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1. Introduction.

Let $E$ and $F$ denote compact and open subsets of $R^{n}$ , respectively, $E\subset F$.
The number

(1.1) $C_{p}(E, F)= \inf\{\int_{F}|\nabla u|^{?^{j}}dx:u\in C_{E}(F)\}$

is called the $P$-capacity of a compactum $E$ relative to $F$. Here $p\geqq 1,$ $\nabla u=$

( $\frac{\partial u}{\partial x_{1}}$ , $\frac{\partial u}{\partial x_{2}}$ , $\cdot$ .. , $\frac{\partial u}{\partial_{X_{n}}}$) and $C_{E}(F)$ is the class of functions $u(x)\in C^{0.1}(F)$ with

$u(x)\geqq 1$ for $x\in E$ and compact support contained in $F$. For the detailed, see \S 2.
The purpose of this paper is to study the $P$ -capacity $C_{p}(E, F)$ and make

clear its behavior as a set function from the point of view of the relativity of
$E$ and $F$. For $p>1$ we shall show that the $P$ -capacity of $E$ relative to $F$ can
not remain bounded when $E$ fills up $F$, or equivalently, when $F$ shrinks away
to $E$ , if and only if $C_{p}(E, F)>0$ . In other words, the $p$ -capacity of the whole
space $F$ is naturally considered $+\infty$ provided $p>1$ . By making use of this
fact, we can give simple proofs of metric properties of the $P$ -capacity in terms
of Hausdorff measure, most of which are already known but the proofs in this
paper seem to be more direct than those based on the non-linear potential theory
initiated by V. G. Maz’ja and V. P. Havin [13], [14], N. G. Meyers [15]. This
theory has been extensively developed during the last decade to fill the gap to a
certain extent between the classical potential theory and non-linear counterparts
of Newton and Riesz capacities (See [4], [6], [9] and [10]). However our methods
in this paper are not based on potential theory but on the effective use of the
theory of the Dirichlet problem for non-linear elliptic differential equations and
the imbedding theorems of Sobolev type. Roughly speaking, Theorem 3.1 stated
in \S 3 and the Sobolev imbedding theorem give the upper and lower estimates
for the $p$ -capacity respectively. It is interesting that the methods in this paper
can be applied to the study of the degenerated elliptic equations as well (See [11]).

Here we note that H. Federer and W. P. Ziemer also presented in [8] a
direct treatment of this topic for $F=R^{n}$ , which was based on geometric measure
theory. For the complete references, see the book by V. G. Maz’ja [12] (See
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also the references in [14] $)$ . This paper is organized in the following way: In
\S 2 we prepare notations and collect mostly without proofs the basic propertles
of the $P$ -capacity. In \S 3 our main results will be stated, and the proof of
Corollary 3.1 is also given there. \S 4 is devoted to preparing the proposition
concerned with the classical Dirichlet problem for quasi-linear elliptic equations
of second order. Under these preparations we shall establish Theorem 3.1 in
\S 5. The proofs of Theorem 3.2 and Proposition 3.1 will be given in \S 6 and
\S 7 respectively.

The author wishes to express his gratitude to Prof. M. Hasumi and Prof.
N. Shimakura for their kind help and a number of useful conversations.

2. Preliminaries.

In this section we prePare notations to be used throughout the PaPer and
present a very brief introduction to the $P$ -capacity $C_{p}(E, F)$ defined by (1.1).

We begin with recalling some simple properties of $C_{p}(E, F)$ , which are mostly

obvious consequences from the definition (cf. [6]):

PROPOSITION 2.1. Let $p$ satisfy $p\geqq 1$ .
(1) Let $E_{1}$ and $E_{2}$ be compact $sets\subset F$. The inclusion $E_{1}\subset E_{2}$ implies

$C_{p}(E_{1}, F)\leqq C_{p}(E_{2}, F)$ ;
(2) The Choquet inequality

$C_{p}(E_{1}\cap E_{2}, F)+C_{p}(E_{1}\cup E_{2}, F)\leqq C_{p}(E_{1}, F)+C_{p}(E_{2}, F)$

holds for any compact sets $E_{1},$ $E_{2}\subset F$ ;
(3) In the definition of $C_{p}(E, F)$ , the space $C_{E}(F)$ can be replaced by the

space

$D_{E}(F)=$ { $u\in C_{E}(F);0\leqq u\leqq 1,$ $u=1$ in a neighborhood of $E$ }.

(4) For any compact set $E\subset F$ and $\epsilon>0$ , there exists a bounded open set $\omega$

such that $E\subset\overline{\omega}\subset F,$
$\partial\omega$ is smooth and

$C_{p}(E, F)\leqq C_{p}(\overline{\omega}, F)\leqq C_{p}(E, F)+\epsilon$ .

It is very useful to know there exist extremal functions where the infimum
in the definition of $C_{p}(E, F)$ is achieved. To tbis end we denote by $W_{0}^{1.p}(\Omega)$

the closure of $C_{0}^{\infty}(\Omega)$ in the space $W^{1.p}(\Omega)$ , where the space $W^{1.p}(\Omega)$ is the set
of functions on $\Omega$ , whose generalized derivatives $\partial^{\gamma}u$ of order Sl satisfy

(2.1) $||u:W^{1.p}( \Omega)||=\sum_{|\gamma|\leq 1}(\int_{\Omega}|\partial^{\gamma}u|^{p}dx)^{1/p}<+\infty$ .

Then it follows from the Clarkson inequalities and the Sobolev imbedding theo-
rems that:
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PROPOSITION 2.2. Let $p$ satisfy $p>1$ . Assume that $F$ is a bounded open set
whose boundary is smooth. Then

(2.2) $C_{p}(E, F)= \inf\{\int_{F}|\nabla u|^{p}dx;u\in W_{0}^{1.p}(F),$ $u\geqq 1$ on $Equasi- everywhere\}$ .

Here by the term quasi-everywhere we mean that $u\geqq 1$ on $E$ everywhere except
possibly on a set of the $p$-capacity zero.

Moreover if $C_{p}(E, F)<+\infty$ , then there exists $u\in W_{0^{p}}^{1}\cdot(F)$ such that $0\leqq u\leqq$

$1,$ $u=1$ everywhere on $E$ and

$\int_{F}|\nabla u|^{p}dx=C_{p}(E, F)$ .

This distribution $u$ is called capacitary extremal of $E$ relative to $F$, and it
is essentially unique up to values on sets of vanishing $P$ -capacity. Here we
note that the assumptions on $F$ may be avoided by the use of definition of
$W_{0}^{1.p}(F)$ which does not require $u\in L^{p}(F)$ for $u\in W_{0}^{1.p}(F)$ . For more precise
informations, see Chapter 2 in [16] for example.

We also provide here the lower estimate for the $P$ -capacity of compact set
$E$ assuming $p>1$ . By $|E|$ we denote the $n$ -dimensional Lebesgue measure of
$E$ . The proof is omitted (See p. 105, Corollary 2 in [12]).

PROPOSITION 2.3. Let $E$ and $F$ be compact and bounded open subsets of $R$ “

respectively, $E\subset F$. Assume that $p>1$ . Then the following lower estimates hold:

(2.3) $C_{p}(E, F)$ Ii $C(n, p)||F|^{(p- n)/n(p- 1)}-|E|^{(p- n)/n(p-1)}|^{1-p}$ ,

for $p\neq n$ and

(2.4) $C_{p}(E, F) \geqq C(n, p)(\log\frac{|F|}{|E|})^{1- n}$ ,

for $p=n$ , where $C(n, p)$ is a positive number depending only on $n$ and $p$ . In
particular if $C_{p}(E, F)=0$ and $1<p\leqq n$ , then we have $|E|=0$ .

We note that if $|E|=0$ , then these estimates become almost trivial. If
$P=1$ , then it holds that

(2.5) $C_{1}(E, F)= \inf S(\partial g)$ ,

where by $S(\partial g)$ we denote the surface area of $\partial g$ , and the infimum is taken
over all bounded open sets $g$ containing $E$ sucb that $\overline{g}\subset F$ and $\partial g$ is of class
$C^{\infty}$ . For the detailed see \S 2.3 in [12]. In the rest of this section we
prepare more notations including the definition of the Hausdorff measure. Let
us set, for an arbitrary compact set $E$ of $R^{n}$ ,

(2.6) dist$(x, E)= \inf_{y\in E}||x-y||$ ,



608 T. HORIUCHI

and

(2.7) $E_{\eta}=$ { $x\in R^{n}$ : dist$(x,$ $E)<\eta$ },

whicb is a tubular neighborhood of $E$ in $R^{n}$ . If $\partial E$ is smooth, then $\partial E_{\eta}$ is
also smooth for almost all $\eta>0$ by Sard’s lemma. But even if $\partial E_{\eta}$ is not
smooth, we can always approximate $\partial E_{\eta}$ by compact smooth manifolds. There-
fore we assume throughout this paper that the family of tubular neighborhoods
defined by (2.7) is smooth as well without loss of generality.

Lastly we give the definition of the $d$ -dimensional Hausdorff measure. Let
$S$ be a bounded set in $R^{n}$ . Consider various coverings of $S$ by balls $B_{j}$ of
radii $r_{j}$ we put

(2.8) $h_{f}(( S)=v_{tf}\inf\sum r_{j}^{f}($

where $v_{d}$ is the volume of the unit ball in $R^{d}$ and the infimum is taken over
all such coverings. It is of no importance if $B_{j}$ are assumed open or closed.
If we also assume $r_{j}\leqq\epsilon$ , we get a corresponding lower bound $H_{a,\epsilon}(S)$ . The
limit

(2.9) $H_{f}((S)= \lim_{\epsilonarrow+0}H_{d,\epsilon}(S)$

clearly exists and is called the $d$ -dimensional Hausdorff measure of $S$ . Here we
note that $h_{a}(S),$ $H_{(}l.\epsilon(S)$ are zero simultaneously.

3. Main results.

In this section we shall state our main results. First we give a theorem
on the behavior of the $P$ -capacity as $E_{\eta}$ is shrinking away to $E$ , which charac-
terizes in some sense the sets of non-vanishing $p$ -capacity and provides the
upper estimates for the $P$ -capacity. Then we state the result on the lower
estimate which will be established later, by using the imbedding theorems of
Sobolev type.

THEOREM 3.1. Let $p$ satisfy $p>1$ . Let $E$ be a compactufn in $R^{n}$ . If
$C_{p}(E, F)>0$ for some open set $F\subset R^{n}$ , then it holds that

(3. 1)
$\lim_{\etaarrow 0}C_{p}(E, E_{\eta})=+\infty$ .

Moreover if $F$ is bounded and smooth, then we have

(3.2) $C_{p}(E, F)^{p} \leqq C_{p}(E, E_{\eta})(\int_{E\backslash E}|\nabla u\eta|^{p}dx)^{p-1}$

for any $\eta\in(0, dist(E, \partial F))$ . Here $u$ is the extremal function where the infimum
in the definition of $C_{p}(E, F)$ is achieved.
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Here we note that this inequality (3.2) becomes an equality when $E$ and $\overline{F}$

are concentric closed balls, and that the auxiliary assumption on $F$ is not I
essential (See Proposition 2.2 and the remark just after it). From this theorem
we can easily derive the connection between the $P$ -capacity and the Hausdorff
measure. The following is a direct consequence, and the proof will be given
in the last of this section.

COROLLARY 3.1. Let $p$ satisfy $1<P<n$ . Let $E$ be a compactum in $R^{n}$ .
Assume that $H_{n-p}(E)<+\infty$ . Then it holds that

(3.3) $C_{p}(E, R^{n})=0$ .

We also have

THEOREM 3.2. Let $p$ satisfy $1<p<n$ . Let $E$ be a compactum in $R^{n}$ . If
$C_{p}(E, R^{n})=0$ , then for any open set $F$ containing $E$ we have

(3.4) $C_{p}(E, F)=0$ .

Here we note that if $p\geqq n$ , the assertion fails to hold. In fact $C_{p}(E, R^{n})=$

$0$ , for any compactum $E$ . But from Proposition 2.3, $C_{p}(E, F)$ is away from $0$

in general.
Secondly we give a proposition on the sets of vanishing $p$ -capacity which

is known but the proof in \S 7 seems to be simpler than the ones based on the
potential theory (cf. [13], [14]. See also [8]).

PROPOSITION 3.1. Let $P$ satisfy $1<p<n$ . Assume that $C_{p}(E, F)=0$ for
some open set $F\subset R^{n}$ . Then it holds that

(3.5) $H_{n-p+\epsilon}(E)=0$

for an arbitrary $\epsilon>0$ .

In the rest of this section we shall establish Corollary 3.1 which is rather
elementary if we admit Theorem 3.1.

PROOF OF COROLLARY 3.1. Let $\eta>0$ . SinCe $H_{n-p}(E)<+\infty$ , we Can COn-

struct a locally finite open cover of $E$ by balls $B_{r_{j}}(x_{j})$ with radius $r_{j}$ , center
$x_{j}(j=1, 2, )$ such that

(3.6) $B_{2r_{j}}(x_{j})\subset E_{\eta}$ , $r_{j} \leqq\frac{\eta}{2}$ and $\sum_{j}r_{j}^{n-p}<H$ ,

where $H=v_{n-p}^{-1} \max(1,2H_{n-p}(E))$ . Let us choose a sequence of smooth functions
$\varphi_{j}(j=1, 2, )$ so that

$0\leqq\varphi_{j}\langle x$ ) $\leqq 1$ , $\varphi_{j}(x)=1$ on $B_{r_{j}}(x_{j})$ ,
(3.7)

$supp\varphi_{j}\subset B_{2r_{j}}(x_{j})$ and $|\nabla\varphi_{J}(x)|$ $ $Cr_{j}^{-1}$ ,
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where $C$ is a positive number depending only on the dimension of the space.
Then we immediately get

$C_{p}(E, E_{\eta}) \leqq\int|\nabla\sup_{j}\varphi j(x)|^{p}dx$

$\langle$ 3.8)

$\leqq\sum_{j}\int|\nabla\varphi_{j}|^{p}dx$ $ $C’ \sum_{j}r_{j}^{n-p}\leqq C’H<+\infty$ ,

where $C’$ is a positive number depending only on the dimension of the space.
Thus we know that (3.1) does not hold, hence we have $C_{p}(E, R^{n})=0$ .

4. $\epsilon$-Reguralization.

Throughout this section we assume that $F$ denotes a bounded open subset
of $R^{n}$ . We shall explain that the extremal function in Proposition 2.2 in \S 2
can be approximated by smooth solutions of regularized problems. Since this
fact seems to be familiar, one may skip this section at first and return here if
necessary when motivated by the use made later on.

For any $\epsilon>0$ , we set

(4.1) $J_{\epsilon}(u)= \int_{F}(|\nabla u|^{2}+\epsilon^{2})^{p/2}dx$

and consider the variational problem

(4.2) $\inf\{J_{\epsilon}(u):u\in C_{E}(F)\}$ .

By $C_{p.\epsilon}(E, F)$ , we denote the minimal value of this problem. Then obviously
we have

(4.3) $C_{p}(E, F)\leqq C_{p.\epsilon}(E, F)\leqq C(p)(C_{p}(E, F)+\epsilon^{p}|F|)$ ,

where $C(p)$ is a positive number depending only on $p$ . This implies $C_{p}(E, F)$

and $C_{p.\epsilon}(E, F)$ blow up simultaneously, provided $F$ is bounded. We shall collect
basic properties of this regularized p-capacity $C_{p.\epsilon}(E, F)$ which are useful in
this paper. The following is well-known. For the proof see Chapter 2 in [16]

for instance (See also Proposition2.3 and the remark just after Proposition 2.2).

LEMMA 4.1. There exist extremals $u_{\epsilon}\in W_{0}^{1.p}(F)$ for $\epsilon\geqq 0$ such that

$\langle$4.4) $J_{\epsilon}(u_{\epsilon})=C_{p.\epsilon}(E, F)$ for $\epsilon\geqq 0$ ,

$\lim_{\epsilonarrow 0}J_{\epsilon}(u_{\epsilon})=C_{p}(E, F)$ ,
$\langle$4.5)

$\lim_{\epsilonarrow 0}u_{s}=u$ in $W_{0}^{1.p}(F)$ .

NOW we assume that $\partial E$ and $\partial F$ are smooth manifolds and prepare precise
imformations for the solutions of the variational problem (4.2). Let us suppose



On the relative $P$-caPacity 611

that $u$ is the solution of this problem. From the assertion (3) in Proposition 2.1
and Proposition 2.2, it follows that $u=1$ on $E$ . Note that

(4.6) $J_{\epsilon}(u)= \int_{E\backslash F}(|\nabla u|^{2}+\epsilon^{2})^{p/2}dx+\epsilon^{p}|E|$ .

Since the functional J. is smooth, this solution $u$ satisfies the Euler-Lagrange
equation in the weak sense:

$-div((|\nabla u|^{2}+\epsilon^{2})^{\mathfrak{c}p-2)/2}\nabla u)=0$ in $F\backslash E$ .(4.7)
$u=1$ on $E$ , $u=0$ on $\partial F$ .

Moreover if $u$ is of class $C^{2}$ , then $u$ is a solution of classical Dirichlet problem
in $F\backslash E$ with boundary condition $u=1$ on $\partial E,$ $0$ on $\partial F$. Hence the solvability
of (4.2) implies that of (4.7) with Dirichlet boundary condition (at least in the
weak sense). On the other hand, tbe integrand in $J_{\epsilon}(u)$ is of class $C^{2}$ and
strictly convex with respect to $P=\nabla u$ . Hence a solution of the problem (4.7)

is consequently a solution of the variational problem(4.2). Moreover from the
maximum principle for $C^{2}$-solution, the solution of (4.7) is unique (See Theorem
11.9, p. 289 in [9] $)$ . Therefore in order to determine the value $C_{p.\epsilon}(E, F)$ , it
suffices to solve the Dirichlet problem (4.7) in the space $C^{2}(\overline{F\backslash E})$ . To this end
we shall prepare a proposition on the unique existence of the classical solution
of the quasi-linear elliptic differential equation.

PROPOSITION 4.1. The Dirichlet problem (4.7) is uniquely solvable in the
space $C^{2.\alpha}(\overline{F\backslash E)}$ for some $\alpha\in(0,1]$ . Here by $C^{2.\alpha}(\overline{F\backslash E)}$ we denote an usual
Hblder space, and a may depend possibly on $\epsilon$ .

For the proof, see Theorem 15.11, p. 381 in [9] for example.

5. The proof of Theorem 3.1.

We shall show the inequality (3.2), assuming that

(5.1) $C_{p}(E, F)>0$ ,

for some bounded smooth $F$.
For any $\eta>0$ and any $\epsilon>0$ , we can choose positive number $\delta$ and $\epsilon(\eta)$

such that

(5.2) $\epsilon(\eta)\leqq\min(\epsilon, \eta)$ ,

(5.3) $E\subset E_{\delta}\subset E_{e(\eta)}\subset E_{\eta}$ .
We may clearly assume that $\partial E_{\delta},$ $\partial E_{\epsilon(\eta)}$ and $\partial E_{\eta}$ are smooth manifolds without
loss of generality.

Let $U_{\delta}$ and $V_{\eta}$ be solutions of the following Dirichlet problems:
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(5.4) $\{$

$-div((|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\nabla U_{\delta})=0$ in $F\backslash E_{\delta}$ ,

$U_{\delta}|_{E_{\delta}}=1_{\partial F}=0U_{\delta}\in C^{2.\alpha}(^{\frac{U_{\delta}|}{F\backslash E_{\delta}}})\cap C^{0.1}(\overline{F})$

,

and

(5.5) $\{$

$-div((|\nabla V_{\eta}|^{2}+\epsilon^{2})^{(p- 2)/2}\nabla V_{\eta})=0$ in $E_{\eta}\backslash E_{\epsilon(\eta)}$ ,

$V_{\eta E_{\eta}}V_{\eta}\subset-C^{2.\alpha}(^{\frac{1,V_{\eta}|_{\partial}}{E_{\eta}\backslash E_{\epsilon(\eta)}}})\cap C^{0.1}(\overline{E_{\eta}})|_{E_{\epsilon(\eta)}}==0$

,

where $\alpha$ depends possibly on the values of $\epsilon$ and $\delta$ . Then we have

$J_{\epsilon}(U_{\delta})=C_{p.\text{\’{e}}}(E_{\delta}, F)$ ,(5.6)
$J_{\epsilon}(V_{\eta})=C_{p.\epsilon}(E_{\epsilon(\eta)}, E_{\eta})$ .

We take a family of Lipschitz functions $\psi_{\rho}$ for $\rho\in(0,1/2)$ so that

(5.7) $\psi_{\rho}(x)=\{$

1 $0\leqq x\leqq\rho$ .
$\frac{1-\rho-x}{1-2\rho}$ $\rho\leqq x\leqq 1-\rho$ ,

$0$ $1-\rho\leqq x$ .
Then

(5.8) $\int_{E_{\eta}\backslash E_{\delta}}\nabla\psi_{\rho}(V_{\eta})\cdot\nabla U_{\delta}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}dx$

$= \int_{\partial CE_{\eta}\backslash E_{\delta)}}\psi_{\rho}(V_{\eta})(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\frac{\partial}{\partial\nu}U_{\delta}dS$

$= \int_{\partial E_{\eta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\frac{\partial}{\partial\nu}U_{\delta}dS$ .

Here we denote by $S$ the $(n-1)$-dimensional Lebesgue measure, and $\nu$ is the
unit outward normal. Let $\Omega$ be an arbitrary open set such that $\partial\Omega$ is smooth
and $\Omega\subset F\backslash E_{\delta}$ . Then we have

(5.9) $\int_{\partial\Omega}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\frac{\partial}{\partial\nu}U_{\delta}dS=\int_{\Omega}div((|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\nabla U_{\delta})dx$ .

Therefore we have

(5.10) $\int_{\partial E_{\eta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\frac{\partial}{\partial\nu}U_{\delta}dS=\int_{\partial E_{\delta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\frac{\partial}{\partial\nu}U_{\delta}dS$ .

Here we note that

(5.11) $\int_{F\backslash E_{\delta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{p/2}dx$

$= \int_{\partial E_{\delta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\frac{\partial}{\partial\nu}U_{\delta}dS+\epsilon^{2}\int_{F\backslash E_{\delta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}dx$ .

Combining this with (5.8) and (5.10) we have
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(5.12) $C_{p.\epsilon}(E_{\delta}, F)- \epsilon^{p}|E_{\delta}|-\epsilon^{2}\int_{F\backslash E_{\delta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p}2)/2dx$

$= \int_{E_{\eta^{\backslash E}\delta}}\psi_{\rho}’(V_{\eta})\nabla V_{\eta}\cdot\nabla U_{\delta}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}dx$ .

NOW we choose a positive number $\delta_{0}$ so that

(5.13) $C_{p.\epsilon}(E_{\delta}, F)\leqq 2C_{p.\text{\’{e}}}(E, F)$ for any $\delta\leqq\delta_{0}$ and $\epsilon\in[0,1]$ .
Then a family of extremals $\{U_{\delta}\}_{0<\delta\leqq\delta_{0}}$ is uniformly bounded in $W_{0}^{1.p}(F)$ . There-
fore it is weakly compact in $W_{0}^{1.p}(F)$ at least. Moreover from the Clarkson
inequalities it follows that

(5.14) $\lim_{\deltaarrow 0}U_{\delta}=u_{\epsilon}$ in $W_{0}^{1.p}(F)$ ,

where $u_{\epsilon}$ is the extremal function for $C_{p.\text{\’{e}}}(E, F)$ as the one in Proposition 2.2
in \S 2. So that we can assume that when $\delta$ tends to $0$ each component of

$(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}\nabla U_{\delta}$

also converges to a correponding component of

$F_{\epsilon}=(|\nabla u_{\text{\’{e}}}|^{2}+\epsilon^{2})^{(p-2)/2}\nabla u_{\epsilon}$ in $[L^{p/p-1}(F)]^{n}$ weakly.

Since $supp\psi_{\rho}(V_{\eta})\subset E_{\eta}\backslash E_{\epsilon(\eta)}$ , we get as $\deltaarrow 0$ ,

$\lim_{\deltaarrow 0}\int_{E_{\eta^{\backslash E}\delta}}\psi’(V_{\eta})\nabla V_{\eta}\cdot\nabla U_{\delta}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}dx$

(5.15)

$= \int_{E_{\eta}}\psi_{\rho}’(V_{\eta})\nabla V_{\eta}\cdot F_{\epsilon}dx$, for any $\eta\in(0, dist(E, \partial F))$ .

Since $\lim_{\deltaarrow 0}J_{\epsilon}(U_{\delta})=C_{p.\epsilon}(E, F)$ , it follows from Holder’s inequality that

(5.16) $\lim_{\deltaarrow 0}\sup\int_{F\backslash E_{\delta}}(|\nabla U_{\delta}|^{2}+\epsilon^{2})^{(p-2)/2}dx\leqq\{_{C_{p.\epsilon}(E,F)^{1-(2/p)}|F\backslash E|^{2/p}}^{\epsilon^{p-2}|F\backslash E|},$

$p\geqq 2$ .
$1<p\leqq 2$ ,

Tberefore if $1<p\leqq 2$ , we have

(5.17) $C_{p.\epsilon}(E, F)$

$\leqq\epsilon^{p}|F|+\int_{E_{\eta}\backslash E}|\psi_{\rho}’(V_{\eta})||\nabla V_{\eta}||F_{\epsilon}|dx$

$\leqq\epsilon^{p}|F|+(\int_{E_{\eta}\backslash E}|\psi_{\rho}’(V_{\eta})|^{p}|\nabla V_{\eta}|^{p}dx)^{1/p}\cdot(\int_{E_{\eta}\backslash E}|F_{\epsilon}|^{p/(p-1)}dx)^{(p-1)/_{p}}$

$\underline{-\leq}\epsilon^{p}|F|+\max|\phi_{\rho}’|C_{p.\epsilon}(E_{\epsilon(\eta)}, E_{\eta})^{1/p}(\int_{E_{\eta}\backslash E}(|\nabla u_{\epsilon}|^{2}+\epsilon^{2})^{p/2}dx)^{(p-1)/p}$

If $p\geqq 2$ , we can show in a similar way that
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(5.18) $C_{p.\epsilon}(E, F)\leqq\epsilon^{p}|E|+\epsilon^{2}C_{p.\epsilon}(E, F)^{1-(2/p)}\cdot|F\backslash E|^{2/p}$

$+ \max|\psi_{\rho}’|C_{p,\epsilon}(E_{\epsilon(\eta)}, E_{\eta})^{1/p}(\int_{E_{\eta}\backslash E}(|\nabla u_{\epsilon}|^{2}+\epsilon^{2})^{p/2}dx)^{(p-1)/p}$

for any $\eta\in(0, dist(E, \partial F))$ and $\epsilon>0$ . From Lemma 4.1 and (5.2) we have

(5.19) $\{$

$\lim_{\epsilonarrow 0}C_{p.\epsilon}(E_{\xi(\eta)}, E_{\eta})=C_{p}(E, E_{\eta})$ ,

$limu_{\epsilon}=u$ in $TV_{0}^{1.p}(F)$ ,
$\epsilonarrow 0$

where $u$ is the capacitary extremal defined in Proposition 2.2. Now letting
$\epsilonarrow 0$ in (5.17) and (5.18), we have

(5.20) $C_{p}(E, F) \leqq\max|\psi_{\rho}’|C_{p}(E, E_{\eta})^{1/p}(\int_{E_{\eta}\backslash E}|\nabla u|^{p}dx)^{1-(1/p)}$

Since $\rho$ is an arbitrary positive number, we have the desired estimate by letting
$\rhoarrow 0$ .

6. The proof of Theorem 3.2.

By $B_{r}$ we denote an open ball with radius $r$ and center origin. Since
$C_{p}(E, R^{n})=0$ , there is a sequence of $C_{0}^{1}(R^{n})$-functions $\{U_{j}\}_{j=0}^{\infty}$ such that:

(6.1) $\{$

$U_{j}(x)\geqq 1$ for $x\in E$ , $j=1,2,$ $\cdots$

$\int_{R^{n}}|\nabla U_{j}|^{p}dxarrow 0$ as $jarrow+\infty$ .

Then we can show

LEMMA 6.1. Let $\eta_{0}>0$ . Then we have

(6.2) $\lim_{jarrow+\infty}\int_{E_{\eta_{0}}}|U_{j}|^{p}dx=0$ .

THE PROOF OF THEOREM 3.2. Admitting this for a moment we first establish
Theorem 3.2, which is rather elementary. Assume $\eta_{0}>0$ and let us set for
$\eta_{1}=\eta_{0}/2$ ,

(6.3) $\varphi_{1}(x)=\{$

1 $x\in E_{\eta_{1}}$ ,

$\frac{2}{\eta_{0}}dist(x, E_{\eta_{0}})$ $x\in E_{\eta_{0}}\backslash E_{\eta_{1}}$ ,

$0$ otherwise.

Then we immediately get

(6.4) $\lim_{jarrow+\infty}\int_{E_{\eta_{0}}}|\nabla\varphi_{1}|^{p}|U_{j}|^{p}dx=0$

Since $\varphi_{1}\cdot U_{j}\in C_{E}(E_{\eta_{0}})$ , it holds that
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(6.5) $C_{p}(E, E_{\eta_{0}})^{1/p} \leqq(\int_{E_{\eta_{0}}}|\nabla(\varphi_{1}\cdot U_{j})|^{p}dx)^{1/p}$

$\leqq(\int_{E_{\eta_{0}}}|\nabla U_{j}|^{p}\varphi_{1}^{p}dx)^{1/p}+(\int_{E_{\eta_{0}}}|\nabla\varphi_{1}|^{p}|U_{j}|^{p}dx)^{1/p}$

By letting $jarrow+\infty$ , we have

(6.6) $C_{p}(E, E_{\eta_{0}})=0$ .
This proves the assertion.

THE PROOF OF LEMMA 6.1. From the Sobolev imbedding theorem we have

(6.7) $\int_{E_{\eta_{0}}}|U_{j}|^{p}dx\leqq|E_{\eta_{0}}|^{p/n}(\int_{E_{\eta_{0}}}|U_{j}|^{q}dx)^{p/q}$

$\leqq C|E_{\eta_{0}}|^{p/n}\int_{R^{n}}|\nabla U_{j}|^{p}dxarrow 0$ as $jarrow+\infty$ .

Here we used the following (cf. Proposition 7.2): Assume that $1\leqq p<n$ . Then
there exists a positive constant $C$ such that

(6.8) $( \int_{R^{n}}|u|^{q}dx)^{1/q}\leqq C(\int_{R^{n}}|\nabla u|^{p}dx)^{1/p}$ , for $q= \frac{np}{n-p}$ ,

for any $u\in C^{0.1}(R^{n})$ with compact support. Here $C$ is independent of each $u$ .

7. The proof of Proposition 3.1.

We begin with preparing two propositions, one is seen in L. Carleson’s
famous book [5], and the other is due to D. R. Adams [1].

PROPOSITION 7.1. Let $d$ be a positive number $\leqq n$ . Then there exists a
constant $C$ , only depending on the dimension, such that for every compact set $E$,

there exists a nonnegative measure $\mu$ on $R^{n}$ satisfying

(7.1) $\{\mu(B_{\rho}(x))\leqq\rho^{tl}\mu(E)\geqq Ch_{d}(E)$

.
for every $B_{\rho}(x)$ ,

Here $h_{d}(E)$ is defined by (2.8) in \S 2.

PROPOSITION 7.2. Let $1<p<q<+\infty$ and $p<n$ . Let $\mu$ be a nonnegative
measure on $R^{n}$ . Then the inequality

(7.2) $( \int_{R^{n}}|u|^{q}d\mu)^{1/q}\leqq C(\int_{R^{n}}|\nabla u|^{p}dx)^{1/p}$

for all $u\in C_{0}^{\infty}(R^{n})$ , holds if and only if

(7.3) $K= \sup_{x\in R^{n}.\rho>0}\frac{\mu(B_{\rho}(x))}{\rho^{q(n/p- 1}}<+\infty$ ,

where $B_{\rho}(x)=\{y\in R^{n} : |x-y|<\rho\}$ . Moreover $K$ is equivalent to the best constant
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$C$ in (7.2).

THE PROOF OF PROPOSITION 3.1. Without loss of generality we assume
that $0<\epsilon<p$ . By Proposition 7.1 there exists a nonnegative measure $\mu$ such
that
$\langle$7.4) $\{\mu(B_{\rho}(x))\leqq\rho^{n- p+\epsilon}\mu(E)\geqq Ch_{n- p+\epsilon}(E), for any \rho and x\in R^{n},$

for some constant $C>0$ .

On the other hand, it follows from Proposition7.2 that the inequality

(7.5) $( \int_{R^{n}}|u|^{q}d\mu)^{1/q}\leqq C(\int_{R^{n}}|\nabla u|^{p}dx)^{1/p}$ , $q=p \frac{n-p+\epsilon}{n-p}>p$ ,

holds for all $u\in C_{0}^{\infty}(R^{n})$ . Since $C_{p}(E, F)=0$ , for any $\delta>0$ we can find an
element $u_{\delta}\in C^{0.1}(F)$ with compact support contained in $F$ such that

$\langle$7.6) $u_{\delta}\geqq 1$ on $E$ and $\int_{R^{n}}|u_{\delta}|^{q}d\mu\leqq C\delta$ .

Then $\mu(E)\leqq C\delta$ . Thus we have $\mu(E)=0$ , and hence $h_{n-p+\epsilon}(E)=0$ , which implies
$H_{n-p+\epsilon}(E)=0$ .
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