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1. Introduction.

The joint spectrum for a commuting n-tuple in functional analysis has its
origin in functional calculus which appeared in J. L. Taylor’s paper [23] in 1970.
In the case of operators on Hilbert spaces, in [25] F.-H. Vasilescu characterized
the joint spectrum for a commuting pair and in [11] R. Curto did it for a com-
muting n-tuple.

For those on a Banach space, in [18] and [19] A. McIntosh, A. Pryde and
W. Ricker characterized the joint spectrum for a strongly commuting n-tuple
of operators. In [5] M. Cho proved that the joint spectrum for such an n-tuple
is the joint approximate point spectrum of it.

The aim of this paper is to give a characterization of the joint spectrum
for a doubly commuting n-tuple of strongly hyponormal operators on a uniformly
convex and uniformly smooth space.

Let $E^{n}$ be the complex exterior algebra on $n$ -generators $e_{1},$
$\cdots$ , $e_{n}$ with

product $\wedge$ . Then $E^{n}$ is graded: $E^{n}=\oplus_{k=-\infty}^{\infty}E_{k}^{n}$ , where $E_{k}^{n}\wedge E_{1}^{n}\subset E_{k+1}^{n}$ and
$\{e_{j_{1}}\Lambda\cdots\Lambda e_{j_{k}} : 1\leqq j_{1}<\cdots<j_{k}\leqq n\}$ is a basis for $E_{k}^{n}(k\geqq 1)$ , while $E_{0}^{n}\cong C$ and $E_{k}^{n}=$

(0) for $k<0$ and $k>n$ . Let $X$ be a complex Banach space and $T=(T_{1}, \cdot , T_{n})$

be a commuting n-tuple of bounded linear operators on $X$. Let $E_{k}^{n}(X)=E_{k}^{n}\otimes X$

and define $D_{k}^{(n)}$ : $E_{k}^{n}(X)arrow E_{k-1}^{n}(X)$ by $D_{k}^{(n)}(x\otimes e_{f_{1}}\wedge\cdots\wedge e_{J_{k}})=\Sigma_{t\Leftarrow 1}^{k}(-1)^{i+1}T_{j_{i}}x\otimes$

$e_{j_{1}}\wedge\cdots\wedge\check{e}_{j_{i}}\wedge\cdots\Lambda e_{j_{k}}$ when $k>0$ (here “ means deletion), and $D_{k}^{(n)}=0$ when $k\leqq 0$

and $k>n$ . A straightforward computation shows that $D_{k}^{(n)}\circ D_{k+1}^{(n)}=0$ for all $k$ ,

so that $\{E_{k}^{n}(X), D_{k}^{(n)}\}_{k\in Z}$ is a chain complex, called the Koszul complex for
$T=(T_{1}, \cdots , T_{n})$ and denoted by $E(X, T)$ . Of course, the mapping $D_{k}^{(n)}$ depends
on $T=(T_{1}, \cdots , T_{n})$ . We denote it by $D_{k}^{(n)}(T)$ , if necessary.

We define $T=(T_{1}, \cdots , T_{n})$ to be invertible in case its associated Koszul
complex is exact (that is, $Ker(D_{k}^{(n)})=R(D_{k+1}^{(n)})$ for all $k$ ). The Taylor spectrum
$\sigma(T)$ for $T=(T_{1}, \cdots , T_{n})$ is the set of $z\in C^{n}$ such that $T-z=(T_{1}-z_{1},$ $\cdots$ , $T_{n}-$

$z_{n})$ is not invertible.
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A point $z\in C^{n}$ is in the joint aPProximate Point sPectrum $\sigma.(T)$ of $T$ if
there exists a sequence $\{x_{k}\}$ of unit vectors in $X$ such that

$||(T_{i}-z_{i})x_{k}||arrow 0$ as $karrow\infty$ for $i=1,2,$ $\cdots$ , $n$ .
For an oPerator $T\in B(X)$ , the sPectrum and the aPProximate Point sPectrum of
$T$ are denoted by $\sigma(T)$ and $\sigma_{\pi}(T)$ , respectively.

We denote by $x*$ the dual space of $X$. Let us set

$\pi=\{(x, f)\in X\cross X^{*} : ||f||=f(x)=||x||=1\}$ .

The spatial numerical range $V(T)$ and the numerical range $V(B(X), T)$ of $T$

are defined by
$V(T)=\{f(Tx):(x, f)\in\pi\}$

and
$V(B(X), T)=$ { $\mathscr{F}(T):\mathscr{F}\in B(X)^{*}$ and $||\mathscr{F}||=\mathscr{F}(I)=1$ },

respectively. The following results are well-known for $T\in B(X)$ :

(1) co $\sigma(T)\subset\overline{V(T})$ and $\overline{co}V(T)=V(B(X), T)$ ,

where co $E,\overline{E}$ and E6 $E$ are the convex hull, the closure and the closed convex
hull of $E$ , respectively. Also

(2) $V(T)\subset V(T^{*})\subset\overline{V(T})$ .
If $V(H)\subset R$ , then $H$ is called hermitian. Hence, $H$ is hermitian iff $H^{*}$ is her-
mitian. An operator $T\in B(X)$ is called hyponormal if there are hermitian
operators $H$ and $K$ such that $T=H+iK$ and the commutator $C=i(HK-KH)\geqq 0$ ,
meaning that $V(C)\subset R^{+}=\{a\in R:a\geqq 0\}$ . A hyponormal operator $T=H+iK$ is
called strongly hyponormal if $H^{2}$ and $K^{2}$ are hermitian. It holds that if $T$ is
strongly hyponormal, then $T-\lambda$ is also for every $\lambda\in C$ . For an operator $T=$

$H+iK$, we denote the operator $H-iK$ by $\overline{T}$.
REMARK 1. There is an hermitian operator $H$ such that $H^{2}$ is not hermitian.

However, if $H$ is a hermitian, then

$V(H^{2})\subset\{z\in C:{\rm Re} z\geqq 0\}$ .
Hence, if $T$ is a strongly hyponormal operator, then

$V(\overline{T}T)\subset R^{+}$ .
For commuting operators $T_{1}$ and $T_{2}$ such that $T_{j}=H_{j}+iK_{j}(j=1,2),$ $T_{1}$ and

$T_{2}$ are called doubly commuting if $\overline{T}_{1}T_{2}=T_{2}\overline{T}_{1}$ . It is easy to see that if $T_{1}$

and $T_{2}$ are doubly commuting then $H_{1}$ and $K_{1}$ commute with $H_{2}$ and $K_{2}$ .
For a commuting n-tuple $T=(T_{1}, \cdots , T_{n})$ such that $T_{j}=H_{j}+iK_{j}(j=1, \cdots , n)$ ,

a point $z=(z_{1}, \cdots , z_{n})\in C^{n}$ is in the complete star spectrum $\sigma_{cs}(T)$ of $T$ if there
is some partition $\{]_{1}$ , $\cdot$ .. , $j_{k}\}\cup\{l_{1}, , l_{m}\}=\{1, , n\}$ such that
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$\sum_{\mu=1}^{k}\overline{(T-z)}(T_{j}-z_{j})+\sum_{\nu=1}^{m}(T_{\iota_{\nu}}-z_{\iota_{\nu}})\overline{(T_{l_{p}}-z_{l_{\nu}})}$

is not invertible. In particular, the set

$\{(z_{1}, \cdots , z_{n})\in C^{n}$ : $\sum_{j=1}^{n}(T-z_{j})\overline{(T_{j}-z_{J})}$ is not $invertible\}$

is called the right spectrum of $T=(T_{1}, \cdots , T_{n})$ and denoted by $\sigma_{r}(T)$ . It is
clear that $\sigma_{\pi}(T)\subset\sigma(T)\cap\sigma_{cs}(T)$ for a commuting $n$ -tuple $T=(T_{1}, \cdots , T_{n})$ .

A Banach space $X$ is called uniformly convex if to each $\epsilon>0$ , there corre-
sponds a $\delta>0$ such that the conditions $||x||=||y||=1$ and $||x-y||\geqq\epsilon$ imply that
$(1/2)||x+y||\leqq 1-\delta$ .

We set, for $t>0$ :

$\rho(t)=\sup\{(1/2)(||x+y||+||x-y||)-1 : ||x||=1, ||y||\leqq t\}$ .
A Banach space $X$ is called uniformly smooth if

$\frac{\rho(t)}{i}arrow 0$ as $tarrow 0$ .

REMARK 2. A Banach space $X$ is uniformly smooth iff $x*$ is uniformly
convex. See Beauzamy [3] for details.

We give an example of a doubly commuting $n$ -tuple of strongly hyponormal
operators on a uniformly convex and uniformly smooth space.

Let $\mathcal{H}$ be a complex Hilbert space. Let $C_{p}$ be the Schatten $P$ -class for $1<$

$p<\infty$ . Then it is well-known that the space $C_{p}$ is uniformly convex and uni-
formly smooth, and is a 2-sided ideal of $B(\mathcal{H})$ . When $A$ and $B^{*}$ are hyponormal
operators on $\mathcal{H}$ , the derivation $\delta_{A.B}=\delta_{H.H’}+i\delta_{K.K’}$ is a hyponormal operator on
$C_{p}$ , where $A=H+iK$ and $B=H’+iK’$ . Moreover,

$V(B(C_{p}), \delta_{A.B})=\overline{W(A)}-\overline{W(B)}$ ,

where $W(T)$ is a usual numerical range of an operator $T$ on a Hilbert space $\mathcal{H}$ .
See Shaw [21].

Let $\mathcal{L}_{A}$ denote the left multiplication induced by $A\in B(\mathcal{H})$ . Then if $A=$

$H+iK$ is a hyponormal operator, then $X_{A}=X_{H}+iX_{K}$ is a strongly hyPonormal
operator. Let $A=(A_{1}, \cdots , A_{n})$ be a doubly commuting $n$ -tuple of hyponormal
operators on $\mathcal{H}$ . Then $T=(X_{A_{1}}, \cdots , \mathcal{L}_{A_{n}})$ is a doubly commuting n-tuple of
strongly hyponormal operators on a uniformly convex and uniformly smooth
space $C_{p}(1<P<\infty)$ .

We use the following results.

THEOREM A ([17], Theorem 2.5). Let $X$ be uniformly convex and let $H$ be
a hermitian, non-negative operator on X. If there are sequences $\{x_{n}\}\subset X$ and
$\{f_{n}\}\subset X^{*}$ such that $||x_{n}||=||f_{n}||=1$ for each $n$ with $f_{n}(x_{n})arrow 1$ and $f_{n}(Hx_{n})arrow 0$ ,
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then $Hx_{n}arrow 0$ .

THEOREM $B$ ([17], Theorem 2.7). Let $X$ be uniformly convex and let $T=H$

$+iK$ be a hyponormal operator on X. If $\{x_{n}\}$ is a bounded sequence in $X$ such

that $Tx_{n}arrow 0$ , then $Hx_{n}arrow 0$ and $Kx_{n}arrow 0$ .

2. Joint spectra of doubly commuting $n$-tuples.

LEMMA 1. Let $T=H+iK$ be a sirongly hyponormal operator. Then, $\sigma(\overline{T}T)$

$\cup\sigma(T\overline{T})\subset R^{+}$ .
PROOF. Since $T$ is strongly hyPonormal, the proof follows from $\sigma(\overline{T}T)-$

$\{0\}=\sigma(T\overline{T})-\{0\}$ and $\sigma(\overline{T}T)\subset\overline{V(\overline{T}T})\subset R^{+}$ .

LEMMA 2. Let $X$ be uniformly convex. Let $T=(T_{1}, \cdots , T_{n})$ be a doubly
commuting n-tuple of strongly hyponormal operators on X. If $\Sigma_{j=1}^{k}\overline{T}_{j}T_{j}+$

$\Sigma_{j=k+1}^{n}T_{j}\overline{T}_{j}$ is not invertible $(1\leqq k\leqq n)$ , then $\Sigma_{f=1}^{n}T_{j}\overline{T}_{j}$ is not invertible.

PROOF. Put $S=(\overline{T}_{1}T_{1}, \cdots , \overline{T}_{k}T_{k}, T_{k+1}\overline{T}_{k+1}, \cdots , T_{n}\overline{T}_{n})$ . Then $S$ is a com-
muting n-tuple. It is clear that $0$ is in the boundary of the sPectrum
$\sigma(\Sigma_{J=1}^{k}\overline{T}_{j}T_{j}+\Sigma_{j=k+1}^{n}T_{j}\overline{T}_{j})$ . Hence, $0$ is in the approximate point spectrum of
$\Sigma_{J=1}^{k}\overline{T}_{j}T_{j}+\Sigma_{j\Rightarrow k+1}^{n}T_{j}\overline{T}_{j}$ . So by the spectral mapping theorem for the joint
aPproximate Point sPectrum, there exists $\alpha=(\alpha_{1}, \cdots , a_{n})\in a.(S)$ such that
$\Sigma_{J^{=1}}^{n}\alpha_{j}=0$ . Since $(U_{J=1}^{k}\sigma(\overline{T}_{j}T_{j}))\cup(U_{j=k+1}^{n}\sigma(T_{j}\overline{T}_{j}))$ is contained in $R^{+}$ , it follows
that $\alpha_{j}=0$ for every $j=1,$ $\cdots$ , $n$ . Therefore, there exists a sequence $\{x_{m}\}$ of
unit vectors in $X$ such that

$\overline{T}_{j}T_{f}x_{m}arrow 0$ and $T_{\iota}\overline{T}_{l}x_{m}arrow 0$ for $j=1,$ $\cdots$ , $k$ and $l=k+1,$ $\cdots$ , $n$ .
If $T_{j}=H_{j}+iK_{j}$ , then $C_{f}=i(H_{j}K_{j}-K_{j}H_{j})\geqq 0$ for $j=1,$ $\cdots$ , $k$ . Choose a linear
functional $f_{m}\in X^{*}$ such that $||f_{m}||=f_{m}(x_{m})=1$ for each $m$ . Since then
$f_{m}((H_{j}^{2}+K_{j}^{2})x_{m})\geqq 0,$ $f_{m}(C_{j}x_{m})\geqq 0$ and

$f_{m}(\overline{T}_{f}T_{j}x_{m})=f_{m}((H_{j}^{2}+K_{j}^{2}+C_{f})x_{m})arrow 0$ for $j=1,$ $\cdots$ $k$ ,

it follows that
$f_{m}(C_{j}x_{m})arrow 0$ for $j=1,$ $\cdots$ $k$ .

Hence, by Theorem $A$ , it follows that $C_{j}x_{m}arrow 0$ and

$(H_{j}^{2}+K_{j}^{2})x_{m}arrow 0$ for $j=1,$ $\cdots$ , $k$ .
Therefore, it follows that $T_{j}\overline{T}_{j}x_{m}=(H_{j}^{2}+K_{j}^{2}-C_{j})x_{m}arrow 0$ for $j=1,$ $\cdots$ , $n$ .

THEOREM 3. Let $X$ be uniformly convex. Let $T=(T_{1}, \cdots , T_{n})$ be a doubly
commuting $n$-tuple of strongly hyponormal operators on X. Then
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$a_{cs}(T)=\sigma_{r}(T)=\{(z_{1}, \cdots z_{n})\in C^{n} : (\overline{z}_{1}, \overline{z}_{n})\in a_{\pi}(S)\}$ ,

where $S=(\overline{T}_{1}, \cdots , \overline{T}_{n})$ .
PROOF. It is clear that

$\{(z_{1}, \cdots z_{n})\in C^{n} : (\overline{z}_{1}, \cdots \overline{z}_{n})\in\sigma_{\pi}(S)\}\subset a_{r}(T)\subset a_{cs}(T)$ .
Since $T-z=(T_{1}-z_{1}, \cdots , T_{n}-z_{n})$ is a doubly commuting n-tuple of strongly
hyponormal operators for every $z=(z_{1}, \cdots , z_{n})\in C^{n}$ , it suffices to prove that if
$0\in\sigma_{cs}(T)$ then $O\in a.(S)$ . By the definition of the complete star spectrum and
Lemma 2 it follows that $\Sigma_{J^{=1}}^{n}T_{j}\overline{T}_{j}$ is not invertible and there exists a sequence
$\{x_{m}\}$ of unit vectors in $X$ such that

$T_{j}\overline{T}_{j}x_{m}arrow 0$ for $j=1,$ $\cdots$ , $n$ .
Since $T_{j}$ is hyPonormal on a uniformly convex sPace $X$, by Theorem $B$ it follows
that $\overline{T}_{j}^{2}x_{m}arrow 0$ for $J^{=1},$ $\cdots$ , $n$ . Also by the spectral mapping theorem for the
joint aPProximate Point sPectrum, there exists a sequence $\{y_{m}\}$ of unit vectors
in $X$ such that $\overline{T}_{j}y_{m}arrow 0$ for $j=1$ , , $n$ . Therefore, we have that $0\in\sigma_{\pi}(S)$ .

We now explain a recursive method of obtaining the $D_{k}^{(n)}’ s$ . We split the
basis of $E_{k}^{n}$ into

$B_{1}=\{e_{j_{1}}\wedge\cdots\Lambda e_{J_{k}} : 1\leqq j_{1}<\cdots<j_{k}\leqq n-1\}$

and
$B_{2}=\{e_{j_{1}}\Lambda\cdots\Lambda e_{j_{k-1}}\Lambda e_{n} : 1\leqq j_{1}<\cdots<j_{k-1}\leqq n-1\}$

for $k\geqq 1,$ $n>1$ .
Then $E_{k}^{n-1}$ is precisely the subspace of $E_{k}^{n}$ generated by $B_{1}$ and a natural

isomorphism can be established between $E_{k1}^{n-1}$ and the subspace of $E_{k}^{n}$ generated
by $B_{2}$ . $E_{k}^{n}$ can then be identified in a natural way with $E_{k}^{n-1}\oplus E_{k-1}^{n-1}(k\geqq 1, n>1)$ .
It is not hard to see that $D_{k}^{(n)}$ takes the matrix form:

$D_{k}^{(n)}=(\begin{array}{ll}D_{k}^{(n- 1)} (-1)^{k+1}diag(T_{n})0 D_{k-1}^{(n-1)}\end{array})$ $(n>1, k\geqq 1)$ ,

where diag $(T_{n})$ is meant to be a diagonal matrix with constant diagonal entry $T_{n}$ .
For a doubly commuting $n$ -tuple $T=(T_{1}, \cdots , T_{n})$ of hyponormal operators,

define $\overline{D}_{k}^{(n)}(T):E_{k-1}^{n}(X)arrow E_{k}^{n}(X)$ by

$\overline{D}_{k}^{(n)}(T)={}^{t}(D_{k}^{(n)}(S))$ , where $S=(\overline{T}_{1}, \cdots , \overline{T}_{n})$ .

Let $D_{k}=D_{k}^{(n)}(T)$ and $\overline{D}_{k}=\overline{D}_{k}^{(n)}(T)$ for every $k$ . Then it is easy to see that

$(\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1})D_{k+1}\overline{D}_{k+1}=D_{k+1}\overline{D}_{k+1}(\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1})=(D_{k+1}\overline{D}_{k+1})^{2}$ .

LEMMA 4. Let $T=(T_{1}, \cdots , T_{n})$ be a doubly commuting n-tuple of hyponormal
operators. If $\overline{D}_{k}D_{k}+D_{k+1^{-}k+1}$ is invertible for every $k$ , then $E(X, T)$ is exact.
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PROOF. $lt$ suffices to prove that $Ker(D_{k})\subset R(D_{k+1})$ . Let $x$ be in $Ker(D_{k})$ .
Put $y=\overline{D}_{k+1}(\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1})^{-1}x$ . Then $y\in E_{k+1}^{n}(X)$ and

$D_{k+1}y=D_{k+1}\overline{D}_{k+1}(\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1})^{-1}x$

$=(\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1})^{-1}D_{k+1}\overline{D}_{k+1}x$

$=(\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1})^{-1}(\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1})x=x$ .
It follows that $x\in R(D_{k+1})$ . Hence, $R(D_{k+1})=Ker(D_{k})$ for every $k$ .

THEOREM 5. Let $X$ be uniformly convex. Let $T=(T_{1}, \cdots , T_{n})$ be a doubly
commuting $n$-tuple of hyponormal operators on X. Then $\sigma(T)\subset a_{cs}(T)$ .

PROOF. It suffices to prove that if $0\not\in a_{cs}(T)$ , then $0\not\in\sigma(T)$ . An easy
computation shows that

$\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1}=(\begin{array}{ll}\overline{D}_{k}^{(n- 1)}D_{k}^{(n- 1)}+D_{k+1}^{(n-1)}\overline{D}_{k+1}^{(n- 1)}+diag(T_{n}\overline{T}_{n}) 0\overline{D}_{k-1}^{(n-1)}0D_{k-1}^{(n-1)}+D_{k}^{(n-1)}\overline{D}_{k}^{(n- 1)}+diag(\overline{T}_{n}T_{n}) \end{array})$ .

Hence, this formula shows that if $0\not\in\sigma_{cs}(T)$ , then $\overline{D}_{k}D_{k}+D_{k+1}\overline{D}_{k+1}$ is invertible
for every $k$ . So, by Lemma 4, it follows that $E(X, T)$ is exact.

LEMMA 6 ([23], Theorem 3.6). Let $T=(T_{1}, \cdots , T_{n})$ be a commuting n-tuple

of operators on a Banach space X. Then $\sigma(T)=a(T^{*})$ , where $T^{*}=(T_{1}^{*}, \cdots , T_{n}^{*})$ .
THEOREM 7. Let $X$ be uniformly convex and uniformly smooth. Let $T=$

$(T_{1}, \cdots , T_{n})$ be a doubly commuting $n$-tuple of strongly hyponormal operators on
X. Then

$\sigma(T)=\sigma_{cs}(T)=\{(z_{1}, z_{n})\in C^{n} : (\overline{z}_{1}, \overline{z}_{n})\in\sigma_{r}(S)\}$ ,

where $S=(\overline{T}_{1}, \cdots , \overline{T}_{n})$ .

PROOF. By Theorems 3 and 5, it suffices to prove that if $O\in a.(S)$ , then
$O\in a(T)$ . Since $0$ belongs to $\sigma_{\pi}(S)$ , there exists a sequence $\{x_{k}\}$ of unit vectors
in $X$ such that

$\overline{T}_{j}x_{k}arrow 0$ for $j=1,$ $\cdots$ , $n$ .

Since $0$ belongs to $\sigma(\Sigma_{j=1}^{n}T_{j}\overline{T}_{j})$ , it also belongs to $a((\Sigma_{j=1}^{n}T_{j}\overline{T}_{j})^{*})=$

$a(\Sigma_{J^{=1}}^{n}\overline{T}_{j}^{*}T_{j}^{*})$ . Also $(\overline{T}_{1}^{*}, \cdots \overline{T}_{n}^{*})$ is a doubly commuting $n$ -tuple of strongly
hyponormal operators on a uniformly convex space $x*$ . From the proof of
Lemma 2 there exists a sequence $\{f_{k}\}$ of unit vectors in $x*$ such that

$\overline{T}_{j}^{*}T_{j}^{*}f_{k}arrow 0$ for $j=1,$ $\cdots$ , $n$ .
Since $\overline{T}_{j}^{*}$ is a hyponormal operator on a uniformly convex space $x*$ . By
Theorem $B$ , it follows that
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$T_{j}^{*2}f_{k}-0$ for $j=1,$ $\cdots$ , $n$ .
Hence, by the spectral mapping theorem for the joint approximate point spectrum,
it follows that $O\in a_{\pi}(T^{*})$ , where $T^{*}=(T_{1}^{*}, , T_{n}^{*})$ . Therefore, from Lemma 6
it follows that $O\in a(T)$ .
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