga)—0fle) = ——pB)+ 0 H)=0},

HD) = {91 ¢, 1 ~spe LD},

where ¢, and ¢, are two given real numbers such that ¢, ¢,=0. Let H, be
the operator with domain 9(H,) such that

Hyp = —%Agb, G D(Hy).

Then the operator H, is a self-adjoint operator on 9D(H,), and (He¢, ¢)=0, Y=
9(H,). Throughout this paper we assume the following.
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ASSUMPTION 1. The real valued function V(x), x&D, is a Rellich class
potential : ?a, b=0, (a<1),
Wdle £ allHodllzcor+blldl 2o, Y= D(H,).
PropoSITION 1.1 (Kato-Rellich). Suppose that V satisfies Assumption 1, then
the operator H=H,+V 1is a self-adjoint operator with domain D(H,) and satisfies
b 9
(Ho+V)), ) = -1—_—5H¢szcm, YED(H,).

LEMMA 1.2. Suppose that we are given $o=D(Hy). Let ¢p=e """ ¢y, te R
Then the following hold.
(i) 2C.<oo, "tERY,

llsbc GillP+ 2l pe—gol* = Colle™ F(H+Dho—(H+ Dol (1.1

where A=(1—a—+b)/(1—a) (=1).
(ii) For each fixed T <oo, there exists an Mp<co, and

SD{(RG Sbt) +(Im ) }lsf’tlzdx <My, t<[0, T]. (1.2)

(iii) For any real valued function feC YD X[s,t]), 0Zs<t< + oo,
Df(x, )| ¢(x)|%dx is an absolutely continuous function on [s, t], and

L1 o gt = f1geldrr L 005 rax—{ guagsis)

S 1ol 2dx+S (tm f VF1geltdz,  ae vels, 1, (1.3)

where we simply denote f=f(x,7), f=0/07)f(x,71), f/=(0/0x)f(x,7)and d=¢x).

{76, nigeorax={ roe ol = (-2 s, r)lgb(x)l?dx}dfﬂ .

(iv) There exist jointly measurable functions ¢(x, t) and @(x, t) on Dx[0,T1],
T<eo, such that for any t<[0, T] ¢(x, )=¢ux), §(x, )=¢i(x), a.e. x=D and
$(a, h—a:8(a, )=3(8, t)+a.4(8, )=0. (1.5)

ProOOF. First, we assume that the following inequality holds, and
prove The validity of will be shown at the end of this proof.

Cy, C:>0; Cillgl < gl < Celigly,  YosD(H,), (1.6)
where

gl = IH+DP,  NPlle = [(Ho+A)l.
For any ¢=9(H,)”, we have

(1) By Sobolev’s lemma it holds that £ (Hy) CC¥2(D).
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(Ho+ ¢, ¢) = ”;'|l¢/“2+2||¢”2+%{01|¢(a)|2+021¢(,8)|2}- (L.7)

Let E, be the resolution of the identity for the self-adjoint operator H, on
D(H,). Since =1 and holds, we have

(HA g, §) = | e+ DANEDPI < | (4 27d | B9

= [(Ho+D¢)* < CoI(H+DP*. (1.8)
From and we see that
%llsb'llz-l"lﬂstz = Gl(H+DPI?,  ¢=D(H). (1.9)

On the other hand from [Proposition 1.1, the operator ¢ ¥ is a strongly con-
tinuous unitary group on L*D), and for any ¢y D(H,), ¢:=e **# ¢, is an element
of 9(H,). In the sequel we denote e *# by U,. Since the operators U, and H
are commutative, we see that

I(HAUpo—Po)l| = |U(HA-2gpo—(H+ Aol - (1.10)

Thus if we let ¢g=¢,—¢PED(H,) in then from [1.10) the desired inequality
follows.

Since U, is strongly continuous on L*(D) and (Ho+A)¢o<= L*(D) for ¢os D(H,),
from we see that the mapping #—¢; is a strongly continuous mapping from
[0, T] to L¥D). Hence, by Bochner-von Neumann measurability theorem (see
for example p. 454 of [6]), the assertion (iv) follows. Obviously [l¢;] is con-
tinuous in f, we have

T <co, IMp<oo, Yte[0, T], lgill* = Mr. (1.11)

Since the left hand side of equals to [¢]|%, thus follows from [(I.1
Now, we shall prove (iii). Suppose that feC** (D X[s, t]), 0<s<t<co. Let

F@ = fx, Dlgd)lids,  rels, 1],
Take any ¢ and 7, s<o<t<t, then
FE=F@)l = || G, 0guge—gdz|+ || 1w, D3(ge— gz ]
+| [ (e = 1(x, 9)I g 71|
= K([13—g, 1%ax) "+ K ([ 19— g0 1%dx) "6z, o),
where

K= sup |f(x,7)], q(r,0)= Sgglf(x, )—f(x, o)].

(z,t>eDx[s, 1]
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For simplicity let 7—o=4d, and denote by E the resolution of the identity for
the seif-adjoint operator H. Then from [Proposition 1.1 we can write

Splgbr—gba |*dx = IUo(Us—1)¢pol* = |Us—I)hll®
=7 lee—1prdl Bl = 7 (x8) cos(0(x0)d | Ex)gol?
< 0% Heol?, for some 6(x0d) such that 0<f(x8)<xd.
For SDi&,—gﬁU[?dx we have the same evaluation as above, and hence we can
conclude that there exists a constant K’ depending only on f and ¢, and
|F(r)—F(a)| = K'(t—0)+q(z, o), sSo<r<t. (1.12)

From and the fact that feC» (D x[s, t]), we see that F(r), r<[s, t], is
an absolutely continuous function of <.

Next, we shall show that [(1.3) holds. If is true, then (1.4) follows
from the absolute continuity of F(¢f). In order to prove the first part of [1.3), it
suffices to show that

—;%S,,f ()] gx)*dx = %{S;Agbf(x))gzr(x) f(x)dx

—SDg[)T(x)(ASE,(x))f(x)dx}, a.e rels, ], (L13)

for any f=C(D). If (1.13) is shown, then the other part of follows by
the integration by parts. We note that (d/d7)¢.=lims.o(1/0)¢:rs—¢pr)=—iH¢e,
strongly, YreR', where ¢.=U.¢o, ¢o=D(H,). Using this and Schwarz’s in-
equality it is easy to see that

l—;—(gpf | fersl®d x—S,,f s 1°d x)"SD(“iHSbr)fsﬂrdx*Spsbrf(m)dxl —>0

as 0—0 for any feC(D). This is equivalent to (1.13).
Last of all we shall show the validity of [1.6). Since 21=1, we have

ICHo+ D121 5 17d I Eox)g1P=] Hog?, and
I(Ho+ Dl 2 | 12151 Eogl = RIgI, ¢ DHy.

Thus, there exists a constant C,>0 such that

I(Ho+ D¢l = C(IHgll+lglD, "o D(H,). (L.14)

Since there exists a constant k=1, and x*<k(x+2)? for any x&[—A+1, o),
we have

|+ = k—xS:Hk|x+z|2d||E<x>¢;|2 = kY HYE, deD(Hy).  (L15)
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In-addition, since |x+4|=x+4=1 for x=—A4+1, we have [(H+AP|*=|¢l?,
¢=D(H,). Combining this and (1.15) we see that there exists a constant C,>0
and

IH+DPI = C(IHPII+1IP),  "PED(H,). (1.16)
On the other hand the following hold obviously :

AN Hopl gl = [(Ho+D¢l, (1.17)

ANHg|+l¢h) =z [(H+Dgll,  "op=D(H,). (1.18)

From [Proposition 1.1], the operators H, and H are closed operators, and hence
9D(H,) becomes Banach spaces with two graph norms [¢]+I[Hell and [|¢]+
[H¢|. From (1.14) and we see that the norms [|[(Hy+A)¢| and [|Q]+ | Hed |l
are equivalent, and from (1.16) and (1.18) we see that |[(H-+A)¢|| and [[¢ll+I[|He|
are equivalent norms. Thus the space X=9(H,) with norm |¢|, and Y =D(H,)
with norm |/¢||, are Banach spaces. Obviously the identity mappings J: X—Y
and J’: Y—X are closed operators. By the closed graph theorem, Jand J’ are
bounded operators. Hence we can conclude that |-||, and ||-]|, are equivalent
norms, and holds. The proof is complete.

Define

. B(x, t)
w(x. ) :{ AER

it ¢(x, =0,
it é(x, =0,

&(x)‘t)
|

vix, t) = { o ¢(X, 1)
0

it ¢(x, =0,
it @(x, £)=0,
o(x, ) = |o(x, D)|?, t€[0,T], T<oo.
If we exchange |[¢:|% Re(¢i/¢) and Im(¢i/¢e) for po(x, 1), u(x, t) and v(x, t)
respectively, then the assertions (ii) and (iii) in are also valid for

this change. Note that C$(Dx[0, T]) is dense in LD X[0, T]1; o(x, )dxdt).
Let

b(x, ) =v(x, H)+ulx, 1), and b*(x,t) =v(x, 1)—ulx, t).
Then from (ii) it holds that

V< oo, IMp< oo, S:Si(b("’ )o(x, idxdt < 2T My, (1.19)
and

STV (b*(x, D)o (x, Ddxdt < 2T M. (1.20)

Thus, we can choose sequences {b,, n=1, 2, ---} and {b%}, n=1, 2, ---} so that
b,=eCDX[0, T]) and bt=C3(DX[0, T]), and
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limS:Si ba—b|%0(x, t)dxdt =0, (L.21)

N—co

limS:Sﬂ |bX—b*|2p(x, H)dxdt = 0. (1.22)

In the sequel we shall construct a Markov semi-group. To this end we
will make use of the following well known properties for initial boundary value
problems (see for example It6 and Kannai [[7]).

Let

F={f| fec=D), f(a)=f"(B)=0}.

PROPOSITION 1.3. Let T<oo, and let {b,, n=1, 2, ---} and {b%, n=1, 2, ---}
be two sequences in CI(DX[0, T]) satisfying (1.21) and (1.22) respectively. Then,
for each n=1, 2, ---, s€[0, T] and f<F, the following hold :

(i) there exists a unique (T3 f)(x)=g(x, r)eC=(Dx[0, s]), such that

0 1 0
—g=(—FA=bg-)g, (v, NEDXO, 9),
gla,=g'B, rn=0, »0,s), gl s)=f(x), xD,
inlf_jf(y) < glx, n) < sup f, (x,neDxIO0, s],

Ve e

(ii) there exists a unique (PTf)(x)=h(x, )eC(DX[s, T1), such that
Jd, /1 « 0
Srh= (—Z-A—b,,—a-;) h, (x,0)EDX(s, T),

h,(a’ t) = h,(‘B) t) = O, tE(S) T)’ h(x, S):f(x>’ xED’
inf f(y) < A(x, 1) Ssup f(),  (x, DeDX[s, T1.
yeD yeD
below is a version of [Theorem 3.1 of Carlen for our Nelson

process problem with boundary condition. The proof of this lemma depends

essentially on and the following (i) and (i) (see (iii)) :

(i) for feCYD), —;%SDf(‘x)p(x, Hdx = SDv(x, Hf'(x)e(x, t)dx,

a.e. 1R,
S f(x)(—a— (x, 1))dx :S 2u(x, Hf()o(x, Ddx, teR
D ax P ) D ) .0 ’ ’ +
(ii) b, — b=v+u, b*¥ - b¥*=v—u, asn—oo, in LXDXx[0, T]; o(x, t)dxdt).

LEMMA 1.4, For each T<oo, and any s<[0,T] and fEF, let fi.(x, )=
(PP x)EC(DX[s, T1) and gulx, r)=(TEF ) x)eC(DX[0, s]), defined in
Proposition 1.3-(ii) and (1) respectively. Then the following hold.

SSTSD| Fulx, O120(x, Ddxdt < (KxM%?,  YneN, (1.23)
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s

[I{ 1ga0x, Ditpx, nidxdr < KXy, YneN,

0

8

01 1rn=rtpuxar < arc{([7 ipr—tr120.xar) “x (1] 1 £2lpudnat)”
+(§7] 1o —17pudnde) “x ("] | 7n1pedndt) "}, vn, meN, .29

[\, 1ga—gni®0, dxdr < ak{(['{ 1820120, dxar) “x (1] 1g41%0 . dxar)”
+(1 1bn—bit0, dxar) " x(\'] \gni®p,dxdr) "}, vn, meN,

SDI Fulx, = Fulx, D120z, Ddx < 4K2><A71;{(S:SD[b;§—b;;|2p<x, Ddxde)

+(S:SD|b3‘§+b"ni—-2b*lzp(x,z')dxdr)m}, ‘els, T, 'n, meN, (L25)

SDlgn(x, r)—gn(x, r)|2p(x, r)dx < 4K2><]\71T{<S Splbn—bmlzp(x, ‘z‘)dxdr)ll2

+(Ss Slen_{"bm_zblzp(x, T)dxdz->1/2}, VrE[O, S], Vn’ me]v,
where M¥=AMrT +2B%)?+AMrT +2B5+4)2, My= (4M7T +2B7)"?+ (4M,T +
2B +4)2,

- T - T
B% = sup {S SDIb;'jlzptdxdt} . Br= Sup{SOSDIbn 0. dxdt},
My is the constant in Lemma 1.2-(i1), and K=sup.es!| f(x)|.

PROOF. p(a, t) and p(B, ) may be strictly positive for ¢, € D(H,). But, for
heF and g=CYD) we have the following integration by parts:

[ g ot vdx = —ZSD(]«%A—i-u—;;)h)p(x, dx, (1.26)

YqeCYD), YheF, ¥t<[0, T].

Since [Proposition 1.3H(ii) holds, for each fixed t<[s, T] we can take ¢(x)=h(x)
=fa(x, t) in (1.26). If we note that f, is the solution of the initial value problem
in Proposition 1.3.(ii), then we have

[0, rasaote, Ddudt = —2{7 fo(Atus)fa)ots, Ddxdi
= —Zgjgpfn«%——i—bﬁ%+ub—a;>fn>p(x, Hdxdt . 1.27)

On the other hand since (f,)*=C=(Dx[s, T]), from and (1.4) we have
T . r
_2SSSDfnfn:0(x’ Hdxdt = 2Ss SDfnf;ﬂ)p(x, t>dxdt+SD(f"(x’ S))Zp(x, S)dx

—{ (o, Tr0tx, T (1.28)
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Inserting this into and applying the quadratic formula (as is done in the
derivation of (9) in Carlen [1]), we can derive [1.23}).
Since [(1.23) holds, and for each t<[s, T]

Wam(e, )= fole, )—fu(-, )eF, and W, , < C=(Dx[s, TD),
from and the following formal calculations are valid.

[Tt wipdsdt = 207§ W w((G A+ U Wam) pdsds
= 2| W (W b k08 f (kb o

- ZSSTSDW% (% —b%) f 1, — (bE—b%) f 1) pdxdt + W g, m 12— W . m 12,

where HWH%——«SDIW(JC, H|%p(x, )dx, and here we used the similar formula as

for W, m. If we note that W, .(x, s)=0, and apply Schwarz’s inequality
to the above formula, then we get (1.24).

Since for each t&[s, T] Wa. u(-, )EF, and W, n&C>(DX[s, T]), and since
Lemma 1.2-(iii) and hold, the formal calculations, which are made in the
derivation of (11) in Carlen [1], can be carried out, and we can derive (1.25).

The proofs for the estimating formulas corresponding to g, are very much
similar to the ones corresponding to f,, and hence omitted. The proof is
complete.

Now, the following definition is valid.

DEFINITION 1. For each T<w and any 7, s, t, 0<r<s<t<T, the operators
PZs, T, PT;, TT' are defined as follows:

Pfs: F3 f(x) — (Pl f)(x) = im(PL f)(x) &€ LYD; o(x, dx),
TI,: Fo f(x)—> (TLf)x) = im(TLy ) (x) € L¥D; p(x, r)dx),

PI4: FS f() > (PEf)(x, ) = lim S (PE™ F)()

e LADx[s, T]; p(x, t)dxdt),
TE,: F3 f(2) > (Taf)x, ) = lim o (TF )

e LADx[0, s1; p(x, r)dxdr).

Since, for each t=[0, T'] and each K, K,=[0, ) the set {glgeLD;
o(x, tydx), —K,<g(x)SK, a.e. p(x, t)dx} is a closed subset of L*D; p(x, t)dx),
from Proposition 1.3 and Lemma 1.4 we have the following.

LEMMA 1.5. For any r, s, t, 0£r<s<t<T, and f<F,
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inf f(y) < (PEsf)(x) < sup f(y), a.e. xD with respect to o(x, t)dx, and
yeD yeD
inf f(y) < (TE:f)(x) < sup f(»), a.e. x&D with respect to p(x, r)dx.
yeb yeD

We want to extend F, the domain of the operators PF, and TZ,, to L*D;
o(x, s)dx). To this end we prepare

LEMMA 1.6. For each T<oo and any s, 0<s<T, and fE<F, the following
hold.

[\ 1Prsfx, 1%0Ce, Pdadr+PEL 1 = P, (1.29)

[ Prpeecs, dx = | (PEAIPCx, Bz, (1.30)

IPZy fl < MEHIPES Sl 't 7, sstsesT, (13D
and

[ 1rmpee »itote, ndedr-+ITE 1 = 1TSS, (132

[Tzt dx = (T e, vax, (1.33)

ITE8 fle < MEHITTRfle, Y87, 0=5t=r<s, (1.34)
where

g =2k (1§ b1t dnar )", Mz =2k ([[ 12120, dxar)”

and K =sup| f(x)].
zeD

PROOF. Since g.(x, )=(TL:2f)x) and f.(x, 7)=(PI"f)(x) satisfy g.&€
C=(Dx[0, s1), freC(DX[s, T, and ga(-, )=F for each t<[0, s], fa(-, T)EF
for each r<[s, T]. Noting [1.26), [1.23) and Lemma 1.2-(iii), we can derive
(1.29), (1.31), and through the same discussion which are made in
the derivation of (13) and (15) in Carlen [1].

In order to see that holds, we repeat the proof of (14) in Carlen
for our Nelson process problem with boundary condition. Since

—;—SD(Afn(x, )p(x, t)dx = [ fo(x, T)ulx, 7)p(x, r)]é’i——SDf;(x, Du(x, t)p(x, t)dx

= —[ a0, Dutx, Dptx, ax,  Yesls T1,
from Lemma 11.2-(iii) we have

A fapedn = (2Atu ) fapede—{ —0—)(2 f2)o

0
— —\ pr—(y— 2
SD(bn (v u))(ax fn)prdx, a.e. t=[s, T].
Thus, from Lemma 1.2-(iii) and Schwarz’s inequality we have
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d dx| = (' (o ro, dxdr)
oot gents] < (] o1 )

(817

ErTk
From [1.22) and [(1.23) we see that the right hand side of the above formula
tends to 0 as n—oo, and hence from (1.25) we have [1.30}.

The proof of [(1.33) is very similar to the one of and hence omitted.
The proof is complete.

Set t=s in and t=s in Since C(D)CF and C%(D) is dense
in L¥D; p(x, s)dx), and by PZ,, PT;, TT, and T%'; are linear
operators, we can extend the domains of these operators.

2p, dxdr)m.

DEFINITION 2. PF,, TI,, PIt and T1’; are the continuous extensions of the
operators in Definition 1:

Pry: L¥D o(x, s)dx) —> LD ; o(x, tdx),
TZ,: L¥D; o(x, s)dx) —> L¥D; o(x, r)dx),
PIy: LAD; p(x, s)dx) —> LXDx[s, T]; p(x, t)dxdt),
TI'o: L¥D; o(x, s)dx) —> LYDX[0, s]; p(x, t)dxdzr), O0<r<s<t<T.
REMARK. By the construction of Pfs, TZ,, PIr and TT/, itis obvious that
Pr=PF,, TZ ;=TY,, PF;=0;P7; and T} =TY’, for 0<r<s<t<T with T<U,

where O is the projection from L¥DX[s, U]; p(x, t)dxdr) to LXDX[s, T1;
o(x, T)dxdr).

Noting the above Remark, from now on we shall omit the superscript T
from Pf,, TY,, PI% and TY'.

We list Lemma 1.7 without proof, making use of Lemma 1.4, (1.31) and
(1.34) this lemma can be proved through the completely same discussion which
is made in proving Theorem 3.3 in Carlen [1].

LemMmA 1.7. It holds that

Pt,r = P:,s°Ps,n and Tr,£ = Tr,s°Ts,t, for 0<r<s=it<T.

2. Construction of Nelson processes.

Let Q=D and F'=(8(D)"*=, the product o-field, where #(D) is the
Borel o-field of D. Let X;, t=[0, ), be the projection (t-configulation function
on ), _

X Q20— X, (0)ED.

For each finite subset U of [0, o) let 2y denote the metrizable space DV.
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From Lemma 1.5, Definition 2, Remark, and Riesz-Markov theorem
there exist tight probability measures P} and Py on £y uniquely so that

EFU[F] = (fu, Prptnerfa-1Priyortnegfae -+ Pipt fi),, and

EPOLF] = (f1, TupuyfoTupiofs - Taypinfadiy With
U={ty, ty, =+, ta}, 04, <t,< -+ <t,<oo, and Flwy)=II%: f«(XV(wy)), fi=C=(D),
i=1, -+, n, where XZ: Qy2wy —XZwy), the t.-configulation function on 2y,
(f, g)t:SDf(x)g(x)p(x, t)dx, and EFU and EFv denote the expectations with

respect to the probability measures P} and Py respectively.

By Kolmogorov’s extension theorem (see Corollary III-52 of Dellacherie and
Meyer [3]), we can conclude that there exist probability measures P* and P on
(£2, ') uniquely such that

P*¢qz' = P§ and Pgp* =Py for every finite UC[0, o),

where ¢y is the projection of £ onto 2.
Now, let ¥7* and * be the completion of ¥’ with respect to P* and P
respectively.

LEMMA 2.1. (i) For any feC* (DX[s, t]), 0<s<t<oo, and g€<F, there

exists a limit limn_,xS:[(P,‘;s"g)(x) F(x, Dolx, ©18de=R,. (s, t), and it holds that
1 B 8
~ g Ro(s, )= | (Pug))f(x, Dotx, D= g(0)f(x, o, $)dx

—S:Sf{(ﬁ. sg)(x)(—;—A—kb(x, T)%-Faa—z_)f(x, z‘)}p(x, )dxdr.  (2.1)

(i) For any feC>Y(DXx[0, t]), 0<t<co, any bounded non-negative measura-
ble function g on D and any s<[0, t], it holds that

EP*[g(XQ{f(Xt, 1— F(X,, s)—SZ(%Aer(X,, r)%—i—%) FX., z‘)dr}]

{é}o if {f’(a, =0, f'(B, =0, 'z=[0,1],

2.2
= fla, )20, f'(B, 7)<0, Yr<[0,t], respectively. (&-2)

PROOF. Since (Phrg)x)=gn(x, T)eC=(DX[s, t]) is a solution of the initial
value problem in [Proposition 1.3Hii), and feC2>%Dx[s, t]), by [1.3), (1.26) and

the integration by parts argument we have

d

a1, i, e = {7((5 4% KAPRYIPS

8 B .
+| vt rtgn Dot | gafeocd
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*

a

= — 285, O (x, Dplx, i+ (Qan, N4 Wah, 1, D) pud,
a.e. t€s, t],

where Q and W are defined as follows;
1 0o o0
Qg, /)= qlx, )X((FA+b(x, D)5+ )f(x, ),

W(q, f, h) = q(x, ©)f(x, T)v(x, T)—u(x, T)— (%, 7)),
for measurable functions ¢, & on DXx[s, t] and feC*Y(DX[s, t]), and here we
simply denote f(x, 7) by f, p(x, 7) by p. and so on. Thus, from (1.4) we have
1t , | 8 8
— 5| Laatz, 7 x, Dotx, Nide = gutx, Df1pud—{ galr, fiput
t0B
—{V 1@ten, N+ et 1, 001 pudde.

Since g.(x, s)=g(x) and holds, if we let n—oo, then we get (2.1).
Since holds, by Fubini’s lemma it holds that

right hand side of (2.1) = left hand side of (2.2), (2.3)
'feC*¥DXI0,t]), YgeF.

On the other hand it holds that (Pfg)(x)=0, (x, r)eDXx[s, t], for g(x)=0,
xeD. Thus, for f such that f(a, 7)<0 and f'(8, 7)=0, from (2.1) and (2.3)
the upper side of (2.2) follows. Similarly the lower side of (2.2) follows. Since
F is dense in L*D; p(x, s)dx), and holds, we can conclude that
(2.2) holds for any bounded non-negative measurable function g. The proof is
complete.

LEMMA 2.2. For any bounded measurable functions fi, fs, -+, fn, and any
0t =t,< - Zta<oo, it holds that

EPLfu(Xe )X folXep) XX fulXe )] = EP*Lfi(X0 )X fo(Xp,) X+ X falXe )]
(2.4)
And P=P* as a probability measure on (2, ').

Proor. First, we shall show that

EPLf(X)g(X)] = EF[f(X)g(Xs)], 0=s<t<eo, f,g€F. (2.5

To this end we see that
EP'[f(X)g(X)]—EP*[fu(Xs, $)8(X )]

=([Cwx, r=tatx, nsitz, NP o, xde,  2.6)

where f, g&F and fi(x, 7)=(Tt4f)x)eC=(Dx[0, t]). From [Proposition 1.3:(i)
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and (2.1) it holds that R, (s, #)=0, and hence we have
8 8
L P fatx, Dpuda—{ gfix, ot

N
= ([ be—barsitx, 2P sg)petintz, @7
and this is equivalent to

From the definition of P and P*, it holds that

EPX)] = [ hdote, $)dx = BPLHE,

forjany heL\D; o(x, s)dx). Hence, we have the following evaluation:

| EPLf(X0)g(X)]1— EPLf(X0)g(Xs)]|
= | EF"[f(X)g(X)]—EP[(Ts,o fXX0g(X:)]l
< |EPf(X0)g(Xe]—EPLfa(Xs, $)g(X)]
+IEP[f 1(Xs, $)8(Xo)]—EF[(Ts, 0 X X:)(X)]] -

Since [(2.6) and hold, the first term of the right hand side tends to O
as k—oo, and the second term also tends to 0 as k—o. Hence we have verified
the validity of (2.5) for f, g&F.

Since holds and F is dense in L%D; p(x,t)dx) and
L¥D; o(x, s)dx), (2.5) holds for any bounded measurable functions f and g.
By induction we can show that (2.4) holds.

Noting the construction of P and P*, we see that P=P* from (2.4). The
proof is complete.

DEFINITION 3. Let $=9%"=g%, and let X,: 23w —X,(w)eD, t[0, «),
by the projection. For each t=[0, ) let ¢,=c{{X,, 0<s<¢{}\UJ1}, the sub a-
field of & induced by X;, 0<s<t, containing the totality of P-null sets JI, and

define F;={\¢>¢ 9, t<[0, o), the right continuous increasing family of sub
o-field of &.

THEOREM 2.3. It holds that
P(X,€A|9,)=PX,€A|X,), a.s P, 0<s<i<co, YAc ®(D),

Borel a-field of D. (2.8)
For each feC*»Y(DX[0, )) let

2t = X0 0= (Fa+00X, 02+ 2 ) f0x., ode. 2.9

Then the Fi-adapted stochastic process {Z4}, t<[0, ), on (2, F, P) is a su-
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permartingale in class (DL)® if f'(a, t)<0, f'(B, 1)=0, t<[0, =), and is a subma-
rtingale in class (DL) if f'(a, t)=0, f'(B, t)=<0, t[0, o).

PrROOF. According to VI in Dellacherie and Meyer [4], we have
I;EEEP[IA(Xt)lgHb] = EP[I(X,)|9,], a.s. P,"Ac3(D), 0=<s<t<co,

(2.10)
where I,(x) is the indicator function;
I ( )_{ 1 if xEA,
AYZV0 i xeA.

On the other hand, from and the construction of P, we have

EPLI LX) Gs45) = EF[ LX) | Xors] = (Tss5, L 4) Xosa),  a.s. P, (2.11)
"Aes 3(D), 0<s+di<t<oo.
Noting (2.10) and (2.11), we can evaluate as follows:
EPL|EP[I (X)) Fs1—(T's, 1L aX X)) ]
< EPL EPLLAXON F 1 —(T 545, e 4N X51) | T+ EPLI(T 548, e LaX Xss0)—(T's, L a) X1
< EPLIEPLI LX) Fs]1—(T ss5,e L a)Xs15)1 ]
+EP|: I (Ts+6, t[A)(Xs+5)"'<Ts+6, tf)(Xs+6)| ]
+EP|:l(Ts+6,tf)(Xs+5)—(T§3{-1§,tf)(-Xs+6)l]
FEPLI(T 83,0 )X Xsaa)—(T 87 ) Xs2a)1]
HEPLIT 2 Y Xs4a)—(TH 2 UX) THEPLNT L2 UX)—(T 5, S XX ]
FEPLT s, U X)—(Ts, IuXX5)1],  fEF. (2.12)
Since F is dense in LD ; p(x, t)dx), and holds, for any ¢>0 we can
choose f<F and the second and seventh terms in the right hand side of (2.12)
become less than e. Since holds, for such f&F, we can choose
sufficiently large N, and the third and sixth terms in the right hand side of
(2.12) are less than ¢ when n=N. Since Proposition 1.3-(ii) holds, for each
fixed f and n as above and fixed s<?, the fourth and fifth terms in the right
hand side of (2.12) can be arbitrarily small for sufficiently small §>0. From
(2.10), (2.11) and the dominated convergence theorem, the first term in the right
hand side of (2.12) also can be arbitrarily small for sufficiently small 6>0.
Hence, we can conclude that EP[I(X,)|F1=EF[I(X.)|X,]. (2.8) is proved.
Since P=P*, for 0<s<i<c (2.2) means that
fla, D=0, f'(B,7)=0, z&[0, =), ©2.13)
ffla, )20, (B, 1)<0, [0, ),

EFLg(XXZ{—24)] {i} 0 if{

(2) See [4].
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for any bounded non-negative measurable function g. Since Z{—Z% is a{{X,;
sSuZt} U} measurable, and {X,}, t<[0, o), satisfies (2.8), thus (2.13) shows
the supermartingale and submartingale properties of {Z1}, t<[0, o).

For T<oo, let $t=S:b(X,, )z, t<[0, T1, and let My be the totality of any

F,, t<[0, T], stopping times ¢ (<T, a.s.). Then from (1.2) and Fubini’s lemma
we have

sup E¥[1&,11 < T@M)'", (2.14)
celip
and
T 1/2
EPLIE, | Lu@)] < (P (T-E7| | (X, yrde])" < TP(ay =@y,
VAesg, YosMy. (2.15)

From we see that
lim sup E?[|&,|14]1=0, AeF. (2.16)

P(A4)—0 O'Ef’mT

Since feC>YDX[0, o)), from [2.14) and [2.16) it follows that {Z%}, t<[0, ),
is in class (DL). The proof is complete.

3. Existence of equivalent processes with continuous trajectories.

In this section we shall show the existence of continuous modification of
{X:}, t€[0, ), on (2, 4, P), and give the stochastic integral representation
for the continuous process.

THEOREM 3.1. For given ¢sD(H,), let (2, F, P; F.) be the probability
space defined in Section 2. Then there exists an F.-adapted continuous stochastic
process {X;}, t<[0, ), such that

PXi=X)=1, Ye[0, ), 3.1)
where X, is the projection (t-configuration function on Q).
In order to prove [Theorem 3.1, we need the following lemma:

LEMMA 3.2. Let f&F. Then there exists a continuous process {f:}, te
[0, o), such that
P(fe=f(X)=1, %[0, ). (3.2)

PROOF OF THEOREM 3.1. Suppose thatLemma 3.2 holds. Take f<F, which
is a strictly increasing function on D. If we set

X =fUF), tel0, ),

then {)?,}, t€[0, ), satisfies the desired property. The proof is complete.
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Now, we shall prove
PROOF OF LEMMA 3.2. Let 0<s<i<T <. From (2.1) we have

EP[g(Xo)(f(Xe)— f(X:))]

- S:Si(%ub(x, z‘)%) FOXP. o8 1)olx, D)dxdz,  f, gF, (3.3)

here we used the fact that P=P*. Using (3.3), after simple calculation we have

EPL) f(Xo)— f(X9)]]
= EPL{(F (X)) = (f(X))*} +6(f (XN (F( X)) —(f(Xe))}

— 4 fXN X~ XN A AN AX)— X
=4\ ber =P Dperde+12{ ' b 1P~ £ P o
+20' 7P prde 16 ('Y 17 (P = P Ppdnde

tCB
+60 [ R P =27 P pudde
= 481+1252+283+6€4+655’ fEF.

Here, we set especially b¥=0, and evaluate ¢, as follows:
tr8
el = ||\ ber (o= PL D pudndz]

t0p
[\ oer P =P pednde | =ent e, (3.4)
Let K,=sup.ep| f'(x)], then, noting we have

el = K ([ 15c12pednae) ([ {71 P2~ P72 170- )

< K@My r—s3 ([ 1P~ Pt dnae) (3.5)

1/2

t
And, from and (1.25) we have
[21P2— P ot = 8CPITH([ | 0t pudna)
< 8(K,)!MEQMp(7—s))V?, where K,=sup| /*(x)]|. (3.6)
zeD

Hence, from [3.5) and we see that there exists a constant K,, depending
only on T and f such that
|| < K(t—s)**, 0<s<t<T. 3.7

On the other hand, from Schwarz’s inequality we have

leul < K@M -y ([0 p—Pruproedra) ™. @9
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But, from [Proposition 1.3, we see that there exists a constant K, depending
only on T and f, such that

Sﬁlfs—P,{s(fs)lzp,dx < K,c—s|*, for any 0<s<r<T.

Hence, from we see that there exists a constant K; depending only on T

and f, and
lenn] < Ki(t—s)?, for any 0<s<t<T. 3.9)

Combining and we can conclude that there exists a constant K
depending only on T and f, and

e £ K(t—s)*, for any 0Zs<t<T. (3.10)

Similarly, we can show that |e,|, |&s], |¢.] and |e;| are dominated by
(t—s)** times some constants, which depend only on T and f. Consequently
we see that there exists a constant K depending only on T and f so that

EP[ [(Xo)— f(X)|] = K(t—s)*,  for any 0=s<t=T.

Hence, according to Kolmogorov’s continuous modification theorem, we have
the desired result. The proof is complete.

For feC¥D), let
~ ~ 11 l & a &
5 = _\(= 9
Zi= &)=\ (Fa+b, woo) (Rdu,  t[0, ),
and let {Z%}, t=[0, =), be the stochastic process defined by Then, from
Fubini’s lemma and we can prove that

EP[1Z5—-Z%511=0, Yte[0, ),
in other words, _
P(Zi=27%) =1, t=[0, o).

Thus, from [Theorem 2.3, the stochastic process {Z4}, t€[0, o), on (2, F, P; F,),
is a continuous submartingale in class (DL), if f=C*0D) with f’(a)=0, f'(8)=0.
Hence, by Doob-Meyer decomposition theorem¢, there exists an integrable
nondecreasing, non-anticipating continuous process &/ : [0, o)X 2—[0, ) such
that £&=0 and Z{—&} is an F,-martingale. In our problem, the coefficient b(x, t)
may neither continuous nor bounded, but the submartingale {Z{}, t<[0, ) is
continuous and belongs to class (DL), thus following Stroock and Varadhan [11],
we may derive assertions similar to Lemma 2.2, 2.3, 2.4, 2.5 and Theorem 2.4
in [11].

The following [Proposition 3.3 can be proved by the similar way as Theorem
2.4 in [11].
(3) See [4], [12].
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PROPOSITION 3.3. There exists a continuous, non-decreasing, non-anticipating
stochastic process {&;}, t<[0, ), on (2, F, P; F,) uniquely, such that

=0, EEI<e,  &=|InR)de,
and
04 >~S‘I (X >(—1—A+b<)? u)i) fX)du
t OD u 2 us ox 7
~[ R Fo- XL R0, teT0, )

is an F,-martingale for all f=C¥D), where I is the indicator function and I'=

{a}U{B}.
THEOREM 3.4. On the probability space (2, F, P; F,), let

~ ~ t o~ t ~ ~
B, = %= %= b(%0, widu—| (L Z)~Tisi(Kdéu,

then {B.}, t=[0, ), is an F,-Brownian motion process such that P(B,=0)=1.

PrOOF. We denote I, (x)—1Is(x) by 7(x). From [Proposition 3.3} it follows
that

M, = %= %= IR0 %, wdu—{7(Xade,, 1200, ),  (12)

N, = (X,)2—§21D<Xu><1+2b<)?u, u))?@du—gizfur()?u)dsu, te[0, oo,

(3.13)
are continuous &,-martingales.
On the other hand from (3.12) and Itd’s formula®, we have
(X = 2S:XudMu+2§:1D<.>?u>)?ub<}?u, u)du+2§:r<2?u>)?udsu
+S:d<M>u, te[0, o). (3.14)

Since the decomposition of (th)2 is unique, comparing (3.13) and (3.14), we
have <M>,=u. Thus by Theorem 3.6 in [12], the continuous martingale {M,},
t=[0, «), is an F,-Brownian motion process. The proof is complete.
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