Joint spectra of strongly hyponormal operators on Banach spaces

Dedicated to Professor Emeritus Eiitiro Homma with respect

By Muneo $\mathrm{CH} \bar{o}$

(Received Dec. 12, 1988)

1. Introduction.

The joint spectrum for a commuting n-tuple in functional analysis has its origin in functional calculus which appeared in J. L. Taylor's paper [23] in 1970. In the case of operators on Hilbert spaces, in [25] F.-H. Vasilescu characterized the joint spectrum for a commuting pair and in [11] R. Curto did it for a commuting n-tuple.

For those on a Banach space, in [18] and [19] A. McIntosh, A. Pryde and W. Ricker characterized the joint spectrum for a strongly commuting n-tuple of operators. In [5] M. Chō proved that the joint spectrum for such an n-tuple is the joint approximate point spectrum of it.

The aim of this paper is to give a characterization of the joint spectrum for a doubly commuting n-tuple of strongly hyponormal operators on a uniformly convex and uniformly smooth space.

Let E^{n} be the complex exterior algebra on n-generators e_{1}, \cdots, e_{n} with product \wedge. Then E^{n} is graded: $E^{n}=\bigoplus_{k=-\infty}^{\infty} E_{k}^{n}$, where $E_{k}^{n} \wedge E_{1}^{n} \subset E_{k+1}^{n}$ and $\left\{e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}: 1 \leqq j_{1}<\cdots<j_{k} \leqq n\right\}$ is a basis for $E_{k}^{n}(k \geqq 1)$, while $E_{0}^{n} \cong C$ and $E_{k}^{n}=$ (0) for $k<0$ and $k>n$. Let X be a complex Banach space and $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ be a commuting n-tuple of bounded linear operators on X. Let $E_{k}^{n}(X)=E_{k}^{n} \otimes X$ and define $D_{k}^{(n)}: E_{k}^{n}(X) \rightarrow E_{k-1}^{n}(X)$ by $D_{k}^{(n)}\left(x \otimes e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}\right)=\sum_{i=1}^{k}(-1)^{i+1} T_{j_{i}} x \otimes$ $e_{j_{1}} \wedge \cdots \wedge \check{e}_{j_{i}} \wedge \cdots \wedge e_{j_{k}}$ when $k>0$ (here ${ }^{`}$ means deletion), and $D_{k}^{(n)}=0$ when $k \leqq 0$ and $k>n$. A straightforward computation shows that $D_{k}^{(n)} \circ D_{k+1}^{(n)}=0$ for all k, so that $\left\{E_{k}^{n}(X), D_{k}^{(n)}\right\}_{k \in \boldsymbol{Z}}$ is a chain complex, called the Koszul complex for $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ and denoted by $E(X, \boldsymbol{T})$. Of course, the mapping $D_{k}^{(n)}$ depends on $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$. We denote it by $D_{k}^{(n)}(\boldsymbol{T})$, if necessary.

We define $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ to be invertible in case its associated Koszul complex is exact (that is, $\operatorname{Ker}\left(D_{k}^{(n)}\right)=R\left(D_{k+1}^{(n)}\right)$ for all k). The Taylor spectrum $\boldsymbol{\sigma}(\boldsymbol{T})$ for $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ is the set of $z \in \boldsymbol{C}^{n}$ such that $\boldsymbol{T}-z=\left(T_{1}-z_{1}, \cdots, T_{n}-\right.$ z_{n}) is not invertible.

A point $z \in \boldsymbol{C}^{n}$ is in the joint approximate point spectrum $\sigma_{\pi}(\boldsymbol{T})$ of \boldsymbol{T} if there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in X such that

$$
\left\|\left(T_{i}-z_{i}\right) x_{k}\right\| \longrightarrow 0 \quad \text { as } \quad k \longrightarrow \infty \text { for } i=1,2, \cdots, n .
$$

For an operator $T \in B(X)$, the spectrum and the approximate point spectrum of T are denoted by $\sigma(T)$ and $\sigma_{\pi}(T)$, respectively.

We denote by X^{*} the dual space of X. Let us set

$$
\pi=\left\{(x, f) \in X \times X^{*}:\|f\|=f(x)=\|x\|=1\right\}
$$

The spatial numerical range $V(T)$ and the numerical range $V(B(X), T)$ of T are defined by
and

$$
V(T)=\{f(T x):(x, f) \in \pi\}
$$

$$
V(B(X), T)=\left\{\mathscr{F}(T): \mathscr{F} \in B(X)^{*} \text { and }\|\mathscr{F}\|=\mathscr{F}(I)=1\right\}
$$

respectively. The following results are well-known for $T \in B(X)$:
(1) $\operatorname{co} \sigma(T) \subset \overline{V(T)}$ and $\overline{\operatorname{co}} V(T)=V(B(X), T)$,
where $\operatorname{co} E, \bar{E}$ and $\overline{c o} E$ are the convex hull, the closure and the closed convex hull of E, respectively. Also
(2) $V(T) \subset V\left(T^{*}\right) \subset \overline{V(T)}$.

If $V(H) \subset \boldsymbol{R}$, then H is called hermitian. Hence, H is hermitian iff H^{*} is hermitian. An operator $T \in B(X)$ is called hyponormal if there are hermitian operators H and K such that $T=H+i K$ and the commutator $C=i(H K-K H) \geqq 0$, meaning that $V(C) \subset \boldsymbol{R}^{+}=\{a \in \boldsymbol{R}: a \geqq 0\}$. A hyponormal operator $T=H+i K$ is called strongly hyponormal if H^{2} and K^{2} are hermitian. It holds that if T is strongly hyponormal, then $T-\lambda$ is also for every $\lambda \in \boldsymbol{C}$. For an operator $T=$ $H+i K$, we denote the operator $H-i K$ by \bar{T}.

Remark 1. There is an hermitian operator H such that H^{2} is not hermitian. However, if H is a hermitian, then

$$
V\left(H^{2}\right) \subset\{z \in \boldsymbol{C}: \operatorname{Re} z \geqq 0\} .
$$

Hence, if T is a strongly hyponormal operator, then

$$
V(\bar{T} T) \subset \boldsymbol{R}^{+} .
$$

For commuting operators T_{1} and T_{2} such that $T_{j}=H_{j}+i K_{j}(j=1,2), T_{1}$ and T_{2} are called doubly commuting if $\bar{T}_{1} T_{2}=T_{2} \bar{T}_{1}$. It is easy to see that if T_{1} and T_{2} are doubly commuting then H_{1} and K_{1} commute with H_{2} and K_{2}.

For a commuting n-tuple $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ such that $T_{j}=H_{j}+i K_{j}(j=1, \cdots, n)$, a point $z=\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n}$ is in the complete star spectrum $\sigma_{\text {cs }}(\boldsymbol{T})$ of \boldsymbol{T} if there is some partition $\left\{j_{1}, \cdots, j_{k}\right\} \cup\left\{l_{1}, \cdots, l_{m}\right\}=\{1, \cdots, n\}$ such that

$$
\sum_{\mu=1}^{k} \overline{\left(T_{j_{\mu}}-z_{j_{\mu}}\right)}\left(T_{j_{\mu}}-z_{j_{\mu}}\right)+\sum_{\nu=1}^{m}\left(T_{l_{\nu}}-z_{l_{\nu}}\right) \overline{\left(T_{l_{\nu}}-z_{l_{\nu}}\right)}
$$

is not invertible. In particular, the set

$$
\left\{\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n}: \sum_{j=1}^{n}\left(T_{j}-z_{j}\right) \overline{\left(T_{j}-z_{j}\right)} \text { is not invertible }\right\}
$$

is called the right spectrum of $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ and denoted by $\sigma_{r}(\boldsymbol{T})$. It is clear that $\sigma_{n}(\boldsymbol{T}) \subset \sigma(\boldsymbol{T}) \cap \sigma_{\mathrm{cs}}(\boldsymbol{T})$ for a commuting n-tuple $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$.

A Banach space X is called uniformly convex if to each $\varepsilon>0$, there corresponds a $\delta>0$ such that the conditions $\|x\|=\|y\|=1$ and $\|x-y\| \geqq \varepsilon$ imply that $(1 / 2)\|x+y\| \leqq 1-\delta$.

We set, for $t>0$:

$$
\rho(t)=\sup \{(1 / 2)(\|x+y\|+\|x-y\|)-1:\|x\|=1,\|y\| \leqq t\}
$$

A Banach space X is called uniformly smooth if

$$
\frac{\rho(t)}{t} \longrightarrow 0 \quad \text { as } \quad t \longrightarrow 0
$$

REMARK 2. A Banach space X is uniformly smooth iff X^{*} is uniformly convex. See Beauzamy [3] for details.

We give an example of a doubly commuting n-tuple of strongly hyponormal operators on a uniformly convex and uniformly smooth space.

Let \mathscr{H} be a complex Hilbert space. Let \mathcal{C}_{p} be the Schatten p-class for $1<$ $p<\infty$. Then it is well-known that the space \mathcal{C}_{p} is uniformly convex and uniformly smooth, and is a 2-sided ideal of $B(\mathscr{H})$. When A and B^{*} are hyponormal operators on \mathscr{H}, the derivation $\delta_{A, B}=\delta_{H, H^{\prime}}+i \delta_{K, K^{\prime}}$ is a hyponormal operator on \mathcal{C}_{p}, where $A=H+i K$ and $B=H^{\prime}+i K^{\prime}$. Moreover,

$$
V\left(B\left(\mathcal{C}_{p}\right), \delta_{A, B}\right)=\overline{W(A)}-\overline{W(B)}
$$

where $W(T)$ is a usual numerical range of an operator T on a Hilbert space \mathscr{H}. See Shaw [21].

Let \mathcal{L}_{A} denote the left multiplication induced by $A \in B(\mathcal{H})$. Then if $A=$ $H+i K$ is a hyponormal operator, then $\mathcal{L}_{A}=\mathcal{L}_{H}+i \mathcal{L}_{K}$ is a strongly hyponormal operator. Let $\boldsymbol{A}=\left(A_{1}, \cdots, A_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on \mathscr{A}. Then $\boldsymbol{T}=\left(\mathcal{L}_{A_{1}}, \cdots, \mathcal{L}_{A_{n}}\right)$ is a doubly commuting n-tuple of strongly hyponormal operators on a uniformly convex and uniformly smooth space $\mathcal{C}_{p}(1<p<\infty)$.

We use the following results.
Theorem A ([17], Theorem 2.5). Let X be uniformly convex and let H be a hermitian, non-negative operator on X. If there are sequences $\left\{x_{n}\right\} \subset X$ and $\left\{f_{n}\right\} \subset X^{*}$ such that $\left\|x_{n}\right\|=\left\|f_{n}\right\|=1$ for each n with $f_{n}\left(x_{n}\right) \rightarrow 1$ and $f_{n}\left(H x_{n}\right) \rightarrow 0$,
then $H x_{n} \rightarrow 0$.
Theorem B ([17], Theorem 2.7). Let X be uniformly convex and let $T=H$ $+i K$ be a hyponormal operator on X. If $\left\{x_{n}\right\}$ is a bounded sequence in X such that $T x_{n} \rightarrow 0$, then $H x_{n} \rightarrow 0$ and $K x_{n} \rightarrow 0$.

2. Joint spectra of doubly commuting n-tuples.

Lemma 1. Let $T=H+i K$ be a strongly hyponormal operator. Then, $\sigma(\bar{T} T)$ $\cup \boldsymbol{\sigma}(T \bar{T}) \subset \boldsymbol{R}^{+}$.

Proof. Since T is strongly hyponormal, the proof follows from $\sigma(\bar{T} T)$ $\{0\}=\sigma(T \bar{T})-\{0\}$ and $\sigma(\bar{T} T) \subset \overline{V(\bar{T} T)} \subset \boldsymbol{R}^{+}$.

Lemma 2. Let X be uniformly convex. Let $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ be a doubly commuting n-tuple of strongly hyponormal operators on X. If $\sum_{j=1}^{k} \bar{T}_{j} T_{j}+$ $\sum_{j=k+1}^{n} T_{j} \bar{T}_{j}$ is not invertible ($1 \leqq k \leqq n$), then $\sum_{j=1}^{n} T_{j} \bar{T}_{j}$ is not invertible.

Proof. Put $S=\left(\bar{T}_{1} T_{1}, \cdots, \bar{T}_{k} T_{k}, T_{k+1} \bar{T}_{k+1}, \cdots, T_{n} \bar{T}_{n}\right)$. Then S is a commuting n-tuple. It is clear that 0 is in the boundary of the spectrum $\sigma\left(\sum_{j=1}^{k} \bar{T}_{j} T_{j}+\sum_{j=k+1}^{n} T_{j} \bar{T}_{j}\right)$. Hence, 0 is in the approximate point spectrum of $\sum_{j=1}^{k} \bar{T}_{j} T_{j}+\sum_{j=k+1}^{n} T_{j} \bar{T}_{j}$. So by the spectral mapping theorem for the joint approximate point spectrum, there exists $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \sigma_{\pi}(\boldsymbol{S})$ such that $\sum_{j=1}^{n} \alpha_{j}=0$. Since $\left(\bigcup_{j=1}^{k} \sigma\left(\bar{T}_{j} T_{j}\right)\right) \cup\left(\bigcup_{j=k+1}^{n} \sigma\left(T_{j} \bar{T}_{j}\right)\right)$ is contained in \boldsymbol{R}^{+}, it follows that $\alpha_{j}=0$ for every $j=1, \cdots, n$. Therefore, there exists a sequence $\left\{x_{m}\right\}$ of unit vectors in X such that

$$
\bar{T}_{j} T_{j} x_{m} \longrightarrow 0 \text { and } T_{l} \bar{T}_{l} x_{m} \longrightarrow 0 \text { for } j=1, \cdots, k \text { and } l=k+1, \cdots, n .
$$

If $T_{j}=H_{j}+i K_{j}$, then $C_{j}=i\left(H_{j} K_{j}-K_{j} H_{j}\right) \geqq 0$ for $j=1, \cdots, k$. Choose a linear functional $f_{m} \in X^{*}$ such that $\left\|f_{m}\right\|=f_{m}\left(x_{m}\right)=1$ for each m. Since then $f_{m}\left(\left(H_{j}^{2}+K_{j}^{2}\right) x_{m}\right) \geqq 0, f_{m}\left(C_{j} x_{m}\right) \geqq 0$ and

$$
f_{m}\left(\bar{T}_{j} T_{j} x_{m}\right)=f_{m}\left(\left(H_{j}^{2}+K_{j}^{2}+C_{j}\right) x_{m}\right) \longrightarrow 0 \quad \text { for } \quad j=1, \cdots, k,
$$

it follows that

$$
f_{m}\left(C_{j} x_{m}\right) \longrightarrow 0 \quad \text { for } \quad j=1, \cdots, k .
$$

Hence, by Theorem A, it follows that $C_{j} x_{m} \rightarrow 0$ and

$$
\left(H_{j}^{2}+K_{j}^{2}\right) x_{m} \longrightarrow 0 \quad \text { for } \quad j=1, \cdots, k .
$$

Therefore, it follows that $T_{j} \bar{T}_{j} x_{m}=\left(H_{j}^{2}+K_{j}^{2}-C_{j}\right) x_{m} \rightarrow 0$ for $j=1, \cdots, n$.
Theorem 3. Let X be uniformly convex. Let $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ be a doubly commuting n-tuple of strongly hyponormal operators on X. Then

$$
\sigma_{\mathrm{cs}}(\boldsymbol{T})=\sigma_{r}(\boldsymbol{T})=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n}:\left(\bar{z}_{1}, \cdots, \bar{z}_{n}\right) \in \boldsymbol{\sigma}_{\pi}(\boldsymbol{S})\right\},
$$

where $\boldsymbol{S}=\left(\bar{T}_{1}, \cdots, \bar{T}_{n}\right)$.
Proof. It is clear that

$$
\left\{\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n}:\left(\bar{z}_{1}, \cdots, \bar{z}_{n}\right) \in \sigma_{\pi}(\boldsymbol{S})\right\} \subset \sigma_{r}(\boldsymbol{T}) \subset \sigma_{\mathrm{cs}}(\boldsymbol{T}) .
$$

Since $\boldsymbol{T}-z=\left(T_{1}-z_{1}, \cdots, T_{n}-z_{n}\right)$ is a doubly commuting n-tuple of strongly hyponormal operators for every $z=\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n}$, it suffices to prove that if $0 \in \sigma_{\mathrm{cs}}(\boldsymbol{T})$ then $0 \in \sigma_{\pi}(\boldsymbol{S})$. By the definition of the complete star spectrum and Lemma 2 it follows that $\sum_{j=1}^{n} T_{j} \bar{T}_{j}$ is not invertible and there exists a sequence $\left\{x_{m}\right\}$ of unit vectors in X such that

$$
T_{j} \bar{T}_{j} x_{m} \longrightarrow 0 \quad \text { for } \quad j=1, \cdots, n .
$$

Since T_{j} is hyponormal on a uniformly convex space X, by Theorem B it follows that $\bar{T}_{j}^{2} x_{m} \rightarrow 0$ for $j=1, \cdots, n$. Also by the spectral mapping theorem for the joint approximate point spectrum, there exists a sequence $\left\{y_{m}\right\}$ of unit vectors in X such that $\bar{T}_{j} y_{m} \rightarrow 0$ for $j=1, \cdots, n$. Therefore, we have that $0 \in \sigma_{\pi}(\boldsymbol{S})$.

We now explain a recursive method of obtaining the $D_{k}^{(n)}$'s. We split the basis of E_{k}^{n} into
and

$$
B_{1}=\left\{e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}: 1 \leqq j_{1}<\cdots<j_{k} \leqq n-1\right\}
$$

$$
B_{2}=\left\{e_{j_{1}} \wedge \cdots \wedge e_{j_{k-1}} \wedge e_{n}: 1 \leqq j_{1}<\cdots<j_{k-1} \leqq n-1\right\}
$$

for $k \geqq 1, n>1$.
Then E_{k}^{n-1} is precisely the subspace of E_{k}^{n} generated by B_{1} and a natural isomorphism can be established between E_{k-1}^{n-1} and the subspace of E_{k}^{n} generated by B_{2}. $\quad E_{k}^{n}$ can then be identified in a natural way with $E_{k}^{n-1} \oplus E_{k-1}^{n-1}(k \geqq 1, n>1)$. It is not hard to see that $D_{k}^{(n)}$ takes the matrix form:

$$
D_{k}^{(n)}=\left(\begin{array}{cc}
D_{k}^{(n-1)} & (-1)^{k+1} \operatorname{diag}\left(T_{n}\right) \\
0 & D_{k-1}^{(n-1)}
\end{array}\right) \quad(n>1, k \geqq 1),
$$

where $\operatorname{diag}\left(T_{n}\right)$ is meant to be a diagonal matrix with constant diagonal entry T_{n}.
For a doubly commuting n-tuple $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ of hyponormal operators, define $\bar{D}_{k}^{(n)}(\boldsymbol{T}): E_{k-1}^{n}(X) \rightarrow E_{k}^{n}(X)$ by

$$
\bar{D}_{k}^{(n)}(\boldsymbol{T})={ }^{t}\left(D_{k}^{(n)}(\boldsymbol{S})\right), \quad \text { where } \boldsymbol{S}=\left(\bar{T}_{1}, \cdots, \bar{T}_{n}\right) .
$$

Let $D_{k}=D_{k}^{(n)}(\boldsymbol{T})$ and $\bar{D}_{k}=\bar{D}_{k}^{(n)}(\boldsymbol{T})$ for every k. Then it is easy to see that

$$
\left(\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}\right) D_{k+1} \bar{D}_{k+1}=D_{k+1} \bar{D}_{k+1}\left(\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}\right)=\left(D_{k+1} \bar{D}_{k+1}\right)^{2} .
$$

Lemma 4. Let $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators. If $\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}$ is invertible for every k, then $E(X, \boldsymbol{T})$ is exact.

Proof. It suffices to prove that $\operatorname{Ker}\left(D_{k}\right) \subset R\left(D_{k+1}\right)$. Let x be in $\operatorname{Ker}\left(D_{k}\right)$. Put $y=\bar{D}_{k+1}\left(\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}\right)^{-1} x$. Then $y \in E_{k+1}^{n}(X)$ and

$$
\begin{aligned}
D_{k+1} y & =D_{k+1} \bar{D}_{k+1}\left(\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}\right)^{-1} x \\
& =\left(\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}\right)^{-1} D_{k+1} \bar{D}_{k+1} x \\
& =\left(\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}\right)^{-1}\left(\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}\right) x=x .
\end{aligned}
$$

It follows that $x \in R\left(D_{k+1}\right)$. Hence, $R\left(D_{k+1}\right)=\operatorname{Ker}\left(D_{k}\right)$ for every k.
ThEOREM 5. Let X be uniformly convex. Let $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on X. Then $\sigma(\boldsymbol{T}) \subset \sigma_{\mathrm{cs}}(\boldsymbol{T})$.

Proof. It suffices to prove that if $0 \notin \sigma_{\mathrm{cs}}(\boldsymbol{T})$, then $0 \notin \sigma(\boldsymbol{T})$. An easy computation shows that

$$
\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}=\left(\begin{array}{cc}
\bar{D}_{k}^{(n-1)} D_{k}^{(n-1)}+D_{k+1}^{(n-1)} \bar{D}_{k+1}^{(n-1)}+\operatorname{diag}\left(T_{n} \bar{T}_{n}\right) & 0 \\
0 & \bar{D}_{k-1}^{(n-1)} D_{k-1}^{(n-1)}+D_{k}^{(n-1)} \bar{D}_{k}^{(n-1)}+\operatorname{diag}\left(\bar{T}_{n} T_{n}\right)
\end{array}\right) .
$$

Hence, this formula shows that if $0 \notin \sigma_{\mathrm{cs}}(\boldsymbol{T})$, then $\bar{D}_{k} D_{k}+D_{k+1} \bar{D}_{k+1}$ is invertible for every k. So, by Lemma 4, it follows that $E(X, \boldsymbol{T})$ is exact.

Lemma 6 ([23], Theorem 3.6). Let $\boldsymbol{T}=\left(T_{1}, \cdots, T_{n}\right)$ be a commuting n-tuple of operators on a Banach space X. Then $\sigma(\boldsymbol{T})=\sigma\left(\boldsymbol{T}^{*}\right)$, where $\boldsymbol{T}^{*}=\left(T_{1}^{*}, \cdots, T_{n}^{*}\right)$.

Theorem 7. Let X be uniformly convex and uniformly smooth. Let $\boldsymbol{T}=$ (T_{1}, \cdots, T_{n}) be a doubly commuting n-tuple of strongly hyponormal operators on X. Then

$$
\sigma(\boldsymbol{T})=\sigma_{\mathrm{cs}}(\boldsymbol{T})=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n}:\left(\bar{z}_{1}, \cdots, \bar{z}_{n}\right) \in \sigma_{\pi}(\boldsymbol{S})\right\},
$$

where $\boldsymbol{S}=\left(\bar{T}_{1}, \cdots, \bar{T}_{n}\right)$.
Proof. By Theorems 3 and 5 , it suffices to prove that if $0 \in \sigma_{\pi}(\boldsymbol{S})$, then $0 \in \boldsymbol{\sigma}(\boldsymbol{T})$. Since 0 belongs to $\sigma_{\pi}(\boldsymbol{S})$, there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in X such that

$$
\bar{T}_{j} x_{k} \longrightarrow 0 \quad \text { for } \quad j=1, \cdots, n .
$$

Since 0 belongs to $\sigma\left(\sum_{j=1}^{n} T_{j} \bar{T}_{j}\right)$, it also belongs to $\sigma\left(\left(\sum_{j=1}^{n} T_{j} \bar{T}_{j}\right)^{*}\right)=$ $\sigma\left(\sum_{j=1}^{n} \bar{T}_{j}^{*} T_{j}^{*}\right)$. Also $\left(\bar{T}_{1}^{*}, \cdots, \bar{T}_{n}^{*}\right)$ is a doubly commuting n-tuple of strongly hyponormal operators on a uniformly convex space X^{*}. From the proof of Lemma 2 there exists a sequence $\left\{f_{k}\right\}$ of unit vectors in X^{*} such that

$$
\bar{T}_{j}^{*} T_{j}^{*} f_{k} \longrightarrow 0 \quad \text { for } \quad j=1, \cdots, n .
$$

Since \bar{T}_{j}^{*} is a hyponormal operator on a uniformly convex space X^{*}. By Theorem B, it follows that

$$
T_{j}^{* 2} f_{k} \longrightarrow 0 \quad \text { for } \quad j=1, \cdots, n .
$$

Hence, by the spectral mapping theorem for the joint approximate point spectrum, it follows that $0 \in \sigma_{\pi}\left(\boldsymbol{T}^{*}\right)$, where $\boldsymbol{T}^{*}=\left(T_{1}^{*}, \cdots, T_{n}^{*}\right)$. Therefore, from Lemma 6 it follows that $0 \in \sigma(T)$.

Acknowledgement. The author would like to express his cordial thanks to the referee, Professors T. Huruya and K-S. Saito for their kind advices.

References

[1] B. Beauzamy, Introduction to Banach spaces and their Geometry, North-Holland, 1985.
[2] F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, 1971.
[3] -, Numerical ranges II, Cambridge Univ. Press, 1973.
[4] M. Chō, Joint spectra of operators on Banach spaces, Glasgow Math. J., 28 (1986), 69-72.
[5] -, Joint spectra of commuting normal operators on Banach spaces, Glasgow Math. J., 30 (1988), 339-345.
[6] -, Hyponormal operators on uniformly convex spaces, to appear in Acta Sci. Math. Szeged.
[7] -, Joint spectra of commuting pairs and uniform convexity, to appear in Rev. Roum. Math. Pures Appl.
[8] M. Chō and M. Takaguchi, Some classes of commuting n-tuple of operators, Studia Math., 80 (1984), 245-259.
[9] M. Chō and A.T. Dash, On the joint spectra of doubly commuting n-tuples of semi-normal operators, Glasgow Math. J., 26 (1985), 47-50.
[10] M.-D. Choi and C. Davis, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., 80 (1974), 317-321.
[11] R. Curto, On the connectedness of invertible n-tuples, Indiana Univ. Math. J., 29 (1980), 393-406.
[12] , Fredholm and invertible n-tuples of operators, The deformation problem, Trans. Amer. Math. Soc., 266 (1981), 129-159.
[13] Connection between Harte and Taylor spectra, Rev. Roum. Math. Pures Appl., 31 (1986), 203-215.
[14] H. R. Dowson, T. A. Gillespie and P.G. Spain, A commutativity theorem for hermitian operators, Math. Ann., 220 (1976), 215-217.
[15] R. Harte, The spectral mapping theorem in several variables, Bull. Amer. Math. Soc., 78 (1972), 871-875.
[16] K. Mattila, Normal operators and proper boundary points of the spectra of operators on Banach space, Ann. Acad. Sci. Fenn. AI. Math. Dissertations, 19 (1978).
[17] ——, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Philos. Soc., 96 (1986), 483-493.
[18] A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana Math. J., 36 (1987), 421-439.
[19] A. McIntosh, A. Pryde and W. Ricker, Comparison of the joint spectra for certain classes of commuting operators, Studia Math., 88 (1987), 23-36.
[20] —— Systems of operator equations and perturbation of spectral subspaces of commuting operators, Michigan Math. J., 35 (1988), 43-65.
[21] S.-Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc. Ser. A, 36 (1984), 134-142.
[22] Z. Slodkowski and W. Zelazko, On joint spectra of commuting families of operators, Studia Math., 50 (1974), 127-148.
[23] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191.
[24] , The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38.
[25] F.-H. Vasilescu, On pairs of commuting operators, Studia Math., 62 (1978), 203207.
[26] V. Wrobel, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum, J. Operator Theory, 16 (1986), 273-283.
[27] -, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum II, J. Operator Theory, 19 (1988), 3-24.
[28] - Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces, Glasgow Math. J., 30 (1988), 145-153.

Muneo CHO
Department of Mathematics Joetsu University of Education Joetsu, Niigata 943
Japan

