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1. Introduction.

All spaces under consideration are assumed to be metric. By a continuum,
we mean a compact connected nondegenerate space. Let $X$ be a compact metric
space with metric $d$ . A homeomorphism $f$ of $X$ is called expansive if there
exists $c>0$ (called an expansive constant for $f$ ) such that if $\chi$ and $y$ are differ-
ent points of $X$, then there is an integer $n$ such that $d(f^{n}(x), f^{n}(y))>c$ . Ex-
pansiveness does not depend on the choice of metric of $X$ . We are interested
in the following problem: What kinds of continua admit expansive homeo-
morphisms? Here, we consider this problem from a point of view of continuum
theory.

Concerning the above problem, the following results are well known.
(i) Each compact metric space which admits an expansive homeomorphism

is finite-dimensional ([12]).
(ii) The Cantor set, the $p$ -adic solenoids $(p\geqq 2)$ and compact orientable

surfaces of positive genus admit expansive homeomorphisms ([13], [14] and
[16] $)$ . There are solenoidal groups which admit no expansive automorphisms
(see [17, Remark 2, p. 102] and [18, Theorem 3, p. 30]).

(iii) The shift homeomorphism of the inverse limit of every continuous
surjection of an arc is not an expansive homeomorphism ([3] and [4]).

(iv) There are no expansive homeomorphisms on the 2-sphere ([5]).

(v) If $X$ is a Peano continuum in the plane, or $X$ is a Peano continuum
which contains a 1-dimensional $AR$ neighborhood, then $X$ does not admit an
expansive homeomorphism ([1], [4], [6], [7] and [11]).

(vi) There are no expansive homeomorphisms on hereditarily decomposable

tree-like (or circle-like) continua ([8] and [9]).
(vii) There is a continuum in the plane which admits an expansive homeo-
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morphism. This continuum is 1-dimensional, indecomposable and separates the
plane ([15]).

(viii) There are no expansive homeomorphisms on Suslinian, hereditary $\theta-$

continua ([10]).

The purpose of this paper is to prove that there are no expansive homeo-
morphisms on Suslinian continua. In other words, if a continuum $X$ admits an
expansive homeomorphism, then $X$ contains an uncountable collection of mutually
disjoint, nondegenerate subcontinua of $X$ . Of course, this result is an extension
of (viii). As a corollary, no rational continuum admits an expansive homeo-
morphism. This implies that every 1-dimensional continuum which admits an
expansive homeomorphism is considerably complicated.

The author wishes to tbank the referee for his kind remarks.

2. Definitions and preliminaries.

A continuum is a compact metric connected space. A continuum is said to
be $Sfj$slinian if each collection of mutually disjoint, nondegenerate subcontinua
of it is countable. A continuum is rational if it has a basis of open sets whose
boundaries are countable. A continuum is called hereditarily locally connected
if each subcontinuum of it is locally connected. Then we have the following
diagram:

(1-dimensional $ANR$ ) $-$ ($hereditarily$ locally $connected$ ) $arrow$

(rational) $arrow(Suslinian)arrow$ (l-dimensional).

Note that neither implication can be replaced by an equivalence.
From now on, we list some facts which will be needed in the sequel.

(2.1) LEMMA. Let $Y$ be a compact metric sPace. Let $\epsilon>0$ and $k$ be any
natural number. Then there is a natural number $n=n(\epsilon, k)\geqq k$ such that if
$a_{1},$ $a_{2},$ $\cdots$ , $a_{n}$ are Points of $Y$, then there is a Point $a$ of $Y$ such that $d(a, a_{i(j)})$

$<\epsilon$ for $J^{=1}2,$ $\cdots$ , $k$ , where $1\leqq i(1)<i(2)<\ldots<i(k)\leqq n$ .

The proof is trivial, hence we omit the proof.

The next lemma is well known.

(2.2) LEMMA. Let $X$ be a compact metric space and let $U,$ $V$ be open sets of
$X$ sunh that $Cl(V)\subset U$. If $A$ is a subcontinuum of $X$ such that $A\cap V\neq\emptyset$ and
$A-Cl(U)\neq\emptyset$ , then there is a subcontinuum $B$ of $A\cap Cl(U)$ such that $B\cap V\neq\emptyset$

and $B\cap Bd(U)\neq\emptyset$ .

(2.3) LEMMA ([8, (2.2)]). Let $f:Xarrow X$ be an expansive homeomorphism of a
compact metric space X. Then there is $\delta>0$ such that for each nondegenerate
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subcontinuum $A$ of $X$, there is a natural number $n_{0}$ which satisfies one of the
following conditions;

$(*)$ diam $f^{n}(A)\geqq\delta$ for each $n\geqq n_{0}$ , or
$(**)$ diam $f^{-n}(A)\geqq\delta$ for each $n\geqq no.$

(2.4) REMARK. The converse assertion of (2.3) is not true. Let $I$ be the
unit interval $[0,1]$ and let $f:Iarrow I$ be a map defined by

$f(x)=\{$

$2x$ if $0 \leqq x\leqq\frac{1}{2}$ ,

$2-2x$ if $\frac{1}{2}\leqq x\leqq 1$ .

Consider the inverse limit

(I, $f$ ) $=\{(x_{i})_{i=0}^{\infty}|x_{i}\in I, f(x_{i+1})=x_{i}\}$

and the shift homeomorphism $\tilde{f}:(I, f)arrow(I, f),$ $i$ . $e.$ ,

$\tilde{f}((x_{t})_{i})=(f(x_{i}))_{i}$ .
Then ; satisfies the condition $(*)$ , but $\tilde{f}$ is not expansive.

3. Main theorem.

In this section, we prove the following main theorem of this paper.

(3.1) THEOREM. There are no exPansive homeomorPhisms on Suslinian con-
tinua. In other words, if a continuum $X$ admits an expansive homeomorphism,
then there is a closed subset $Z$ of $X$ such that each component of $Z$ is non-
degenerate, the space of components of $Z$ is a Cantor set, and the decomposition

of $Z$ into components is continuous ( $i.e.,$ upper-semi and lower-semi continuous).

TO prove (3.1), we need the following notations: Let $X$ be a continuum
and let $C(X)$ be the hyperspace of $X$ defined by

$C(X)=$ { $A:$ $A$ is a nonempty subcontinuum of $X$ }.

The hyperspace $C(X)$ is metrized as follows; for $A,$ $B\in C(X)$ , $d_{H}(A, B)=$

$\inf$ { $\epsilon>0:U_{\epsilon}(A)\supset B$ and $U_{\epsilon}(B)\supset A$ }, where $U_{\text{\’{e}}}(A)$ denotes the $\epsilon$ -neighborhood of
$A$ in $X$. The metric $d_{H}$ is called the Hausdorff metric. Note that $C(X)$ is also
a continuum.

For any subset $M$ of $C(X)$ , we consider the following set $M^{f}$ defined by

$M^{f}=\{A\in C(X)$ : for any $\epsilon>0$ and any natural number $k$ , there
are points $A_{1},$ $A_{2}$ , $\cdot$ .. , $A_{k}$ of $M$ such that each $A_{i}$ is
nondegenerate, $A_{i}\cap A_{j}=\emptyset(i\neq j)$ and $d_{H}(A, A_{i})<\epsilon\}$ .

Note that in the definition of $M^{f}$ , the intersection $A\cap A_{i}$ may not be empty.

Then we have
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(3.2) PROPOSITION. $M^{f}$ is closed in $C(X)$ .

In fact, suppose that $\{B_{n}\}$ is a sequence of points of $M^{f}$ such that $\lim B_{n}$

$=B$ . Since $C(X)$ is compact, $B\in C(X)$ . Let $\epsilon>0$ and a natural number $k$ be
given. Since $\lim B_{n}=B,$ $d_{H}(B, B_{n})<\epsilon/2$ for some $n$ . Since $B_{n}\in M^{f}$ , there are
points $A_{1},$ $A_{2},$ $\cdots$ , $A_{k}$ of $M$ such that each element $A_{i}$ is nondegenerate, $A_{t}qA_{j}$

$=\emptyset(i\neq J)$ and $d_{H}(B_{n}, A_{i})<\epsilon/2$ for $J^{=1},2,$ $\cdots$ , $k$ . Hence we have

$d_{H}(B, A_{i})\leqq d_{H}(B, B_{n})+d_{H}(B_{n}, A_{\ell})<\epsilon$ .

This implies $B\in M^{f}$ . Therefore $M^{f}$ is closed in $C(X)$ .

(3.3) PROPOSITION. $M^{f}\supset(M^{f})^{f}$ .

The proof is similar to the proof of (3.2). We omit the proof.

For a subset $M$ of $C(X)$ and ordinal numbers, define

$M_{1}=M^{f}$ , $M_{\alpha+1}=(M_{\alpha})^{f}$ and $M_{\lambda}= \bigcap_{\alpha<\lambda}M_{a}$ ,

where $\lambda$ is a limit ordinal.

Note that if $f$ is a homeomorphism of $X$ and $f(M)=M$, then $M_{a}$ is $f$-invariant
$(i. e., f(M_{\alpha})=M_{\alpha})$ .

Then we have

(3.4) THEOREM. Let $X$ be a continuum and let $M=C(X)$ . Then $X$ is Sus-
linian if and only if $M_{\alpha}=\emptyset$ for some countable ordinal $\alpha$ .

PROOF. Let $X$ be a Suslinian continuum. Suppose, on the contrary, that
$M_{\alpha}\neq\emptyset$ for any countable ordinal a. By (3.2), $M_{a}$ is closed in $C(X)$ . Also,
by (3.3), $M_{\alpha}\supset\Lambda f_{\beta}$ if $\alpha<\beta$ . Since $C(X)$ is separable, there is a countable ordinal
a such that $M_{\alpha}=M_{\beta}$ if $\alpha\leqq\beta$ . In particular, $(M.)^{f}=M$. and $M_{\alpha}\neq\emptyset$ . Choose
$A\in M.$ . Since $A\in(M_{\alpha})^{f}$ , there are two points $A_{0}$ and $A_{1}$ of $M_{a}$ such that each
$A_{\{}$ is nondegenerate, $A_{0}\cap A_{1}=\emptyset$ . Choose $\gamma>0$ such that diam $A_{i}>\gamma(i=0,1)$ ,

and choose neighborhoods $U_{i}(i=0,1)$ of $A_{t}$ in $X$ such that $ClU_{0}\cap ClU_{1}=\emptyset$ and
$ClU_{i}\subset U_{1/2}(A_{t})$ . Since $A_{\ell}(i=0,1)$ is contained in $M_{\alpha}=(M_{\alpha})^{f}$ , for each $i$ we
can choose two points $\angle 4_{ij}(]=0,1)$ of $M_{\alpha}$ such that diam $A_{ij}>\gamma,$ $A_{i0}\cap A_{i1}=\emptyset$

and $A_{i_{J}}\subset U_{i}$ . Choose neighborhoods $U_{if}$ of $A_{ij}$ in $U_{t}$ such that $ClU_{\iota 0}\cap ClU_{i1}$

$=\emptyset$ and $ClU_{tj}\subset U_{1/2^{2}}(A_{ij})$ . Note that $A_{ij}\in M_{\alpha}=(M_{\alpha})^{f}$ . By induction on $n$ ,

we can choose subcontinua $A_{\iota_{1}t_{2}\cdots t_{n}}$ ( $i_{J}=0$ or 1) of $X$ and neighborhoods $U_{\iota_{1}t_{Z}\cdot\cdot i_{n}}$

of $A_{i_{1}i_{2}\cdots t_{n}}$ in $U_{\ell_{1^{i_{2}\cdots i}n-1}}$ such that

(1) $ClU_{t_{12}}i\cdots t_{n-1^{0}}\cap ClU_{t_{1Z}}i\cdot\cdot i$ $=\emptyset$ ,

(2) diam $A_{i_{1}t_{2}\cdots i_{n}}>\gamma$ , and

(3) $ClU_{i_{1}i_{2}\cdots i}$ . $\subset U_{1/2^{n}}(A_{i_{1}i_{2}\cdots t_{n}})$ .
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For any sequence $\{(i_{j})_{n}\}$ ( $i_{j}=0$ or 1), consider the following set

$A_{i_{1}i_{2}},\cdots=ClU_{i_{1}}\cap ClU_{i_{1}i_{2}}\cap ClU_{i_{1}t_{2}i_{3^{\cap}}}\ldots$

By (1), (2) and (3), we can easily see that the uncountable collection { $A_{i_{1}i_{2}}\ldots$ :
$i_{j}=0$ or 1} is a collection of mutually disjoint nondegenerate subcontinua of $X$,
which implies that $X$ is not Suslinian. This is a contradiction. Next, suppose
that $X$ is not Suslinian. By [2, (2.1)], there is a closed subset $Z$ of $X$ such
that each component of $Z$ is nondegenerate, the space of components of $Z$ is
a Cantor set, and the decomposition of $Z$ into components is continuous.
Clearly, each component of $Z$ is contained in $M_{a}$ for any ordinal $\alpha$ . Hence
$M_{\alpha}\neq\emptyset$ for any countable ordinal $\alpha$ . This completes the proof.

(3.5) EXAMPLE. For each ordinal number $\alpha=1,2$ , , $\omega$ , $\cdot$ .. , $\omega_{1}$ , let $Y_{\alpha}$ be
the following $0$-dimensional compact metric space;

$Y_{1}=\{*\}$ ,

$Y_{2}= \bigoplus_{n=1}^{\infty}Y_{1}^{n}\cup\{\infty\}$ ,

:
$Y_{\lambda}= \bigoplus_{n=1}^{\infty}Y_{\alpha_{n}}\cup\{\infty\}$ ( $\lambda$ is a limit ordinal, $\alpha_{1}<\alpha_{2}<$ ... and $\lim\alpha_{n}=\lambda$),

:.
$Y_{\omega_{1}}=a$ Cantor set,

where $Y_{\alpha}^{n}$ is a copy of $Y_{\alpha},$ $\oplus_{n=1}^{\infty}Y_{\alpha}^{n}$ denotes the topological sum of $Y_{\alpha}^{n}(n=1,2, \cdots)$

and $\oplus_{n=1}^{\infty}Y_{\alpha}^{n}\cup l\infty$ } is the one point compactification of $\oplus_{n=1}^{\infty}Y_{\alpha}^{n}$ . Let $X_{\alpha}$ be the
cone of $Y_{\alpha}$ . Suppose $M=C(X_{\alpha})$ . Then if $\alpha<\omega_{1},$ $M_{\alpha}\neq\emptyset$ , and for $\beta>\alpha,$ $M_{\beta}=\emptyset$ .
Also, in the case of $X_{\omega_{1}},$ $AYI_{\lambda}\neq\emptyset$ for any ordinal $\lambda$ .

PROOF OF (3.1). Let $X$ be a Suslinian continuum. Suppose, on the contrary,
that there is an expansive homeomorphism $f$ on $X$. Set $M=C(X)$ . Let $\delta>0$

be as in (2.4). Choose a sequence $\epsilon_{1}>\epsilon_{2}>\epsilon_{3}>$ , , of positive numbers such
that $\lim\epsilon_{i}=0$ . For each $\epsilon_{k}$ and $k$ , cboose a natural number $n_{k}=n(\epsilon_{k}, k)$ as in
(2.1), where we assume that $Y=C(X)$ in (2.1). Let $A$ be any nondegenerate
subcontinuum of $X$. By (2.2), we can choose nondegenerate subcontinua $B_{1},$ $B_{2}$ ,
... , $B_{2n_{k}}$ of $A$ such that $B_{i}\cap B_{j}=\emptyset(i\neq j)$ . By (2.3), we may assume that for
some integer $n$ ,

(1) diam $f^{n}(B_{i})\geqq\delta$ , where $i=1,2,$ $\cdots$ , $n_{k}$ .
By the choice of $n_{k}$ , there is a point $B^{k}$ of $C(X)$ such that

(2) $d_{H}(B^{k}, f^{n}(B_{i_{f}}))<\epsilon_{k}$ for $j=1,2,$ $\cdots$ , $k$ and $1\leqq i_{1}<i_{2}<\ldots<i_{k}\leqq n_{k}$ .
Since $C(X)$ is compact, we may assume that $\{B^{k}\}$ is convergent to a point $A_{1}$

of $C(X)$ . By (1) and (2), diam $A_{1}\geqq\delta$ . Also, we can easily see that $A_{1}\in_{1}l\prime f_{1}$

$(=M^{f})$ , hence $M_{1}$ contains nondegenerate element. Now, we shall show that
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$M_{1}$ satisfies the following condition $(*_{1})$ :

If $A\in M_{1}$ and $A$ is nondegenerate, for any open sets $U,$ $V$ of $X$ such that
$ClV\subset U,$ $A\cap V\neq\emptyset$ and $A-ClU\neq\emptyset$ , there exists $B\in M_{1}$ such that $B\cap ClV\neq\emptyset$ ,
$B\subset A\cap ClU$ and $B\cap BdU\neq\emptyset$ .

We can prove this as follows. Since $A\in M_{1}$ , for each $k$ we choose $B_{1},$ $B_{2}$ ,
, $B_{n_{k}}\in C(X)$ such that each $B_{i}$ is nondegenerate, $B_{i}\cap B_{j}=\emptyset(i\neq j)$ and

$d_{H}(A, B_{i})<\epsilon_{k}$ for each $i=1,$ 2, $\cdot$ , $n_{k}$ . We may assume that $B_{i}\cap V\neq\emptyset$ and
$B_{i}-ClU\neq\emptyset$ for each $i$ . By (2.2), for each $i=1,2,$ $\cdots$ , $n_{k}$ we can choose a
subcontinuum $C_{i}$ of $B_{i}$ such that $C_{i}\subset ClU,$ $C_{i}\cap V\neq\emptyset$ and $C_{i}\cap BdU\neq\emptyset$ . By
(2.1), there is a point $C^{k}$ of $C(X)$ such that $d_{H}(C^{k}, C_{i_{j}})<\epsilon_{k}$ for each $j=1,2,$ $\cdots,$

$k$

and 1E $i_{1}<i_{2}<\ldots<i_{k}\leqq n_{k}$ . Also, we may assume that $\{C^{k}\}$ is convergent to
a point $B$ of $C(X)$ . Then we can easily see that $B\subset A\cap ClU,$ $B\cap ClV\neq\emptyset$ and
$B\cap BdU\neq\emptyset$ . Clearly, $B\in M_{1}$ .

For a countable ordinal $\lambda$ , we may assume that for $\alpha<\lambda M_{\alpha}$ contains a
nondegenerate element and satisfies the condition $(*_{\alpha})$ . We shall prove that $M_{\lambda}$

has the same properties. We consider the following two cases.
(I) $\lambda=\alpha+1$ . Note that $M_{\alpha}$ satisfies the condition $(*_{\alpha})$ . By an argument

similar to the above one, we can prove that $M_{\lambda}$ contains a nondegenerate ele-
ment and satisfies the condition $(*_{\lambda})$ .

(II) $\lambda$ is a limit ordinal. In this case, take a sequence $a_{1}<a_{2}<a_{3}<\ldots$ , of
countable ordinals such that $\lim\alpha_{t}=\lambda$ . Since $M_{\alpha}$ is $f$-invariant, by (2.3) we see
that for each $i$ , there is $A_{i}\in M_{\alpha_{i}}$ such that diam $A_{t}\geqq\delta$ . We may assume that
$\{A_{i}\}$ is convergent to a point $A_{\lambda}$ of $C(X)$ . This implies that

$A_{\lambda} \in\bigcap_{\alpha<\lambda}M_{\alpha}=M_{\lambda}$ .

Also, note that diam $A_{\lambda}\geqq\delta$ . By using (2.1), we can prove that $M_{\lambda}$ satisfies the
condltion $(*_{\lambda})$ .

Consequently, $M_{\alpha}\neq\emptyset$ for any countable ordinal $\alpha$ . By (3.4), $X$ is not
Suslinian. This is a contradiction. This completes the proof.

AS corollaries, we have

(3.6) COROLLARY. There are no expansive homeomorphisms on rational con-
tinua.

(3.7) COROLLARY. There are no expansive homeomorphisms on hereditarily
locally connected continua.

By an argument similar to the proof of (3.1), we have

(3.8) COROLLARY. If $f:Xarrow X$ is an expansive homeomorphism of a compact
metric space $X$ and $\dim X>0$ , then there is a closed subset $Z$ of $X$ such that each
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component of $Z$ is nondegenerate, the space of components of $Z$ is a Cantor set,
and the decomposition of $Z$ into components is continuous.
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