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Let $Y=(X, \{R_{i}\}_{osisd})$ be an association scheme whose parameters coincide
with those of the association scheme Her $(d, q)$ of Hermitian forms in d-dimen-
sional space over the field $GF(q^{2})$ . Suppose that every edge of the distance-
regular graph $\Gamma=(X, R_{1})$ is contained in a clique of size $q$ . It is shown that
if $d\geqq 3$ then $Y$ is isomorphic to Her $(d, q)$ . In the case $d=2$ a generalized
quadrangle with the parameters $(q, q^{2})$ is reconstructed from Y.

1. Introduction.

The present paper is a continuation of [IS1] where the particular case $q=2$

was treated completely and some results concerning the general situation were
proved. A detailed discussion of the schemes of Hermitian forms is contained
in [BI], [BCN] and [IS1]. Here we give only the necessary definitions.

Let $X$ be the set of all Hermitian forms (singular or nonsingular) in the
space of dimension $d$ over $GF(q^{2})$ and $R_{0},$ $R_{1},$ $\cdots$ , $R_{d}$ be the relations on $X$

defined as follows

$(x, y)\in R_{i}$ if and only if rank $(x-y)=i,$ $0\leqq i\leqq d$ .
Then $Y=(X, \{R_{i}\}_{osisd})$ is a ( $P$ and $Q$)-polynomial association scheme known
as the scheme of Hermitian forms Her $(d, q)$ . The distance-regular graph $\Gamma=$

(X, $R_{1}$ ) related to the scheme Her $(d, q)$ has the following parameters:

$b_{i}=(q^{2d}-q^{2i})/(q+1)$ ,

$c_{i}=(q^{i-1}(q^{i}-(-1)^{i}))/(q+1)$ , (1)

$a_{t}=(q^{2i}-q^{i-1}(q^{i}-(-1)^{i})-1)/(q+1)$ .
Apparently for the first time these facts were proved in [Wan].

The main result of the paper is the following.

THEOREM A. Let $\Gamma$ be a distance-regular graPh of diameter $d\geqq 2$ , whose
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parameters $b_{i},$
$c_{i},$ $a_{i},$ $0\leqq i\leqq d$ satisfy the relations (1) for some integer $q\geqq 2$ .

Suppose that every edge of $\Gamma$ is contained in a clique of size $q$ .
(i) If $d=2$ then $\Gamma$ is isomorphic to the subgraph induced by the vertices

which are at distance 2 from a fixed vertex in the point graph of a generallized
quadrangle with parameters $(q, q^{2})$ .

(ii) If $d\geqq 3$ then $q$ is a prime power and $\Gamma$ is isomorphic to the graph re-
lated to the scheme Her $(d, q)$ .

REMARKS. Since $a_{1}=q-2$ , the hypothesis of the theorem implies that every
edge of $\Gamma$ is in a unique clique of size $q$ . It is not assumed in the theorem
that $q$ is a prime power. We obtain this fact as a corollary only in the case
$d\geqq 3$ . Besides the classical generalized quadrangles (corresponding to the graphs
related to Her $(2, q))$ , a number of other series with parameters $(q, q^{2})$ are known,
see [PT]. In all examples $q$ is a prime power, but up to our knowledge no
proof exists that $q$ must be so in all generalized quadrangles with parameters
$(q, q^{2})$ .

In what follows it is assumed that $\Gamma$ is a distance-regular graph satisfying
the hypothesis of Theorem A. In view of [IS1] we will assume that $q\geqq 3$ , but
the most part of our arguments are valid in the case $q=2$ as well. In order
to simplify the notation we will not use a special symbol for the vertex set of
$\Gamma$ (as well as for all other graphs in the paper). So $x\in\Gamma$ means that $x$ is a
vertex of $\Gamma$ .

It follows from the general theory [BI] that $\Gamma$ can be considered as a set
$\{x^{*}|x\in\Gamma\}$ of vectors in a $k$ -dimensional vector space over $R$ such that

$\langle x^{*}, y^{*}\rangle=q_{1}(i)$ if $d(x, y)=i$ .

Here $k=b_{0}$ is the valency of the graph $\Gamma,$ $\langle, \rangle$ is the usual inner product,

$q_{1}(i)=((-q)^{2d-i}-1)/(q+1)$ , $0\leqq i\leqq d$ ,

and $d$ is the usual distance function on $\Gamma$ .
In Section 3 of [IS1] a number of propositions concerning $\Gamma$ have been

proved. Here we formulate those results in the following two lemmas. Recall
that if $x\in\Gamma$ then $\Gamma_{i}(x)=\{z|z\in\Gamma, d(x, z)=i\}$ . Let $\Delta,$ $\Sigma\subseteqq\Gamma$ then $d(\Delta, \Sigma)=$

$\min\{d(u, v)|u\in\Delta, v\in\Sigma\}$ . Instead of $d(\{x\}, \Delta)$ we will write $d(x, \Delta)$ . In addi-
tion $\Gamma_{i}(\Delta)=\{y|y\in\Gamma, d(y, \Delta)=i\}and\Delta^{*}$ is the sum of all vectors $u^{*}$ for $u\in\Delta$ .

LEMMA 1.1. Let $x\in\Gamma$ and $\Gamma_{1}(x)=\{y_{1}, y_{2}, \cdot.. , y_{k}\}$ be the set of all neigh-
bours of $x$ in $\Gamma$ . Then the Gram matrix $||\langle y_{i}^{*}, y_{j}^{*}\rangle||_{k\cross k}$ is nonsingular, $i$ . $e$ . the
vectors $yf,$ $y_{2}^{*}$ , , $yk*$ form a basis of V. $\square$

LEMMA 1.2. Let $x,$ $y\in\Gamma,$ $d(x, y)=i,$ $1\leqq i\leqq d$ . Then $x$ and $y$ are contained
in a uniquely determined subgraph $\Delta(x, y)$ of $\Gamma$ . Moreover the following asser-
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tions hold:
(i) $\Delta(x, y)$ is $dis$tance-regular with parameters of the graph related to

Her $(i, q)$ ;

(ii) if vertices $u,$ $v$ are contained in $\Delta(x, y)$ and $d(u, v)=s$ then each path of
length $t\leqq s+1$ between $u$ and $v$ is contained in $\Delta(x, y)$ ; in particular $\Delta(u, v)\subseteqq$

$\Delta(x. y)$ and $\Delta(x, y)$ is geodetically closed;
(iii) for a vertex $x\in\Gamma$ the set $\pi(x)$ of all subgraphs $\Delta(x, y)$ , for $y\in\Gamma_{i}(x)$ ,

$1\leqq i\leqq d-1$ , with the incidence relation defined by inclusion, form a projective
space $PG(d-1, q^{2})$ . $\square$

In the graph related to Her $(d, q)$ tbe subgraphs $\Delta(x, y)$ has the following
interpretation. Let $x$ be the null form and $y\in\Gamma_{i}(x)$ . So $y$ is a form of rank
$i$ and the radical rad $(y)$ of the form has dimension $d-i$ . Then $\Delta(x, y)=$

{ $z|z\in\Gamma$, rad $(y)\subseteqq rad(z)$ }. In the general case these subgraphs can be defined
in terms of the space $V$ as follows. For $y\in\Gamma_{i}(x)$ let $V(x, y)$ be the subspace
of $V$ generated by the vectors from the set $\{x^{*}\}\cup\{z^{*}|d(z, x)=1, d(z, y)\leqq i\}$ .
Then $\Delta(x, y)$ is induced by the set of all vertices $v$ such that $v^{*}\in V(x, y)$ .
Notice that if $d(x, y)=1$ then $\Delta(x, y)$ is the unique clique containing the edge
$\{x, y\}$ .

It is known ([BCN], [IS1]) that the distance-regular graph related to
Her $(d, q)$ is isomorphic to the subgraph induced by the vertices whicb are at
the maximal distance from a fixed vertex in the dual polar space graph of
$2A_{21-1}((q)$ . If $d\geqq 3$ then the latter is characterized by its parameters, see [BCN],

[IS2]. A graph with the parameters of the $2A_{3}(q)$-graph is the point graph of
type a generalized quadrangle with parameters $(q, q^{2})$ [CGS]. In view of this
observation an approach to the characterization of Her $(d, q)$ was proposed in
[IS1]. This approach implies a reconstruction of the dual polar space graph
from $\Gamma$ . In the present paper we realize this approach. Namely, we recon-
struct a generalized quadrangle in the case $d=2$ and the dual polar space of
type $2A_{s}(q)$ in the case $d=3$ . It turns out that for $d>3$ it is possible to use
some inductive arguments.

If we consider the representation of the graph of type $2A_{2i-1}((q)$ in the
eigenspace related to the exceptional $Q$ -polynomial structure and restrict it on
the graph related to Her $(d, q)$ we obtain another representation of this graph.
This representation exists also in the general situation and can be produced as
follows.

Let $W=V\oplus V_{0}$ where $V_{0}$ is a 1-dimensional space generated by $a$ vector $e$

which is orthogonal to $V$ , with $\langle e, e\rangle=1$ . For $x\in\Gamma$ let $\hat{x}=\alpha x^{*}+\beta e$ where
$\alpha=(q+1)^{1/2}/q^{\dot{a}}$ and $\beta=1/q^{\dot{a}}$ . If $d(x, y)=i$ then $\langle\hat{x},\hat{y}\rangle=(-q)^{-i}$ . For a subgraph
$\Delta$ of $\Gamma$ let $\hat{\Delta}$ be the sum of the vectors $\hat{x}$ for all $x\in\Delta$ .
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2. The case $d=2$ .
It was proved in [Bo] that in the point graph of a generalized quadrangle

with Parameters $(q, q^{2})$ the subgraPh induced by the vertices which are at dis-
tance 2 from a fixed vertex is distance-regular with the parameters of the
graph related to Her $(2, q)$ . The purpose of this section is to prove Theorem A
(i), $i$ . $e$ . to reconstruct a generalized quadrangle with parameters $(q, q^{2})$ from a
distance-regular graph with the parameters of Her $(2, q)$ .

2a. Some equalities.

Let $x\in\Gamma$ and $\{y_{1}, y_{2}, \cdots , y_{k}\}=\Gamma_{1}(x)$ . It follows from our assumptions that
the graph induced by $\Gamma_{1}(x)$ is a disjoint union of cliques. So we can assume
that $y_{s(q-1)+i}$ is adjacent to $y_{S(q-1)j}+$ for $0\leqq s\leqq q^{2}$ and $1\leqq i<j\leqq q-1$ .

Let us fix an orthonormal basis $\{e_{1}, \cdots , e_{k}\}$ in $V$ . For $v\in V$ let $v^{i}$ denotes
the i-th coordinate of $v$ in the basis $\{e_{1}, \cdots , e_{k}\}$ . By symmetry we can assume
that there are $a,$

$b$ and $c$ such that

$(y_{i}^{*})^{j}=\{$

$a$ if $i=j$ ,
$b$ if $d(y_{i}, y_{f})=1$ ,
$c$ otherwise.

LEMMA 2.1.
$(a-b)^{2}=q^{3}$ ,

$(a+(q-2)b-(q-1)c)^{2}=q^{2}$ .
PROOF. The inner products $\langle y_{1}^{*}, y_{i}^{*}\rangle$ for $i=1,2$ and $q$ are equal to $q_{1}(0)=$

$q^{3}-q^{2}+q-1,$ $q_{1}(1)=-q^{2}+q-1$ and $q_{1}(2)=q-1$ respectively. Evaluating these
equalities in terms of $a,$

$b$ and $c$ we obtain

$a^{2}+(q-2)b^{2}+(q-1)q^{2}c^{2}=q_{1}(0)$ ,

$2ab+(q-3)b^{2}+(q-1)q^{2}c^{2}=q_{1}(1)$ ,

$2ac+2(q-2)bc+(q-1)(q^{2}-1)c^{2}=q_{1}(2)$ .
The equalities stated in the lemma are linear combinations of these equalities

with coefficients $(1, -1,0)$ and $(1, q-2, -q+1)$ respectively. $\square$

Let $w\in\Gamma_{2}(x)$ . Since every edge of $\Gamma$ is contained in a unique clique there
are no adjacent vertices in $\Gamma_{1}(x)\cap\Gamma_{1}(w)$ . So by symmetry we can assume, that
there are $\alpha,$ $\beta$ and $\gamma$ with

$(w^{*})^{i}=\{$

$\alpha$ if $d(w, y_{i})=1$ ,
$\beta$ if $d(w, y)\neq 1$ and $d(\Delta(x, y_{t}),$ $w)=1$ ,
$\gamma$ otherwise.
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LEMMA 2.2.

$(a-\beta)(a-b)=-q^{2}$ ,

$(\alpha+(q-2)\beta-(q-1)\gamma)(a+(q-2)b-(q-1)c)=-q^{2}$ .
PROOF. Without loss of generality we can assume that $y_{1}\in\Gamma_{1}(x)\cap\Gamma_{1}(w)$ and

$y_{i}\not\in\Gamma_{1}(x)\cap\Gamma_{1}(w)$ for $q\leqq i\leqq 2(q-1)$ . Then $w^{*}$ has the form

$(_{\frac{\alpha,\beta,\cdots,\beta}{q-1}\frac{\gamma,\gamma,\cdots,\gamma}{q-1}}, )$

.

The inner products $\langle w^{*}, y_{i}^{*}\rangle$ for $i=1,2$ and $q$ are equal to $q_{1}(1),$ $q_{1}(2)$ and $q_{1}(2)$

respectively. Evaluating these equalities and considering linear combinations
of them with the same coefficients as in Lemma 2.1, we obtain the equalities
stated in the present lemma. $\square$

COROLLARY 2.3.
$(\alpha-\beta)^{2}=q$ ,

$(\alpha+(q-2)\beta-(q-1)\gamma)^{2}=q^{2}$

PROOF follows from Lemmas 2.1 and 2.2. $\square$

NOW let $w,$ $v\in\Gamma_{2}(x)$ . The set of maximal cliques passing through a vertex
$y$ will be denoted by $Q(y)$ . We introduce the following parameters. Set
$n=\#\{y\in\Gamma_{1}(x)|d(y, v)=d(y, w)=1\}$ and $m=\#\{\Sigma\in Q(x) d(\Sigma, v)=d(\Sigma, w)=1\}$ .
Corollary 2.3 enables us to express the inner product $\langle v^{*}, w^{*}\rangle$ in terms of $m$ and $n$ .

PROPOSITION 2.4. $\langle w^{*}, v^{*}\rangle=(n+m)q-(q-1)^{2}(q+1)$ .

PROOF. By the parameters of $\Gamma$, among the cliques containing $x$ there are
exactly $m-q^{2}+2q+1$ cliques which contain no vertices adjacent to $w$ or $v$ and
exactly $2(q^{2}-q-m)$ cliques which contain adjacent vertices only for one of the
vertices $w$ and $v$ . So we obtain the equality

$\langle w^{*}, v^{*}\rangle=(m-q^{2}+2q+1)(q-1)\gamma^{2}+2(q^{2}-q-m)\gamma(\alpha+(q-2)\beta)$

$+(m-n)(2\alpha\beta+(q-3)\beta^{2})+n(\alpha^{2}+(q-2)\beta^{2})$ .
Expand the right side and separate the monoms depending on $m$ , depending on
$n$ and depending neither on $m$ nor on $n$ . Then we come to the expression

$\langle w^{*}, v^{*}\rangle=(m/(q-1))((\alpha+(q-2)\beta-(q-1)\gamma)^{2}-(\alpha-\beta)^{2})+n(\alpha-\beta)^{2}+S$ ,

where $S$ stands for the part not depending on $m$ and $n$ . By Corrollary 2.3 this
is the same as

$\langle w^{*}, v^{*}\rangle=(m+n)q+S$ .
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In order to calculate $S$ apply this formula to the case $w=v$ . In this case
$m=n=q(q-1)$ and $\langle w^{*}, v^{*}\rangle=q_{1}(0)$ . So $S=-(q-1)^{2}(q+1)$ . $\square$

Let us apply Proposition 2.4 to the case $d(v, w)=1$ . If a vertex $y\in\Gamma_{1}(x)$

is adjacent to both $v$ and $w$ then $y\in\Delta(v, w)$ . But the graph induced by $\Gamma_{1}(x)$

is a disjoint union of cliques. So such a vertex $y$ is unique. Hence $n\leqq 1$ if
$d(v, w)=1$ .

We reformulate this fact in the following way. For $y\in\Gamma_{2}(x)$ let $\lambda(y)$ (re-

spectively $\mu(y))$ denote the set of cliques $\Sigma\in Q(x)$ such that $d(\Sigma, y)=1$ (respec-

tively $d(\Sigma, y)=2)$ . Since $\Gamma_{1}(x)\cap\Gamma_{1}(y)$ contains no adjacent vertices, we have
$|\lambda(y)|=q(q-1)$ and $|\mu(y)|=q+1$ . Finally $|\lambda(v)\cap\lambda(w)|=m$ .

COROLLARY 2.5. Let $d(v, w)=1$ . Then either
i) $|\Gamma_{1}(x)\cap\Gamma_{1}(v)\cap\Gamma_{1}(w)|=1,$ $|\lambda(v)\cap\lambda(w)|=q^{2}-2q-1$ and $|\mu(v)\cap\mu(w)|=0,\cdot$

$or$

ii) $|\Gamma_{1}(x)\cap\Gamma_{1}(v)\cap\Gamma_{1}(w)|=0,$ $|\lambda(v)\cap\lambda(w)|=q^{2}-2q$ and $|\mu(v)\cap\mu(w)|=1$ .

PROOF. Since $d(v, w)=1$ we have $\langle v^{*}, w^{*}\rangle=q_{1}(1)$ . So by Proposition 2.4
$m+n=q^{2}-2q$ . $\square$

$2b$ . Classes of cliques.
Let $\Sigma$ be a clique. If $y\in\Gamma_{1}(\Sigma)$ then $\Sigma$ contains exactly one vertex adjacent

to $y$ . Hence we can calculate the cardinalities of $\Gamma_{1}(\Sigma)$ and $\Gamma_{2}(\Sigma)$ . We have
$|\Gamma_{1}(\Sigma)|=|\Sigma|\cdot(q-1)q^{2}=q^{3}(q-1)$ and $|\Gamma_{2}(\Sigma)|=|\Gamma|-|\Sigma|-|\Gamma_{1}(\Sigma)|=q(q^{2}-1)$ .

LEMMA 2.6. $\Gamma_{2}(\Sigma)$ is a disjoint union of cliques having size $q$ and contains
no other edges.

PROOF. For $x\in\Gamma_{2}(\Sigma)$ we shall prove that in $Q(x)$ there is exactly one
clique which lies in $\Gamma_{2}(\Sigma)$ and that any other clique in $Q(x)$ intersects $\Gamma_{2}(\Sigma)$

exactly in $x$ .
If a clique $\Theta\in Q(x)$ belongs to all the sets $\lambda(v),$ $v\in\Sigma$ , then each vertex of

$\Sigma$ is adjacent to some vertex from $\Theta-\{x\}$ . But $|\Sigma|>|\Theta-\{x\}|$ , so at least
one vertex of $\Sigma$ is adjacent to two vertices of $\Theta$ . This is impossible due to
our assumption on cliques in $\Gamma$ . So the sets $\mu(v),$ $v\in\Sigma$ cover $Q(x)$ . If $v,$

$w\in\Sigma$

then $\Delta(v, w)=\Sigma\subseteqq\Gamma_{2}(x)$ and hence $|\Gamma_{1}(x)\cap\Gamma_{1}(v)\cap\Gamma_{1}(w)|=0$ . By Corollary 2.5
$|\mu(v)\cap\mu(w)|=1$ . So we have a set $Q(x)$ of size $q^{2}+1$ covered by a family
$\{\mu(v)|v\in\Sigma\}$ of $q$ subsets, each of which has size $q+1$ and any two of which
intersect exactly in one point. Now it is easy to see that all the sets $\mu(v)$ ,
$v\in\Sigma$ have a clique $\Theta$ in common. By the definition $\Theta\subseteqq\Gamma_{2}(\Sigma)$ . Each other
clique $--\in Q(x)$ lies in $\mu(v)$ for exactly one vertex $v\in\Xi$ . Hence each vertex
from $\Sigma-\{v\}$ is adjacent to a unique vertex from $---\{x\}$ , $i$ . $e$ . $\Sigma-\{v\}$ and
$---\{x\}$ are joined by a matching. $\square$
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A clique $\Theta$ is said to be congruent to a clique $\Sigma$ if either $\Theta=\Sigma$ or $d(\Theta, \Sigma)$

$=2$ . By Lemma 2.6 the congruency is an equivalence relation. A clique $\Theta$ is
said to be adjacent to a clique $\Sigma$ if they are joined by a matching.

LEMMA 2.7. Let $\Sigma$ be a clique and $x\in\Gamma_{1}(\Sigma)$ . Then there is exactly one
clique in $Q(x)$ which lies in $\Gamma_{1}(\Sigma)$ .

PROOF. Let $\{y\}=\Sigma\cap\Gamma_{1}(x)$ . If $v,$ $w\in\Sigma-\{y\}$ then $\{y\}=\Gamma_{1}(x)\cap\Gamma_{1}(v)\cap\Gamma_{1}(w)$ .
By Corollary 2.5 $\mu(v)\cap\mu(w)=\emptyset$ and hence the union of $\mu(v)$ over all $v\in\Sigma-\{y\}$

covers $q^{2}-1$ cliques in $Q(x)$ . Since $|Q(x)|=q^{2}+1$ there is just one clique $\Xi\in$

$Q(x)-\{\Delta(x, y)\}$ which belongs to all the sets $\lambda(v),$ $v\in\Sigma-\{y\}$ . $\square$

It is easy to see that the cliques $--$ and $\Sigma$ in the above proof are adjacent.
A set $S$ of cliques in $\Gamma$ will be called a spread if the following conditions hold

a) for each vertex $v\in\Gamma$ there is exactly one clique $\Sigma=\Sigma(v)\in S$ such that
$v\in\Sigma$ ,

b) if $x,$ $y$ are adjacent vertices of $\Gamma$ then either $\Sigma(x)=\Sigma(y)$ or $\Sigma(x)$ is
adjacent to $\Sigma(y)$ .

For a clique $\Sigma$ let $S(\Sigma)$ denote the set of all cliques in $\Gamma$ which lie in
$\Gamma_{i}(\Sigma)$ for some $i=0,1$ or 2.

PROPOSITION 2.8. The set $S(\Sigma)$ forms a spread. Moreover if $S$ is a spread
and $\Sigma\in S$ then $S=S(\Sigma)$ .

PROOF. By Lemmas 2.6 and 2.7 cliques in $S(\Sigma)$ are disjoint and they cover
all vertices of $\Gamma$ . For $i=1,2$ , let $v_{i}\in\Theta_{i}\in S(\Sigma)$ and let $v_{1}$ and $v_{2}$ be adjacent.
If $v_{1}\in\Sigma\cup\Gamma_{2}(\Sigma)$ then $\Gamma_{1}(\Theta_{1})=\Gamma_{1}(\Sigma)$ . So either $\Theta_{2}=\Theta_{1}$ or $\Theta_{2}$ is adjacent to $\Theta_{1}$ .
NOW let $v_{1},$

$v_{2}\in\Gamma_{1}(\Sigma)$ . By the definition $\Theta_{1}\cap\Theta_{2}=\emptyset$ . If $\Theta_{2}$ intersects $\Gamma_{2}(\Theta_{1})$

then there exists a clique $--$ congruent to $\Theta_{1}$ such that $\Xi\cap\Theta_{2}\neq\emptyset$ . But $\Gamma_{1}(\Theta_{1})$

$=\Gamma_{1}(_{-}^{-})$ . Hence $\Xi$ is adjacent to $\Sigma$ . Now Lemma 2.7 implies that $--=\Theta_{2}$ The
contradiction proves the first claim of the lemma.

Let 8 be a spread. By Lemma 2.7 if a clique $\Sigma\in S$ and clique $\Xi$ is adjacent
to $\Sigma$ then $\Xi\in s$ . Hence if $\Sigma\in S$ then $S(\Sigma)\subseteqq S$ . Since cliques from $S(\Sigma)$ cover
$\Gamma$ we have $S=S(\Sigma)$ . $\square$

2c. Generalized quadrangle.
NOW we start with the reconstruction of a generalized quadrangle from $\Gamma$ .

Let $C=\{c_{1}, c_{2}, \cdots , c_{s}\}$ be the set of all classes of congruent cliques. Let us
construct a graph $\tilde{\Gamma}$ with the vertex set $\{g\}\cup C\cup\Gamma$ where $g$ is an additional
vertex. The adjacency is defined as follows:

(a) $x,$ $y\in\Gamma$ are adjacent if and only if they are adjacent in $\Gamma$ ;
(b) a vertex $c_{i}$ is adjacent to a vertex $x\in\Gamma$ if and only if $x$ is contained

in a clique from $c_{i}$ ;
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(c) $c_{i},$ $c_{j}\in C$ for $i\neq j$ are adjacent if and only if $c_{i}$ and $c_{j}$ are contained in
the same spread;

(d) $\tilde{\Gamma}_{1}(g)=C$ .
By Proposition 2.8 the subgraph in $\tilde{\Gamma}$ induced by $C$ is a disjoint union of

cliques. The size of any clique in $C$ is equal to the number of classes of con-
gruent cliques in the corresponding spread. If $\Sigma$ is a clique in $\Gamma$ then its con-
gruency class covers $|\Sigma\cup\Gamma_{2}(\Sigma)|=q^{3}$ vertices. So each spread contains exactly $q$

classes. Spreads in $\Gamma$ are in a correspondence with cliques in $\Gamma$ containing a
fixed vertex. Now it is easy to see that any vertex of $\tilde{\Gamma}$ is adjacent to exactly
$q(q^{2}+1)$ vertices of $\tilde{\Gamma}$ . Let us introduce two sets of cliques of size $q+1$ in $\tilde{\Gamma}$ .
Let $P_{1}$ (respectively $P_{2}$ ) be the set of all cliques in $\tilde{\Gamma}$ having the form $\Sigma\cup\{X\}$

where $\sum$ is a clique in $\Gamma$ (respectively in $C$ ) and $x$ is the congruency class
containing $\Sigma$ (respectively $x=g$). Let $P=P_{1}\cup P_{2}$ .

LEMMA 2.9. If $x$ is a vertex of $\tilde{\Gamma}$ and $\sum\in P$ then $d( \sum, x)\leqq 1$ . Moreover,
there is exactly one vertex $y \in\sum$ such that $d(y, x)=d( \sum, x)$ .

PROOF. Let $\Sigma\in P_{1}$ and $c\in\Sigma\cap C$ . If $x\in\Gamma$ then $d(\Sigma, x)\leqq 1$ since all vertices
from $\Gamma_{2}(\Sigma-\{c\})$ are covered by cliques from $c$ . If $c\neq c’\in C$ then there is a
clique in $c’$ which intersects $\Sigma-\{c\}$ . So $d(\Sigma, c’)=1$ . Finally $d(g, c)=1$ .

NOW let $\Sigma\in P_{2}$ . Since classes from $\Sigma-\{g\}$ form a spread, any vertex of
$\Gamma$ is at distance 1 from $\Sigma$ . Any other vertex of $\tilde{\Gamma}$ is at distance 1 or $0$ from
$g\in\Sigma$ . So in any case if $\Sigma\in P$ and $x$ is a vertex of $\tilde{\Gamma}$ then $d(\Sigma, x)\leqq 1$ . Now
the equality $|\tilde{\Gamma}|=1+q(q^{2}+1)+q^{4}=(q+1)+(q+1)\cdot q\cdot q^{2}$ shows that any vertex in
$\Gamma_{1}(\Sigma)$ is adjacent to only one vertex of $\Sigma$ . $\square$

PROPOSITION 2.10. $\tilde{\Gamma}$ is the Point graPh of a generalized quadrangle with
the parameters $(q, q^{2})$ .

PROOF. If is easy to see that any edge of $\tilde{\Gamma}$ is contained in some clique
from $P$. So by Lemma 2.9 $P$ is the set of all cliques of $\tilde{\Gamma}$ .

NOW let the vertices of $\tilde{\Gamma}$ and the cliques from $P$ be the elements of a
rank 2 geometry $\mathcal{G}$ and let the incidence on $\mathcal{G}$ be defined by inclusion. Since
any cycle of length 3 in $\tilde{\Gamma}$ is contained in a clique from $P$, the girth of $\mathcal{G}$ is
at least 8. By Lemma 2.9 the diameter of $\mathcal{G}$ is four. So $\mathcal{G}$ is a generalized
quadrangle. $\square$

It is easy to see that Proposition 2.10 implies Theorem A (i).

$2d$ . Other possibilities.
Let us construct a code from $\Gamma$ . The codewords will be in a correspondence

with the vertices of $\Gamma$ while places in the codewords will correspond to spreads.
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Let us mark the congruency classes from each spread by the integers from 1
to $q$ . The i-th place of the codeword corresPonding to a vertex $v\in\Gamma$ contains
the number of the class covering $v\in\Gamma$ in the spread number $i$ . For $x\in\Gamma$ let
$\tilde{x}$ be the codeword corresponding to $x$ , and for $x,$ $y\in\Gamma$ let $\delta(\tilde{x},\tilde{y})$ denote the
Hamming distance between the codewords, $i$ . $e$ . the number of nonequal coordi-
nates. Then the following lemma holds.

LEMMA 2.11. Let $x,$ $y\in\Gamma$ . Then

$\delta(\tilde{x},\tilde{y})=\{$

$0$ ,
$q^{2}$ ,
$q^{2}-q$ ,

if $x=y$ ,

if $d(x, y)=1$ ,

if $d(x, y)=2$ . $\square$

It follows from Lemma 2.11 that the weight enumerator of the constructed
code is the following:

$| \Gamma|^{-1}\sum_{x.y\in\Gamma}z^{\delta_{(}\tilde{x}.\overline{y})}=1+(q^{2}-q)(q^{2}+1)z^{q^{2}-q}+(q-1)(q^{2}+1)z^{q^{2}}$

By remark 8.2 in [CGS] a code with this enumerator is an orthogonal array
of strength 3, index $q$ , length of codewords $q^{2}+1$ and nonzero distances $q^{2}$ and
$q^{2}-q$ . In the same paper it is shown that existence of such an array is equi-
valent to existence of a generalized quadrangle with parameters $(q, q^{2})$ .

At the end of the section let us show how the generalized quadrangle $\mathcal{G}$

can be reconstructed just in its natural representation as a set of vectors in an
eigenspace of the corresponding association scheme.

LEMMA 2.12. Let $\Sigma$ and $\Xi$ be cliques of size $q$ in $\Gamma$ . Then $\Sigma*=\Xi*(equi-$

valently $\hat{\Sigma}=B$) if and only if $\Sigma$ and $\Xi$ are congruent cliques.

PROOF. From the structure of cliques in $\Gamma$ it follows that $\Sigma$ and $--$ have
at most one vertex in common. Keeping this fact in mind one can check the
lemma by direct calculation of $\langle\Sigma*, \Sigma*\rangle$ and $\langle\Sigma*, --*\rangle$ . $\square$

REMARK. Let $\Gamma$ satisfy the hypothesis of Theorem A for some $d\geqq 2$ . Since
the inner product $\langle\hat{x},\hat{y}\rangle$ does not depend on $d$ , the claim analogous to Lemma
2.12 is valid for cliques in a subgraph $\Delta(x, y)$ of $\Gamma$ for $d(x, y)=2$ .

Let us define the following set of vectors in the space $W$ . For a clique $\Sigma$

in $\Gamma$ put $w_{\Sigma}=-\hat{\Sigma}$ . Due to Lemma 2.12 we can write $w_{c}$ instead of $w_{\Sigma}$ where
$c$ is the congruency class containing $\Sigma$ . Put $w_{g}=e$ . Notice that $w_{g}=\hat{\Gamma}/q^{2}$ .
Finally for $x\in\Gamma$ put $w_{x}=\hat{x}$ .

LEMMA 2.13. Let $x,$ $y$ be any vertices of $\tilde{\Gamma}$ and $i=d(x, y)$ . Then $\langle w_{x}, w_{y}\rangle$

$=(-q)^{-i}$ .
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PROOF. Direct calculation. $\square$

It is easy to see that we have obtained the desired representation of $\tilde{\Gamma}$ .

3. The case $d=3$ .
NOW let us turn to the case $d=3$ .
By Lemma 1.2 (i) and (ii) any pair of vertices $x,$ $y\in\Gamma$ which are at dis-

tance 2 in $\Gamma$ lie in a unique subgraph $\Delta(x, y)$ . This subgraph is distance-
regular and its parameters coincide with that of Her $(2, q)$ . Such a subgraph will
be called a prequad since by Proposition 2.10 it is isomorphic to the graph induced
by the set of vertices which are at the maximal distance from a fixed vertex
in the point graph of some generalized quadrangle. By Lemma 1.2 (iii) the set
$Q(x)$ of cliques and the set $P(x)$ of prequads containing a fixed vertex $x$ in $\Gamma$

form a projective plane $\pi(x)$ of order $q^{2}$ .
If $\Delta,$ $--$ are distinct prequads having a vertex in common, then by Lemma

1.2 (ii) $\Delta\bigcap_{-}^{-}$ is a connected graph. Since $\pi(x)$ is a projective plane for $x\in\Delta\cap\Xi$ ,
we have that $\Delta\bigcap_{-}^{-}$ is a clique.

3a. Classes of prequads.
In this subsection $\Delta$ denotes a fixed prequad in $\Gamma$ . Let us consider the de-

composition of $\Gamma$ with respect to $\Delta$ . The following lemma is very useful.

LEMMA 3.1. Let a prequad $\Xi$ intersect $\Delta$ and $x\in\Xi$ . Then $d(\Delta, x)=$

$d(\Delta\cap E, x)$ .

PROOF. Put $\Sigma=\Delta\cap--$ . If $d(\Delta, x)<d(\Sigma, x)$ then $d(\Delta, x)=1$ and $d(\Sigma, x)=2$ .
Let $y\in\Sigma,$ $z\in\Delta$ such that $d(z, x)=1$ . There is a path of length at most 3
passing from $x$ to $y$ through $z$ . Since $d(x, y)=2$ , Lemma 1.2 (ii) implies
$z\in\Sigma$ . $\square$

The prequad $\Delta$ contains $q^{4}$ vertices and its valency is $(q-1)(q^{2}+1)$ . By
Lemma 1.2 (ii) each vertex from $\Gamma_{1}(\Delta)$ is adjacent to exactly one vertex in $\Delta$ .
So $|\Gamma_{1}(\Delta)|=q^{4}\cdot(q-1)q^{4}=q^{9}-q^{8}$ .

LEMMA 3.2. Let $x\in\Delta,$ $y\in\Gamma_{1}(\Delta)\cap\Gamma_{1}(x)$ . Then there is a bijection $\varphi$ between
the cliques in $\Gamma_{1}(\Delta)$ containing $y$ and the cliques in $\Delta$ containing $x$ . If $\Sigma=\varphi(\Theta)$

then $\Sigma$ and $\Theta$ are joined by a matching.

PROOF. Let $--$ be a prequad containing $x$ and $y$ . Then $\Xi\cap\Delta$ is a clique.
By Lemmas 3.1 and 2.7 there is just one clique in $--\cap\Gamma_{1}(\Delta)$ containing $y$ . So
we have the desired bijection. $\square$

By the above lemma if $y\in\Gamma_{1}(\Delta)$ then $Q(y)$ contains exactly one clique $\Theta$

intersecting $\Delta$ and exactly $q^{2}+1$ cliques from $\Gamma_{1}(\Delta)$ . Let $\Sigma$ be any other clique
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in $Q(y)$ . Then $\Sigma$ intersects $\Gamma_{2}(\Delta)$ . Let $--$ be the prequad passing through $\Sigma$

and $\Theta$ . Then by Lemma 1.2 (iii) $--\cap\Delta$ is a clique. On the other hand $y\in\Sigma$

and $d(y, E\cap\Delta)=1$ . By Lemma 2.6 this implies that $|\Sigma\cap\Gamma_{2}(_{-}^{-}\cap\Delta)|=1$ . Hence
$|\Sigma\cap\Gamma_{2}(\Delta)|=1$ and $|\Gamma_{1}(y)\cap\Gamma_{2}(\Delta)|=q^{4}-1$ .

NOW to calculate the cardinality of $\Gamma_{2}(\Delta)$ we should determine the number
of vertices from $\Gamma_{1}(\Delta)$ adjacent to a fixed vertex $y\in\Gamma_{2}(\Delta)$ . As it was proved
above, if $\Sigma\in Q(y)$ and $\Sigma\cap\Gamma_{1}(\Delta)\neq\emptyset$ then $\Sigma\cap\Gamma_{2}(\Delta)=\{y\}$ . Let $\lambda(y)$ (respectively
$\mu(y))$ denote the set of all cliques $\Sigma\in Q(y)$ having nonempty (respectively empty)

intersection with $\Gamma_{1}(\Delta)$ . Finally, let $\nu(y)$ denote the set of all prequads from
$P(y)$ intersecting $\Delta$ .

We start with two trivial remarks concerning these sets.
(A) If $\Sigma\in\lambda(y)$ then $\Sigma$ lies in exactly one prequad from $v(y)$ . Surely, by

Lemma 3.1 such a prequad contains $\Delta\cap\Gamma_{1}(\Sigma)$ .
(B) If $\Xi\in\nu(y)$ then $\Xi$ contains exactly $q^{2}$ cliques from $\lambda(y)$ . This fact is

due to Lemmas 3.1 and 2.6.
Since $\pi(y)$ is a projective plane of order $q^{2}$ then by (A) and (B) all prequads

from $\nu(y)$ have a clique $\Theta_{y}\in\mu(y)$ in common. If $\Xi\in\nu(y)$ then by Lemma 2.6
$\Theta_{y}$ is congruent in $--$ to the clique $\Sigma=\Xi\cap\Delta$ . By the remark after Lemma 2.12
$\hat{\Theta}_{y}=\hat{\Sigma}$ . So if $--1$ is another prequad from $\nu(y)$ and $\Sigma_{1}=_{-1}-\cap\Delta$ then $\hat{\Sigma}_{1}=\hat{\Sigma}$ .
NOW the remark after Lemma 2.12 implies that $\Sigma$ and $\Sigma_{1}$ are congruent in $\Delta$ .
Each congruency class in a prequad consists of $q^{2}$ cliques. Hence $|\nu(y)|\leqq q^{2}$

and by (A) and (B) $y$ is adjacent to at most $(q-1)q^{4}$ vertices from $\Gamma_{1}(\Delta)$ .
NOW we are in a position to calculate the cardinality of $\Gamma_{2}(\Delta)$ . On one

hand $|\Gamma_{2}(\Delta)|\geqq|\Gamma_{1}(\Delta)|\cdot(q^{4}-1)/((q-1)q^{4})=q^{8}-q^{4}$ . On the other hand $|\Gamma_{2}(\Delta)|\leqq$

$|\Gamma|-|\Delta|-|\Gamma_{1}(\Delta)|=q^{9}-q^{4}-(q^{9}-q^{8})=q^{8}-q^{4}$ . So $|\Gamma_{2}(\Delta)|=q^{8}-q^{4}$ . In particular for
each vertex $y$ of $\Gamma$ the inequality $d(\Delta, y)\leqq 2$ holds. In particular each clique
from $\mu(y)$ is contained in $\Gamma_{2}(\Delta)$ . Another consequence is the following.

LEMMA 3.3. If $y\in\Gamma_{2}(\Delta)$ then $|\nu(y)|=q^{2}$ . Moreover, the subgraPh induced
by $\Delta\cap\Gamma_{2}(y)$ is a disjoint union of cliques which form a congruency class in $\Delta$ . $\square$

REMARK. Lemma 3.3 enables us to calculate $\langle\Delta^{*}, z^{*}\rangle$ for $z\in\Gamma_{2}(\Delta)$ . A
direct calculation shows that $\langle\Delta^{*}, z^{*}\rangle$ coincides with $\langle\Delta^{*}, u^{*}\rangle$ for $u\in\Delta$ . On
the other hand if $z\in\Gamma_{1}(\Delta)$ and $\{t\}=\Delta\cap\Gamma_{1}(z)$ then by Lemma 1.2 (ii) for any
$s\in\Delta$ we have $d(z, s)=d(t, s)+1$ . Now it is straightforward to check that
$\langle\Delta^{*}, z^{*}\rangle=-q^{4}\neq\langle\Delta^{*}, t^{*}\rangle=q^{4}(q-1)$ .

By Lemma 3.3 $|\lambda(y)|=q^{4}$ and $|\mu(y)|=q^{2}+1$ . The point $\Theta_{y}$ of the projective
plane $\pi(y)$ is contained in exactly $q^{2}+1$ lines. Since $|\nu(y)|=q^{2}$ , cliques from
$\mu(y)$ form a line in $\pi(y)$ . So there is a prequad $\Delta_{y}$ such that for a clique $\Sigma$

we have $\Sigma\in\mu(y)$ if and only if $y\in\Sigma\subseteqq\Delta_{y}$ .
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PROPOSITION 3.4. If $y,$ $z$ are two adjacent vertices in $\Gamma_{2}(\Delta)$ then $\Delta_{y}=\Delta_{z}$ . In
other words, $\Gamma_{2}(\Delta)$ is a $dis$] $0int$ union of prequads.

PROOF. Let $--$ be a prequad and $t$ be a vertex of $--$ . Put $A=\Gamma_{1}(t)$ and
$B=_{-1}-(t)$ . By Lemma 1.1 $\{x^{*}|x\in A\}$ is a basis of $V$ . So the vector $--*$ is a
linear combination of vectors in the basis. Since for $x\in A$ the inner product
$\langle_{-}^{-*}, x^{*}\rangle$ depends only on whether $x\in B$ or $x\not\in B$ , one can see that $\Xi^{*}=$

$\alpha A^{*}+\beta B^{*}$ for some $\alpha$ and $\beta$ . By the analogous reason $t^{*}=\gamma A^{*}$ for some $\gamma$ .
Hence

$\Xi^{*}=\delta t^{*}+\beta B^{*}$

for appropriate $\delta$ and $\beta$ . Notice that $\alpha,$ $\beta,$ $\gamma$ and $\delta$ do not depend on the
particular choice of $t$ and $--$ . In addition it is easy to see that $\beta\neq 0$ .

Let us apply this formula to $\Delta_{y}$ with respect to vertices $y$ and $z$ and then
calculate $\langle\Delta^{*}, \Delta_{y}^{*}\rangle$ . By the remark after Lemma 3.3 the value $\langle\Delta^{*}, s^{*}\rangle$ depends
on the parity of $i=d(\Delta, s)$ . Hence any vertex adjacent to $z$ in $A_{y}$ lies in $\Gamma_{2}(\Delta)$

and $\Delta_{y}=\Delta_{z}$ . So we have proved that $\Delta_{y}$ is the unique prequad that is contained
in $\Gamma_{2}(x)$ and contains $\{y\}$ . $\square$

A prequad $\Xi$ is said to be congruent to a prequad $\Delta$ if either $--=\Delta$ or
$d(\Xi, \Delta)=2$ . By Proposition 3.4 congruency of prequads is an equivalence rela-
tion. It follows from a direct calculation that for prequads $--\Theta$ we have
$\Xi^{*}=\Theta^{*}$ if and only if $--$ and $\Theta$ are congruent. So the equality of vectors is
another way to define the notion of congruency of prequads.

LEMMA 3.5. If $y\in\Gamma_{1}(\Delta)$ then there is exactly one prequad $\Xi$ which is con-
tained in $\Gamma_{1}(\Delta)$ and contains $y$ . Moreover there is a matching between $\Delta$ and $\Xi$

which determines an isomorphism of $\Delta$ and $\Xi$ .

PROOF. Let us calculate the number of prequads intersecting $D=\Delta\cup\Gamma_{2}(\Delta)$ .
By Lemma 3.1 if $\Xi$ is such a prequad then eitber $--\subseteqq D$ or $--\cap D$ is a disjoint
union of $q^{2}$ cliques. Any prequad contains exactly $q^{3}(q^{2}+1)$ cliques. Any clique
from $D$ is contained in exactly $q^{2}$ prequads intersecting $\Gamma_{1}(\Delta)$ . So the number
of prequads intersecting $D$ is $q^{4}+q^{4}\cdot q^{3}(q^{2}+1)\cdot q^{2}/q^{2}=q^{9}+q^{7}+q^{4}$ . The total num-
ber of prequads in $\Gamma$ is $q^{9}\cdot(q^{4}+q^{2}+1)/q^{4}=q^{5}(q^{4}+q^{2}+1)$ . So there are exactly
$q^{5}-q^{4}$ prequads in $\Gamma_{1}(\Delta)$ . By Lemma 3.2 for any vertex $y\in\Gamma_{1}(\Delta)$ there is at
most one prequad $\Xi$ in $\Gamma_{1}(\Delta)$ which contains $y$ . Since $|\Gamma_{1}(\Delta)|=q^{9}-q^{8}=(q^{5}-q^{4})q^{4}$ ,
such a prequad $--exists$ . $\square$

If prequads $\Delta$ and $-are$ joined by a matching, then these prequads will be
called adjacent.

NOW let us generalize the notion of spread introduced in Section 2. A set
$S$ of cliques (respectively, prequads) in $\Gamma$ will be called 1-spread (respectively,
2-spread) if the following conditions hold:
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a) for each vertex $v\in\Gamma$ there is exactly one clique (prequad) $\Sigma=\Sigma(v)\in S$

such that $v\in\Sigma$ ;
b) if $x,$ $y$ are adjacent vertices of $\Gamma$ then either $\Sigma(x)=\Sigma(y)$ or $\Sigma(x)$ is

adjacent to $\Sigma(y)$ .
For a prequad $\Xi$ , let $S_{2}(_{-}^{-})$ denote the set of all prequads in $\Gamma$ which lie

in $\Gamma_{i}(_{-}^{-})$ for $i=0,1$ or 2.

PROPOSITION 3.6. The set $S_{2}(\Xi)$ forms a 2-spread. Moreover, if $S$ is a 2-
spread and $E\in S$ then $S=S_{2}(\Xi)$ .

PROOF. Repeat that of Proposition 2.8. $\square$

By the above definition and Proposition 3.62-spreads are in a bijection with
theI prequads containing a fixed vertex $x\in\Gamma$. So there are exactly $q^{4}+q^{2}+1$

2-spreads.

3b. Classes of cliques.

Using Proposition 3.6 it is easy to describe all l-spreads in $\Gamma$ . For a clique
$\Sigma$ let $S=S_{1}(\Sigma)$ be the minimal set of cliques in $\Gamma$ such that

a) $\Sigma\in S$ , and
b) if $\Theta_{1},$ $\Theta_{2}$ are adjacent cliques and $\Theta_{1}\in S$ then $\Theta_{2}\in s$ .

PROPOSITION 3.7. $S_{1}(\Sigma)$ is $a$ 1-spread and each 1-spread in $\Gamma$ is of this type.

PROOF. We should show only that for any vertex $x\in\Gamma$ there is exactly

one clique in $S_{1}(\Sigma)$ containing $x$ . For a clique $\Theta$ let $\mathscr{F}(\Theta)$ be the set of 2-
spreads containing prequads which contain $\Theta$ . If $\Theta_{1}$ and $\Theta_{2}$ are adjacent cliques
and $\Delta$ is a prequad containing $\Theta_{1}$ then either $\Theta_{2}\subset\Delta$ or $\Theta_{2}\subseteqq\Gamma_{1}(\Delta)$ . By Lemmas
3.2 and 3.5 in either case there is a prequad $\Xi$ adjacent to $\Delta$ which contains
$\Theta_{2}$ . Since $S_{2}(E)=S_{2}(\Delta)$ we have proved that $\mathscr{F}(\Theta_{1})=\mathscr{F}(\Theta_{2})$ . Now by transi-
tivity if $\Theta_{2}$ is a clique from $S(\Theta_{1})$ then $\mathscr{F}(\Theta_{1})=\mathscr{F}(\Theta_{2})$ too.

On the other hand it is easy to see that if $\Theta_{1}$ and $\Theta_{2}$ are intersecting
cliques then either $\Theta_{1}=\Theta_{2}$ or $\mathscr{F}(\Theta_{1})\neq \mathscr{F}(\Theta_{2})$ . So for any vertex $x\in\Gamma$ there is
exactly one clique in $S(\Sigma)$ containing $x$ . $\square$

By Proposition 3.71-spreads are in a bijection with the cliques containing
a fixed vertex of $\Gamma$ . So there are exactly $q^{4}+q^{2}+1$ l-spreads.

Let us discuss the notion of congruency of cliques in $\Gamma$ . Till now we
have used this notion only in the sense of “congruency in a prequad”. Let us
prove that this congruency is an equivalence relation on the set of all cliques
in $\Gamma$ .

LEMMA 3.8. If $\Theta_{1},$ $\Theta_{2}$ are congruent in a prequad $\Delta$ and $\Theta_{2},$ $\Theta_{3}$ are con-
gruent in a prequad $\Xi$ then there is a prequad containing $\Theta_{1},$ $\Theta_{3}$ and these cliques
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are congruent in the prequad.

PROOF. Without loss of generality we assume that $--\neq\Delta$ . If $y\in\Theta_{3}$ it fol-
lows from Lemma 3.1 that $\Theta_{3}=\Theta_{y},$ $i$ . $e$ . $\Theta_{3}$ is the clique which is common for
all the prequads from $\nu(y)$ (see definitions before Lemma 3.3). Since $\Theta_{1}$ and $\Theta_{2}$

are congruent in $\Delta$ , by Lemma 3.3 there is a prequad in $v(y)$ which contains $\Theta_{1}$

and $\Theta_{3}$ . $\square$

NOW let us study the relations between 1- and 2-spreads. Let $S_{i}$ be an $iarrow$

spread, $i=1,2$ . Let $\Sigma$ be a clique from $S_{1}$ .

LEMMA 3.9. If $\Sigma\subset\Xi$ for some prequad $\Xi$ from $S_{2}$ then any clique from $S_{1}$

is contained in a prequad from $S_{2}$ . Moreover, if $\Sigma_{1},$ $\Sigma_{2}\in S_{1}$ are adjacent (con-

gruent) then the prequads from $S_{2}$ which contain them are also adjacent (con-

gruent).

PROOF. Let $\Sigma\subset_{-}-$ and $\Theta$ be a clique adjacent to $\Sigma$ . By Lemma 3.1 either
$\Theta\subset E$ or $\Theta\subset\Gamma_{1}(_{-}^{-})$ . In the latter case by Lemmas 3.2 and 3.5 $\Theta$ is contained
in a prequad adjacent to $--$ . By connectivity any clique from $S_{1}$ is contained
in a prequad from $S_{2}$ .

If $\Theta$ is congruent to $\Sigma$ then by Lemma 3.1 either $\Theta\subset_{-}-$ or $\Theta\subset\Gamma_{2}(_{-}^{-})$ . If
the latter holds then by Proposition 3.4 $\Theta$ is contained in a prequad which is
congruent to E. $\square$

It follows in particular from this lemma that if $\Sigma$ is not contained in a
prequad from $S_{2}$ then this is true for any other clique from $S_{1}$ .

LEMMA 3.10. Let $\Sigma$ be a clique intersecting a prequad $\Xi\in S_{2}$ and $\Sigma$ do
not lie in $\Xi$ . Let $\mathcal{A}$ be the set of all cliques from $S_{1}=S_{1}(\Sigma)$ intersecting $\Xi$ .
Then

(a) no cliques from $\mathcal{A}$ are congruent,
(b) there is mapping $\varphi$ from $S_{1}$ onto $\mathcal{A}$ such that if $\Theta_{1},$ $\Theta_{2}$ are adjacent

cliques from $S_{1}$ then $\Theta_{1}$ is congruent to $\varphi(\Theta_{1})$ and $\varphi(\Theta_{1})$ is adjacent to $\varphi(\Theta_{2})$ .

PROOF. Suppose that cliques $\Sigma_{1}$ and $\Sigma_{2}$ from $\mathcal{A}$ are congruent. Then by
Lemma 3.8 these cliques lie in a prequad $\Delta$ . Now since $d(\Sigma_{1}, \Sigma_{2})=2$ it is easy
to see that $--\cap\Delta$ contains a pair of vertices at distance 2; a contradiction.

We claim that a clique from $S_{1}$ is congruent to a unique clique from $\mathcal{A}$ .
The total number of cliques in $S_{1}$ is $|\Gamma|/q=q^{8}$ . A clique $\Theta\in s_{1}$ is contained
in $q^{2}+1$ prequads; in such a prequad, $\Theta$ is congruent to $q^{2}-1$ cliques distinct
from $\Theta$ and by Proposition 3.7 all these cliques are contained in $S_{1}$ . Since any
two distinct prequads have at most one clique in common, we conclude that $\Theta$

is congruent to $q^{4}$ cliques from $S_{1}$ . On the other hand $|\mathcal{A}|=|^{-}-|=q^{4}$ , so the
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claim follows by (a). For a clique $\Theta\in s_{1}$ let $\varphi(\Theta)$ denote the unique clique
from a which is congruent to $\Theta$ .

NOW we should show that if $\Theta_{1}$ and $\Theta_{2}$ are adjacent cliques from $S_{1}$ then
$\varphi(\Theta_{1})$ and $\varphi(\Theta_{2})$ are adjacent. By Lemma 3.8 there is a prequad $E_{1}$ which con-
tains $\Theta_{1}$ and $\varphi(\Theta_{1})$ . By Lemma 3.9 $\Theta_{2}$ is contained either in $\Xi_{1}$ or in a prequad
$\Xi_{2}$ adjacent to $--1$ . In either case there is a clique $\Phi$ which is congruent to $\Theta_{2}$

and adjacent to $\varphi(\Theta_{1})$ . Let $\Delta$ be a prequad which contains $\varphi(\Theta_{1})$ and $\Phi$ . Since
$\Phi$ and $--\cap\Delta$ lie in distinct spreads in $\Delta$ there is a clique $\Theta_{3}$ which is congruent
to $\Phi$ (so $\Theta_{3}$ is also adjacent to $\varphi(\Theta_{1})$) and intersects $--\cap\Delta$ . By the previous
paragraph $\Theta_{3}=\varphi(\Theta_{2})$ . $\square$

3c. The dual polar space graph.
Let us construct a graph $\tilde{\Gamma}$ in the following way. The set of vertices of

$\tilde{\Gamma}$ is $\{g\}\cup P\cup Q\cup\Gamma$, where $P$ (respectively, $Q$ ) is the set of all congruency
classes of prequads (respectively, cliques) and $g$ is an additional vertex. The
adjacency in $\tilde{\Gamma}$ is defined by the following:

a) $\tilde{\Gamma}_{1}(g)=P$,
b) two classes of prequads (respectively, cliques) are adjacent if and only

if they contain two adjacent prequads (respectively, cliques),

c) a class of cliques is adjacent to a class of prequads if there is a clique
$\Sigma$ and a prequad $\underline{F}$ in these classes such that $\Sigma\subset\Xi$ ,

d) a class $C$ of cliques is adjacent to a vertex $x\in\Gamma$ if and only if there
is a clique in $C$ which contains $x$ ,

e) the adjacency on $\Gamma$ is the same as above.
It follows directly from the definition that $\tilde{\Gamma}_{i}(g)$ for $i=1,2,3$ coincides with

$P,$ $Q,$ $\Gamma$ respectively.
Let us study the structure of the subgraphs of $\tilde{\Gamma}$ induced by $P$ and $Q$ . It

is easy to see that each 2-spread determines a clique of size $q$ in $\tilde{\Gamma}_{1}(g)$ and all
these $q^{4}+q^{2}+1$ cliques are disjoint. In particular $|\tilde{\Gamma}_{1}(g)|=q(q^{4}+q^{2}+1)$ . By
Lemma 3.10 a connected component of $\tilde{\Gamma}_{2}(g)$ corresponds to some 1-spread and
is isomorphic to a prequad of $\Gamma$ . Notice that this implies in particular that all
prequads in $\Gamma$ are isomorphic but we will not make use of this fact. Since
there are $q^{4}+q^{2}+11$ -spreads in $\Gamma$ we have $|\tilde{\Gamma}_{2}(g)|=q^{4}(q^{4}+q^{2}+1)$ . Hence $|\tilde{\Gamma}|=$

$(q+1)(q^{3}+1)(q^{5}+1)$ .

LEMMA 3.11. Any edge in $\tilde{\Gamma}$ is contained in a unique clique. Any clique in
$\tilde{\Gamma}$ has size $q+1$ and it is the union of a clique from $\tilde{\Gamma}_{i}(g)$ for some $i=1,2$ or 3
and of a vertex from $\tilde{\Gamma}_{i-1}(g)$ .

PROOF. Let $\{x, y\}$ be an edge of $\tilde{\Gamma}$ . We should prove that $x,$ $y$ and the
set $A$ of all the vertices which are adjacent to both $x$ and $y$ form a clique in
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$\tilde{\Gamma}$ and that this clique has the shape stated in the lemma. Let $x\in\sim\Gamma_{s}(g)$ and
$y\in\tilde{\Gamma}_{t}(g)$ . We may assume that $s\leqq t$ . The proof is divided into consideration
of six cases depending on the pair $(s, t)$ .

$(s, t)=(O, 1)$ . In this case the conclusion is obvious.
$(s, t)=(1,1)$ . We should only prove that there is no vertex $z\in\tilde{\Gamma}_{2}(g)$ ad-

jacent to $x$ and $y$ .
Since the classes $x$ and $y$ are adjacent, they are subclasses of a 2-spread

$S$ . By Lemma 3.9 any class of cliques can be adjacent to at most one con-
gruency class from 8.

$(s, t)=(1,2)$ . By the same reason as above $A\cap\tilde{\Gamma}_{1}(g)=\emptyset$ . Let $\underline{\sigma}$ bea pre-
quad from the class $x$ and $\Sigma$ be a clique from the class $y$ such that $\Sigma\subset\Xi$ . If
$z$ is a class of cliques which is adjacent to $y$ then by Lemma 3.9 and 3.5 there
is a clique $\Theta$ in $z$ which is adjacent to $\Sigma^{J}$ If in addition $z$ is adjacent to $x$

then by Lemma 3.9 $\Theta$ is contained in a prequad from $x$ . Hence $\Theta\subseteqq--$ . Now
it is easy to see that $A\cup\{y\}$ is a clique in $\tilde{\Gamma}_{2}(g)$ .

$(s, t)=(2,2)$ . First of all since $x,$ $y$ lie in the same 1-spread there are no
vertices in $\Gamma=\tilde{\Gamma}_{3}(g)$ which are adjacent to both $x$ and $y$ .

NOW suppose that $u$ is a congruency class of prequads which is adjacent to
$x$ and $y$ . Let $--\in u$ and $\Sigma\in x$ such that $\Sigma\subset\Xi$ . If $\Theta$ is a clique from $y$ which
is adjacent to $\Sigma$ then by Lemma 3.9 $\Theta$ lies in $--$ . So $u$ is uniquely determined
by $x$ and $y$ . Finally, the classes of cliques from $--$ which define in $--$ the same
spread as $\Sigma$ , form the unique clique from $\tilde{\Gamma}_{2}(g)$ containing the edge $\{x, y\}$ .
Since $\Xi\in u$ , any vertex from this clique is adjacent to $u$ .

$(s, t)=(2,3)$ . If a class $z$ of cliques is adjacent to $x$ then it determines the
same 1-spread. So it is not adjacent to the vertex $y$ . If $\Sigma$ is a clique from $x$

which contains $y$ then it is clear that $A=\Sigma-\{y\}$ .
$(s, t)=(3,3)$ . It is easy to see that in this case $A$ consists of the class of

the clique $\Sigma$ which contains $x$ and $y$ , and all the vertices from $\Sigma-\{x, y\}$ . $\square$

Let us calculate the valency of $\tilde{\Gamma}$ . If $x=g$ or $x\in\tilde{\Gamma}_{3}(g)$ then $x$ is contained
in exactly $q^{4}+q^{2}+1$ cliques. Let $x\in\tilde{\Gamma}_{1}(g)$ . The class $x$ consists of $q^{4}$ prequads.
Each prequad contains $q^{3}(q^{2}+1)$ cliques. We have already calculated in the
proof of Lemma 3.10 that each congruency class of cliques consists of 1+
$(q^{2}+1)(q^{2}-1)=q^{4}$ cliques. So each class of prequads is adjacent to exactly
$q^{3}(q^{2}+1)$ classes of cliques. Now we have that the vertex $x$ is contained in
exactly $1+q^{3}(q^{2}+1)/q=q^{4}+q^{2}+1$ cliques in $\tilde{\Gamma}$ . Finally let $x\in\tilde{\Gamma}_{2}(g)$ . Since any
connected component of $\tilde{\Gamma}_{2}(g)$ is isomorphic to a prequad, $x$ lies in exactly
$q^{2}+1$ cliques intersecting $\tilde{\Gamma}_{1}(g)$ . On the other hand the class $x$ consists of $q^{4}$

cliques. So $x$ is contained in exactly $q^{4}$ cliques intersecting $\tilde{\Gamma}_{3}(g)$ . Hence in
either case the number of cliques in fi containing a vertex $x$ is equal to
$q^{4}+q^{2}+1$ .
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By Lemma 3.11 if $\Sigma$ is a clique in $\tilde{\Gamma}_{i}(g)$ for some $i>0$ then there is exactly
one vertex $v(\Sigma)$ in $\tilde{\Gamma}_{i-1}$ which is adjacent to all vertices from $\Sigma$ . Let us study
in detail the case $i=2$ . Let $\Xi$ be a connected component of the graph induced
by $\tilde{\Gamma}_{2}(g)$ . Since $\Xi$ is isomorphic to a prequad, we can use the notions of con-
gruency and adjacency on the set of cliques in $--$

LEMMA 3.12. If $\Sigma,$ $\Theta$ are adjacent (respectively, congruent) cliques in $\Xi$ then
$v(\Sigma)$ and $v(\Theta)$ are adjacent (respectively, coincide). If $\Sigma$ and $\Theta$ determine distinct
spreads in $\Xi$ then $v(\Sigma)\neq v(\Theta)$ .

PROOF. At first let $\Sigma$ and $\Theta$ define the same spread in $\Xi$ . Let $S$ be the
1-spread in $\Gamma$ corresponding to $\Xi$ and $\Delta$ be a prequad which does not contain

$aclique--$

.
from $S$ . Then Lemma 3.10 provides us with a bijection $\varphi$ from $\Delta$ to

Put $\Sigma_{1}=\varphi^{-1}(\Sigma)$ and $\Theta_{1}=\varphi^{-1}(\Theta)$ .
Let II be a prequad containing $\Sigma_{1}$ and a clique from 8. Then by Lemma

3.9 $\Pi$ contains all cliques from $S$ which intersect $\Sigma_{1}$ . Since the classes of
these cliques form $\Sigma$ we have that the class of $\Pi$ coincides with $v(\Sigma)$ . Now
by Lemma 3.9 there is a prequad $\Phi\in S(\Pi)$ such that $\Theta_{1}\subseteqq\Phi$ . Again by Lemma
3.9 $\Phi$ contains all the cliques from 8 which intersect $\Theta_{1}$ . Hence the class of
$\Phi$ coincides with $v(\Theta)$ . Since $\Pi$ and $\Phi$ are from the same 2-spread and they
contain $\Sigma_{1}$ and $\Theta_{1}$ , by Lemma 3.9 $v(\Sigma)$ and $v(\Theta)$ are adjacent or coincide de-
pending on adjacency or congruency of $\Sigma$ and $\Theta$ .

Finally let $\Sigma$ and $\Theta$ determine distinct spreads in $\Xi$ . Then up to con-
gruency $\Sigma$ and $\Theta$ have nontrivial intersection. By Lemma 3.11 $v(\Sigma)\neq v(\Theta)$ . $\square$

REMARK. AS we have proved above a vertex $x\in\tilde{\Gamma}_{1}(g)$ is contained in ex-
actly $q^{4}+q^{2}$ cliques intersecting $\tilde{\Gamma}_{2}(g)$ . Hence Lemma 3.12 implies in particular
that $x$ is adjacent to vertices of exactly $q^{2}+1$ connected components of $\tilde{\Gamma}_{2}(g)$ .

3d. Quads in $\tilde{\Gamma}$ .
NOW let us define a family of special subgraphs (quads) of the graph $\tilde{\Gamma}$ .
For a prequad $\Xi$ from $\Gamma$ let $A=A_{1}\cup A_{2}\cup A_{3}$ where $A_{1}$ is the vertex set of

$\Xi,$ $A_{2}$ is the set of classes of cliques from $\Xi$ and $A_{3}$ is the one-element set
consisting of the class of the prequad E. Then by Proposition 2.10 the sub-
graph in $\tilde{\Gamma}$ induced by $A$ is isomorphic to the point graph of a generalized
quadrangle. Let $9_{1}$ denote the set of all subgraphs in $\tilde{\Gamma}$ which can be obtained
in this way.

For a connected component $--$ of the graph $\tilde{\Gamma}_{2}(g)$ let $B=B_{1}\cup B_{2}\cup B_{3}$ where
$B_{1}$ is the vertex set of $--$ $B_{2}$ is a set of all vertices $v(\Sigma)$ where $\Sigma$ is a clique
from $\Xi$ and $B_{3}=\{g\}$ . By Lemma 3.12 and Proposition2.10 the subgraph of $\tilde{\Gamma}$

induced by $B$ is also isomorphic to the point graph of a generalized quadrangle.
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Let $9_{2}$ denotes the set of all subgraphs in $\tilde{\Gamma}$ of th\’is shape and let $9=9_{1}\cup 9_{2}$ .
The elements of 9 will be called quads.

Notice that in a quad any edge is contained in a clique of size $q+1$ . Hence
if a quad contains an edge $\{a, b\}$ of $\tilde{\Gamma}$ then it contains the unique clique of $\tilde{\Gamma}$

containing $\{a, b\}$ .

LEMMA 3.13. Each pair of cliques in $\tilde{\Gamma}$ having a nontrivial intersection is
contained in a quad.

PROOF. Let $\Sigma$ and $\Theta$ be two intersecting cliques from $\tilde{\Gamma}$ and $x\in\Sigma\cap e$ .
The proof of the lemma depends on the position of cliques $\Sigma$ and $\Theta$ . Below
the triple $(i, a, \beta)$ marks the case when $x\in\tilde{\Gamma}_{t}(g)$ and $\Sigma$ (respectively, $\Theta$ ) inter-
sects $\tilde{\Gamma}_{i+\alpha}(g)$ (respectively, $\tilde{\Gamma}_{i+\beta}(g)$).

CASE $(3, -1, -1)$ : Let $--$ be a prequad in $\Gamma$ which contain $\Sigma\cap\Gamma$ and
$\Theta\cap\Gamma$ . Then the quad defined by $\Xi$ , contains $\Sigma$ and $\Theta$ .

CASE $(2, +1, +1)$ : The cliques $\Sigma\cap\Gamma$ and $\Theta\cap\Gamma$ are congruent. By Lemma
3.8 there is a prequad $--in\Gamma$ which contains them. The quad corresponding
to $\Xi$ , contains $\Sigma$ and $\Theta$ .

CASE $(2, +1, -1)$ : Let $c\in\Theta\cap\tilde{\Gamma}_{1}(g)$ and $f\in\Sigma\cap\tilde{\Gamma}_{2}(g)$ . By Lemma 3.9 the
clique $\Sigma\cap\Gamma$ is contained in a prequad $--$ from the class $c$ . The quad defined
by $--$ contains $\Sigma$ . Moreover, it contains the edge $\{c, f\}$ . Hence it contains
the whole clique $\Theta$ .

CASE $(2, -1, -1)$ : Let $--$ be the connected component of the graph $\tilde{\Gamma}_{2}(g)$

which contains $x$ . By definition the quad defined by $\Xi$ , contains $\Sigma$ and $\Theta$ .
CASE $(1, +1, +1)$ : First of all if $\Sigma$ and $\Theta$ intersect the same connected

component of $\tilde{\Gamma}_{2}(g)$ then the quad defined by this component contains $\Sigma$ and $\Theta$ .
NOW let $\Sigma$ and $\Theta$ intersect distinct components (say $\Xi$ and $\Delta$) of $\tilde{\Gamma}_{2}(g)$ . A

vertex of a quad is contained in exactly $q^{2}+1$ cliques in the quad. On the
other hand if $\Phi$ is a quad from $q_{1}$ containing $x$ then the cliques in $\Phi$ passing
through $x$ correspond to distinct spreads in the prequad $\Phi\cap\Gamma$ . Hence these
cliques intersect distinct connected components of $\tilde{\Gamma}_{2}(g)$ . Now the remark after
Lemma 3.12 implies that each quad $\Phi$ from $9_{1}$ which contains $x$ , intersects $--$

and $\Delta$ and the cliques $\Phi\bigcap_{-}^{-}$ and $\Phi\cap\Delta$ are congruent to $\Sigma\cap\tilde{\Gamma}_{2}(g)$ and $\Theta\cap\tilde{\Gamma}_{2}(g)$

respectively by Lemma 3.12.
By Lemma 3.3 if II and $\Lambda$ are congruent prequads in $\Gamma$ then the cliques

from $\Pi$ which are congruent to some clique from $\Lambda$ form a spread in II. So
a pair of quads from $9_{1}$ passing through $x$ has exactly one clique in common.
Since the total number of quads from $9_{1}$ passing through $x$ is $q^{4}$ and each
congruency class in $\Xi$ or in $\Delta$ has cardinality $q^{2}$ , for arbitrary $\Sigma$ and $\Theta$ there
is exactly one quad in $9_{1}$ containing both of them.
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CASE $(1, +1, -1)$ : Let $--$ be the connected component of $\tilde{\Gamma}_{2}(g)$ which
contains $\Sigma\cap\tilde{\Gamma}_{2}(g)$ . The corresponding quad contains $\Sigma$ . Moreover, it contains
$\{x, g\}$ . Hence it contains $\Theta$ .

CASE $(1, -1, -1)$ : This case does not occur.
CASE $(0, +1, +1)$ : Let $S_{2}$ and $S_{2}’$ be the 2-spreads corresponding to $\Sigma-\{g\}$

and $\Theta-\{g\}$ . Let $y\in\Gamma$ and $-1-$ E2 be the prequads from $S_{2}$ and $S_{2}’$ respec-
tively which pass through $y$ . Then the 1-spread $S_{1}(_{-1}^{-} \bigcap_{-2}^{-})$ defines a connected
component in $\tilde{\Gamma}_{1}(g)$ and hence the quad from $9_{2}$ . It is easy to see that this
quad contains both $\Sigma$ and $\Theta$ . $\square$

COROLLARY 3.14. For each vertex $x$ of $\tilde{\Gamma}$ the cliques and the quads passing
through $x$ form a projective plane of order $q^{2}$ .

PROOF. There are exactly $a=(q^{4}+q^{2}+1)+q^{9}(q^{4}+q^{2}+1)/q^{4}=(q^{4}+q^{2}+1)(q^{5}+1)$

quads and exactly $b=(q+1)(q^{3}+1)(q^{5}+1)\cdot(q^{4}+q^{2}+1)(q^{4}+q^{2})/2$ pairs of intersecting
cliques in $\tilde{\Gamma}$ . Since each quad (having $(q+1)(q^{3}+1)$ vertices) contains exactly
$c=(q+1)(q^{3}+1)\cdot(q^{2}+1)q^{2}/2$ pairs of intersecting cliques, the equality $b=ac$ implies
that each pair of intersecting cliques is contained in exactly one quad. Notice
that one can see this fact just from the proof of Lemma 3.13.

Let A (respectively B) be the set of all cliques (respectively quads) in $\tilde{\Gamma}$

passing through $x$ . It was proved above that $|A|=q^{4}+q^{2}+1$ . On the other
hand a quad from $B$ contains exactly $q^{2}+1$ cliques from A. Hence each clique
from A is contained in $((q^{4}+q^{2}+1)-1)/((q^{2}+1)-1)=q^{2}+1$ quads. In particular,
the cardinality of $B$ is also $q^{4}+q^{2}+1$ . The number of pairs of quads intersecting
in a fixed clique from A is $(q^{2}+1)q^{2}/2$ . Hence.the total number of pairs of in-
tersecting quads from $B$ is $(q^{4}+q^{2}+1)(q^{4}+q^{2})/2$ and it is equal to the number
of all pairs of quads from B. $\square$

REMARK. Corollary 3.14 means that the diagram geometry whose elements
are the vertices, the cliques and the quads from $\tilde{\Gamma}$ , is a (connected) geometry

with diagram $C_{3}$ .
Let us now prove another important lemma concerning quads.

LEMMA 3.15. Let $x$ be a vertex and $\Xi$ be a quad from $\tilde{\Gamma}$ . Then $d(\Xi, x)\leqq 1$

and there is exactly one vertex $y$ of $\Xi$ such that $d(\Xi, x)=d(y, x)$ .

PROOF. Suppose to the contrary that $d(_{-}^{-}, x)=n,$ $n\geqq 2$ . Let $x_{0}=x,$ $x_{1},$ $\cdots,$ $x_{n}$

be the shortest path joining $x$ with $\Xi$ . Let $\Delta$ be the quad containing $x_{n-2}$ ,

$x_{n-1}$ and $x_{n}$ . By Corollary 3.14 the intersection $--\cap\Delta$ contains a clique. Now
by Lemma 2.9 $d(_{-}^{-}\cap\Delta, x_{n-2})\leqq 1$ ; a contradiction. Hence $d(_{-}^{-}, x)\leqq 1$ .

Any vertex of $\Xi$ is adjacent to exactly $q\cdot q^{4}$ vertices from $\tilde{\tau}_{--}^{-}$ . Since
$|\tilde{\Gamma}|=(q+1)(q^{3}+1)(q^{5}+1)$ and $|^{-}-|=(q+1)(q^{3}+1)$ , there is exactly one vertex $y\in\Xi$
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such that $d(\Xi, x)=d(y, x)$ . $\square$

COROLLARY 3.16. Let $\Xi$ be a quad, $x,$ $y\in\Xi$ and $s$ be the distance between
$x$ and $y$ in $\Xi$ . Then any path of length at most $s+1$ joining $x$ and $y$ , is con-
tained in $\Xi$ .

PROOF. If $s-1$ then the conclusion follows from Lemma 3.11. Let $s=2$ .
If we have a path $(x, a, y)$ then by Lemma 3.15 $a\in E$ . Suppose that we have
a path $(x, a, b, y)$ . Let $\Delta$ be a quad passing through $x,$ $a$ and $b$ . Then by
Lemma 2.9 either $b \in\Delta\bigcap_{-}^{-}$ or $d( \Delta\bigcap_{-}^{-}, b)=1$ . In the latter case $--=\Delta$ as they

contain $x,$ $y$ which are at distance 2 apart. $\square$

NOW we are in a position to prove the main result of the section which
implies Theorem A (ii) in the case $d=3$ .

PROPOSITION 3.17. $\tilde{\Gamma}$ is a distance-regular graph with the parameters of
the dual polar space graph of type $2A_{5}(q)$ . In particular, $\tilde{\Gamma}$ is isomorphic to that
graph.

PROOF. Let $\Omega$ denote the dual polar space graph of type $2A_{s}(q)$ . Let $x$ be
a vertex of $\tilde{\Gamma}$ . If a vertex $y$ is at distance 1 or 2 from $x$ then there exists a
quad $--$ which contains both $x$ and $y$ . By Corollary 3.16 a path of length at
most $d(x, y)+1$ lies in $\Xi$ . Hence tbe parameters $c_{i}$ and $a_{i}$ for $i=1,2$ exist and
coincide with those of $\Omega$ . Since the valency of $\tilde{\Gamma}$ is the same as that of $\Omega$ the
parameters $b_{0},$ $b_{1}$ and $b_{2}$ also exist and are as stated.

NOW let $y\in\tilde{\Gamma}_{3}(x)$ . By Lemma 3.15 for any quad $\Xi$ passing through $x$ there
is just one vertex in $\Xi$ adjacent to $y$ . Hence $c_{i}=q^{4}+q^{2}+l$ .

Thus $\tilde{\Gamma}$ is distance-regular and its parameters coincide with the parameters
of $\Omega$ and by [BCN], [IS2] $\tilde{\Gamma}\cong\Omega$ . $\square$

COROLLARY 3.18. The graph $\Gamma$ is isomorphic to the graph of Hermitian
forms in 3-dimensional space over $GF(q^{2})$ . $\square$

3e. The representation of 7’ as a set of vectors.
Let us introduce an additional set of vectors in $W$ . For a vertex $x\in\Gamma$ put

$w_{x}=\hat{x}$ . For a clique $\Sigma$ in $\Gamma$ put $w_{\Sigma}=-\hat{\Sigma}$ . For a prequad $\Delta$ put $w_{\Delta}=\hat{\Delta}/q^{2}$ .
Finally put $w_{g}=w_{\Gamma}=-\hat{\Gamma}/q^{6}$ . As it was mentioned before if two cliques (or
prequads) are congruent then the corresponding vectors coincide. Hence for each
vertex $x$ of $\tilde{\Gamma}$ there is a well-defined vector $w_{x}$ .

LEMMA 3.19. If $x,$
$y\in\Gamma\sim and$ $d(x, y)=i$ then $\langle w_{x}, w_{y}\rangle=(-q)^{-i}$ .

PROOF. The claim can be checked by direct calculations, but we propose
another kind of arguments. The dual polar space graph $\Omega$ has a representation
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as a system of norm one vectors in the eigenspace $U$ of dimension $q(q^{5}+1)/(q+1)$

(which coincides with $\dim(W)$). In this representation if $v,$ $w$ are vectors cor-
responding to some vertices of $\Omega$ at distance $i$ then $\langle v, w\rangle=(-q)^{-i}$ . By Proposi-
tion 3.17 for a fixed vertex $x$ the system of vectors $\Omega_{s}(x)$ is isomorphic to $\Gamma$ .
If $\Sigma$ is a clique in $\Omega$ then the sum of vectors over $\Sigma$ is zero. Now it is easy
to verify that the vectors $w_{\Sigma}$ for $\Sigma$ being a clique or a prequad in $\Gamma$ correspond
to vectors of $\Omega$ . $\square$

4. The case $d\geqq 4$ .
In order to deal with the case $d\geqq 4$ we need certain information concerning

the automorphism groups of the graphs of Hermitian $forms_{-}^{-}\overline{\backslash }$ over finite fields.
Let $\Gamma$ be such a graph. It is known [BCN], [IS1] that the group Aut $(\Gamma)$

contains a subgroup $G(d, q)$ isomorphic to the semidirect product $N\lambda H$, where $N$

is the elementary abelian group of order $q^{\dot{a}^{2}}$ and $H$ is the factorgroup of $\Gamma L_{d}(q^{2})$

by the subgroup consisting of scalar matrices whose orders divide $q+1$ . Moreover,
$H$ is the stabilizer in $G(d, q)$ of some vertex $x$ of $\Gamma$ . In its action on the set
of cliques passing through $x$ the group $H$ induces $P\Gamma L_{d}(q^{2})$ . The kernel of the
action has order $q-1$ and acts regularly on the set $\Sigma-\{x\}$ for each clique $\Sigma$

passing through $x$ .

LEMMA 4.1. Aut $(\Gamma)=G(d, q)$ .

PROOF. At first let $d=2$ . Then the graph $\tilde{\Gamma}$ constructed from $\Gamma$ as in
Section 2 is the graph of the dual polar space of type $2A_{3}(q)$ . It is clear that
each automorphism of $\Gamma$ can be extended to an automorphism of $\tilde{\Gamma}$ in a unique
way. On the other hand there is a unique way to construct fi from $\Gamma$ . So
$Aut(\Gamma)$ is the stabilizer of a vertex in the group $Aut(\tilde{\Gamma})$ . It is known [Cam]
that $Aut(\tilde{\Gamma})\cong P\Gamma U_{4}(q)$ , hence $Aut(\Gamma)\cong G(2, q)$ .

NOW suppose that $d\geqq 3$ . Let $x\in\Gamma$ and $F$ be the stabilizer of the vertex $x$

in the group $Aut(\Gamma)$ . Then $F$ preserves the structure $\pi(x)$ of the projective
space $PG(d-1, q^{2})$ consisting of the subgraphs $\Delta(x, y)$ for $1\leqq d(x, y)\leqq d-1$ . So
the group induced by the action of $F$ on the set of cliques containing $x$ is a
subgroup of $P\Gamma L_{d}(q^{2})$ . Let $K$ be the kernel of this action. Since any two
cliques containing $x$ are contained in a subgraph $\Delta(u, v)$ for $d(u, v)=2$ , which
is isomorphic to the graph related to Her$(2, q)$ , the group $K$ acts faithfully and
semiregularly on each set $\Sigma-\{x\}$ where $\Sigma$ is a clique containing $x$ . $\square$

By Lemma 4.1 and the properties of the group $G(d, q)$ we have the following.

COROLLARY 4.2. Let $\Gamma$ be the graph related to the scheme Her$(d, q),$ $d\geqq 3$ ,
$x$ , $u$ be vertices of $\Gamma$ and $\tau$ be a collineation of $\pi(x)$ onto $\pi(u)$ . Let $y\in\Gamma_{1}(x)$
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and $z$ be an arbitrary vertex from $(\Delta(x, y))^{\tau}-\{u\}$ . Then the group $Aut(\Gamma)$ con-
tains a unique automorphism which maps $x$ to $u,$ $y$ to $z$ and induces the collinea-
tion $\tau$ . $\square$

If $d=2$ then the structure $\pi(x)$ is trivial and we have the following.

COROLLARY 4.3. Let $\Gamma$ be the graph related to the scheme Her $(2, q),$ $x,$ $u$ be
vertices of $\Gamma$ and $\tau$ be a bijection from the set of cliques passing through $x$ onto
the set of cliques passing through $u$ . Let $y\in\Gamma_{1}(x)$ and $z$ be an arbitrary vertex
from $(\Delta(x, y))^{\tau}-\{u\}$ . Then the group $Aut(\Gamma)$ contains at most one automorphism
which maps $x$ to $u,$ $y$ to $z$ and induces the mapping $\tau$ . $\square$

NOW we can prove the main result of the section which implies Theorem A
(ii) in the case $d\geqq 4$ .

PROPOSITION 4.4. Let $\Gamma$ be a distance-regular graph whose parameters coin-
cide with those of the graph II related to the scheme Her$(d, q)$ , $d\geqq 4$ . Then
$\Gamma\cong\Pi$ .

PROOF. We will use induction on $d$ . Let $x,$ $u$ be vertices of $\Gamma$ and $\Pi$

respectively and $\tau$ be a collineation of $\pi(x)$ onto $\pi(u)$ . Notice that since $d\geqq 4$

$\pi(x)$ and $\pi(u)$ are isomorphic. Let $y\in\Gamma_{1}(x)$ and $v$ be an arbitrary vertex from
$(\Delta(x, y))^{\tau}-\{u\}$ .

AS before let $V$ be the space generated by the vectors $x^{*}$ for $x\in\Gamma$ . Let $U$

be the analogous space for the graph $\Pi$ . Let us define a linear mapping $\alpha$ from
$V$ onto $U$ as follows. By Lemma 1.1 the set $\Gamma_{1}(x)$ is a basis of $V$ , hence it is
sufficient to define $\alpha$ on $\Gamma_{1}(x)$ . Let $\Xi=\Delta(x, t)$ for some $t\in\Gamma_{a-1}(x)$ such that
$y\in E$ . By induction we may suppose that $--$ is isomorphic to the graph related
to Her$(d-1, q)$ . By Corollary 4.2 there is a unique isomorphism $\alpha_{\Xi}$ of $--$ onto
$\tau(_{-}^{-})$ such that $\alpha_{-}-(x)=u,$ $\alpha_{-}-(y)=v$ and on the set of cliques from $\Sigma\alpha_{\Xi}$ induces
the restriction of $\tau$ on this set. Notice that $\alpha_{\underline{\nabla}}$ can be considered as a linear
mapping between the subspaces of $V$ and $U$ generated by the corresponding sets
of vectors.

NOW we can define the mapping $\alpha$ . Namely, for each vertex $a\in\Gamma_{1}(x)$ put
$\alpha(a)=\alpha--(a)$ where $--is$ any subgraph of type $\Delta(x, t),$ $t\in\Gamma_{a-1}(x)$ passing through
$y$ and $a$ . Since any two hyperplanes in a projective space intersect in a sub-
space of codimension 2, Corollary 4.2 in the case $d\geqq 5$ and Corollary 4.3 in the
case $d=4$ imply that $\alpha(a)$ does not depend on the choice of $--$ .

Since $\alpha$ is a linear mapping, it is defined on the set of all vertices of $\Gamma$.
By definition $\alpha$ maps cliques from $\Gamma_{1}(x)$ onto cliques from $\Pi_{1}(u)$ . Hence a is
orthogonal. So to prove that $\alpha$ induces an isomorphism from $\Gamma$ onto $\Pi$ it is
sufficient to prove that $\alpha(a)\in\Pi$ for each $a\in\Gamma$ .
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NOW let $\{s, t\}$ be an edge of $\Gamma$ such that for any hyperplane $\Phi\in\pi(s)\cap\pi(t)$

and for any $r\in\Phi$ we have $\alpha(r)\in\Pi$ . For any line in $\pi(s)$ there exists a hyper-
plane in $\pi(s)\cap\pi(t)$ which contains this line. So $\alpha$ defines a collineation $\tau_{s}$ from
$\pi(s)$ onto $\pi(\alpha(s))$ . Let $--$ be any hyperplane from $\pi(s)$ and $r\in_{-1}-(s)$ . By
Corollary 4.2 there is a unique isomorphism $\varphi$ from $\Xi$ onto $\tau_{s}(\Xi)$ which maps $s$

onto $\alpha(s),$ $r$ onto $\alpha(r)$ and on the set of cliques from $\Xi$ passing through $s$ induces
the restriction of $\tau_{s}$ . By Corollaries 4.2 and 4.3 the linear mapping $\varphi$ coincides
with the restriction of $\alpha$ on each hyperplane of $\Xi$ passing through $r$ . Since
$d\geqq 4$ , these hyperplanes cover $--1(s)$ . Thus for each vertex $a\in E$ we have
$\alpha(a)\in\Pi$ .

The preceding arguments mean that if $\alpha$ is “good” on all hyperplanes from
$\pi(s)\cap\pi(t)$ then it is “good” on all hyperplanes from $\pi(s)$ . In this way we can
pass by connectivity from $x$ to any other vertex of $\Gamma$ . $\square$
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Note added in proof. Recently the authors were informed about the follow-
ing result by P. Terwilliger (private communication). If $\Gamma$ is a distance-regular
graph whose parameters satisfy (1) for $d\geqq 3$ and some q, then every edge of
$\Gamma$ is contained in a clique of size q. This means that the condition in Theorem
A concerning cliques can be omitted in the case $d\geqq 3$ . In particular the scheme
Her(d, q) is characterized by its parameters if $d\geqq 3$ .
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