J. Math. Soc. Japan Vol. 42, No. 2, 1990

Joint spectra of strongly hyponormal operators on Banach spaces

Dedicated to Professor Emeritus Eiitiro Homma with respect

By Muneo CHO

(Received Dec. 12, 1988)

1. Introduction.

The joint spectrum for a commuting *n*-tuple in functional analysis has its origin in functional calculus which appeared in J.L. Taylor's paper [23] in 1970. In the case of operators on Hilbert spaces, in [25] F.-H. Vasilescu characterized the joint spectrum for a commuting pair and in [11] R. Curto did it for a commuting *n*-tuple.

For those on a Banach space, in [18] and [19] A. McIntosh, A. Pryde and W. Ricker characterized the joint spectrum for a strongly commuting *n*-tuple of operators. In [5] M. Chō proved that the joint spectrum for such an *n*-tuple is the joint approximate point spectrum of it.

The aim of this paper is to give a characterization of the joint spectrum for a doubly commuting n-tuple of strongly hyponormal operators on a uniformly convex and uniformly smooth space.

Let E^n be the complex exterior algebra on *n*-generators e_1, \dots, e_n with product \wedge . Then E^n is graded: $E^n = \bigoplus_{k=-\infty}^{\infty} E_k^n$, where $E_k^n \wedge E_1^n \subset E_{k+1}^n$ and $\{e_{j_1} \wedge \dots \wedge e_{j_k}: 1 \leq j_1 < \dots < j_k \leq n\}$ is a basis for $E_k^n (k \geq 1)$, while $E_0^n \cong C$ and $E_k^n =$ (0) for k < 0 and k > n. Let X be a complex Banach space and $T = (T_1, \dots, T_n)$ be a commuting *n*-tuple of bounded linear operators on X. Let $E_k^n(X) = E_k^n \otimes X$ and define $D_k^{(n)}: E_k^n(X) \to E_{k-1}^n(X)$ by $D_k^{(n)}(x \otimes e_{j_1} \wedge \dots \wedge e_{j_k}) = \sum_{i=1}^k (-1)^{i+1}T_{j_i}x \otimes$ $e_{j_1} \wedge \dots \wedge \check{e}_{j_i} \wedge \dots \wedge e_{j_k}$ when k > 0 (here $\check{}$ means deletion), and $D_k^{(n)} = 0$ when $k \leq 0$ and k > n. A straightforward computation shows that $D_k^{(n)} \circ D_{k+1}^{(n)} = 0$ for all k, so that $\{E_k^n(X), D_k^{(n)}\}_{k \in \mathbb{Z}}$ is a chain complex, called the Koszul complex for $T = (T_1, \dots, T_n)$ and denoted by E(X, T). Of course, the mapping $D_k^{(n)}$ depends on $T = (T_1, \dots, T_n)$. We denote it by $D_k^{(n)}(T)$, if necessary.

We define $T = (T_1, \dots, T_n)$ to be invertible in case its associated Koszul complex is exact (that is, $\operatorname{Ker}(D_k^{(n)}) = R(D_{k+1}^{(n)})$ for all k). The Taylor spectrum $\sigma(T)$ for $T = (T_1, \dots, T_n)$ is the set of $z \in C^n$ such that $T - z = (T_1 - z_1, \dots, T_n - z_n)$ is not invertible.

A point $z \in \mathbb{C}^n$ is in the joint approximate point spectrum $\sigma_{\pi}(T)$ of T if there exists a sequence $\{x_k\}$ of unit vectors in X such that

$$||(T_i-z_i)x_k|| \longrightarrow 0$$
 as $k \longrightarrow \infty$ for $i=1, 2, \cdots, n$.

For an operator $T \in B(X)$, the spectrum and the approximate point spectrum of T are denoted by $\sigma(T)$ and $\sigma_{\pi}(T)$, respectively.

We denote by X^* the dual space of X. Let us set

$$\pi = \{(x, f) \in X \times X^* : \|f\| = f(x) = \|x\| = 1\}.$$

The spatial numerical range V(T) and the numerical range V(B(X), T) of T are defined by

$$V(T) = \{ f(Tx) : (x, f) \in \pi \}$$

and

 $V(B(X), T) = \{ \mathcal{F}(T) : \mathcal{F} \in B(X)^* \text{ and } \|\mathcal{F}\| = \mathcal{F}(I) = 1 \},\$

respectively. The following results are well-known for $T \in B(X)$:

(1) $\operatorname{co} \sigma(T) \subset \overline{V(T)}$ and $\overline{\operatorname{co}} V(T) = V(B(X), T)$,

where $\operatorname{co} E$, \overline{E} and $\operatorname{co} E$ are the convex hull, the closure and the closed convex hull of E, respectively. Also

(2) $V(T) \subset V(T^*) \subset \overline{V(T)}$.

If $V(H) \subset \mathbf{R}$, then H is called hermitian. Hence, H is hermitian iff H^* is hermitian. An operator $T \in B(X)$ is called hyponormal if there are hermitian operators H and K such that T = H + iK and the commutator $C = i(HK - KH) \ge 0$, meaning that $V(C) \subset \mathbf{R}^+ = \{a \in \mathbf{R} : a \ge 0\}$. A hyponormal operator T = H + iK is called strongly hyponormal if H^2 and K^2 are hermitian. It holds that if T is strongly hyponormal, then $T - \lambda$ is also for every $\lambda \in C$. For an operator T = H + iK, we denote the operator H - iK by \overline{T} .

REMARK 1. There is an hermitian operator H such that H^2 is not hermitian. However, if H is a hermitian, then

$$V(H^2) \subset \{z \in C : \operatorname{Re} z \geq 0\}.$$

Hence, if T is a strongly hyponormal operator, then

 $V(\overline{T}T) \subset \mathbf{R}^+$.

For commuting operators T_1 and T_2 such that $T_j=H_j+iK_j$ (j=1, 2), T_1 and T_2 are called doubly commuting if $\overline{T}_1T_2=T_2\overline{T}_1$. It is easy to see that if T_1 and T_2 are doubly commuting then H_1 and K_1 commute with H_2 and K_2 .

For a commuting *n*-tuple $T = (T_1, \dots, T_n)$ such that $T_j = H_j + iK_j$ $(j=1, \dots, n)$, a point $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ is in the complete star spectrum $\sigma_{cs}(T)$ of T if there is some partition $\{j_1, \dots, j_k\} \cup \{l_1, \dots, l_m\} = \{1, \dots, n\}$ such that

186

Joint spectra

$$\sum_{\mu=1}^{k} \overline{(T_{j_{\mu}} - z_{j_{\mu}})} (T_{j_{\mu}} - z_{j_{\mu}}) + \sum_{\nu=1}^{m} (T_{l_{\nu}} - z_{l_{\nu}}) \overline{(T_{l_{\nu}} - z_{l_{\nu}})}$$

is not invertible. In particular, the set

$$\left\{ (z_1, \cdots, z_n) \in \mathbb{C}^n : \sum_{j=1}^n (T_j - z_j) \overline{(T_j - z_j)} \text{ is not invertible} \right\}$$

is called the right spectrum of $T = (T_1, \dots, T_n)$ and denoted by $\sigma_r(T)$. It is clear that $\sigma_n(T) \subset \sigma(T) \cap \sigma_{cs}(T)$ for a commuting *n*-tuple $T = (T_1, \dots, T_n)$.

A Banach space X is called uniformly convex if to each $\varepsilon > 0$, there corresponds a $\delta > 0$ such that the conditions ||x|| = ||y|| = 1 and $||x-y|| \ge \varepsilon$ imply that $(1/2)||x+y|| \le 1-\delta$.

We set, for t > 0:

$$\rho(t) = \sup\{(1/2)(\|x+y\|+\|x-y\|)-1: \|x\|=1, \|y\| \le t\}.$$

A Banach space X is called uniformly smooth if

$$\frac{\rho(t)}{t} \longrightarrow 0 \qquad \text{as} \quad t \longrightarrow 0.$$

REMARK 2. A Banach space X is uniformly smooth iff X^* is uniformly convex. See Beauzamy [3] for details.

We give an example of a doubly commuting n-tuple of strongly hyponormal operators on a uniformly convex and uniformly smooth space.

Let \mathscr{K} be a complex Hilbert space. Let \mathcal{C}_p be the Schatten *p*-class for $1 . Then it is well-known that the space <math>\mathcal{C}_p$ is uniformly convex and uniformly smooth, and is a 2-sided ideal of $B(\mathscr{K})$. When A and B^* are hyponormal operators on \mathscr{K} , the derivation $\delta_{A,B} = \delta_{H,H'} + i\delta_{K,K'}$ is a hyponormal operator on \mathcal{C}_p , where A = H + iK and B = H' + iK'. Moreover,

$$V(B(\mathcal{C}_p), \delta_{A,B}) = \overline{W(A)} - \overline{W(B)},$$

where W(T) is a usual numerical range of an operator T on a Hilbert space \mathcal{A} . See Shaw [21].

Let \mathcal{L}_A denote the left multiplication induced by $A \in B(\mathcal{H})$. Then if A = H + iK is a hyponormal operator, then $\mathcal{L}_A = \mathcal{L}_H + i\mathcal{L}_K$ is a strongly hyponormal operator. Let $A = (A_1, \dots, A_n)$ be a doubly commuting *n*-tuple of hyponormal operators on \mathcal{H} . Then $T = (\mathcal{L}_{A_1}, \dots, \mathcal{L}_{A_n})$ is a doubly commuting *n*-tuple of strongly hyponormal operators on a uniformly convex and uniformly smooth space \mathcal{C}_p (1 .

We use the following results.

THEOREM A ([17], Theorem 2.5). Let X be uniformly convex and let H be a hermitian, non-negative operator on X. If there are sequences $\{x_n\} \subset X$ and $\{f_n\} \subset X^*$ such that $||x_n|| = ||f_n|| = 1$ for each n with $f_n(x_n) \to 1$ and $f_n(Hx_n) \to 0$, then $Hx_n \rightarrow 0$.

THEOREM B ([17], Theorem 2.7). Let X be uniformly convex and let T=H+*iK* be a hyponormal operator on X. If $\{x_n\}$ is a bounded sequence in X such that $Tx_n \rightarrow 0$, then $Hx_n \rightarrow 0$ and $Kx_n \rightarrow 0$.

2. Joint spectra of doubly commuting *n*-tuples.

LEMMA 1. Let T=H+iK be a strongly hyponormal operator. Then, $\sigma(\overline{T}T) \cup \sigma(T\overline{T}) \subset \mathbf{R}^+$.

PROOF. Since T is strongly hyponormal, the proof follows from $\sigma(\overline{T}T) - \{0\} = \sigma(T\overline{T}) - \{0\}$ and $\sigma(\overline{T}T) \subset \overline{V(\overline{T}T)} \subset \mathbb{R}^+$.

LEMMA 2. Let X be uniformly convex. Let $T = (T_1, \dots, T_n)$ be a doubly commuting n-tuple of strongly hyponormal operators on X. If $\sum_{j=1}^{k} \overline{T}_j T_j + \sum_{j=k+1}^{n} \overline{T}_j \overline{T}_j$ is not invertible $(1 \le k \le n)$, then $\sum_{j=1}^{n} T_j \overline{T}_j$ is not invertible.

PROOF. Put $S = (\overline{T}_1 T_1, \dots, \overline{T}_k T_k, T_{k+1} \overline{T}_{k+1}, \dots, T_n \overline{T}_n)$. Then S is a commuting *n*-tuple. It is clear that 0 is in the boundary of the spectrum $\sigma(\sum_{j=1}^k \overline{T}_j T_j + \sum_{j=k+1}^n T_j \overline{T}_j)$. Hence, 0 is in the approximate point spectrum of $\sum_{j=1}^k \overline{T}_j T_j + \sum_{j=k+1}^n T_j \overline{T}_j$. So by the spectral mapping theorem for the joint approximate point spectrum, there exists $\alpha = (\alpha_1, \dots, \alpha_n) \in \sigma_n(S)$ such that $\sum_{j=1}^n \alpha_j = 0$. Since $(\bigcup_{j=1}^k \sigma(\overline{T}_j T_j)) \cup (\bigcup_{j=k+1}^n \sigma(T_j \overline{T}_j))$ is contained in \mathbb{R}^+ , it follows that $\alpha_j = 0$ for every $j=1, \dots, n$. Therefore, there exists a sequence $\{x_m\}$ of unit vectors in X such that

$$\overline{T}_j T_j x_m \longrightarrow 0$$
 and $T_l \overline{T}_l x_m \longrightarrow 0$ for $j=1, \dots, k$ and $l=k+1, \dots, n$.

If $T_j = H_j + iK_j$, then $C_j = i(H_jK_j - K_jH_j) \ge 0$ for $j = 1, \dots, k$. Choose a linear functional $f_m \in X^*$ such that $||f_m|| = f_m(x_m) = 1$ for each m. Since then $f_m((H_j^2 + K_j^2)x_m) \ge 0$, $f_m(C_jx_m) \ge 0$ and

$$f_m(\overline{T}_j T_j x_m) = f_m((H_j^2 + K_j^2 + C_j) x_m) \longrightarrow 0 \quad \text{for} \quad j=1, \dots, k,$$

it follows that

 $f_m(C_j x_m) \longrightarrow 0$ for $j=1, \dots, k$.

Hence, by Theorem A, it follows that $C_j x_m \rightarrow 0$ and

$$(H_j^2 + K_j^2) x_m \longrightarrow 0$$
 for $j=1, \dots, k$.

Therefore, it follows that $T_j \overline{T}_j x_m = (H_j^2 + K_j^2 - C_j) x_m \rightarrow 0$ for $j = 1, \dots, n$.

THEOREM 3. Let X be uniformly convex. Let $T = (T_1, \dots, T_n)$ be a doubly commuting n-tuple of strongly hyponormal operators on X. Then

$$\sigma_{\rm cs}(\boldsymbol{T}) = \sigma_{\rm r}(\boldsymbol{T}) = \{(z_1, \cdots, z_n) \in \boldsymbol{C}^n : (\bar{z}_1, \cdots, \bar{z}_n) \in \sigma_{\pi}(\boldsymbol{S})\}$$

where $S = (\overline{T}_1, \cdots, \overline{T}_n)$.

PROOF. It is clear that

$$\{(z_1, \cdots, z_n) \in \mathbb{C}^n : (\tilde{z}_1, \cdots, \tilde{z}_n) \in \sigma_{\pi}(S)\} \subset \sigma_r(T) \subset \sigma_{\mathrm{cs}}(T).$$

Since $T-z=(T_1-z_1, \dots, T_n-z_n)$ is a doubly commuting *n*-tuple of strongly hyponormal operators for every $z=(z_1, \dots, z_n)\in C^n$, it suffices to prove that if $0\in\sigma_{cs}(T)$ then $0\in\sigma_{\pi}(S)$. By the definition of the complete star spectrum and Lemma 2 it follows that $\sum_{j=1}^n T_j \overline{T}_j$ is not invertible and there exists a sequence $\{x_m\}$ of unit vectors in X such that

$$T_j \overline{T}_j x_m \longrightarrow 0$$
 for $j=1, \cdots, n$.

Since T_j is hyponormal on a uniformly convex space X, by Theorem B it follows that $\overline{T}_j^2 x_m \to 0$ for $j=1, \dots, n$. Also by the spectral mapping theorem for the joint approximate point spectrum, there exists a sequence $\{y_m\}$ of unit vectors in X such that $\overline{T}_j y_m \to 0$ for $j=1, \dots, n$. Therefore, we have that $0 \in \sigma_{\pi}(S)$.

We now explain a recursive method of obtaining the $D_k^{(n)}$'s. We split the basis of E_k^n into

and

$$B_1 = \{e_{j_1} \land \dots \land e_{j_k} \colon 1 \leq j_1 < \dots < j_k \leq n-1\}$$
$$B_2 = \{e_{j_1} \land \dots \land e_{j_{k-1}} \land e_n \colon 1 \leq j_1 < \dots < j_{k-1} \leq n-1\}$$

for $k \ge 1$, n > 1.

Then E_k^{n-1} is precisely the subspace of E_k^n generated by B_1 and a natural isomorphism can be established between E_{k-1}^{n-1} and the subspace of E_k^n generated by B_2 . E_k^n can then be identified in a natural way with $E_k^{n-1} \oplus E_{k-1}^{n-1}$ $(k \ge 1, n > 1)$. It is not hard to see that $D_k^{(n)}$ takes the matrix form:

$$D_k^{(n)} = \begin{pmatrix} D_k^{(n-1)} & (-1)^{k+1} \operatorname{diag}(T_n) \\ 0 & D_{k-1}^{(n-1)} \end{pmatrix} \quad (n > 1, \ k \ge 1),$$

where $diag(T_n)$ is meant to be a diagonal matrix with constant diagonal entry T_n .

For a doubly commuting *n*-tuple $T = (T_1, \dots, T_n)$ of hyponormal operators, define $\overline{D}_k^{(n)}(T) : E_{k-1}^n(X) \to E_k^n(X)$ by

 $\overline{D}_k^{(n)}(T) = {}^t(D_k^{(n)}(S)), \quad \text{where } S = (\overline{T}_1, \cdots, \overline{T}_n).$

Let $D_k = D_k^{(n)}(T)$ and $\overline{D}_k = \overline{D}_k^{(n)}(T)$ for every k. Then it is easy to see that

$$(\overline{D}_k D_k + D_{k+1} \overline{D}_{k+1}) D_{k+1} \overline{D}_{k+1} = D_{k+1} \overline{D}_{k+1} (\overline{D}_k D_k + D_{k+1} \overline{D}_{k+1}) = (D_{k+1} \overline{D}_{k+1})^2.$$

LEMMA 4. Let $T = (T_1, \dots, T_n)$ be a doubly commuting n-tuple of hyponormal operators. If $\overline{D}_k D_k + D_{k+1} \overline{D}_{k+1}$ is invertible for every k, then E(X, T) is exact.

М. Сно

PROOF. It suffices to prove that $\operatorname{Ker}(D_k) \subset R(D_{k+1})$. Let x be in $\operatorname{Ker}(D_k)$. Put $y = \overline{D}_{k+1}(\overline{D}_k D_k + D_{k+1}\overline{D}_{k+1})^{-1}x$. Then $y \in E_{k+1}^n(X)$ and

$$D_{k+1}y = D_{k+1}\overline{D}_{k+1}(\overline{D}_kD_k + D_{k+1}\overline{D}_{k+1})^{-1}x$$

= $(\overline{D}_kD_k + D_{k+1}\overline{D}_{k+1})^{-1}D_{k+1}\overline{D}_{k+1}x$
= $(\overline{D}_kD_k + D_{k+1}\overline{D}_{k+1})^{-1}(\overline{D}_kD_k + D_{k+1}\overline{D}_{k+1})x = x$

It follows that $x \in R(D_{k+1})$. Hence, $R(D_{k+1}) = \operatorname{Ker}(D_k)$ for every k.

THEOREM 5. Let X be uniformly convex. Let $T = (T_1, \dots, T_n)$ be a doubly commuting n-tuple of hyponormal operators on X. Then $\sigma(T) \subset \sigma_{cs}(T)$.

PROOF. It suffices to prove that if $0 \notin \sigma_{cs}(T)$, then $0 \notin \sigma(T)$. An easy computation shows that

$$\overline{D}_{k}D_{k} + D_{k+1}\overline{D}_{k+1} = \begin{pmatrix} \overline{D}_{k}^{(n-1)}D_{k}^{(n-1)} + D_{k+1}^{(n-1)}\overline{D}_{k+1}^{(n-1)} + \operatorname{diag}(T_{n}\overline{T}_{n}) & 0\\ 0 & \overline{D}_{k-1}^{(n-1)}D_{k-1}^{(n-1)} + D_{k}^{(n-1)}\overline{D}_{k}^{(n-1)} + \operatorname{diag}(\overline{T}_{n}T_{n}) \end{pmatrix}.$$

Hence, this formula shows that if $0 \notin \sigma_{cs}(T)$, then $\overline{D}_k D_k + D_{k+1} \overline{D}_{k+1}$ is invertible for every k. So, by Lemma 4, it follows that E(X, T) is exact.

LEMMA 6 ([23], Theorem 3.6). Let $T = (T_1, \dots, T_n)$ be a commuting n-tuple of operators on a Banach space X. Then $\sigma(T) = \sigma(T^*)$, where $T^* = (T_1^*, \dots, T_n^*)$.

THEOREM 7. Let X be uniformly convex and uniformly smooth. Let $T = (T_1, \dots, T_n)$ be a doubly commuting n-tuple of strongly hyponormal operators on X. Then

$$\sigma(T) = \sigma_{\rm cs}(T) = \{(z_1, \cdots, z_n) \in C^n : (\bar{z}_1, \cdots, \bar{z}_n) \in \sigma_z(S)\},\$$

where $S = (\overline{T}_1, \cdots, \overline{T}_n)$.

PROOF. By Theorems 3 and 5, it suffices to prove that if $0 \in \sigma_{\pi}(S)$, then $0 \in \sigma(T)$. Since 0 belongs to $\sigma_{\pi}(S)$, there exists a sequence $\{x_k\}$ of unit vectors in X such that

$$T_j x_k \longrightarrow 0$$
 for $j=1, \cdots, n$.

Since 0 belongs to $\sigma(\sum_{j=1}^{n} T_{j}\overline{T}_{j})$, it also belongs to $\sigma((\sum_{j=1}^{n} T_{j}\overline{T}_{j})^{*}) = \sigma(\sum_{j=1}^{n} \overline{T}_{j}^{*}T_{j}^{*})$. Also $(\overline{T}_{1}^{*}, \dots, \overline{T}_{n}^{*})$ is a doubly commuting *n*-tuple of strongly hyponormal operators on a uniformly convex space X^{*} . From the proof of Lemma 2 there exists a sequence $\{f_k\}$ of unit vectors in X^{*} such that

$$\overline{T}_{j}^{*}T_{j}^{*}f_{k} \longrightarrow 0 \quad \text{for} \quad j=1, \dots, n.$$

Since \overline{T}_{j}^{*} is a hyponormal operator on a uniformly convex space X^{*} . By Theorem B, it follows that

190

Joint spectra

$$T_{j}^{*2}f_{k} \longrightarrow 0$$
 for $j=1, \cdots, n$.

Hence, by the spectral mapping theorem for the joint approximate point spectrum, it follows that $0 \in \sigma_{\pi}(T^*)$, where $T^* = (T_1^*, \dots, T_n^*)$. Therefore, from Lemma 6 it follows that $0 \in \sigma(T)$.

ACKNOWLEDGEMENT. The author would like to express his cordial thanks to the referee, Professors T. Huruya and K-S. Saito for their kind advices.

References

- [1] B. Beauzamy, Introduction to Banach spaces and their Geometry, North-Holland, 1985.
- [2] F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, 1971.
- [3] -----, Numerical ranges II, Cambridge Univ. Press, 1973.
- [4] M. Chō, Joint spectra of operators on Banach spaces, Glasgow Math. J., 28 (1986), 69-72.
- [5] ——, Joint spectra of commuting normal operators on Banach spaces, Glasgow Math. J., 30 (1988), 339-345.
- [6] —, Hyponormal operators on uniformly convex spaces, to appear in Acta Sci. Math. Szeged.
- [7] —, Joint spectra of commuting pairs and uniform convexity, to appear in Rev. Roum. Math. Pures Appl.
- [8] M. Chō and M. Takaguchi, Some classes of commuting n-tuple of operators, Studia Math., 80 (1984), 245-259.
- [9] M. Chō and A. T. Dash, On the joint spectra of doubly commuting *n*-tuples of semi-normal operators, Glasgow Math. J., **26** (1985), 47-50.
- [10] M.-D. Choi and C. Davis, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., 80 (1974), 317-321.
- [11] R. Curto, On the connectedness of invertible n-tuples, Indiana Univ. Math. J., 29 (1980), 393-406.
- [12] ——, Fredholm and invertible *n*-tuples of operators, The deformation problem, Trans. Amer. Math. Soc., **266** (1981), 129-159.
- [13] ——, Connection between Harte and Taylor spectra, Rev. Roum. Math. Pures Appl., 31 (1986), 203-215.
- [14] H.R. Dowson, T.A. Gillespie and P.G. Spain, A commutativity theorem for hermitian operators, Math. Ann., 220 (1976), 215-217.
- [15] R. Harte, The spectral mapping theorem in several variables, Bull. Amer. Math. Soc., 78 (1972), 871-875.
- [16] K. Mattila, Normal operators and proper boundary points of the spectra of operators on Banach space, Ann. Acad. Sci. Fenn. AI. Math. Dissertations, 19 (1978).
- [17] ———, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Philos. Soc., 96 (1986), 483-493.
- [18] A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana Math. J., 36 (1987), 421-439.
- [19] A. McIntosh, A. Pryde and W. Ricker, Comparison of the joint spectra for certain classes of commuting operators, Studia Math., 88 (1987), 23-36.

M. Chō

- [20] ———, Systems of operator equations and perturbation of spectral subspaces of commuting operators, Michigan Math. J., **35** (1988), 43-65.
- [21] S.-Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc. Ser. A, 36 (1984), 134-142.
- [22] Z. Slodkowski and W. Zelazko, On joint spectra of commuting families of operators, Studia Math., 50 (1974), 127-148.
- [23] J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191.
- [24] ———, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38.
- [25] F.-H. Vasilescu, On pairs of commuting operators, Studia Math., 62 (1978), 203-207.
- [26] V. Wrobel, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum, J. Operator Theory, 16 (1986), 273-283.
- [27] ——, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum II, J. Operator Theory, 19 (1988), 3-24.
- [28] —, Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces, Glasgow Math. J., **30** (1988), 145-153.

Muneo Chō

Department of Mathematics Joetsu University of Education Joetsu, Niigata 943 Japan

192