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\S 0. Introduction.

An important problem in differential geometry is to characterize the global
behaviour of a manifold in terms of local invariants. A result in this direction
is given by the following theorem: If $M$ is a complete, simply connected rie-
mannian manifold whose curvature tensor is close to the curvature tensor of
the standard sphere $S$ , then $M$ is diffeomorphic to $S$ . This is called the differ-
entiable sphere theorem. In this paper, we prove that 0.681-pinched riemannian
manifold is diffeomorphic to the standard sphere.

The proximity of curvature tensors $R$ and $\overline{R}$ of the manifold $M$ and the
standard sphere $S$ respectively is measured in terms of sectional curvature: A
riemannian manifold whose sectional curvature $K$ satisfies the condition $\delta\leqq K<1$

is called $\delta$-pinched. For the first time, Gromoll [2], Calabi, and Shikata [11]
gave some results on the differentiable sphere theorem. Later on, these results
were improved: Sugimoto and Shiohama [12] found a pinching number $\delta(=0.87)$

independent of the dimension of $M$ such that a complete, simply connected and
$\delta$-pinched riemannian manifold $M$ is diffeomorphic to the standard sphere. ${\rm Im}$

Hof and Ruh [5] gave a sequence $\delta_{n}$ of pinching numbers dependent on $n$ of
dimension of $M$ : A $\delta_{n}$ -pinched manifold $M$ is not only diffeomorphic to the
standard sphere, but the action of the isometry group of $M$ is also equivalent
to the standard linear action of a subgroup of $O(n+1, R)$ on the sphere. The
number $\delta_{n}$ is decreasing on $n$ and $\lim\delta_{n}=0.68$ as $n$ tends to infinity. But, if
we take the number $\delta$ independent of dimension of $M$ on ${\rm Im}$ Hof and Ruh’s
result, $\delta$ becomes considerably large, $i.e.,$ $\delta=0.98$ for $n>5$ . It is unknown
what number is the infimum of $\delta$ in order that a complete, simply connected
and $\delta$-pinched riemannian manifold is diffeomorphic to the standard sphere.

Sugimoto and Shiohama’s beginning idea was due to Omori [7], from which
they derived that a complete, simply connected and $\delta$-pinched riemannian mani-
fold $1t/I^{n}$ is diffeomorphic to the standard sphere $S^{n}$ if a diffeomorphism $f$ of
$S^{n-1}$ , which is naturally defined for $\delta$-pinched manifold $M$, is diffeotopic to the
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identity map of $S^{n-1}$ . We shall call this the diffeotopy idea. So the problems
in their case were how to construct a diffeotopy, and how to find an explicit
estimate for $\delta$ to guarantee such a diffeotopy. On the other hand, the main
idea in a series of papers Ruh [8], Grove-Karcher-Ruh [3] and ${\rm Im}$ Hof-Ruh, was
to lead from a connection with small curvature on the stabilized tangent bundle
of $M$ to flat connection on this bundle. This first connection with small cur-
ture on the bundle was defined with relation to the pinching number $\delta$ . We
shall call this the flat connection idea. Using the resulting flat connection, they
defined a generalized Gauss map $G:M^{n}arrow S^{n}$ , which gave a diffeomorphism. So
the problems in this case were how to construct a flat connection from the
connection with small curvature, and how to find an explicit estimate for $\delta$ in
order that the Gauss map could be a diffeomorphism.

The emphasis of the present article is to combine these independent ideas
from our viewpoint to obtain a new pinching constant.

THEOREM 1 (differentiable sphere theorem). Suppose $\delta=0.681$ . Then a corn-
plete, simply connected and $\delta$-Pinched riemannian manifold is diffeomorphic to the
standard sPhere.

Our pinching number 0.681 is almost same as the number $\lim\delta_{n}=0.68$ given
by ${\rm Im}$ Hof-Ruh. But their numbers are determined by different equations from
each other. We use the diffeotopy idea in proof of the theorem, that is, we
find a sufficient condition that the diffeomorphism $f$ of $S^{n-1}$ is diffeotopic to
the identity map of $S^{n-1}$ . But our diffeotopy is constructed in a quite different
way from Sugimoto-Shiohama’s. Our main idea is as follows: $f$ is homo-
thetically extended to a diffeomorphism $F$ of $R^{n}-\{0\}$ . Then, the restriction
of the differential $dF$ to $S^{n-1}$ becomes a map of $S^{n-1}$ into the space $l\mathcal{V}I(n, R)$ of
$n\cross n$ -matrices. We approximate $dF:S^{n-1}arrow M(n, R)$ by a map $\alpha:S^{n-1}arrow SO(n, R)$ .
For a differentiable map $\alpha$ : $S^{n-1}arrow SO(n, R)$ , we denote by $\alpha_{x}$ the matrix corre-
spondent to $x\in S^{n-1}$ . Then, our diffeotopy is constructed by joining $\alpha_{x}$ to a
constant matrix in $SO(n, R)$ for each $x\in S^{n-1}$ . In particular, by our diffeotopy
theorem below we can choose a neighborhood of the isometry $SO(n, R)$ of $S^{n-1}$

wbich is arcwise connected in the diffeomorphism group of $S^{n-1}$ . [cf. Compare
Theorem 2 with [12] \S 5, Theorem.]

TO state exactly our diffeotopy theorem, we explain some notations. Let
$S^{n-1}$ be the standard sphere with curvature 1. Let $f$ be a diffeomorphism of
$S^{n-1}$ . We put $F(tx)=tf(x)$ for $t>0$ . We define the norm of differential $d\alpha$ of
a by

$||d \alpha||=\max\{||(d_{X}\alpha.)U|||X\in T_{x}(S^{n-1})$

and $U\in R^{n}$ with $||X||=||U||=1$ },

where $||X||$ denotes the euclidian norm of $X$ .
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DEFINITION 0.1. We say that $f$ is diffeotopic to the identity map of $S^{n-1}$ ,

if there exists a differentiable map $H:[0,1]\cross S^{n-1}arrow S^{n-1}$ satisfying the follow-
ing (1) and (2):

(1) $H1,$ $x)=f(x)$ and $H(O, x)=x$ .
(2) The map $H_{t}=H(t, )$ is a diffeomorphism of $S^{n-1}$ for each $i$ .

DEFINITION 0.2. We say that $\alpha$ is an approximation of $df$ on $S^{n-1}$ , if
there exist real numbers $C_{1}$ and $N_{1}$ and they satisfy the following (1), (2), (3) $|$

and (4):

(1) $N_{1}<1$ , (2) $\alpha_{x}(x)=(d_{x}F)(x)$ for $x\in S^{n-1}$ .
(3) $||\alpha-dF||\leqq C_{1}$ . (4) $||d\alpha||$ $ $N_{1}$ .

DEFINITION 0.3. For the approximation $\alpha$ of $df$, we define a positive func-
tion $P(t)$ for $t\in[0, \pi]$ : We take $0\leqq t_{0}\leqq t_{1}\leqq\pi$ such that

$\cos(\frac{3}{2}N_{1}(\pi-t_{0}))=-1$ and $\cos(\frac{3}{2}N_{1}(\pi-t_{1}))=0$ .

Then we put

$P(t)^{2}=C_{2}^{2}[ \frac{\sin(\frac{N_{1}}{2}t)}{\sin(\frac{N_{1}}{2}\pi)}]^{2}+C_{3}^{2}[\frac{\sin(N_{1}t)}{\sin(N_{1}\pi)}]^{2}+2C_{2}C_{3}\frac{\sin(N_{1}t)}{\sin(N_{1}\pi)}\varphi(t)$ ,

where $C_{2}=(N_{1}-C_{1})/2,$ $C_{3}=(N_{1}+C_{1})/2$ and $\varphi(t)$ is given by

$\varphi(t)=|^{\frac{\sin(\frac{N_{1}}{2}t)}{\frac{}{-}\sin(\frac{N_{1}}{N_{1}22}\pi)\sin(\frac{N_{1}}{2}\pi)\sin(\frac t)\frac{t}{\pi}\cos(}}\omega s(\frac{3}{2}N_{1}(\pi-t))$

$(t_{1}\leqq t\leqq\pi)(t_{0}\leqq t\leqq t_{1})$

.

$(0\leqq t\leqq t_{0})$

THEOREM 2 (Diffeotopy theorem). Let $f$ be a diffemorphism of $S^{n-1}$ . Sup-
pose that there exists an approximation $\alpha$ of $df$ such that $P(t)<1$ for $t\in[0, \pi]$ .
Then, $f$ is diffeotopic to the identity map of $S^{n-1}$ .

In our various procedure of the proof of sphere theorem, the first connec-
tion with small curvature on the stabilized tangent bundle $E$ due to Ruh plays
an important role: We show that the diffeotopy idea is naturally introduced
by using the connection on the bundle. A few estimates for $\alpha$ are obtained
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by using the connection. We shall construct a diffeotopy in the almost similar
way to a construction of flat connection on $E$ .

The contents of this paper are as follows:
\S 1. Diffeotopy theorem.
In this section, we prove the diffeotopy theorem.
\S 2. Preliminaries and formulation of problem.
In this and succeeding sections, we prove the differentiable sphere theorem.

In this section, we define the stabilized tangent bundle $E$ of $M$ and a metric
connection $\nabla$, which has a small curvature, on the bundle. We define the dif-
feomorphism $f$ of $S^{n-1}$ and explain the diffeotopy idea. Furthermore, we obtain
a few results that are used later.

\S 3. Differential of $f$ and its approximation.
In this section, we define a map $\alpha$ : $S^{n-1}arrow SO(n, R)$ as an approximation of

$dF|_{S^{n-1}}$ : $S^{n-1}arrow M(n, R)$ in two ways: First we define $\alpha$ by using the Levi-
Civita connection $D$ of $M$. Second we define it by using local cross-sections
$Marrow P$, where $P$ is an $O(n+1, R)$-principal bundle over $M$ associated to $E$. The
first definition of $\alpha$ seems to be natural in a viewpoint of approximation of
$dF|_{S^{n-1}}$ . So, we can estimate a norm $||dF-\alpha||$ on $S^{n-1}$ . On the other hand,
the second definition is useful to estimate differential of $\alpha$ .

Tbe first definition of $\alpha$ was also given by Sugimoto-Shiohama. But, our
estimate $||dF-\alpha||$ is sharper than it. Furthermore, on the construction of diffeo-
topy we use the estimate in a quite different way from that of Sugimoto-
Shiohama.

\S 4. Lemma necessary to estimate $||d\alpha||$ .
In this section, we prepare to estimate the norm $||d\alpha||$ on $S^{n-1}$ . Namely,

for a map $\mathcal{A}:S^{n-1}arrow SO(n+1, R)$ , which is almost equal to $\alpha$ , we estimate $||d\mathcal{A}||$ .
This map $\mathcal{A}$ is given in relation to the second definition of $\alpha$ in \S 3.

\S 5. Differentiable sphere theorem.
In this section, we first find the condition of $\delta$ in order that $E$ is a trivial

bundle. Second, we estimate $||d\alpha||$ . By this estimate together with the estimate
$||dF-\alpha||$ in \S 3, we can obtain the condition of $\delta$ in order that $M$ is diffeo-
morphic to the standard sphere.

\S 6. Estimate of holonomy of principal bundle $P$.
Let $\tau=\tau(s),$ $0\leqq s\leqq a$ , be a piecewise differentiable loop in a normal coordi-

nate neighborhood of $M$. In this section, we estimate a distance $\rho(u(O), u(a))$

for a horizontal lift $u(s)$ of $\tau$ in $P$. This estimate was already given by Ruh
[8] in somewhat different form.
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\S 1. Diffeotopy Theorem.

DIFFEOTOPY THEOREM. Let $f$ be a diffeomorphism of $S^{n}1$ Suppose that
there exists an approximation $\alpha$ of $df$ such that $P(t)<1$ for $t\in[0, \pi]$ . Then, $f$

is a diffeotopic to the identity map of $S^{n-1}$ .

(A) Let $S^{n-1}$ be the standard sphere with curvature 1. We put $F(tx)=$

$tf(x)$ for $t>0$ . Then we have $(dF)_{x}(x)=f(x)$ for $x\in S^{n-1}$ . The approximation
$\alpha$ : $S^{n-1}arrow SO(n, R)$ of $df$ satisfies the following (1), (2) and (3):

(1) $\alpha_{x}(x)=f(x)$ . (2) $||\alpha-dF||\leqq C_{1}$ . (3) $||d\alpha||\leqq N_{1}<1$ .

Then we have
$(dF)_{x}X=(d_{X}\alpha.)x+\alpha_{x}(X)$ for $X\in T_{x}(S^{n-1})$

by $F(x)=\alpha_{x}(x)$ . Therefore, we have $C_{1}\leqq N_{1}$ . We already defined the function
$P(t)$ for $r\in[0, \pi]$ , with respect to $\alpha$ , in the definition 0.3.

NOW we start the proof of theorem. We define a norm $||A||$ of $A\in so(n, R)$

as follows.
$|1A||= \max$ {Il $AU|||U\in R^{n}$ with $IU|I$ $=1$ }.

$A\in so(n, R)$ is equivalent, by $Ad(SO(n))$ , to

$\overline{A}=\{\begin{array}{lllll}0 x^{1} -x^{1} 0 0 \ddots 0 0 x^{m} -x^{m} 0\end{array}\}$ or $\{\begin{array}{llllll}0 x^{1} -x^{1} 0 0 \ddots 0 x^{m} 0 -x^{m} 0 0\end{array}\}$

for $m=n/2$ or $m=(n-1)/2$ respectively. Then we have $||A||= \max\{|x^{i}||i=$

$1,$
$\cdots,$ $m\}$ . We denote above $\overline{A}$ by $\overline{A}=\sum x^{i}e_{2i-1.2i}$ for simplicity.

LEMMA 1. Let $\alpha:S^{n-1}arrow SO(n, R)$ be a differentiable map such that $\alpha_{x_{0}}=B$

for some $x_{0}\in S^{n-1}$ . Suppose $||d\alpha||<1$ , then the image of $\alpha$ is contained in a
normal neighborhood of $B$ in $SO(n, R)$ , where $SO(n, R)$ is equipped with a bi-
invariant metric.

PROOF. First, note that the tangent cut locus of unit $E$ in $SO(n, R)$ is
given by

$\cup Ad(SO(n))(\sum_{i}\frac{\pi x^{i}}{\max|x^{j}|}e_{2i-1.2i)}$ ,

where above sum $\cup$ is taken for $\sum x^{i}e_{2i-1,2i}$ with $\sum(x^{i})^{2}=1$ [cf. 10]. Second,

let $\tau=\tau(t)$ be a geodesic $\dot{j}oiningx_{0}$ to $-x_{0}$ in $S^{n-1}$ . The length of $\tau$ is $\pi$ .
Thus, if $||d\alpha||<1$ , then $\alpha_{\tau(t)}$ does not intersect with the cut locus of $B$ for
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every $t$ by $||\alpha^{-1}d\alpha||<1$ . Q.E.D.

There exists a differentiable map $A:S^{n-1}arrow so(n, R)$ such that $\alpha_{x}=B\exp(\pi A_{x}\rangle$

by $||d\alpha||<1$ .
We define a differentiable map $H:[0, \pi]xS^{n}1_{arrow S^{n-1}}$ as follows:

$H(t, x)=B\exp(tA_{x})x$ for $(t, x)\in[0, \pi]\cross S^{n-1}$

Then we have $H(\pi, x)=\alpha_{x}(x)=f(x)$ and $H(O, x)=Bx$ . Now, we show that $H_{\zeta}$

is a diffeomorphism of $S^{n-1}$ for each $t$ under the condition $P(t)<1$ .
We have

$dH_{t}(X)=Bd_{X}[\exp tA.]x+B\exp(tA_{x})X$

for $X\in T_{x}(S^{n-1})$ . Thus we have, for a unit vector $X$ ,

$||dH_{t}(X)||\geqq 1-||d_{X}[\exp tA.]x||$ .
Therefore, if we have

$||d_{X}[\exp tA.]x||<1$ for a unit vector $X$ ,

then we have $||dH_{t}(X)||>0$ . We show the following equation in (B) below:

(1.1) $||d_{X}[\exp tA.]x||\leqq P(t)$ for $t\in[0, \pi]$ .
Furthermore, we can join $B$ to the unit $E$ in $SO(n, R)$ . Thus, if we can prove
the equation (1.1), then we have the diffeotopy theorem.

(B) Let $\alpha$ : $S^{n-1}arrow SO(n, R)$ be a differentiable map such that $\alpha_{x_{0}}=E$ and
$||d\alpha||\leqq N_{1}(<1)$ . So we can represent $\alpha_{x}=\exp(\pi A_{x})$ by using a differentiable
map $A:S^{n-1}arrow so(n, R)$ . Then we define $\alpha_{t}$ : $S^{n-1}arrow SO(n, R)$ for each $t\in[0, \pi]_{\sim}\gamma by$

$\alpha_{t,x}=\exp(tA_{x})$ .

The following lemma is a slight generallzed form of (1.1).

LEMMA 2. Let fix $c\in S^{n-1}$ and a unit vector $X\in T_{x}(S^{n-1})$ . SuPPose
$||(d_{X}\alpha.)c||\leqq C_{1}(\leqq N_{1})$ . Then we have

$||(d_{X}\alpha_{t})c||\leqq P(t)$ .
PROOF. The proof is divided into several steps. (a) We assume $n=2m$ for

simplicity. We can assume $A_{x}= \sum y_{i}e_{2i-1.2i}$ and $c={}^{t}[c_{1},0, c_{2},0, \cdot.. , c_{m}, 0]$ . In
fact, we have

$\alpha_{X}c=\exp(\pi A_{x})c=\exp(\pi g^{-1}\overline{A}_{x}g)c=g^{-1}\exp(\pi\overline{A}_{x})gc$

for $g\in SO(n, R)$ , and there exists $h\in SO(n, R)$ satisfying

$h^{-1}\exp(\pi\overline{A}_{x})h=\exp(\pi\overline{A}_{x})$ and $hgc={}^{t}[c_{1},0, \cdots , c_{m}, 0]$ .
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We have $|y_{i}|\leqq N_{1}$ by the lemma 1, and

$(d_{X} \alpha_{t})=d(L_{\exp tA_{x}})_{E}\frac{E-\exp(-ad(tA_{x}))}{ad(tA_{x})}(td_{X}A)$

[cf. 4]. We denote $A_{x}=A,$ $d_{X}A=Z$ and $(d_{X}\alpha_{t})=\overline{Y}_{t}$ for the brevity. We put

$Y_{t}= \frac{E-\exp(-ad(tA))}{ad(tA)}(tZ)$ .
$\overline{Y}_{t}$ is a Jacobi field on $SO(n, R)$ along $k(t)=\exp(tA)$ . So we have $\overline{Y}’’+R(\overline{Y}, A)A$

$=0$ , where $\overline{Y}’$ is the covariant derivative of $\overline{Y}$ in the direction $dk/dt$ . Then
we have

(1.2) $(Y’c, Y’c)+(Y’’c, Yc)=(\overline{Y}’c,\overline{Y}’c)+(\overline{Y}’’c,\overline{Y}c)$

$=(\overline{Y}’c,\overline{Y}’c)-(R(\overline{Y}, A)Ac,\overline{Y}c)$ Ill; $(||Yc||’)^{2}-(R(Y, A)Ac,$ $Yc)$ .

We denote

$Y=[v;w]\in so(n, R)$

for the brevity. This implies $Y_{2i-1.2j-1}=u,$ $Y_{2i.2j-1}=v,$ $Y_{2i-1.2j}=w$ and $Y_{2i,2j}=$

$z(i\neq j)$ for $Y=(Y_{ij})$ . We have

(1.3) $R(Y, A)A=- \frac{1}{4}[[Y, A],$ $A]= \frac{1}{4}[(y_{i}^{2}+y_{j}^{2})\{\begin{array}{ll}u, wv, z\end{array}\}+2y_{i}y_{j} \{\begin{array}{ll}-z, vw, -u\end{array}\}]$ .

(b) From now on, we assume $y_{i}\geqq 0$ for simplicity. We divide $Z$ into two com-
ponents $Z=Z_{1}+Z_{2}$ : We define

$Z_{1}= \frac{1}{2}[_{b}^{a}:$ $-ba]$ and $Z_{2}= \frac{1}{2}\{\begin{array}{ll}c, dd, -c\end{array}\}$ for $Z=\{\begin{array}{ll}\alpha, \gamma\beta, \delta\end{array}\}$ ,

where $a=\alpha+\delta,$ $b=\beta-\gamma,$ $c=\alpha-\delta$ and $d=\beta+\gamma$ . Put

$(Y_{1})_{t}= \frac{E-\exp(-ad(tA))}{ad(tA)}(tZ_{1})$ , $(Y_{2})_{t}= \frac{E-\exp(-ad(tA))}{ad(tA)}(tZ_{2})$ .

Since we have

$f \frac{E-\exp(-ad(tA))}{ad(tA)}=\int_{0}^{t}Ad(\exp(-tA))dt$ ,

we obtain, if $y_{i}\neq y_{j}$ and $y_{i}+y_{j}\neq 0$ ,

(1.4) $(Y_{1})_{t}= \frac{1}{y_{i}-y_{j}}\sin(\frac{y_{i}-y_{j}}{2}t)\{\begin{array}{l}cos(\frac{y_{i}-y_{j}}{2}t),-sin(\frac{y_{i}-y_{j}}{2}t)sin(\frac{y_{i}-y_{j}}{2}t), cos(\frac{y_{t}-y_{j}}{2}t)\end{array}\}\{\begin{array}{ll}a -bb a\end{array}\}$,
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(1.5) $(Y_{2})_{t}= \frac{1}{y_{i}+y_{j}}\sin(\frac{y_{i}+y_{j}}{2}t)[_{\sin(\frac{y_{i}+y_{j}}{2}t)}^{\cos(\frac{y_{i}+y_{j}}{2}t)}|-\sin(\frac{y_{i}+y_{j}}{2}t)\cos(\frac{y_{i}\perp_{y_{j}}}{2}t)]\{\begin{array}{ll}c dd -c\end{array}\}$ .

If $y_{i}=y_{j}$ in equation (1.4), then we have

(1.6) $(Y_{1})_{t}= \frac{1}{2}\{\begin{array}{ll}t 00 t\end{array}\} \{\begin{array}{ll}a -bb a\end{array}\}$ .

If we assume $||(Y_{1})_{\pi}c||=||(Y_{2})_{\pi}c||=1$ , then we have

(1.7) $(||Y{}_{1}C||)_{t\Rightarrow r}’= \int_{0}^{\pi}\{(Y_{1}’c, Y’{}_{1}C)+(Y_{1}’’c, Y{}_{1}C)\}dt$

$\geqq\int_{0}^{\pi}\{(||Y_{1}c||’)^{2}-\frac{N_{1}^{2}}{4}||Y_{1}c||^{2}\}dt$ ,

(1.8) $(||Y{}_{2}C||)_{t=\tau}’ \geqq\int_{0}^{\pi}\{(||Y_{2}c||’)^{2}-N_{1}^{2}||Y_{2}c||^{2}\}dt$ ,

by (1.2), (1.3), (1.4) and (1.5). By (1.6), (1.7) and (1.8), we have

(1.9) $||(Y_{1})_{\pi}c|| \frac{t}{\pi}\leqq||(Y_{1})_{t}c||\leqq||(Y_{1})_{7\iota}c||\frac{\sin(\frac{N_{1}}{2}\underline{t})-}{\sin(\frac{N_{1}}{2}\pi)}$ ,

(1.10) $||(Y_{2})_{t}c||1||(Y_{2})_{\sim}c|| \frac{\sin(N_{1}t)}{\sin(N_{1}\pi)}$

[cf. 5, Proof of Prop. 4.1]. The right hand side equation of (1.9) is increasing
for $t\in[0, \pi]$ . And the right hand side equation of (1.10) attains maximum at
$t=\pi/(2N_{1})$ .

Put $\overline{c}=^{t}[0, c_{1},0, c_{2}, \cdots , 0, c_{m}]$ . Then we have

$||(Y_{1})_{n}c||=||(Y_{1})_{\sim}\overline{c}||$ , $||(Y_{2})_{\pi}c||=||(Y_{2})_{-}\overline{c}||$

and
$((Y_{1})_{-}c, (Y_{2})_{\pi}c)=-((Y_{1})_{\pi}\overline{c}, (Y_{2})_{\overline{}}\overline{c})$

by (1.4) and (1.5). From the assumption, we have

(1.11) $\{$

I $Y_{\pi}c||^{2}=||(Y_{1})_{\overline{\vee}}c||^{2}+||(Y_{2})_{\pi}c||^{2}+2((Y_{1})_{-C}, (Y_{2})_{\pi}c)\leqq C_{1}^{2}$ ,

$||Y_{\pi}\overline{c}||^{2}=||(Y_{1})_{\pi}\overline{c}||^{2}+||(Y_{2})_{-}\overline{c}||^{2}+2((Y_{1})_{-\overline{C}}, (Y_{2})_{r}\overline{c})\leqq N$ .

(c) We put $U(t)=||Y_{t}c||,$ $V(t)=||(Y_{1})_{t}c||$ and $7V(t)=||(Y_{2})_{t}c||$ for simplicity. Then
we must consider the case where $U(t)$ is maximal at each $t\in[0, \pi]$ . First, we
must take $V(\pi)^{2}+W(\pi)^{2}$ and $W(\pi)/V(\pi)$ as large as posible by (1.9) and (1.10).
Therefore we have



Differentiable sphere theorem 535

(1.12) $V( \pi)^{2}+W(\pi)^{2}=\frac{C_{1}^{2}+N_{1}^{2}}{2}$ ,

(1.13) $((Y_{1})_{-}c, (Y_{2})_{\overline{arrow}}c)=-V( \pi)W(\pi)=\frac{C_{1}^{2}-N_{1}^{2}}{4}$ ,

by (1.11). So we have

$V( \pi)=\frac{N_{1}-C_{1}}{2}$ and $W( \pi)=\frac{N_{1}+C_{1}}{2}$ .

Finally, we consider the inner product $((Y_{1})_{t}c, (Y_{2})_{t}c)$ . We put $2\theta_{ij}=y_{i}-y_{J}$

at (1.4) and $2\eta_{ij}=y_{i}+y_{j}$ at (1.5). We study the case where $(0\leqq)\theta_{ij}(\leqq N_{1}/2)$

and $(0\leqq)\eta_{ij}(\leqq N_{1})$ are considered as independent variables. We note that $U(t)$

increases as $W(t)$ becomes larger by $V(t)<W(t)$ (and (1.14) below). So we have
$W(t)=W(\pi)\sin(N_{1}t)/\sin(N_{1}\pi)$ . In this case we have $\eta_{ij}=N_{1}$ at (1.5). By (1.4),

(1.5) and (1.13), we have

(1.14) $((Y_{1})_{t}c, (Y_{2})_{t}c)\leqq\{$

$V(t)W(t)$ if $0\leqq t\leqq t_{0}$

$-V(t)W(t)\cos((N_{1}+\theta)(\pi-t))$ if $t_{0}\leqq t\leqq\pi$ ,

where $\theta=\max|\theta_{ij}|$ and $\cos((N_{1}+\theta)(\pi-t_{0}))=-1$ . Therefore we have

$\frac{((Y_{1})_{t}c,(Y_{2})_{t}c)}{V(\pi)W(\pi)}=(\frac{\sin(\frac{N_{1}}{2}t)\sin(N_{1}t)}{\sin(\frac\pi)\sin(N_{1}\pi)}1_{-(\frac{3}{2}N_{1}(\pi-t))}^{-\cos(\frac{3}{2}N_{1}(\pi-t))}$

$ififr_{0}\leqq r\leqq t_{1}t_{1}\leqq r\leqq\pi$

’

if $0\leqq t\leqq t_{0}$ ,

where $\cos(3N_{1}(\pi-t_{0})/2)=-1$ and $\cos(3N_{1}(\pi-t_{1})/2)=0$ . Thus we have the lemma.
Q. E. D.

\S 2. Preliminaries and formulation of problem.

Let $M$ be a complete, simPly connected riemannian manifold of dimension
$n$ with a riemannian metric $g$ . We assume $\Lambda l$ is $\delta$-pinched, that is, the sec-
tional curvature $K$ satisfies $\delta\leqq K$ 1. In particular, we assume $\delta>1/4$ .
(A) The stabilized tangent bundle of $\lambda I$.

We denote by $E$ the stabilized tangent bundle of $M$, that is, $E=T(M)\oplus 1(M)$ ,

where $T(M)$ and $1(M)$ are tangent bundle and trivial line bundle $M\cross R$ respec-
tively. Let $e:Marrow E$ be a cross-section defined by $M\ni parrow(O, 1)_{p}\in T_{p}(M)\oplus R$.
The bundle $E$ has a natural fibre metric $h$ defined by $g,$ $i.e.$ ,
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$h(X, Y)=g(X, Y)$ , $h(X, e_{p})=0$ , $h(e_{p}, e_{p})=1$

for $X,$ $Y\in T_{p}(M)$ . We define a $h$-metric connection $\nabla$ on $E$ as follows:

$\nabla_{X}Y=D_{X}Y-cg(X, Y)e$ , $\nabla_{X}e=cX$

for $X,$ $Y\in T(M)$ , where $c=\sqrt{}\overline{(1+\delta)/2}$ and $D$ is the Levi-Civita connection on $M$

defined by $g$ . The connection $\nabla$ has curvature tensor $R^{\nabla}=R-c^{2}\overline{R}$ , where $R$ is
the riemannian curvature tensor on $M$ and $\overline{R}$ is the algebraic expression of the
curvature tensor on the unit sphere $S^{n}(1)$ in terms of the riemannian metric on
$M$. In this and succeeding sections, we denote by $S^{n}(c^{2})$ the standard sphere
with curvature $c^{2}$ .

We define a norm $||R^{\nabla}||$ of $R^{\nabla}$ by

$||R^{\nabla}||= \max\{||R^{\nabla}(X, Y)Z|||X,$ $Y$ and
$Z\in T_{p}(M)$ with $||X||=||Y||=||Z||=1$ },

where, for a vector $X\in T_{p}(M)$ , we denote by $||X||$ the norm of $X$ with respect
to $h$ . Then we have $||R^{\nabla}||\leqq 2(1-\delta)/3$ [cf. 9].

Let $P$ be a principal bundle over $M$ of $(n+1)$-frames with structure group
$O(n+1, R)$ associated to $E,$ $i.e.$ ,

$P=$ { $u=(u_{1},$ $\cdots$ , $u_{n+1}$ ) $|u_{i}\in E_{p}$ for $p\in M$ with $h(u_{i},$ $u_{j})=\delta_{ij}$ }.

Then a connection form $\omega$ and a curvature form $\Omega$ on $P$ are naturally defined
by V, and they satisfy the structure equation dtu $=-\omega\wedge\omega+\Omega$ .

(B) The manifold $M$ is homeomorphic to the standard sphere by the sphere
theorem $[1, 6]$ . In particular, we use the following properties. Let $q_{0}$ and $q_{1}$

be a pair of points with maximal distance $d(q_{0}, q_{1})$ on $\Lambda f$, where $d$ denotes the
distance function induced by the riemannian metric $g$ . Put $M_{0}=\{p\in M|d(P, q_{0})$

$\leqq d(p, q_{1})\}$ , $M_{1}=\{p\in M|d(p, q_{0})\geqq d(p, q_{1})\}$ and $C=\{q\in M|d(q, q_{0})=d(q, q_{1})\}$ .
Then $C$ is diffeomorphic to the standard sphere $S^{n-1}$ and takes the place of the
equator of $S^{n}$ , while $M_{0}$ and $1\mathfrak{h}I_{1}$ take the place of upper and lower hemisphere
respectively.

Let $S_{q_{0}}(M)$ and $S_{q_{1}}(M)$ denote unit spheres in the tangent space of points $q_{0}$

and $q_{1}$ respectively. The exponential maps $Exp_{q_{0}}$ and $Exp_{q_{1}}$ with centers at $q_{0}$

and $q_{1}$ respectively are bijective maps if restricted to an open ball of radius $\pi$ .
In particular, there exists the following diffeomorphism $f$ : $S_{q_{0}}(M)arrow S_{q_{1}}(M):f$

is defined by requiring $Exp_{q_{0}}(tx)$ and $Exp_{q_{1}}(tf(x))$ to coincide for some $t=t(x)$

satisfying $\pi/2\leq t(x)\leqq\pi/(2\sqrt{}\overline{\delta)}$ . Note that the point of intersection lies on the
“equator” $C$ . We denote $q=Exp_{q_{0}}(t(x)x)\in C$ by $q(x)$ .
(C) Cross-section $u^{i}$ : $M_{i}arrow P|_{Mi}(i=0,1)$ .

We fix a minimal geodesic $\gamma=\gamma(t)$ joining $q_{0}=\gamma(0)$ to $q_{1}=\gamma(d(q_{0}, q_{1}))$ . At
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first, we identify $T_{q_{0}}(M)$ with $T_{q_{1}}(M)$ as follows: Let $\{X_{1}, , X_{n-1}, X_{n}\}$ be
an orthonormal basis of $T_{q_{0}}(M)$ . Then we choose $X_{n}=\dot{\gamma}(0)$ particularly, where
$7(0)=(d\gamma/dt)(O)$ . The orthonormal basis $\{X_{1}, , X_{n-1}, X_{n}\}$ of $T_{q_{1}}(M)$ is now de-
fined by the parallel translation with respect to $D$ of $\{X_{1}, \cdots , X_{n}1’-X_{n}\}$

$(\subset T_{q_{0}}(M))$ along $\gamma$ . Thus we can see $X_{i}(i=1, , n)$ as a vector of both
tangent spaces $T_{q_{0}}(M)$ and $T_{q_{1}}(M)$ . Note $X_{n}\in T_{q_{1}}(M)$ is equal to $-\dot{\gamma}(d(q_{0}, q_{1}))$ .
Thus we can see the map $f$ : $S_{q_{0}}(M)arrow S_{q_{1}}(M)$ as a map $f$ : $S^{n-1}(1)-*S^{n-1}(1)$ ,
where $S^{n-1}(1)$ is the unit sphere in the enclidian space $R^{n}$ spanned by ortho-
normal basis $\{X_{1}, \cdots , X_{n}\}$ .

NOW, we define a cross-section $u^{0}$ : $M_{0}arrow P|_{M_{0}}$ as follows: First we choose
$u^{0}(q_{0})=(X_{1}, \cdot.. , X_{n}, e_{q_{0}})$ over the center $q_{0}$ of $M_{0}$ . Second we define a section
$u^{0}$ on $M_{0}$ by moving the $(n+1)$-frame $u^{0}(q_{0})$ by parallel translation with respect
to $\nabla$ along geodesic from $q_{0}$ to points in $M_{0}$ . Next, we choose $u^{1}(q_{1})=$

$(X_{1}, \cdot.. , X_{n}, -e_{q_{1}})$ over the center $q_{1}$ of $M_{1}$ . Thus we can also define a cross-
section $u^{1}$ : $M_{1}arrow P|_{M_{1}}$ analogous to $u^{0}$ .

We exactly write down these cross-sections $u^{0},$ $u^{1}$ . Let $\tau^{i}(x)=\tau^{i}(x, t)$ de-
note a geodesic issuing from $q_{i}$ with direction $x(i=0,1)$ . Let $[\tau^{i}(x)]_{t}^{0}X$ denote
a vector at $\tau^{i}(x, t)$ given by parallel translation of a vector $X$ at $q_{t}$ with re-
spect to $D$ along $\tau^{i}(x)$ . We denote $[\tau^{i}(x)]_{t}^{0}X$ by $X$ for simplicity, in case
where we might not confuse them. Put $u^{i}=(u_{1}^{t}, \cdots , u_{n+1}^{\iota})(i=0,1)$ , then we
have the following:

(2.1) $\{$

$(u_{i}^{0})_{\tau^{0}(x.t)}$ $=g(x, X_{i})(q_{0})\{\cos(ct)x+\sin(ct)e\}$

$+\{X_{i}-g(x, X_{t})(q_{0})x\}$ for $1\leqq i\leqq n$ ,
$(u_{n+1}^{0})_{\tau^{0}(x.t)}=\{\cos(ct)e-\sin(ct)x\}$ .

(2.2) $\{$

$(u_{i}^{1})_{\tau^{1}(x,t)}$ $=g(x, X_{i})(q_{1})\{\omega s(ct)x+\sin(ct)e\}$

$+\{X_{i}-g(x, X_{i})(q_{1})x\}$ for $1\leqq i\leqq n$ ,
$(u_{n+1}^{1})_{\tau^{1}(x,t)}=\{-\cos(ct)e-\sin(ct)x\}$ .

(D) Into diffeomorphism $F_{i}$ : $\lambda I_{i}arrow S^{n}(c^{2})(i=0,1)$ .
Let $\{e_{1}, , e_{n+1}\}$ be the standard basis of $R^{n+1}$ . Let $S^{n}(c^{2})\subset R^{n+1}$ . We

dePne a differentiable map $F_{0}$ : $M_{0}arrow S^{n}(c^{2})$ by

$F_{0}(p)= \frac{1}{c}\langle e, u^{0}\rangle(p)$ for $p\in M_{0}$ ,

where $\langle e, u^{0}\rangle(p)\in R^{n+1}$ denotes the components of $e$ with respect to the frame
$u^{0}$ at $p\in M_{0}$ . In the same way, we also define a differentiable map $F_{1}$ : $AlI_{1}arrow$

$S^{n}(c^{2})$ by

$F_{1}(p)= \frac{1}{c}\langle e, u^{1}\rangle(p)$ for $p\in M_{1}$ .
The following lemmas 3 and 4 are easily shown by (2.1), (2.2) and the defini-
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tion of $f$ .

LEMMA 3. We have the following:

(1) $F_{0}(q_{0})= \frac{1}{c}e_{n+1}=(0,$ $0,$ $\frac{1}{c})$ ,

$F_{1}(q_{1})=- \frac{1}{c}e_{n+1}=(0,$ $0,$ $- \frac{1}{c})$ .

(2) For each $x\in S_{q_{i}}(M),$ $F_{i}(\tau^{i}(x, t))$ is a geodesic in $S^{n}(c^{2})$ issuing from $F_{i}(q_{i})$ .
(3) $(dF_{\ell})_{q_{i}}$ : $T_{q_{i}}(M)arrow T_{F_{i^{(q_{i})(S^{n}(C^{2}))}}}$ is isometric. In particular, $(dF_{i})_{q_{i}}(X_{j})=e_{f}$

$(_{J}=1, \cdots n)$ .

LEMMA 4. Let $q(x)=\tau^{0}(x, t(x))=\tau^{1}(f(x), t(x))\in C$ . Then we have

$F_{0}(q(x))= \frac{1}{c}[^{\sin(ct(x))\cdot g(x,X_{t})(q_{0})}]$ ,
$(1\leqq i\leqq n)$

$\cos(ct(x))$

$F_{1}(q(x))= \frac{1}{c}[^{\sin(ct(x))\cdot g(f(x),X_{i})(q_{1})}]$ .
$(1\leqq i\leqq n)$

$-\omega s(ct(x))$

We identified the unit sphere $S_{q_{0}}(M)$ with the unit sphere $S_{q_{1}}(M)$ in $(C)$ . So
the diffeomorphism $f:S_{q_{0}}(M)arrow S_{q_{1}}(M)$ is considered as a mapping $f:S^{n-1}(1)arrow$

$S^{n-1}(1)$ . We defined in tbe definition 0.1 that $f$ is diffeotopic to the identity
map. When $f$ is diffeotopic to the identity map of $S^{n-1}(1)$ , we can construct
a diffeomorphism $G$ : $Marrow S^{n}(c^{2})$ by deforming $F_{0}$ and $F_{1}$ [cf. 12, \S 3].

PROPOSITION 1. Suppose $f$ is diffeotopic to the identity map. Then $M$ is
diffeomorphic to $S^{n}(c^{2})$ .

(E) $E|_{M_{i}}$ and $P|_{M_{i}}$ as fibre bundles over $F_{i}(M_{i})(\subset S^{n}(c^{2}))$ .
Let $S^{n}(c^{2}) \subset R^{n+1}=\{\sum x^{i}e_{i}|x^{\ell}\in R\}$ . We denote by $\overline{g}$ the canonical metric of

$R^{n+1}$ (or $S^{n}(c^{2})$ ). The tangent bundle $\overline{E}$ of $R^{n+1}$ restricted to $S^{n}(c^{2})$ is given by

$\overline{E}=T(R^{n+1})|_{S^{n}(c^{2)}}=T(S^{n}(c^{2}))\oplus\nu(S^{n}(c^{2}))$ ,

where $v(S^{n}(c^{2}))$ denotes the normal bundle. Let $\overline{P}$ denote a pricipal bundle of
$(n+1)$-frames with structure group $O(n+1, R)$ associated to $\overline{E}$ . The bundle $\overline{P}$

over $S^{n}(c^{2})$ has a global cross-section $\overline{u}=(e_{1}, , e_{n+1})$ of $(n+1)$-frame at each
point $p\in S^{n}(c^{2})$ . We identify respectively $M_{i},$ $E|_{M_{i}}$ and $P|_{M_{i}}$ with $F_{\iota}(1M_{i}),\overline{E}|_{F_{i}(M_{\ell})}$

and $\overline{P}|_{F_{i}(M_{i})}$ as follows:

$M_{t}\ni parrow F_{\ell}(p)\in F_{i}(M_{i})$ and $P|_{M_{i}}\ni(u^{i})(p)arrow(\overline{u})(F_{i}(p))\in\overline{P}|_{F_{i^{(M_{i})}}}$ .
Then, by the definition of $F_{i}$ in $(D)$ and $E|_{M_{i}}=\overline{E}|_{F_{i}(M_{i})}$ , the cross-section
$e:_{1}M_{i}arrow P|_{M_{\ell}}$ just corresponds to the outer unit normal vector of each point of $M_{i}$ .
So, we have $T(M)|_{M_{i}}=T(S^{n}(c^{2}))|_{F_{i}(M_{i})}$ . A connection form di on $P|_{M_{\ell}}$ , which
makes $u^{t}$ to a parallel field, induces the canonical flat connection V on $E|_{M_{i}}$ :
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$\{\begin{array}{l}\nabla_{X}Y=D_{X}Y-c\overline{g}(X,Y)e\overline{\nabla}_{X}e=cX\end{array}-$ for $X,$ $Y\in T(M)$ ,

where $\overline{D}$ is the canonical connection of $S^{n}(c^{2})$ . In particular, we have the fol-
lowing lemma by the above argument and the lemma 3.

LEMMA 5. Let $\tau^{i}(x)=\tau^{i}(x, t)$ be a geodesic issuing from $q_{i}$ with direction $x$ .
Then, for a vector $Z\in T_{q_{i}}(M)$ with $g(Z, x)(q_{i})=0$ , two vectors given by both
parallel translations of $Z$ with respect to $\nabla(=D)$ and $\overline{\nabla}(=\overline{D})$ along $\tau^{i}(x)$ coincide
at each point $\tau^{i}(x, t)$ .

\S 3. Differential of $f$ and its approximation.

The purpose of this section is to study differential of the diffeomorphism $f$

of $S^{n-1}(1)$ , where we identify $S_{q_{0}}(M)=S_{q_{1}}(M)=S^{n-1}(1)$ as in \S 2. We homo-
thetically extend $f$ to a diffeomorphism $F$ of $R^{n}-\{0\}(\supset S^{n-1}(1))$ so that $F(tx)$

$=tf(x)$ for $x\in S^{n-1}(1)$ and $t>0$ . Then the differential $(dF)_{x}$ at $x\in S^{n-1}(1)$ be-
longs to the space $M(n, R)$ of $n\cross n$ -matrices. In particular, we have $(dF)_{x}(x)$

$=f(x)$ for $x\in S^{n-1}(1)$ . In this viewpoint, we approximate $dF|_{s^{n}}-1_{(1)}$ : $S^{n-1}(1)arrow$

$M(n, R)$ by $\alpha:S^{n-1}(1)arrow SO(n, R)$ .
Through this section, we denote $x\in S^{n-1}(1),$ $q=q(x)=\tau^{0}(x, t(x))=\tau^{1}(f(x), t(x))$

$\in C$ , and $V\in T_{q}(C)$ . Let $\dot{\tau}{}^{t}(x, t)=d\tau^{i}(x, t)/dt$ . But we often denote $\dot{\tau}^{i}(x, t)$

by $\dot{\tau}{}^{t}(x)$ for short when we do not specialize $t$ . Let $V^{0}$ and $V^{1}$ be Jacobi fields
along the geodesics $\tau^{0}(x)$ and $\tau^{1}(f(x))$ respectively, satisfying $(V^{0})_{q}=(V^{1})_{q}=V$

and $(V^{0})_{q_{0}}=(V^{1})_{q_{1}}=0$ . Then we denote by $W^{0}$ and $W^{1}$ Jacobi fields along
$\tau^{0}(x)$ and $\tau^{1}(f(x))$ orthogonal to $\dot{\tau}^{0}(x)$ and $\dot{\tau}^{1}(f(x))$ respectively: $IV^{0}=$

$V^{0}-g(V^{0},\dot{\tau}^{0}(x))_{\dot{T}^{0}}(x)$ and $W^{1}=V^{1}-g(V^{1},\dot{\tau}^{1}(f(x)))\dot{\tau}^{1}(f(x))$ .

(A) Differential of $f$ .
By the definition of $f$ , we have

(3.1) $(df)_{x}(D_{x}W^{0})=D_{f(x)}W^{1}$

The estimate for the ratio $||(df)X||$ : $||X||$ for $X\in T(S^{n-1}(1))$ is given by

(3.2) $[ \sqrt{}\overline{\delta}\sin(\frac{\pi}{2\sqrt{}\overline{\delta}})]^{-1}\geqq\frac{||(df)X||}{||X||}\geqq\sqrt{}\sin(\frac{\pi}{2\sqrt{}\overline{\delta}})$ .

The estimate follows from the Rauch comparison theorem [8].

(B) Approximation of $df$.
We define a map $\alpha$ : $S^{n-1}(1)arrow M(n, R)$ as follows:

$\{(1)(2) \alpha_{x}([\tau^{0}(x)]_{0}^{t(x)}W_{q}^{0})=\alpha_{x}(x)=f(x),[\tau^{1}(f(x))]_{0}^{t(x)}W_{q}^{1} for V\equiv T_{q}(C_{J},$
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where $[\tau^{0}(x)]_{0}^{t(x)}W_{q}^{0},$ $[\tau^{1}(f(x))]_{0^{(x)}}^{t}W_{q}^{1},$ $x$ and $f(x)$ are the component vectors
with respect to the basis $\{X_{1}, , X_{n}\}$ .

PROPOSITION 2. We have, for $x\in S^{n-1}(1)$ ,
$\langle$ 1) $\alpha_{x}\in SO(n, R)$ and $\alpha_{x}(x)=f(x)$ ,

$\langle$ 2) $||(dF- \alpha)_{x}||\leqq\frac{1-\delta}{1+c^{2}}\{\frac{c(e^{\pi/2\sqrt{}\overline{\delta}}-e^{-\pi/2\sqrt{}\overline{\delta}})}{2\sin(\frac{c\pi}{2\sqrt{\delta}})}-1\}(\frac{1+\sqrt{}\overline{\delta}\sin(\frac{\pi}{2\sqrt{\delta}})}{2\sqrt{}\overline{\delta}\sin(\frac{\pi}{2\sqrt{\delta}})})$ .

PROOF. (1) First note, for $V\in T_{q}(C)$ ,

$g(W^{0}, [\tau^{0}(x)]_{t(x)}^{0}x)=g(W^{1}, [\tau^{1}(f(x))]_{t(x)}^{0}f(x))=0$ .

Let $L$ be a subspace in $T_{q}(M)$ spanned by vectors $[\tau^{0}(x)]_{t(X)}^{0}x$ and $[\tau^{1}(f(x))]_{t(x)}^{0}f(x)$ ,

and $L^{\perp}$ a subspace in $T_{q}(M)$ orthogonal to $L$ with respect to $g$ . Second, note
$(W^{0})_{q}=(W^{1})_{q}=V$ for $V\in T_{q}(M)\cap L^{\perp}$ . Therefore, we only show $||7f^{r0}||=||W^{1}||$ for
$V\in T_{q}(C)\cap L$ . If this equation holds, we have $\alpha_{x}\in O(n, R)$ . So, let $V\in$

$T_{q}(C)_{(}\tau L$ . We take a curve $x(s),$ $-\epsilon<s<\epsilon$ , in $C$ with $\dot{x}(0)=V$ . Since
$d(q_{0}, x(s))=d(q_{1}, x(s))$ , we have

$g(\dot{\tau}^{0}(x, t(x)),$ $V)= \frac{d}{ds}d(q_{0}, x(s))|_{s=0}$

$= \frac{d}{ds}d(q_{1}, x(s))|_{s=0}=g(\dot{\tau}^{1}(f(x), t(x)),$ $V)$

by the first variation formula of geodesic. Thus we have $||W^{0}||=||W^{1}||$ for $V\in$

$T_{q}(C)\cap L$ . In particular, we have

(3.3) $T_{q}(C)\cap L=\{y([\tau^{0}(x)]_{t(x)}^{0}x+[\tau^{1}(f(x))]_{t(x)}^{0}f(x))|y\in R\}$ .
Finally, since $\alpha_{x}$ is continuous for $x\in S^{n-1}(1)$ and $\alpha_{X_{\mathcal{R}}}=E$ by the identi-

fication of $T_{q_{0}}(M)$ with $T_{q_{1}}(M)$ , we have $\alpha_{x}\in SO(n, R)$ for each $x\in S^{n-1}(1)$ .
(2) In this proof, we use the identifications of $M_{0},$ $M_{1},$ $T(M)|_{M_{0}}$ and $T(M)|_{M1}$

with $F_{0}(M_{0}),$ $F_{1}(M_{1}),$ $T(S^{n}(c^{2}))|_{F_{0}(M_{0})}$ and $T(S^{n}(c^{2}))|_{F_{1}(M_{1})}$ respectively, that were
given in \S 2(E). The proof is divided into several steps.

(a) Let $V\in T_{q}(C)$ . We put $V^{\perp}=V-g(V,\dot{\tau}^{0}(x, t(x)))_{\dot{T}^{0}}(x, t(x))(\in T_{q}(M))$ .
$W^{0}$ and $\overline{W}^{0}$ are the following Jacobi fields along the geodesic $\tau^{0}(x)$ :

(3.4) $\{\begin{array}{l}D_{\tau^{0}(x)}^{2}W^{0}+R(W^{0},\dot{\tau}^{0}(x))\dot{\tau}^{0}(x)=0(W^{0})_{q}=V^{\perp},\end{array}$

$(W^{0})_{q_{0}}=0$ .

(3.5) $\{\begin{array}{l}\overline{D}_{\tau^{0}(x)}^{2}\overline{W}^{0}+c^{2}\overline{R}(\overline{W}^{0},\dot{\tau}^{0}(x))\dot{\tau}^{0}(x)=0(\overline{W}^{0})_{q}=V^{\perp},\end{array}$

$(\overline{W}^{0})_{q_{0}}=0$ ,

where $\overline{R}$ is the curvature tensor of $S^{n-1}(1)$ . For simplicity, we denote
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$[\tau^{0}(x)]_{0}^{t}W^{0}=(W^{0})_{t}$ , $[\tau^{0}(x)]_{0}^{t}R[\tau^{0}(x)]_{t}^{0}=R_{t}$ ,

$[\tau^{0}(x)]_{0}^{t}\overline{W}^{0}=(\overline{W}^{0})_{t}$ , $[\tau^{0}(x)]_{0}^{t}\overline{R}[\tau^{0}(x)]_{t}^{0}=\overline{R}_{t}$ .

Then equations (3.4) and (3.5) change into the following equations on $T_{q_{0}}(M)$ :

(3.4) $\{$

$\frac{d^{2}}{dt^{2}}W^{0}+R(W^{0}, x)x=0$

$(W^{0})_{t(x)}=[\tau^{0}(x)]_{0}^{t(x)}V^{\perp}$ , $(W^{0})_{0}=0$ ,

(3.5) $\{$

$\frac{d^{2}}{dt^{2}}\overline{W}^{0}+c^{2}\overline{R}(\overline{W}^{0}, x)x=0$

$(\overline{W}^{0})_{t(x)}=[\tau^{0}(x)]_{0}^{t(x)}V^{\perp}$ , $(\overline{W}^{0})_{0}=0$ .
Then, we have that the norm $||d(W^{0}-\overline{W}^{0})/dt||_{t=0}$ for solutions of (3.4) and (3.5)

is equal to $||D_{x}W^{0}-\overline{D}_{x}\overline{W}^{0}||$ for solutions (3.4) and (3.5) by the lemma 5. We
estimate $||d(W^{0}-\overline{W}^{0})/dt||_{t=0}$ in (b) and (c) below.

(b) We consider anotber Jacobi equation as follows:

(3.6) $\{$

$\frac{d^{2}}{dt^{2}}\overline{\ulcorner V}^{0}+c^{2}\overline{R}(\overline{W}^{0}, x)x=0$

$\frac{d}{dt}\overline{W}^{0}|_{t=0}=\frac{d}{dt}W^{0}|_{t=0}$ , $(\overline{W}^{0})_{0}=0$ ,

where $W^{0}$ is the solution of (3.4). Then we have

$|| \frac{\text{\’{a}}}{dt}(W^{0}-\overline{W}^{0})||_{t\Leftarrow 0}=\frac{c}{\sin(ct(x))}||W^{0}-\overline{W}^{0}||_{t\Leftarrow t(x)}$ ,

where $\overline{W}^{0}$ is the solution of (3.5).

PROOF OF (b). Since $\overline{W}^{0}$ and $\overline{W}^{0}$ are Jacobi fields on $S^{n}(c^{2})$ , we have

(3.7) $\overline{W}_{t(x)}^{0}=\frac{1}{c}\sin(ct(x))\frac{d}{dt}\overline{W}^{0}|_{t=0}$ , $\overline{W}_{t(x)}^{0}=\frac{1}{c}\sin(ct(x))\frac{d}{dt}M^{\overline{\gamma}0}|_{t=0}$ .

Thus we have

$\frac{d}{dt}(\overline{W}^{0}-W^{0})|_{t=0}=\frac{d}{dt}(\overline{W}^{0}-\overline{W}^{0})|_{t=0}$

$= \frac{c}{\sin(ct(x))}(\overline{W}^{0}-\overline{W}^{0})_{t=t(x)}=\frac{c}{\sin(ct(x))}(W^{0}-\overline{W}^{0})_{\zeta=t(x)}$ .

(c) We consider the following Jacobi equations:

(3.8) $\frac{d^{2}}{dt^{2}}W^{0}+R(W^{0}, x)x=0$ , $(W^{0})_{0}=0$ ,

(3.9) $\frac{d^{2}}{dt^{2}}\overline{W}^{0}+c^{2}\overline{R}(\overline{W}^{0}, x)x=0$ , $(\overline{W}^{0})_{0}=0$ ,

under the condition $(dW^{0}/dt)_{t=0}=(d\overline{\overline{TV}}^{0}/dt)_{t=0}$ and $||dW^{0}/dt||_{t=0}=1$ . Then we have
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$\langle$ 3.10) $|||W^{0}- \overline{W}^{0}||_{t(x)}\leqq\frac{1}{2}\frac{1-\delta}{1+c^{2}}\{\frac{e^{t(x)}-e^{-t(x)}}{2}-\frac{1}{c}\sin(ct(x))\}$ .

PROOF OF (c). Integrating (3.8) and (3.9) with respect to $t$ , we have

$(W^{0}- \overline{W}^{0})_{t}+\int_{0}^{t}ds\int_{0}^{s}R_{u}(W^{0}-\overline{W}^{0}, x)xdu$

$+ \int_{0}^{t}ds\int_{0}^{s}(R-c^{2}\overline{R})_{u}(\overline{W}^{0}, x)xdu=0$ .

Thus we have

$\langle$ 3.11) $||W^{0}- \overline{W}^{0}||_{t}S\int_{0}^{t}ds\int_{0}^{s}||W^{0}-\overline{W}^{0}||_{u}d_{\mathcal{U}}+(1-c^{2})\int_{0}^{t}ds\int_{0}^{s}||\ovalbox{\tt\small REJECT}^{0}||_{u}du$ .

From $||\overline{W}||_{u}=(1/c)\sin(cu)$ and $c^{2}=(1+\delta)/2$ in (3.11), we have

(3.12) $||W^{0}- \overline{W}^{0}||_{t}\leqq\frac{1-\delta}{2}(\frac{t}{c^{2}}-\frac{1}{c^{3}}\sin(ct))+\int_{0}^{t}ds\int_{0}^{s}||W^{0}-\overline{W}^{0}||_{u}du$ .

Thus we have the statement (c) by applying ordinary iteration method to (3.12):
We have

$||W- \overline{W}||_{t}\leqq\frac{1-\delta}{2}\{\frac{t^{3}}{31}+\frac{t^{5}}{51}(-c^{2}+1)+\frac{t^{7}}{7I}(c^{4}-c^{2}+1)+\cdots\}$

$= \frac{1-\delta}{2}\sum_{n=2}^{\infty}\frac{t^{2n-1}}{(2n-1)!}(\sum_{i=0}^{n-2}(-c^{2})^{i})=\frac{1-\delta}{2}\sum_{n=2}^{\infty}\frac{t^{2n-1}1-(-c^{2})^{n-1}}{(2n-1)11+c^{2}}$

$= \frac{1}{2}\frac{1-\delta}{1+c^{2}}\{\sum_{n=2}^{\infty}\frac{t^{2n-1}}{(2n-1)!}-\frac{1}{c}\sum_{n=2}^{\infty}(-1)^{n-1}\frac{(ct)^{2n-1}}{(2n-1)!}\}$ .

(d) NOW, we prove (2). In the equations (3.4), (3.5) and (3.6), we respec-
tively replace $\tau^{0}(x),$ $W^{0},\overline{W}^{0}$ and $\overline{W}^{0}$ by $\tau^{1}(f(x)),$ $W^{1},\overline{W}^{1}$ and $\overline{W}$ ‘. Furthermore,
in their equations, we choose

$\{W_{t(x)}^{1}=W_{t(x)}^{0}=[\tau^{1}(f(x))]_{0}^{t(x)}[V-g(V,\dot{\tau}(f(x),t(x)))\dot{\tau}^{1}(f(x), t(x))][\tau^{0}(x)]_{0}^{t(x)}[V-g(V,\dot{\tau}^{0}(x_{1}t(x)))\dot{\tau}^{0}(x,t(x))]$

for $V\in T_{q}(C)$ . Then we have the following equation by (b) and (c):

(3.13) $|| \frac{d}{dt}(W^{0}-\overline{W}^{0})||_{t=0}=\frac{c}{\sin(ct(x))}||W^{0}-\overline{W}^{0}||_{t=l(x)}$

$\leqq\frac{1}{2}\frac{1-\delta}{1+c^{2}}\{\frac{c}{2}\frac{e^{t(x)}-e^{-t_{(x)}}}{\sin(ct(x))}-1\}||\frac{dW^{0}}{dt}||_{t\Rightarrow 0}$

We also have the following equation by (3.2), (b) and (c):

(3.14)
$|| \frac{d}{dt}(W^{1}-\overline{W}^{1})||_{t=0}\leqq\overline{2}\frac{1-\delta}{1+c^{2}}\{\frac{c}{2}\frac{e^{t_{(x)}}-e^{-t(x)}}{\sin(ct(x))}1\}\frac{l}{\sqrt{}\overline{\delta}\sin^{\frac{\pi}{2\sqrt{}\delta}}}||\frac{dW^{0}}{dt}||_{t=0}$
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On the other hand, we have

(3.15) $(dF)_{x}(D_{x}W^{0})-\alpha_{x}(D_{x}W^{0})=D_{f(x)}W^{1}-\alpha_{x}[\overline{D}_{x}\overline{W}^{0}+(D_{x}W^{0}-\overline{D}_{x}\overline{W}^{0})]$

$=D_{f(x)}W^{1}-\overline{D}_{f(x)}\overline{W}^{1}-\alpha_{x}(D_{x}W^{0}-\overline{D}_{x}\overline{W}^{0})$ .
Thus, we have the assertion (2) by (a), (3.13), (3.14) and (3.15). Q. E. D.

(C) Another interpretation of $\alpha$ .
Let $u^{0}$ : $M_{0}arrow P|_{M_{0}}$ and $u^{1}$ : $\Lambda I_{1}arrow P|_{M_{1}}$ be the cross-sections that were defined

in \S 2 (C). There exists a map a: $C=M_{0}\cap M_{1}arrow O(n+1, R)$ such that $u^{0}(q)\mathcal{A}(q)$

$=u^{1}(q\grave{)}$ for $q\in C$ . The purpose of this section is to show that $\alpha_{x}$ is almost
equal to $\mathcal{A}(q)$ for $q=q(x)$ in a sense. Note

$\mathcal{A}(q)(^{t}[z_{1}^{1}, z_{1}^{2}, z_{1}^{n+1}])={}^{t}[z_{0}^{1}, z_{0}^{2}, z_{0}^{n+1}]$

for $Z=\Sigma_{\ell=1}^{n+1}z_{0}^{i}u_{i}^{0}(q)=\Sigma_{\iota=1}^{n+1}z_{1}^{i}u_{i}^{1}(q)\in E_{n}-1(q)(q\in C)$ .
Tbe following lemma is shown by using the exact forms of $u^{0}$ and $u^{1}$ in

\S 2 (C).

LEMMA 6. Let $q=q(x)=\tau^{0}(x, t(x))=\tau^{1}(f(x), t(x))\in C$ . We represent $Z\in$

$T_{q}(M)$ as

$Z= \sum_{i=1}^{n}z_{0}^{i}[\tau^{0}(x)]_{t(x)}^{0}X_{i}=\sum_{i=1}^{n+1}\overline{z}_{0}^{i}u_{i}^{0}(q)$

$= \sum_{t=1}^{n}z_{1}^{i}[\tau^{1}(f(x))]_{t(x)}^{0}X_{i}=\sum_{i=1}^{n+1}\overline{z}_{1}^{i}u_{i}^{1}(q)$ .

Then we have

(1) $\{$

(a) $\overline{z}_{0}^{i}=z_{0}^{i}$ $(1\leqq i n)$ , $\overline{z}_{0}^{n+1}=0$

if $g(Z, [\tau^{0}(x)]_{t(x)}^{0}x)=0$ .
(b) $\overline{z}_{0}^{i}=\cos(ct(x))z_{0}^{i}$ (lSz\leqq n), $\overline{z}_{0}^{n+1}=-\sin(ct(x))$

if $Z=[\tau^{0}(x)]_{t(x)}^{0}x$ .

(2) $\{$

(a) $\overline{z}_{1}^{i}=z_{1}^{i}$ $(1\leqq i\leqq n)$ , $\overline{z}_{1}^{n+1}=0$

if $g(Z, [\tau^{1}(f(x))]_{t(x)}^{0}f(x))=0$ .

(b) $\overline{z}_{1}^{t}=\cos(ct(x))z_{1}^{i}$ $(1 i\leqq n)$ , $\overline{z}_{1}^{n+1}=\sin(ct(x))$

if $Z=[\tau^{1}(f(x))]_{t(x)}^{0}f(x)$ .

PROPOSITION 3. Let $q=q(x)=\tau^{0}(x, t(x))=\tau^{1}(f(x), t(x))\in C$ . We denote by
$Z\in E_{\pi^{-1(q)}}$ the component vector of $Z$ with the basis $\{u_{1}^{1}, \cdots , u_{1}^{n+1}\}$ of $E.-1(q)$ . Let

put $\overline{\alpha}_{x}=\{\begin{array}{ll}\alpha_{x}, 00, -1\end{array}\}\in O(n+1, R)$ . Then we can consider $\overline{\alpha}_{x}\mathcal{A}(q)$ is a linear trans-

lation of $E.-1(q)$ and we have

$\overline{\alpha}_{x}\mathcal{A}(q)|_{w}\perp=Identity$ and $\overline{\alpha}_{x}\mathcal{A}(q)w=-w$ ,
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where $w=w(x)=[\tau^{0}(x)]_{t(x)}^{0}x-[\tau^{1}(f(x))]_{t(x)}^{0}f(x)(\in E.-1(q))$ and $w^{\perp}=\{u\in E_{n^{-1}(q)}|$

$h(u, w)(q)=0\}$ .
PROOF. The proof is divided into several cases.
(a) We take $Z\in T_{q}(M)$ satisfying $g(Z, [\tau^{0}(x)]_{t(x)}^{0}x)=g(Z,$ $[\tau^{1}(f(x))]_{t(x)}^{0}f(x)\rangle$

$=0$ . Then $Z$ is represented as

$Z=ti1=^{n}$

$= \sum_{i\Rightarrow 1}^{n}\overline{z}_{1}^{i}u_{i}^{1}(q)=\sum_{i=1}^{n}\overline{z}_{1}^{i}[\tau^{1}(f(x))]_{t(x)}^{0}X_{i}$

by the lemma 6. By the definitions of $\mathcal{A}(q)$ and $\alpha_{x}$ , we have

$\mathcal{A}(q)(^{t}[\overline{z}_{1}^{1}, \overline{z}_{1}^{n},0])={}^{t}[\overline{z}_{0}^{1}, \overline{z}_{0}^{n},0]$ ,

$\overline{\alpha}_{x}(^{t}[\overline{z}_{0}^{1}, \overline{z}_{0}^{n},0])={}^{t}[\overline{z}_{1}^{1}, \overline{z}_{1}^{n},0]$ .
Thus $\overline{\alpha}_{x}\mathcal{A}(q)$ maps $(\overline{z}_{1}^{1}, , \overline{z}_{1}^{n},0)$ on itself.

(b) We Put

$x= \sum_{i=1}^{n}x^{i}X_{i}$ , $f(x)= \sum_{\ell=1}^{n}f^{i}(x)X_{i}$ .

Then we have

$e_{q}= \sum_{i=1}^{n}x^{i}\sin(ct(x))u_{i}^{0}(q)+\cos(ct(x))u_{n+1}^{0}(q)$

$= \sum_{i=1}^{n}f^{i}(x)\sin(ct(x))u_{i}^{1}(q)-\cos(ct(x))u_{n+1}^{1}(q)$ ,

by (2.1) and (2.2). So, we have

$\overline{\alpha}_{x}\mathcal{A}(q)(^{t}[f^{1}(x)\sin(ct(x)), \cdots , f^{n}(x)\sin(ct(x)), -\cos(ct(x))])$

$={}^{t}[f^{1}(x)\sin(ct(x)), \cdots , f^{n}(x)\sin(ct(x)), -\cos(ct(x))]$ .
(c) We put

$v= \frac{1}{2}\{[\tau^{0}(x)]_{t(x)}^{0}x+[\tau^{1}(f(x))]_{t(x)}^{0}f(x)\}$ ,

$w= \frac{1}{2}\{[\tau^{0}(x)]_{t(x)}^{0}x-[\tau^{1}(f(x))]_{t(x)}^{0}f(x)\}$ .

We have $[\tau^{0}(x)]_{t(X)}^{0}x=v+w,$ $[\tau^{1}(f(x))]_{t(x)}^{0}f(x)=v-w$ and $v\in T_{q}(C)$ by (3.3).
Furthermore we have

$(v^{0}=)$ $v-g(v, [\tau^{0}(x)]_{t(x)}^{0}x)[\tau^{0}(x)]_{t(x)}^{0}x$

$= \frac{1}{2}\{(1-p)v-(1+p)w\}$ ,
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$(v^{1}=)$ $v-g(v, [\tau^{1}(f(x))]_{i(x)}^{0}f(x))[\tau^{1}(f(x))]_{t(x)}^{0}f(x)$

$= \frac{1}{2}\{(1-p)v+(1+p)w\}$ ,

where $p=||v||^{2}-||w||^{2}$ . Since we have

$\alpha_{x}([\tau^{0}(x)]_{0}^{t(x)}v^{0})=[\tau^{1}(f(x))]_{0}^{t(x)}v^{1}$ and $\alpha_{x}(x)=f(x)$ ,

we have
$\alpha_{x}([\tau^{0}(x)]_{0}^{t_{(x)}}v)=[\tau^{1}(f(x))]_{0}^{t_{(x)}}v$

$\alpha_{x}([\tau^{0}(x)]_{0^{(x)}}^{t}w)=-[\tau^{1}(f(x))]_{0}^{l(x)}w$ .

On the other hand, putting

$v= \sum\overline{v}_{0}^{i}u_{i}^{0}=\sum\overline{v}_{1}^{i}u_{i}^{1}$ ,

we have
$w=\Sigma\overline{w}_{0}^{i}u_{i}^{0}=\Sigma\overline{w}_{1}^{i}u_{i}^{1}$ ,

$\mathcal{A}(q)(^{t}[\overline{v}_{1}^{1}, \overline{v}_{1}^{n+1}])={}^{t}[\overline{v}_{0}^{1}, \overline{v}_{0}^{n+1}]$

$\mathcal{A}(q)(^{t}[\overline{w}_{1}^{1}, \cdots \overline{w}_{1}^{n+1}])={}^{t}[\overline{w}_{0}^{1}, \cdots \overline{w}_{0}^{n+1}]$ .
So we put

$[\tau^{0}(x)]_{0}^{t(x)}v=\Sigma v_{0}^{i}X_{i}$ , $[\tau^{1}(f(x))]_{0}^{t(x)}v=\Sigma v_{1}^{i}X_{i}$ ,

$[ \tau^{0}(x)]_{0}^{t(x)}w=\sum w_{0}^{i}X_{i}$ , $[ \tau^{1}(f(x))]_{0}^{t(x)}w=\sum w_{1}^{i}X_{i}$ ,

and study the relations between $v_{i}^{j}$ and $\overline{v}_{i}^{j}$ , and between $w_{i}^{j}$ and $\overline{w}_{i}^{j}$ .
Since the $x$ -component of $[\tau^{0}(x)]_{0}^{t(x)}v$ is equal to the $f(x)$-component of

$[\tau^{1}(f(x))]_{0}^{t(x)}v$ , we denote by $m$ the common value:

$m=g(v, [\tau^{0}(x)]_{t(x)}^{0}x)=g(v, [\tau^{1}(x)]_{t(x)}^{0}f(x))$ .
Then we have

$\overline{v}_{0}^{n+1}=-m\sin(ct(x))=-\overline{v}_{1}^{n+1}$

by the lemma 6. By the lemma 6 and

$v=m[\tau^{0}(x)]_{t(x)}^{0}x+v^{0}=m[\tau^{1}(f(x))]_{t(x)}^{0}f(x)+v^{1}$ ,

we can see the relation between $v_{i}^{j}$ and $\overline{v}_{i}^{j}$ $(j=1, \cdots , n)$ . This shows

$\overline{\alpha}_{x}(^{t}[\overline{v}_{0}^{1}$ , $\cdot$ .. $\overline{v}_{0}^{n+1}])={}^{t}[\overline{v}_{1}^{1}$ , $\cdot$ .. $\overline{v}_{1}^{n+1}]$ .
Therefore we have

$\overline{\alpha}_{x}\mathcal{A}(q)(^{t}[\overline{v}_{1}^{1}, \overline{v}_{1}^{n+1}])={}^{t}[\overline{v}_{1}^{1}, \cdots,\overline{v}_{1}^{n+1}]$ .

In the same way, we have

$\overline{\alpha}_{x}\mathcal{A}(q)(^{t}[\overline{w}_{1}^{1}, \cdots,\overline{w}_{1}^{n+1}])=-{}^{t}[\overline{w}_{1}^{1}, \cdots,\overline{w}_{1}^{n+1}]$ .
Q. E. D.

COROLLARY. Let $q=q(x)=\tau^{0}(x, t(x))=\tau^{1}(f(x), t(x))\in C$ . Let represent ${}^{t}J(q\rangle$

by column vectors $a_{i}(x)$ of $R^{n+1}$ as
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${}^{t}J(q)=[a_{1}(x), a_{n}(x), a_{n+1}(x)]$ .
Let put

$b_{i}(x)=a_{i}(x)-2(a_{i}, w)(x)w(x)$ ,

where $w(x)$ is the unit vector satisfying $\overline{\alpha}_{x}\mathcal{A}(q)w(x)=-w(x)$ . Then we have

$\overline{\alpha}_{x}=[b_{1}(x), \cdots , b_{n}(x), b_{n+1}(x)]$ .
In particular, we have

$-e_{n+1}=a_{n+1}(x)-2(a_{n+1}, w)(x)w(x)$ .

By the corollary, the unit vector $w(x)$ , which satisfies $\overline{\alpha}_{x}\mathcal{A}(q)w(x)=-w(x)$,

is represented as

$w(x)=\{\begin{array}{l}sin(u(x)/2)a(x)cos(u(x)/2)\end{array}\}$ for $a_{n+1}(x)=\{\begin{array}{l}sinu(x)a(x)cosu(x)\end{array}\}$ ,

where $a(x)$ is a unit column vector of $R$ “.

\S 4. Lemma necessary for the estimate $||d\alpha||$ .
TO estimate the norm $||d\alpha||$ of differential of $\alpha$ : $S-1(1)arrow SO(n, R)$ in \S 5,

in this section we study the norm of differential $d\mathcal{A}$ of $\mathcal{A}:Carrow O(n+1, R)$ . Let
$q(s)(-\delta<s<\delta)$ be a curve in $C=M_{0}\cap M_{1}$ . Let $v^{0}(s)$ and $v^{1}(s)$ be horizontal
lifts of $q(s)$ in $P$ with respect to to with $v^{0}(0)=u^{0}(q(0))$ and $v^{1}(0)=u^{1}(q(0))$ respec-
tively. Then there exist $O(n+1, R)$-valued functions $b^{0}(s)$ and $b^{1}(s)$ satisfying

$\{v^{0}(s)=u^{0}(q(s))b^{0}(s)b^{0}(0)=E$ and $\{\begin{array}{l}v^{1}(s)=u^{1}(q(s))b^{1}(s)b^{1}(0)=E.\end{array}$

LEMMA 7. We have

$|| \frac{d}{ds}\mathcal{A}(q(s))||_{s=0}\leqq||\frac{d}{ds}b^{0}(s)||_{s=0^{+}}||\frac{d}{ds}b^{1}(s)||_{s=0}$

PROOF. Since $v^{0}(s)$ and $v^{1}(s)$ are horizontal lifts of $q(s)$ , we have

$u^{0}(q(s))b^{0}(s)\mathcal{A}(q(0))=u^{1}(q(s))b^{1}(s)=u^{0}(q(s))\mathcal{A}(q(s))b^{1}(s)$

by $u^{1}(q(0))=u^{0}(q(0))\mathcal{A}(q(0))$ . Thus we have

$\mathcal{A}(q(s))=b^{0}(s)\mathcal{A}(q(0))[b^{1}(s)]^{-1}$

Therefore we have

$\mathcal{A}(q(s))-\mathcal{A}(q(0))=[b^{0}(s)-E]\mathcal{A}(q(0))[b^{1}(s)]^{-1}+\mathcal{A}(q(0))[(b^{1}(s))^{-1}-E]$ ,

and
$||\mathcal{A}(q(s))-J(q(0))||\leqq||b^{0}(s)-E||+||b^{1}(s)-E||$ .

Q. E. D.
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Let $x(s)$ be a curve in $S_{q_{0}}(M)$ such that $||dx/ds||=1$ . Then we take a curve
$q(s)=q(x(s))=\tau^{0}(x(s), t(x(s)))\in C$ . For such a curve $q(s)$ , we estimate
$||db^{i}(s)/ds||_{s=0}$ in \S 6. The results are as follows :

(4.1) $\{$

$|| \frac{d}{ds}b^{0}(s)||_{s=0}\leqq\frac{2}{3}\frac{1-\delta}{\delta}$

$|| \frac{d}{ds}b^{1}(s)||_{s=0}\leqq\frac{2}{3}\frac{1-\delta}{\delta}[\sqrt{}\overline{\delta}\sin(\frac{\pi}{2\sqrt{}\overline{\delta}})]^{-1}$

\S 5. Differentiable sphere theorem.

(A) PROPOSITION 4. Suppose $\delta=0.617$ . Let $M^{n}$ be a simply connected, complete
and $\delta$-Pinched riemannian manifold, and $E$ the stabilized tangent bundle of $M$.
Then $E$ is a trivial vector bundle of $M$, namely $E=M\cross R^{n+1}$ .

PROOF. Let $C\ni qarrow \mathcal{A}(q)\in SO(n+1, R)$ be a differentiable map such that
$u_{q}^{0}\mathcal{A}(q)=u_{q}^{1}$ . We put $\beta_{x}=\mathcal{A}(q(x))=\mathcal{A}(q)$ for $q=q(x)=\tau^{0}(x, t(x))$ . By the lemma
7 and (4.1), we have

$||d \beta||\leqq\frac{2}{3}\frac{1-\delta}{\delta}\{1+(\sqrt{}\overline{\delta}\sin\frac{\pi}{2\sqrt{}\overline{\delta}})^{-1}\}$ .

If $||d\beta||<1$ , then there exists a differentiable map $B:S^{n}1(1)arrow so(n+1, R)$ such
that $\beta_{x}=\beta_{x_{0}}\exp(B(x))$ for a fixed $x_{0}$ by the lemma 1. Therefore, first we can
make new cross-section $\overline{u}^{1}$ : $M_{1}arrow P|_{M_{1}}$ such that $u_{q}^{0}\beta_{x_{0}}=\overline{u}_{q}^{1}$ for $q\in C$ . Second we
can make a global cross-section $u:Marrow P$.

RESULT OF CALCULATION 1. We have

$\frac{2}{3}\frac{1-\delta}{\delta}\{1+(\sqrt{}\overline{\delta}\sin\frac{\pi}{2\sqrt{}\overline{\delta}})^{-1}\}=1$ at $\delta=0.616\cdots$ .

Thus, if $\delta=0.617$ , then $E$ is a trivial bundle. Q.E.D.

(B) DIFFERENTIABLE SPHERE THEOREM. Suppose $\delta=0.681$ . Let $M^{n}$ be a simply
connected, complete and $\delta$-pinched riemannian manifold. Then $M$ is diffeomor-
phic to the standard sphere.

Let $q=q(x)=\tau^{0}(x, t(x))\in C$ . For $\mathcal{A}(q)$ such that $u_{q}^{0}\mathcal{A}(q)=u_{q}^{1}$ , we put $\beta_{x}=$

$d(q(x))=\mathcal{A}(q)$ . We represent ${}^{t}\beta_{x}$ as ${}^{t}\beta_{x}=[a_{1}(x), a_{2}(x), a_{n}(x), a_{n+1}(x)]$ by

the column vectors. We denote $a_{n+1}(x)$ , with some vector $a(x)\in R$ “, by

(5.1) $a_{n+1}(x)={}^{t}[\sin u(x)\cdot a(x), \omega su(x)]$ ,

and then we put

(5.2) $w(x)=t[ \sin\frac{u(x)}{2}\cdot a(x),$ $\cos\frac{u(x)}{2}]$ .
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Let $\overline{\alpha}_{x}=\{\begin{array}{ll}\alpha_{x} 00 -1\end{array}\}$ . Then we have the following:

$\overline{\alpha}_{x}=[b_{1}(x), b_{2}(x), \cdots b_{n}(x), -e_{n+1}]$ ,

where $b_{i}(x)=a_{i}(x)-2(a_{i}, w)(x)w(x)$ by the corollary of proposition 3.

RESULT OF CALCULATION 2. We have

$\cos u(x)=h(u_{+1}^{0}, u_{n+1}^{1})(q(x))$

$=-\omega s^{2}(ct(x))-\sin^{2}(ct(x))g([\tau^{0}(x)]_{t(x)}^{0}x, [\tau^{1}(f(x))]_{t(x)}^{0}f(x))$

$\geqq-\cos^{2}(ct(x))-\sin^{2}(ct(x))\cos(\pi\sqrt{}\overline{\delta})$

$=-1+\sin^{2}(ct(x))[1-\cos(\pi\sqrt{}\overline{\delta})]$

by (2.1) and (2.2). So, if $\delta\geqq 0.616$ , we have $\cos u(x)\geqq 0.689$ and $\cos(u(x)/2)\geqq$

0.9189.

LEMMA 8. We assume $\delta\geqq 0.616$ . Then we have

$||d \alpha||_{x}\leqq\frac{1}{\omega s^{2}(u(x)/2)}\frac{2}{3}\frac{1-\delta}{\delta}\{1+(\sqrt{}\overline{\delta}\sin\frac{\pi}{2\sqrt{}\overline{\delta}})^{-1}\}$ .

PROOF. From $||d\alpha||=||d\overline{\alpha}||=||d^{t}\overline{\alpha}||$ , we study $||d{}^{t}\overline{\alpha}||$ in this proof. Let $X\in$

$T_{x}(S^{n-1}(1))$ and $x(s)$ be a curve in $S^{n^{-}1}(1)$ such that $x(O)=x$ and $\dot{x}(O)=X$ . We
put $||d\beta||\leqq N$. The proof is divided into several steps.

(a) We can put $e_{n+1}=\cos(u(x)/2)\cdot w(x)+\sin(u(x)/2)\cdot Y(x)$ , where $(w, Y)(x)$

$=0$ and $\sin(u(x)/2)>0$ . Then we have

$(d_{X}^{t} \overline{\alpha})w(x)=-\frac{\sin(u(x)/2)}{\cos(u(x)/2)}(d_{X}^{t}\overline{\alpha})Y(x)$ ,

because of $(d_{X}^{t}\overline{\alpha})e_{n+1}=0$ .
(b) By the proposition 3, we have

$\beta_{x}|_{w(x)}\perp={}^{t}\overline{a}_{x}|_{w(x)}\perp$ , $\beta_{x}w(x)=-{}^{t}\overline{\alpha}_{X}w(x)$ .
Let $Z\in R^{n+1}$ be a unit vector such that $(Z, w(x))=0$ . We represent $Z$ as

$Z=c_{1}(s)w(x(s))+c_{2}(s)W(s)$

along the curve $x(s)$ , where $(w(x(s)), W(s))=0,$ $||W(s)||=1$ and $W(O)=Z$. For
simplicity we use the following notations:

$w=w(x)$ , $w(s)=w(x(s))$ , $c_{i}’=d_{X}c_{i}$ , $w’=d_{X}u\cdot$ , and $W’=d_{X}W$ .
We have
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(5.3) $(d_{X}^{t} \overline{\alpha})Z=\frac{d}{ds}[^{t}\overline{\alpha}_{x(s)}Z]_{s=0}$

$= \frac{d}{ds}[^{t}\overline{\alpha}_{x(s)}(c_{1}(s)w(s))]_{s=0}+\frac{d}{ds}[^{t}\overline{\alpha}_{x(s)}(c_{2}(s)W(s))]_{s=0}$

$= \frac{d}{ds}[^{t}\overline{\alpha}_{x(s)}(c_{1}(s)w(s))]_{s=0}+\frac{d}{ds}[\beta_{x(s)}(c_{2}(s)W(s))]_{s=0}$

$=c_{1}^{\prime t}\overline{\alpha}_{x}(w)+(d_{X}\beta)Z+\beta_{x}(W’)=c_{1}^{\prime t}\overline{\alpha}_{x}(w)+(d_{X}\beta)Z-c_{1}’\beta_{x}(w)$

$=(d_{X}\beta)Z-2c_{1}’\beta_{x}(w)=(d_{X}\beta)Z-2(Z, w’)\beta_{x}(w)$ .

We take $Z=Z_{1}=w’/||w’||$ in (5.3), then we have

(5.4) $(d_{X}^{t}\overline{\alpha})Z_{1}=(d_{X}\beta)Z_{1}-2||w’||\beta_{x}(w)$ .
Furthermore, we have

(5.5) $((d_{X}^{t}\overline{\alpha})Z_{1}, e_{n+1})=0$ , $( \beta_{x}(w), e_{n+1})=\cos(\frac{u(x)}{2})$

by (5.1) and (5.2). We take $Z\in\{w, w’\}^{\perp}$ in (5.3), then we have

(5.6) $(d_{X}^{t}\overline{\alpha})Z=(d_{X}\beta)Z$ .
(c) We take a unit vector $W\in w^{\perp}$ , and put $W=c_{1}Z_{1}+c_{2}Z$, where $(Z_{1}, Z)$

$=0$ and $||Z||=1$ . We put $V^{\perp}=V-(V, e_{n+1})e+1$ in the calculation below, then
we have

(5.7) $((d_{X}^{t}\overline{\alpha})W, (d_{X}^{t}\overline{\alpha})W)=((d_{X}\beta)W, ((d_{X}\beta)W)^{\perp})$

$-4c_{1}||w’||((d_{X}\beta)W, \beta_{x}(w)^{\perp})+4c_{1}^{2}||w’||^{2}(\beta_{x}(w), \beta_{x}(w)^{\perp})$

$\leqq N^{2}-4c_{1}^{2}||w’||^{2}\cos^{2}(\frac{u(x)}{2})+4c_{1}^{2}||w’||^{2}\sin^{2}(\frac{u(x)}{2})$

$+4|c_{1}|||w’|| \sin(\frac{u(x)}{2})\{N^{2}-4c_{1}^{2}||w’||^{2}\cos^{2}(\frac{u(x)}{2})\}^{1/2}$

$=N^{2}-4|c_{1}|||w’|| \{|c_{1}|||w’||\cos^{2}(\frac{u(x)}{2})-|c_{1}|||w’||\sin^{2}(\frac{u(x)}{2})$

$- \sin(\frac{u(x)}{2})[N^{2}-4c_{1}^{2}||w’||^{2}\cos^{2}(\frac{u(x)}{2})]^{1/2}\}$

by (5.4), (5.5) and (5.6). The last equation of (5.7) attains maximum
$[N/\cos(u(x)/2)]^{2}$ at $2|c_{1}|||w’||=N\tan(u(x)/2)$ . Furthermore, since we have

$(d_{1} \frac{\sin(u(x)/2)}{\omega s(u(x)/2)}+d_{2})^{2}\leqq(d_{1}^{2}+d_{2}^{2})(\frac{1}{\omega s(u(x)/2)})^{2}$ ,

we have $||d\overline{\alpha}||\leqq N(\cos(u(x)/2))^{-2}$ from the above argument and (a). Q. E. D.

RESULT OF CALCULATION 3. We put
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$N= \frac{2}{3}\frac{1-\delta}{\delta}\{1+(\sqrt{}\overline{\delta}\sin(\frac{\pi}{2\sqrt{}\overline{\delta}}))^{-1}\}$

and

$N_{1}= \max\{\frac{1}{\cos^{2}(u(x)/2)}N|x\in S^{n-1}(1)\}$ .

We have the following results.

We take $\delta\geqq 0.644$ , then $||d\alpha||<1$ . So there exists a differentiable map
$A:S^{n-1}(1)arrow so(n, R)$ such that $\alpha_{x}=\exp(\pi A_{x})$ . We put

$C_{1}= \frac{1-\delta}{1+c^{2}}\dagger\frac{c(e^{\pi/2^{\sqrt{}}\overline{\delta}}-e^{-\pi/2^{\sqrt{}}\overline{\delta}})}{2\sin(\frac{c\pi}{2\sqrt{\delta}})}-1\}(\frac{1+\sqrt{}\overline{\delta}\sin(\frac{\pi}{2\sqrt{}\delta})}{2\sqrt{}\overline{\delta}\sin(\frac{\pi}{2\sqrt{\delta}})})$ ,

and

$C_{2}= \frac{N_{1}-C_{1}}{2}$ and $C_{3}= \frac{N_{1}+C_{1}}{2}$ .

In the calculation below, we have

$\max_{t}P(t)=\max_{t}\{C_{2}^{2}[\frac{\sin(\frac{N_{1}}{2}t)}{\sin(\frac{N_{1}}{2}\pi)}]^{2}+C_{3}^{2}[\frac{\sin(N_{1}t)}{\sin(N_{1}\pi)}]^{2}$

$-2C_{2}C_{3} \frac{\sin(\frac{N_{1}}{2}t)_{\sin(\Lambda_{1}^{\tau}t)}}{\sin(\frac{N_{1}}{2}\pi)^{\sin(N_{1}\pi)}}\cos(\frac{3}{2}N_{1}(\pi-t))\}$ .

RESULT OF CALCULATION 4.

PROOF OF THEOREM. We have $||\alpha-dF||\leqq C_{1}$ by the proposition 2. There-
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fore, if we take $\delta=0.681$ , then $M$ is diffeomorphic to the standard sphere by
the diffeotopy theorem and the proposition 1. Q. E. D.

\S 6. Estimate of holonomy of principal bundle $P$.
The setting of all notations in this section is the same as in \S 2. $P$ is an

$0(n+1, R)$-principal bundle over a $\delta$-pinched riemannian manifold M. $M$ is
divided into $M_{0}$ and $M_{1}$ such that $M_{0}\cap M_{1}=C$ . $P|_{M_{0}}$ is equiped with two con-
nection forms $\omega$ and di that are defined by the connections $\nabla$ and V on $E|_{M_{\theta}}$

respectively. In this section, we estimate holonomy determined by $(P, \omega)$ .
Let $\tau=\tau(s)(0\leqq s\leqq a)$ be a piecewise differentiable curve in $M_{0}$ . We take

a horizontal lift $v(s)$ of $\tau$ in $P$ with respect to $\omega$ such that $v(O)=u^{0}(\tau(0))$ , where
$u^{0}$ is the cross-section $M_{0}arrow P|_{M_{0}}$ that was defined in \S 2(C). Then there exists
$b(s)\in O(n+1, R)$ for each $s$ satisfying $v(s)=u^{0}(\tau(s))b(s)$ . From

$0=\omega(\dot{v}(s))=ad(b(s)^{-1})\omega[u_{*}^{0}(\dot{\tau}(s))]+b(s)^{-1}\dot{b}(s)$ ,

we have

(6.1) $\dot{b}(s)=-\omega[u_{*}^{0}(\dot{\tau}(s))]b(s)$ .
Let $D(s)$ be a surface that is made by geodesics joining $q_{0}$ , which is the

center of $M_{0}$ , to $\tau(r)$ for OS $r\leqq s$ . Integrating (6.1) with respect to $s$ , we have

(6.2) $b(s)-E= \int_{0}^{s}\dot{b}(r)dr$

$=- \int_{0}^{s}\omega[u_{*}^{0}(\dot{\tau}(r))]dr-\int_{0}^{s}\omega[u_{*}^{0}(\dot{\tau}(r))](b(r)-E)dr$

$=- \int_{D(s)}(u^{0})^{*}\Omega-\int_{0}^{s}(\omega-\overline{\omega})[u_{*}^{0}(\dot{\tau}(r))](b(r)-E)dr$ ,

because $\overline{\omega}[u_{*}^{0}(\dot{\tau}(s))]=0$ . Since $\omega-\overline{\omega}$ satisfies $R_{a}^{*}(\omega-\overline{\omega})=ad(a^{-1})(\omega-\overline{\omega})$ , the norm
$||\omega-\overline{\omega}||$ becomes a function on $M_{0}$ : We define it by

$|| \omega-\overline{\omega}||_{p}=\max$ { $||(\omega-\overline{\omega})(u_{*}^{0}X)|||X\in T_{p}(M_{0})$ with $||X||=1$ }.

For $x\in S^{n}(1)$ , we denote by $\eta_{x}$ a curve $b(r)x(0\leqq r\leqq a)$ in $S^{n}(1)$ . The length
$L(\eta_{x})$ of $\eta_{x}$ in $S^{n}(1)$ holds the following equation:

(6.3) $L( \eta_{x})=\int_{0}^{a}||\dot{b}(r)x||dr\leqq\int_{0}^{a}||\dot{b}(r)||dr$ .

We define a distance $\rho(b(s), b(t))$ in $SO(n, R)$ by

(6.4) $\rho(b(s), b(t))=||C||$ ,

where $C\in so(n, R)$ such that $b(t)=b(s)\exp(C)$ and $||C||\leqq\pi$ . Then we have, for
$s\leqq t$ ,
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(6.5) $\{\rho(b(s)\rho(b(s)|b(t))\geqq||b(t)-b(s)||b(t))\leqq\max\{L(\eta_{x}|_{[s.t]})|x\in S^{n}(1)\}$

,

$\langle$ $A)$ PROOF OF (4.1).

Let $x(s)$ be a piecewise differentiable curve in $S_{q_{0}}(M)$ with $||\dot{x}(s)||=1$ . Then
$q(s)=\tau^{0}[x(s), t(x(s))]$ is a curve in $C$ . We apply (6.2) to the curve $q(s)$ . Then
we have

$|| \frac{d}{ds}b(s)||_{s=0}\leqq||\Omega||\frac{d}{ds}m(D(s))|_{s=0}$ ,

where $m(D(s))$ is the measure of $D(s)$ . On the other hand, since $M$ is $\delta$ -pinched
and $d(q_{0}, q(s))\leqq\pi/(2\sqrt{}\overline{\delta})$ , the Rauch comparison theorem yields the estimate
m(D(s))$s/\delta . In fact, we arrive at the estimate if we observe the case where
$M_{0}$ has the sectional curvature $\delta$ .

$\langle$ $B)$ PROPOSITION 5. Let $\tau=\tau(s)(0\leqq s\leqq a)$ be a piecewise differentiable loop in a
normal coordinate in $M$, and $v(s)$ be a horizontal lift of $\tau$ in $(P, \omega)$ . Then we
have

$\rho(b, E)\leqq||\Omega||m(D)\exp[||\Omega||m(D)]$ ,

where $v(O)b=v(a),$ $D$ is surf ce made by geodesics joining the center $p$ of the
normal coordinate to each point of $\tau$ .

PROOF. We can suppose that the normal coordinate containing $\tau$ is $M_{0}$ and
that the center $p$ of it is $q_{0}$ . So, we can also apply(6.2) in this case under
the condition $b(a)=b$ . Furthermore, we assume that the parameter $s$ of $\tau$ is
given by the arc-length for simplicity. By (6.2), (6.3) and (6.5), we have

(6.6) $\rho(b(s), E)\leqq||\Omega||m(D)+\int_{0}^{s}||\omega-\overline{\omega}||_{\tau(r)}\rho(b(r), E)dr$ .

We estimate $||\omega-\overline{\omega}||$ : Let fix $s\in(O, a)$ , and $w(r)$ be a horizontal lift of $\tau(s+r)$

in $(P, \omega)$ satisfying $w(O)=u^{0}(\tau(s))$ . Putting $w(r)=u^{0}(\tau(s+r))a(r)$ , we apply (6.2)

to this. Then we have

$|| \dot{a}(0)||\leqq||\Omega||\frac{dm(D(s))}{ds}$ .
On the other hand, we have

$\dot{a}(0)=-\omega[u_{*}^{0}(\dot{\tau}(s))]=-(\omega-\overline{\omega})[u_{*}^{0}(\dot{\tau}(s))]$

by (6.1). Therefore, we have

(6.7) $\rho(b(s), E)\leqq||\Omega||m(D)+||\Omega||\int_{0}^{s}\frac{dm(D(r))}{dr}\rho(b(r), E)dr$ .

Finally, we obtain the assertion by applying the Gronwall’s lemma to (6.7).
Q. E. D.



Differentiable sphere theorem

References

[1] M. Berger, Les vari\’et\’es riemanniennes (1/4)-pinc\’ees, Ann. Scuola Norm. Sup.,
Pisa, 14 (1960) , 161-170.

[2] D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krummung auf
Sph\"aren, Math. Ann., 164 (1966), 351-371.

[3] K. Grove, H. Karcher and E. A. Ruh, Group actions and curvature, Invent. Math.,
23 (1974), 31-48.

[4] S. Helgason, Differential Geometry, Lie Group, and Symmetric Spaces, Academic
Press, New York, 1978.

[5] H. C. Im Hof and E. A. Ruh, An equivariant pinching theorem, Comment. Math.
Helv., 50 (1975), 389-401.

[6] W. Klingenberg, \"Uber Riemannsche Mannigfaltigkeiten mit positiver Kr\"ummung,
Comment. Math. Helv., 35 (1961), 47-54.

[7] H. Omori, On the group of diffeomorphisms on a compact manifold, Global Analysis
Symp. Pure Math., Berkeley, 15 (1968), 167-189.

[8] E. A. Ruh, Curvature and differentiable structure on sPheres, Comment. Math.
Helv., 46 (1971), 127-136.

[9] E. A. Ruh, Krummung und differentierbare Struktur auf Sph\"aren, Comment. Math.
Helv., 46 (1971) , 127-136.

[10] T. Sakai, On cut loci of compact symmetric spaces, Hokkaido Math. J., 6 (1977),

136-161.
[11] Y. Shikata, On the differentiable pinching problem, Osaka Math. J., 4 (1967),

279-287.
[12] M. Sugimoto and K. Shiohama, On the differentiable pinching problem, Math.

Ann., 195 (1971) , 1-16.
Yoshihiko SUYAMA
Department of Applied Mathematics
Faculty of Science
Fukuoka University
Fukuoka, 814-01
Japan


	\S 0. Introduction.
	THEOREM 1 ...
	THEOREM 2 ...

	\S 1. Diffeotopy Theorem.
	\S 2. Preliminaries and ...
	\S 3. Differential of ...
	\S 4. Lemma necessary ...
	\S 5. Differentiable sphere ...
	\S 6. Estimate of holonomy ...
	References

