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§1. Introduction.

Let K be an imaginary quadratic field embedded in the complex number
field C and O its ring of integers. Consider the subgroup I'(8) of SL(2, Ok)

. . 1 .
consisting of all matrices congruent to ( ) modulo 8. As was noticed by

1
Kubota [7], the map X: I'(8)—Z/2Z defined by

(0 )= F0=(9)  ex0

is a homomorphism, the homomorphic property being essentially equivalent to
the reciprocity law of the quadratic residue symbol (¢/a) of K. On the other
hand, by a result of Sczech [10], we have homomorphisms from I'(8) to the
additive group of C explicitly given by generalized Dedekind sums. The aim
of this paper is to study the relation between these two kinds of homomorphisms.
The main result is that there exists, among the linear combinations of Sczech’s
homomorphisms, a homomorphism ¥ with values in the ring Z of rational
integers such that

1) XA =T(A) (mod 2)

for every A='(8). This was conjectured in [10].

To be more specific, let L be a lattice in C and denote by ©, the ring
consisting of all m in C with mLC L. Let, for z in C and a non-negative
integer 7,

Ez)= 2 (w+2) | w+z| 0,
=0
where the value at s=0 is to be understood in the sense of analytic continua-
tion. Put, for two integers @, ¢ in Oy with ¢=0,

pa.o=1 5, B)E()

C meLfcL c
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and define the map @=@, from SL(2, ©;) to C by
E2<o>1("+d)—1)(a, 0,  ¢=0
o Y=
¢ d g (0)1(—1)—) ~0
2 d b c—=
with I(z)=z—Z. It is proved in that
O(AB) = O(A)+9(B), A, BeSL(2,0.),

i.e., @ is a homomorphism. The following is our main theorem.

THEOREM 1. Among the linear combinations of the homomorphisms @ asso-
ciated with lattices L such that Oy is the order of K with conductor 8, there exists
a Z-valued homomorphism & which satisfies (1) for every A in I'(8).

By a general result of Harder (cf. [3]), the first cohomology group H*(I'(8),C)
of I'(8), which is nothing else than the C-vector space of all homomorphisms
from 7I'(8) to C, has a canonical decomposition

HY(I'(8), C) = Hiis(I'(8), C)DHeusp(I'(8), C)

into the Eisenstein part and the cusp part. If ©, is the order in K with con-
ductor 8, the restriction of @, to ['(8) belongs to the Eisenstein part (cf.
Weselmann [13]). Our theorem, therefore, says that X: I'(8)—~Z/2Z has a ‘lift’
U: ['8)—Z in the Eisenstein part.

In the following we first prepare congruences for the division values of
elliptic functions (§2). Then our result is obtained by the help of a lemma
(Lemma 6) which is a version of the so-called Gauss’ lemma. The case where
the discriminant of K is congruent to one modulo 8 is essentially treated in [5].
There is a similar result for the cubic residue symbol of Q(~/—3) ([6]). For
the relation between classical Dedekind sums and the quadratic residue symbol
of the rational number field @, we refer the readers to Rademacher and Gross-
wald and Sczech [1I].

The author would like to thank Sonderforschungsbereich 170 at Géttingen
for financial support and accommodation during the preparation of this work.

§2. Congruences satisfied by division values of elliptic functions.

The purpose of this section is to get two corollaries of [Theorem 2. First
we quote some known facts (cf. Cassou-Nogues and Taylor [1], Fueter [2]).
Keeping the notation introduced in the previous section, take a 4-division point
¢ of C/L with 2¢)+0 and put
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122(2¢)
P(P)—P(2¢)’

P(P)—P(2¢)
P(z) —P2P)’

where P(z) denotes the Weierstrass ®-function with respect to L.

t=1tp)=

T(2)=Tz; )=

LEMMA 1 ([2], p. 99). For every odd integer n greater than one, the poly-
nomial

I X-T()

acn=1L/L-{0)

has coefficients in Z[t] and the constant term is n®.
-T'he value t;(¢)* depends only on L and 2¢ and hence we may put
) s2(20) = ti(g)P—2° .
For (u, v) in (Z/2Z»—{(0, 0)} and a variable 7 in the upper half plane H, let

Scuo(T) = SL,( u‘rz—i—v)

with L.=Z7+Z.
LEMMA 2 (cf. [1]). One has

A(%) A(5)

3) Sa,0(T) = VO Sa,n(t) = 10
S, 1x(T) = 2‘244(’(2:;
with
Az) = g7 ﬁl(l_eznm)u
and .
4) Sc1,0(T)S a1, 1(T)Sco, () = —21.
Furthermore, for every A in SL(2, Z),
(5) Scu, o AT) = Scu,wa(7) .

Denote by O, the order in K with conductor f (0<f=Z) and by H, the
maximal ray class field over K modulo m (0#=m=0Ok). For a non-negative

integer k, we put
0, Drg=1 (mod8)

vy =1 217F Dxg=5 (mod8),
3.2717k Dxg=0 (mod4)



450 H. Ito

where Dg is the discriminant of K. If ¢ and b are algebraic integers in C,
we write a~b when a/b is a unit.

LEMMA 3 ([2], pp. 202~204). Suppose Op=0k and let 9 be a primitive 2-
division point of C/L. Then sp(9) is an algebraic integer of H, and

SL(19) ~ 2270,

LEMMA 4. Let p and a positive integer v be such that v,:=p/veH, Ox=
Zp+Z and N=Zpu+2Zy is an ideal of K prime to 2. Then, for every positive
integer k, s, 1(2%t,) and s, 15(2%70) are algebraic integers in H,,,, and

(6) Sco,10(2%70) ~ s, 1x(2FTe) ~ 2°7E

PROOF. We quote the following general facts from the theory of complex
multiplication (cf. Stark [12], p. 217). Let g be a modular function of level N
(0<Ne Z) which is holomorphic on H and whose Fourier expansion at every
cusp has coefficients in Z. Let A=Zp+Zy be a proper fractional O;-ideal
0<feZ) with ry=p/v in H. Then g(z,) is an integer of H;y. Moreover, if
B is a prime ideal in K of degree one over a rational prime p with (p, fNDg)
=1 and if ¢ denotes the Frobenius automorphism of H;y/K corresponding to
B, then one has

(7) g(10)’ = g(Ary),
for A in SL(2, Z) taken as follows. Namely let B be a 2 by 2 matix with

coefficients in Z such that B(iz ) gives a Z-basis of pa with p=P"0O, and take

A satisfying
b _
( 1) = AB  (mod N).

Returning to the notation in we have

@213 - Z2kﬂ+Z
and
AN, = Z2* p+2Zy .

Because the functions s,y and sq, ;) satisfy the above conditions for g with
N=2, their values at 2"z, are integers of H,,,;,. We prove (6) by induction on
k. Since v/2 gives a primitive 2-division point of C/¥,

Sco,1x(To) ~ 2270
by Lemma 3. Let m be a positive integer and assume

S o, (2™ lrg) ~ 28 Tm=1
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By (3) and (4),

S, (TS, »(T) = — S, 1)(%)

and hence

S0, (2™T0)S 1, 15(2™T0) = — S0, (2™ TMrp) ~ 28T

If Dg=1 (mod8), then r,_,=0 and we get (6) for k=m. We claim that
Sco, 1(2™7,) and s, 15(2™7,) are conjugate to each other over H,, the Hilbert class
field of K. Then, because every prime ideal of H, over 2 ramifies completely
in H,ny, when D=1 (mod 8), we get (6) for k=m in this case also. This
will complete the proof of Lemma 4

To prove the above claim, take a prime ideal P=0xw in K of degree one
with p=wd& prime to 2Dg. Further suppose @ has the form

o =2"ap+b (a, beZ, a=1(2)),

i.e., w belongs to O, but not to O,ns1. We have P NO,n=0,n0. Define the
2 by 2 integral matrix B by

s ) =a( ).
One easily sees that

b 22™ il 10
BZ(——aq 2ma(ﬁ§—;/)q4—b>z(l 1) (mod 2).

Hence, by (7) and (5),

Sco,n(2M70)? = S(O’I)(G 2)2%.0) = Sa,n(2™7,),
where ¢ is the Frobenius automorphism of H,,.,/K corresponding to . This
proves our claim.
It can be seen from the above proof that, more precisely, s«.1y(2™7,) and
sa.1(2™z,) belong to the ring class field over K modulo 2™*!' and are conjugate
to each other over the ring class field modulo 2™ (m=1).

LEMMA 5. Suppose 0.=0,, with a non-negative integer k and let 9 be a 2-
division point of C/L whose image under the natural map C/L—C/OxL is a
primitive 2-division point of C/OgL. Then s.(9)is an algebraic integer of H,p4,
and

sp(P) ~ 27k,
PrROOF. The case =0 is just Let £:=1. Because
$1.(48) = s1(§), 0+2€C(, 0+&c27'L/L,

we may assume that L=0;NL and Ox L= with a prime ideal 2 of K of
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degree one over a prime number ¢, (¢, 2Dg)=1. We can write Q=Zy+2Zg

with g in H Then Ox=Zp+Z and L=Z2*p+Zg. It follows from the as-
sumption on 4 that

2 u+q

q
’9“2"2

Hl

(mod L)

and
sp(9) = S(o,l)(zk‘l‘o), 3(1.1)(2k‘l'o)

with 7,=p/q. Hence the assertions follows from
Denote by £, the ring consisting of all algebraic numbers in C integral at 2.

THEOREM 2. Suppose 01 =0, (k=0) and let & be as in Lemma 5. Then,
for every point a=C/L, a+0 of an odd order, one has

PO 'Pay=1 (mod 2 T¢D,).

PrOOF. Take a 4-division point ¢ of C/L with 2¢=49. By (2) and
5, t=t.(¢)) is a non-zero algebraic integer and

1Tte 27TED, .

By Lemma 1, T(@)=T(a; ¢) is an algebraic integer prime to 2. The assertion
follows from

@) ., 12
29~ it

COROLLARY 1. Assumptions on Oy, 9 and a being as in Theorem 2, one has
(—PONE(a)=1  (mod2'"*"’D,).

PROOF. Denote by n the order of a. We have the following identities

(cf. [10], [11]):
nE(a) = 5 (Bma)+E(@)~ E(n-+Da)),

(E(ma)+ Ea)—E((m+Da))? = (ma)+2(a)+P(m+1)a).

Note that, for an algebraic number ¢ and a rational number x, 0<x=1, one
has ¢=1 (mod 2*D,) if and only if ¢*=1 (mod 2?*D,). Then, by [Theorem 2,

(—P(I)) VA E (ma)+E(a)—E((m+1)a)) = 1 (mod 2" "**0,)

and the assertion follows.

COROLLARY 2. Assumptions on Op and § being as in Theorem 2, suppose,
furthermore, k=3. Then one has
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28V D P TTEL0) =0 (mod 2°77%4D,).
ProoF. For every p=0; with (pz, 2)=1, we have (cf. [1I], p. 102)

pI(E(0)=2 = 9(@).

M N H
By the right hand side is congruent to pg@—1 modulo 2°"*D,.
Putting p=1+2%"'+v/Dg, we get the assertion.

§3. Main result.

Throughout this section we assume that ©,=0,, (k=0) and let § be a 2-
division point of C/ L satisfying the condition in Further we adapt
the convention that (0/¢)=1 if ¢ is a unit in K.

THEOREM 3. For two integers a, ¢ in Oy with Ox2a+0Orc=0g, one has

—c P9 Dia, ¢) = cc'+1—2(£cl—) (mod 2°°7#D),).

PrOOF. Let a be a point of C/L such that

{meoy; ma=0} = cOL
and put
fim) = (— @) *E (ma)

for me©r/cOr. This satisfies

f(=m) = —f(m)
and
fm)=1 (mod2""*°Q,), m#0

by [Corollary 1] of [Theorem 2l Since ©./cO; is isomorphic to Ox/cOx,
3 follows from the next lemma.

For a finite algebraic number field M, we denote by O, the integer ring
of M.

LEMMA 6. Let M be a finite algebraic number field in C and ¢ an integral
ideal in M prime to 2. Suppose that a map f:Oy/c—C satisfies

f(=m)=—f(m), m&Ox/c
and
fm)=1  (mod28D,), 0FmeOy/c

with a positive rational number B. Then, for every a in Oy prime to ,
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> f(am)f<m)ch+1—2(9-) (mod 27D,)
mel /¢ /M

where (a/)y 7s the quadratic residue symbol of M, Nt is the absolute normm of ¢
and

7y = min{1+2p3, 2+, 3}.

Proor. Let R be a subset of @,/c such that RN(—R) is empty and Oy/c
=RU(—R)U{0}. By the conditions on f,

> flam)f(m)—Nc+1

mely/c

=23 flam)f(m)—Nc+1
meRr
=2 ZP{(f(am)—1)(f(m)+l)+f(m)~f(am)}

= 2{ ZRf(m)—— ZRf(m)} (mod 2'*259),) .

mea

Put
R, ={meR;ancs(-1)"R}, n=0, 1.
Then R=R,JR, and aR=R,\J(—R,), the unions being disjoint. Hence
2{3 fm)— 2 fm)} =4 2 fm)=4-%#R,  (mod 2°7°0y),

meR meaR meRr;

where #R, is the number of elements of R;,. A generalization of Gauss’ lemma
(cf. Reichardt [9]) says

£R, = —;—(1~(%)M) (mod 2).

This proves the lemma.

THEOREM 4. Assume k=3, Then, for Az(?

=1,

2) in SL(2, Or) with (cC, 2)

P9 DA = 2—2(2)  (mod 2°°7FD,).
C

PROOF. Recall that ©,=0,,=Z+2%0x and note that

1(915—‘5) = 26 /DD, .

Then, by Corollary 2 of [T'heorem 2,

2@ EI(*T) =0 (moaz 0y,

Since c=1+2Z+80x we see ¢c=1 (mod8) and ¢=1 (mod2D,). Therefore, by
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a a
e -1 — 9 __ Y — 9 = 3-T kg
cP(9) 1 D(A) = 2 2(6) = c{z z(c)} (mod 2°"7*D,) .
Because ¢ is ¢ unit of the ring O,, we get the theorem.

We need a simple lemma to get a Z-valued homomorphism which inherits
the congruence of

LEMMA 7. Let M be a finite algebraic number field and p a prime ideal in
M over a prime number p. Then there exists a number p in M such that

Tr(p) =1 (mod pZ)
and, for every m in P,
Tr(pum)=0 (mod pZ).

Here Tr(-) denotes the trace map from M to Q.
PrOOF. Denote by 9, the different of M. If p=93'pp~!, we have
Tr(pum) = (mod pZ)
for every m in p. Hence it suffices to show that

Tr(Du'py™) & pZ .
Suppose this be false. Then

Tr@yhr™Hc Z
and, since
Dt ={a=M; Tr(aOy)C Z},
we have
DI C D,
which is a contradiction. This concludes the proof.

Now we can prove [Theorem 1. Assume 2>=3. Since SL(2, ©;) is finitely
generated, the field M generated over @ by all the values of @(9)'@ is a finite
algebraic number field and P(@)'D(SL(2, ©;)) is a Z-module of a finite rank.
Take g in M satisfying the conditions of [Lemma 7 for a prime ideal p in M

b) in SL(2, 01) with (c¢, 2)=1,

over 2. Then, for every A:(ZZ J

T(A):= —}ITr( pP(9) G(A)) = %(1—(%)) (mod 20,)

by Multiplying ¢ by a suitable odd integer if necessary, we may

assume that ¥ is Z-valued. Since W(_ ) 1)20, one has
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rn=w((_, Ya)=10-(2) e

by . .
for A:(Z d> in SL(2, 0,) with ¢=0 (mod 20g). Consider the case £=3, i.e.,

O1=0s. Then SL(2, ©.) contains /I'(8) and ¥ satisfies (1) for A in I'(8). For
every automorphism ¢ of C, there exists a lattice L’ in C such that 0. =0,

and
(PG D) =0y,

cf. [10], p. 540 and [4]. Hence we have proved [Theorem 1.
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