Construction of elliptic curves with high rank via the invariants of the Weyl groups

Dedicated to Professor G. Shimura on his 60 th birthday

By Tetsuji SHIODA

(Received July 20, 1990)

1. Introduction.

In this paper, we shall establish a general method for constructing elliptic curves over the rational function field $\boldsymbol{Q}(t)$ or $k(t)$ with relatively high rank (up to 8), together with explicit rational points forming the generators of the Mordell-Weil group. The construction is based on the theory of Mordell-Weil lattices (see [S1] for the summary and [S5] for more details).

In order to better explain our method and, especially, the role played by the invariants of the Weyl groups, we first recall the analogous situation in the theory of algebraic equations. Letting a_{1}, \cdots, a_{n} be algebraically independent over the ground field k, say $k=\boldsymbol{Q}$, consider the algebraic equation

$$
\begin{equation*}
X^{n}+a_{1} X^{n-1}+\cdots+a_{n}=0 \tag{1.1}
\end{equation*}
$$

over $k_{0}=\boldsymbol{Q}\left(a_{1}, \cdots, a_{n}\right)$. If x_{1}, \cdots, x_{n} are the roots, then we have the relation of the roots and coefficients:

$$
\begin{equation*}
\pm a_{i}=\varepsilon_{i}\left(x_{1}, \cdots, x_{n}\right) \quad \text { (i-th elementary symmetric polynomial) } \tag{1.2}
\end{equation*}
$$

If \mathcal{K} denotes the splitting field of (1.1) over k_{0}, then we have

$$
\begin{aligned}
& \mathcal{K}=k_{0}\left(x_{1}, \cdots, x_{n}\right)=\boldsymbol{Q}\left(x_{1}, \cdots, x_{n}\right) \\
& \operatorname{Gal}\left(\mathcal{K} / k_{0}\right)=\Im_{n} \quad(n \text {-th symmetric group }) .
\end{aligned}
$$

In particular, the invariant field $\mathcal{K}^{\Xi_{n}}$ is k_{0} by Galois theory, but a stronger result holds:

$$
\boldsymbol{Q}\left[x_{1}, \cdots, x_{n}\right]^{\Im_{n}}=\boldsymbol{Q}\left[a_{1}, \cdots, a_{n}\right],
$$

the fundamental theorem on symmetric functions (\boldsymbol{Q} may be replaced by \boldsymbol{Z} here).

With slight modification, the above can be viewed as follows. Take $a_{1}=0$ and let a_{2}, \cdots, a_{n} be still algebraically independent; thus $x_{1}+\cdots+x_{n}=0$ and
$k_{0}=\boldsymbol{Q}\left(a_{2}, \cdots, a_{n}\right)$. Then we have

$$
\begin{align*}
\mathcal{K} & =k_{0}\left(x_{1}, \cdots, x_{n}\right) \tag{1.3}\\
& =\boldsymbol{Q}\left(x_{2}, \cdots, x_{n}\right) \quad(\text { a purely transcendental extension of } \boldsymbol{Q})
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Gal}\left(\mathcal{K} / k_{0}\right)=\Im_{n}=W\left(A_{n-1}\right) \tag{1.4}
\end{equation*}
$$

Here $W\left(A_{n-1}\right)$ is the Weyl group of type $A_{n-1}(\mathrm{cf}$. [B]), and (1.5) can be regarded as a special case of Chevalley's theorem on the invariants of a finite reflection group. The formula (1.2) expresses the fundamental invariants of $W\left(A_{n-1}\right)$ in terms of the standard basis of the root system A_{n-1}, or more precisely, of the dual lattice A_{n-1}^{*}. By the formula (1.2), one can easily write down an algebraic equation having the prescribed roots.

It is remarkable that an entirely similar situation arises from the MordellWeil lattices of certain elliptic curves, which enables us to write down the equation of elliptic curves over $\boldsymbol{Q}(t)$ with relatively high rank, having the prescribed data for the generators of the Mordell-Weil group.

For example, for the case of rank $r=8$, consider the elliptic curve

$$
\begin{equation*}
E: y^{2}=x^{3}+x\left(\sum_{i=0}^{3} p_{i} t^{i}\right)+\left(\sum_{i=0}^{3} q_{i} t^{i}+t^{5}\right) \tag{1.6}
\end{equation*}
$$

defined over $k_{0}(t)$, where $k_{0}=\boldsymbol{Q}\left(p_{0}, \cdots, p_{3}, q_{0}, \cdots, q_{3}\right)$. (This equation defines a family of affine surfaces, known as the universal deformation of the rational double point of type E_{8}, parametrized by $\lambda=\left(p_{i}, q_{j}\right) \in \boldsymbol{A}^{8}$ (affine space of dimension 8); the origin $\lambda=0$ corresponds to the E_{8}-singularity : $y^{2}=x^{3}+t^{5}$.) Assume that λ is generic, that is, p_{0}, \cdots, q_{3} are algebraically independent over \boldsymbol{Q}, and let $k=\bar{k}_{0}$ be the algebraic closure of k_{0}. Then the Mordell-Weil lattice $E(k(t))$ turns out to be the root lattice of type E_{8}. Let \mathcal{K} be the smallest extension of $k_{0}=\boldsymbol{Q}(\lambda)=\boldsymbol{Q}\left(p_{i}, q_{j}\right)$ such that $E(k(t))=E(\mathcal{K}(t)) ; \mathcal{K} / k_{0}$ is a finite Galois extension. Then we can prove (see Theorems 8.3, 8.4)

$$
\begin{align*}
& \mathcal{K}=k_{0}\left(u_{1}, \cdots, u_{8}\right)=\boldsymbol{Q}\left(u_{1}, \cdots, u_{8}\right) \tag{1.7}\\
& \operatorname{Gal}\left(\mathcal{K} / k_{0}\right)=W\left(E_{8}\right) \tag{1.8}\\
& \boldsymbol{Q}\left[u_{1}, \cdots, u_{8}\right]^{W\left(E_{8}\right)}=\boldsymbol{Q}\left[p_{0}, \cdots, q_{3}\right] . \tag{1.9}
\end{align*}
$$

Here the parameters u_{1}, \cdots, u_{8} correspond to the basis of the root system of type E_{8}, and they are defined in terms of the specialization homomorphism $s p_{\infty}: E(k(t)) \rightarrow \boldsymbol{G}_{a}(k)$ from the Mordell-Weil group to the singular fibre of (1.6) at $t=\infty$.

The equality (1.9) says that the coefficients p_{0}, \cdots, q_{3} of the elliptic curve (1.6) form the fundamental invariants of the Weyl group $W\left(E_{8}\right)$; in particular,
we can write

$$
\begin{equation*}
p_{i}=I_{20-8 i}\left(u_{1}, \cdots, u_{8}\right), \quad q_{j}=I_{30-6 j}\left(u_{1}, \cdots, u_{8}\right), \tag{1.10}
\end{equation*}
$$

which is an analogue of (1.2), the relation of roots and coefficients of an algebraic equation. Actually we have a universal algebraic equation of degree $N=240$ whose roots are the N "roots" of the root system E_{8}. (1.10) represents the essential part of the relation of the roots and coefficients of this universal equation. As a by-product, we obtain explicit fundamental invariants of the Weyl group $W\left(E_{8}\right)$ (see Theorem 7.2, Theorem 8.3).

Now we consider the elliptic curve (1.6) over the field $\mathcal{K}(t)=\boldsymbol{Q}\left(u_{1}, \cdots, u_{8}\right)(t)$. Then the Mordell-Weil group $E(\mathscr{K}(t))$ is isomorphic to the root lattice E_{8}, and it has a basis $\left\{P_{1}, \cdots, P_{8}\right\}$ such that $s p_{\infty}\left(P_{i}\right)=u_{i}$; more explicitly, we have $P_{i}=$ (x, y) where x, y are polynomials in t with coefficients in $\boldsymbol{Q}\left[u_{1}, \cdots, u_{8}\right]\left[u_{i}^{-1}\right] \cap$ $\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right)\left(u_{i}\right)$, of the following form:

$$
\begin{equation*}
x=u_{i}^{-2} t^{2}+a_{i} t+b_{i}, \quad y=u_{i}^{-3} t^{3}+c_{i} t^{2}+d_{i} t+e_{i} . \tag{1.11}
\end{equation*}
$$

In order to obtain some elliptic curves over $\boldsymbol{Q}(t)$ with rank $r=8$, it suffices to specialize u_{1}, \cdots, u_{8} to some rational numbers in such a way that the rank remains the same (or, as we would say, that the Mordell-Weil lattice does not "degenerate"). Then (1.6) and (1.10) determine the equation of an elliptic curve over $\boldsymbol{Q}(t)$ with rank 8 , which is given with a basis $\left\{P_{i}\right\}$ of $E(\boldsymbol{Q}(t))$ of the form (1.11).

The variation of the above theme can be played, in addition to the case E_{8}, in the cases $E_{7}, E_{6}, D_{4}, A_{2}$, where we take the elliptic curve E and the parameter λ as follows.

$$
\begin{align*}
& y^{2}=x^{3}+x\left(p_{0}+p_{1} t+t^{3}\right)+\left(\sum_{i=0}^{4} q_{i} t^{i}\right) \tag{7}\\
& \lambda=\left(p_{0}, p_{1}, q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right) \in \boldsymbol{A}^{7}
\end{align*}
$$

(E_{6})

$$
\begin{aligned}
& y^{2}=x^{3}+x\left(\sum_{i=0}^{2} p_{i} t^{i}\right)+\left(\sum_{i=0}^{2} q_{i} t^{i}+t^{4}\right) \\
& \lambda=\left(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}\right) \in \boldsymbol{A}^{6}
\end{aligned}
$$

$$
\begin{align*}
& y^{2}=x^{3}+x\left(p_{0}-t^{2}\right)+\left(\sum_{i=0}^{2} q_{i} t^{i}\right) \tag{4}\\
& \lambda=\left(p_{0}, q_{0}, q_{1}, q_{2}\right) \in \boldsymbol{A}^{4}
\end{align*}
$$

$$
\begin{align*}
& y^{2}=x^{3}+x \cdot p_{0}+q_{0}+t^{2} \tag{2}\\
& \lambda=\left(p_{0}, q_{0}\right) \in A^{2} .
\end{align*}
$$

These equations define universal deformation of the rational double points of type E_{7}, \cdots, A_{2}. In each case, the Mordell-Weil lattice $E(\mathcal{K}(t))$ is equal to the dual lattice E_{7}^{*}, \cdots of the root lattice E_{7}, \cdots, with the "narrow" Mordell-Weil
lattice $E(\mathscr{K}(t))^{0}$ being exactly the root lattice (cf. $\S 4$ below).
In the next section, we formulate the part of the above results relevant to the construction of elliptic curves over $\boldsymbol{Q}(t)$, together with explicit generators of the Mordell-Weil groups. Indeed, everything can be stated in elementary terms, with no mention of rational double points, their universal deformation or even the invariants of the Weyl groups, although the last are visibly there.

Also the results give a complete algorithm for constructing numerical examples. The interested reader could use our algorithm to produce as many examples of elliptic curves over $\boldsymbol{Q}(t)$ with rank 2 or 4 (by hand) or with rank 6,7 or 8 (by computer) as desired. We give a few numerical examples in $\S 3$. The proof will occupy the rest of the paper. The general outline of the proof will be given in $\S 4$, together with a brief review on the Mordell-Weil lattices. Then we treat the cases $\left(A_{2}\right),\left(D_{4}\right)$ in $\S 5,6$. After some preliminaries on the root lattices $E_{r}(r=6,7,8)$ in $\S 7$, we treat the case $\left(E_{8}\right)$ in $\S 8$, and then the cases $\left(E_{6}\right)$, $\left(E_{7}\right)$ in $\$ 9,10$.

We add a few remarks on the related subjects.
(1) A natural question: what about the other type A_{n} or D_{n}, not mentioned in the above? The same idea seems to work, but with some modification. First of all, the defining equation of the family does not give an elliptic curve but rather a hyperelliptic curve of higher genus in general. The MordellWeil group of the Jacobian variety of this curve will be of rank at least n, and we may expect that, as a lattice, it will be the root lattice of the desired type or some lattice closely related to it. Some preliminary calculation indicates that the family for type A_{3} (or D_{5}) gives an elliptic curve whose MordellWeil lattice is D_{4}^{*} (or E_{6}^{*}) rather than A_{3}^{*} (or D_{5}^{*}). We hope to come back to this question in some other occasion.
(2) We have treated here only one side of the arithmetic application of the theory of Mordell-Weil lattices: construction of elliptic curves with relatively high rank. The other side will be the construction of Galois representation $\rho: \operatorname{Gal}(\bar{Q} / Q) \rightarrow \operatorname{Aut}(E(\overline{\mathbb{Q}}(t)))$ whose image is the full Weyl group $W\left(E_{8}\right)$, etc. The existence of such follows from (1.8) and its variants for E_{7}, E_{6}, \cdots, in view of Hilbert's irreducibility theorem (cf. [S1], Theorem 7.1). This essentially answers the question raised by Weil and Manin (see [W1], p. 558, [M], Ch. 4, 23.13). Moreover our method will allow explicit construction of such Galois representations, and in particular, of Galois extensions over Q with Galois group $W\left(E_{8}\right)$, etc. We shall discuss this in more detail in a forthcoming paper.
(3) In [S1, §6], we have sketched the proof of (1.8), by making use of the monodromy theory of the Milnor lattice of a rational double point. But this can now be avoided, since we have more elementary, purely algebraic proof of (1.8). Our results might be of some interest to people in the singu-
larity theory, because (i) the field \mathcal{K} provides the smallest extension of $\boldsymbol{Q}(\lambda)$ over which the simultaneous resolution of singularities for the family (1.6) can be performed, and (ii) the universal algebraic equation, mentioned before, can be used to give a very precise description of the stratification of the parameter space according to the type of singularities (see [S4]).
(4) Once we have an elliptic curve over $\boldsymbol{Q}(t)$ of rank r, we obtain an infinite family of elliptic curves over \boldsymbol{Q} of rank at least r, by specializing t to rational numbers. This method was initiated by Néron [N1], who showed further that there exists an infinite family of elliptic curves over \boldsymbol{Q} with rank $\geqq 11$. It seems very likely that our results, combined with Néron's idea, will allow some explicit construction of such a family.
(5) The numerical examples for $\left(E_{6}\right)$, $\left(E_{7}\right)$ or $\left(E_{8}\right)$ in $\S 3$ will give at the same time explicit examples of del Pezzo surfaces of degree 3, 2 or 1 , defined over \boldsymbol{Q}, such that all the exceptional curves of the first kind (27,56 or 240 in number, cf. [M]) are defined over \boldsymbol{Q}. In particular, we can construct in this way smooth cubic surfaces over \boldsymbol{Q} such that all the 27 lines on them are defined over \boldsymbol{Q}, and also smooth plane quartic curves over \boldsymbol{Q} such that all the 28 double tangents are defined over \boldsymbol{Q}.

2. The construction theorems.

In the following, we make the statements for the case of $\boldsymbol{Q}(t)$, but \boldsymbol{Q} can be replaced by any field whatsoever, as far as its characteristic does not divide the denominators of rational numbers appearing in the formulas and is different from 2 or 3 (cf. Remark at the end of §4).

Theorem $\left(A_{2}\right)$. Take $\left(b_{1}, b_{2}\right) \in \boldsymbol{Q}^{2}$ such that b_{1}, b_{2} and $b_{3}=-b_{1}-b_{2}$ are mutually distinct. Let E be the elliptic curve over $\boldsymbol{Q}(t)$:

$$
\begin{equation*}
E: y^{2}=\left(x-b_{1}\right)\left(x-b_{2}\right)\left(x-b_{3}\right)+t^{2} . \tag{2.1}
\end{equation*}
$$

Then the Mordell-Weil group $E(\boldsymbol{Q}(t))$ is torsion-free and of rank 2. Any two of the three rational points

$$
\begin{equation*}
P_{i}=\left(b_{i}, t\right) \quad(i=1,2,3) \tag{2.2}
\end{equation*}
$$

generate $E(\boldsymbol{Q}(t))$. (Note that $P_{1}+P_{2}+P_{3}=0$ since the 3 points are collinear.) The Mordell-Weil lattice is isomorphic to A_{2}^{*}, the dual lattice of the root lattice A_{2}. The Gram matrix is:

$$
\left(\left\langle P_{i}, P_{j}\right\rangle\right\rangle_{1 \leqq i, j \leqq 2}=\left(\begin{array}{rr}
2 / 3 & -1 / 3 \tag{2.3}\\
-1 / 3 & 2 / 3
\end{array}\right) .
$$

Theorem $\left(D_{4}\right)$. Take $\left(d_{1}, \cdots, d_{4}\right) \in \boldsymbol{Q}^{4}$ such that $d_{1}^{2}, \cdots, d_{4}^{2}$ are mutually
distinct. Define

$$
\left\{\begin{array}{l}
q_{2}=\frac{1}{3} \sum_{i=1}^{4} d_{i}^{2} \tag{2.4}\\
p_{0}=\sum_{i<j} d_{i}^{2} d_{j}^{2}-3 q_{2}^{2} \\
q_{0}=\sum_{i<j<k} d_{i}^{2} d_{j}^{2} d_{k}^{2}-p_{0} q_{2}-q_{2}^{3} \\
q_{1}=\varepsilon \cdot 2 d_{1} d_{2} d_{3} d_{4} \quad(\varepsilon= \pm 1) .
\end{array}\right.
$$

Then the elliptic curve over $\boldsymbol{Q}(t)$

$$
\begin{equation*}
E: y^{2}=x^{3}+x\left(p_{0}-t^{2}\right)+\left(q_{0}+q_{1} t+q_{2} t^{2}\right) \tag{2.5}
\end{equation*}
$$

has a torsion-free Mordell-Weil group of rank 4, and, as a lattice, $E(\boldsymbol{Q}(t))$ is isomorphic to D_{4}^{*}, the dual lattice of the root lattice D_{4}. There exist 4 rational points of the form:

$$
\begin{equation*}
P_{i}=\left(b_{i}, d_{i} t+e_{i}\right), \tag{2.6}
\end{equation*}
$$

where d_{i} are as given at the beginning and

$$
\begin{align*}
b_{i} & =-d_{i}^{2}+q_{2} \tag{2.7}\\
e_{i} & =\varepsilon d_{j} d_{k} d_{l} \quad(\text { for }\{i, j, k, l\}=\{1,2,3,4\}) \tag{2.8}\\
& =q_{1} /\left(2 d_{i}\right) \quad \text { in case } d_{i} \neq 0 .
\end{align*}
$$

These points are independent, with the Gram matrix

$$
\begin{equation*}
\left(\left\langle P_{i}, P_{j}\right\rangle\right)=1_{4}, \tag{2.9}
\end{equation*}
$$

which generate a subgroup of index 2 in $E(\boldsymbol{Q}(t))$. Further there are 16 points of the form

$$
\begin{equation*}
P^{\prime}=\left(\pm t+b^{\prime}, d^{\prime} t+e^{\prime}\right) \tag{2.10}
\end{equation*}
$$

and any such P^{\prime}, together with any 3 of P_{i} 's, give a set of generators of $E(\boldsymbol{Q}(t))$.
Before proceeding to the case $E_{r}(r=6,7,8)$, let us fix some notation. For a moment, suppose that u_{1}, \cdots, u_{r} form a Z-basis of E_{r}^{*} (the dual lattice of the root lattice E_{r}) consisting of minimal vectors, and let the Gram matrix be

$$
\begin{equation*}
I_{r}=\left(\left\langle u_{i}, u_{j}\right\rangle\right\rangle_{1 \leq i, j \leq r} . \tag{2.11}
\end{equation*}
$$

Let $\left\{u_{i} \mid 1 \leqq i \leqq N\right\}$ denote all the minimal vectors of E_{r}^{*} (thus $N=54,56,240$ for $r=6,7$ or 8 ; cf. [CS, Ch. 4]). Further, let $\left\{\alpha_{j} \mid 1 \leqq j \leqq n\right\}$ denote all the roots of E_{r}, i.e., the minimal vectors of E_{r} with $\left\langle\alpha_{j}, \alpha_{j}\right\rangle=2$. (Thus $n=72,126$ or 240 for $r=6,7$ or 8.) For instance, we can take as $\alpha_{1}, \cdots, \alpha_{r}$ the basis of E_{r} given by [B, Ch. 6] and $\alpha_{1}, \cdots, \alpha_{n / 2}$ the positive roots (i.e. the roots which can be written as positive linear combination of $\alpha_{1}, \cdots, \alpha_{r}$) so that $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$
$=\left\{ \pm \alpha_{1}, \cdots, \pm \alpha_{n / 2}\right\}$. To fix the idea, let us make this choice.
Now, writing each u_{i} and α_{j} as a Z-linear combination of u_{1}, \cdots, u_{r}, we define the following polynomials in $\boldsymbol{Z}\left[u_{1}, \cdots, u_{r}\right]$:

$$
\begin{equation*}
\varepsilon_{\nu}(u)=\nu \text {-th elementary symmetric function of } u_{1}, \cdots, u_{N} \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{1}(u)=\Pi_{1 \leq i<j \leq N}\left(u_{i}-u_{j}\right), \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{0}(u)=\Pi_{1 \leq j \leq n} \alpha_{j}= \pm\left(\Pi_{1 \leq j \leq n / 2} \alpha_{j}\right)^{2} . \tag{2.14}
\end{equation*}
$$

For $r=6(N=54)$, we can choose u_{1}, \cdots, u_{6} so that $\left\langle u_{i}, u_{j}\right\rangle \equiv 1 / 3(\bmod 1)$ for all $i, j \leqq 6$. We arrange $\left\{u_{i}\right\}$ so that the same congruence holds for all $i, j \leqq N / 2$ $=27$, and we replace N by $N / 2$ in the definition of ε_{ν} and δ_{1} above. With this notation, we have:

Theorem (E_{6}). Take $a=\left(a_{1}, \cdots, a_{6}\right) \in \boldsymbol{Q}^{6}$ such that $\delta_{0}(a) \neq 0$. Let $\varepsilon_{\nu}=\varepsilon_{\nu}(a)$, and define

$$
\left\{\begin{array}{l}
p_{2}=\varepsilon_{2} / 12 \tag{2.15}\\
p_{1}=\varepsilon_{5} / 48 \\
q_{2}=\left(\varepsilon_{6}-168 p_{2}^{3}\right) / 96 \\
p_{0}=\left(\varepsilon_{8}-294 p_{2}^{4}-528 p_{2} q_{2}\right) / 480 \\
q_{1}=\left(\varepsilon_{9}-1008 p_{1} p_{2}^{2}\right) / 1344 \\
q_{0}=\left(\varepsilon_{12}-608 p_{1}^{2} p_{2}-4768 p_{0} p_{2}^{2}-252 p_{2}^{6}-1200 p_{2}^{3} q_{2}+1248 q_{2}^{2}\right) / 17280 .
\end{array}\right.
$$

Then the elliptic curve over $\boldsymbol{Q}(t)$

$$
\begin{equation*}
E: y^{2}=x^{3}+x\left(p_{0}+p_{1} t+p_{2} t^{2}\right)+\left(q_{0}+q_{1} t+q_{2} t^{2}+t^{4}\right) \tag{2.16}
\end{equation*}
$$

has a torsion-free Mordell-Weil group of rank 6, and, as a lattice, $E(\boldsymbol{Q}(t))$ is isomorphic to E_{6}^{*}, the dual lattice of the root lattice E_{6}. There is a basis of $E(\boldsymbol{Q}(t))$ consisting of the 6 rational points

$$
\begin{equation*}
P_{i}=\left(a_{i} t+b_{i}, t^{2}+d_{i} t+e_{i}\right) \quad(1 \leqq i \leqq 6) \tag{2.17}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(\left\langle P_{i}, P_{j}\right\rangle\right)=I_{6} . \tag{2.18}
\end{equation*}
$$

Here a_{i} has the prescribed value and

$$
\left\{\begin{array}{l}
b_{i}=\beta_{i}\left(a_{1}, \cdots, a_{6}\right) \tag{2.19}\\
d_{i}=\left(a_{i}^{3}+a_{i} p_{2}\right) / 2 \\
e_{i}=\left(3 a_{i}^{2} b_{i}-d_{i}^{2}+a_{i} p_{1}+b_{i} p_{2}+q_{2}\right) / 2
\end{array}\right.
$$

where β_{i} is a certain polynomial in u_{1}, \cdots, u_{6} such that

$$
\begin{equation*}
\beta_{i}\left(u_{1}, \cdots, u_{6}\right) \in \boldsymbol{Q}\left[u_{1}, \cdots, u_{6}\right] \cap \boldsymbol{Q}\left(p_{0}, \cdots, q_{2}\right)\left(u_{i}\right) . \tag{2.20}
\end{equation*}
$$

There are exactly 27 rational points $P_{i}(1 \leqq i \leqq 27)$ of the form (2.17), and $\left\{ \pm P_{i}\right\}$ give all the minimal vectors of norm $4 / 3$ in the lattice E_{6}^{*}. Moreover, in case $\delta_{1}(a) \neq 0$, each P_{i} is uniquely determined by $a_{i}(1 \leqq i \leqq 27)$.

Next, for the case E_{7} and E_{8}, the Weyl group $W\left(E_{r}\right)$ contains -1 , so we have $\varepsilon_{\nu}=0$ for all ν odd and $\varepsilon_{2 \nu}=(-1)^{\nu} \varepsilon_{\nu}^{\prime}$, where $\varepsilon_{\nu}^{\prime}$ is the ν-th elementary symmetric function of $u_{1}^{2}, \cdots, u_{N / 2}^{2}$ if we arrange $\left\{u_{i}\right\}$ so that $\left\{ \pm u_{j} \mid 1 \leqq j \leqq N / 2\right\}$ $=\left\{u_{i}\right\}$. We use $\varepsilon_{\nu}^{\prime}$ simply because it is more suited to constructing examples.

Theorem $\left(E_{7}\right)$. Take $c=\left(c_{1}, \cdots, c_{7}\right) \in \boldsymbol{Q}^{7}$ such that $\delta_{0}(c) \neq 0$. Let $\varepsilon_{\nu}^{\prime}=\varepsilon_{\nu}^{\prime}(c)$, and define

$$
\left\{\begin{align*}
q_{4}= & \varepsilon_{1}^{\prime} / 36 \\
q_{3}= & \left(-\varepsilon_{3}^{\prime}+6084 q_{4}^{3}\right) / 72 \\
p_{1}= & \left(\varepsilon_{4}^{\prime}-43875 q_{4}^{4}+1800 q_{4} q_{3}\right) / 60 \\
q_{2}= & \left(\varepsilon_{5}^{\prime}-238680 q_{4}^{5}+21600 q_{4}^{2} q_{3}-1008 q_{4} p_{1}\right) / 504 \tag{2.21}\\
p_{0}= & \left(-\varepsilon_{6}^{\prime}+1022580 q_{4}^{6}-165600 q_{4}^{3} q_{3}+7008 q_{4}^{2} p_{1}+10344 q_{4} q_{2}+540 q_{3}^{2}\right) / 540 \\
q_{1}= & \left(-\varepsilon_{7}^{\prime}+3552120 q_{4}^{7}-910800 q_{4}^{4} q_{3}+11592 q_{4} q_{3}^{2}+20592 q_{4}^{3} p_{1}\right. \\
& \left.+100824 q_{4}^{2} q_{2}-7944 q_{4} p_{0}+1092 q_{3} p_{1}\right) / 3828 \\
q_{0}= & \left(\varepsilon_{9}^{\prime}-24667500 q_{4}^{9}+12751200 q_{4}^{6} q_{3}-771120 q_{4}^{3} q_{3}^{2}+683760 q_{4}^{5} p_{1}\right. \\
& -2702280 q_{4}^{4} q_{2}+145200 q_{4}^{3} p_{0}+489288 q_{4}^{2} q_{1}-224040 q_{4}^{2} q_{3} p_{1} \\
& \left.+61824 q_{4} q_{3} q_{2}+8760 q_{3} p_{0}+1848 q_{3}^{3}-12656 q_{4} p_{1}^{2}+5024 p_{1} q_{2}\right) / 29496 .
\end{align*}\right.
$$

Then the elliptic curve E over $\boldsymbol{Q}(t)$

$$
\begin{equation*}
y^{2}=x^{3}+x\left(p_{0}+p_{1} t+t^{3}\right)+\left(q_{0}+q_{1} t+q_{2} t^{2}+q_{3} t^{3}+q_{4} t^{4}\right) \tag{2.22}
\end{equation*}
$$

has a torsion-free Mordell-Weil group of rank 7, and, as a lattice, $E(\boldsymbol{Q}(t))$ is isomorphic to E_{7}^{*}, the dual lattice of the root lattice E_{7}. It is generated by the 7 rational points

$$
\begin{equation*}
P_{i}=\left(a_{i} t+b_{i}, c_{i} t^{2}+d_{i} t+e_{i}\right) \quad(1 \leqq i \leqq 7) \tag{2.23}
\end{equation*}
$$

having the Gram matrix

$$
\begin{equation*}
\left(\left\langle P_{i}, P_{j}\right\rangle\right)=I_{7} . \tag{2.24}
\end{equation*}
$$

Here c_{i} has the prescribed value and $a_{i}, b_{i}, d_{i}, e_{i}$ are determined rationally from c_{i} over $\boldsymbol{Q}\left[p_{0}, \cdots, q_{4}\right]$ and also polynomially from c_{1}, \cdots, c_{7} over \boldsymbol{Q}.

There are exactly 56 rational points P_{i} of the form (2.22), which give the minimal vectors of norm $3 / 2$ in the lattice E_{7}^{*}. In case $\delta_{1}(c) \neq 0$, each P_{i} is uniquely determined by $c_{i}(1 \leqq i \leqq 56)$.

Theorem $\left(E_{8}\right)$. Take $u=\left(u_{1}, \cdots, u_{8}\right) \in \boldsymbol{Q}^{8}$ such that $\delta_{0}(u) \neq 0$. Let $\varepsilon_{\nu}^{\prime}=\varepsilon_{2}^{\prime}(u)$, and define $p_{3}, p_{2}, \cdots, q_{0}$ by the following formulas:

$$
\begin{aligned}
& p_{3}=-\varepsilon_{1}^{\prime} / 60 \\
& p_{2}=\left(\varepsilon_{4}^{\prime}-478170 p_{3}^{4}\right) / 720 \\
& q_{3}=\left(\varepsilon_{6}^{\prime}-1030320 p_{2} p_{3}^{2}-47747700 p_{3}^{6}\right) / 15120 \\
& p_{1}=-\left(\varepsilon_{7}^{\prime}+17858880 p_{2} p_{3}^{3}+361791144 p_{3}^{7}+753840 p_{3} q_{3}\right) / 79200 \\
& q_{2}=-\left(\varepsilon_{9}^{\prime}+5240640 p_{2}^{2} p_{3}+96593280 p_{1} p_{3}^{2}+2277007200 p_{2} p_{3}^{5}\right. \\
&\left.+13257944700 p_{3}^{9}+293378400 p_{3}^{3} q_{3}\right) / 2620800 \\
& p_{0}=\left(\varepsilon_{10}^{\prime}-128513424 p_{2}^{2} p_{3}^{2}-1545977808 p_{1} p_{3}^{3}-18595558800 p_{2} p_{3}^{6}\right. \\
&-65910925080 p_{3}^{10}-123173712 p_{3} q_{2}-2492208 p_{2} q_{3} \\
&\left.-3431681424 p_{3}^{4} q_{3}\right) / 11040480 \\
& q_{1}=\left(\varepsilon_{12}^{\prime}-4551984 p_{2}^{3}-387688872 p_{1} p_{2} p_{3}-11556147624 p_{0} p_{3}^{2}\right. \\
&-24236204440 p_{2}^{2} p_{3}^{4}-168171466680 p_{1} p_{3}^{5}-749135368800 p_{2} p_{3}^{8} \\
&-1153992168420 p_{3}^{12}-42618310896 p_{3}^{3} q_{2}-2516521104 p_{2} p_{3}^{2} q_{3} \\
&\left.-234127252800 p_{3}^{6} q_{3}+35394408 q_{3}^{2}\right) / 419237280 \\
& q_{0}=\left(-\varepsilon_{15}^{\prime}+422863200 p_{1} p_{2}^{2}+18339605640 p_{1}^{2} p_{3}\right. \\
&+3209804640 p_{0} p_{2} p_{3}-71061462976 p_{2}^{3} p_{3}^{3} \\
&-1528645019808 p_{1} p_{2} p_{3}^{4}-15986969259936 p_{0} p_{3}^{5} \\
&-10597571701120 p_{2}^{2} p_{3}^{7}-43713099157440 p_{1} p_{3}^{8} \\
&-68920453929600 p_{2} p_{3}^{11}--39472177353840 p_{3}^{15} \\
&-5508702912024 p_{3}^{3} q_{1}-234901945584 p_{2} p_{3}^{2} q_{2} \\
&-28604105079744 p_{3}^{6} q_{2}-8050693680 p_{2}^{2} p_{3} q_{3} \\
&-250521815304 p_{1} p_{3}^{2} q_{3}-3139744251456 p_{2} p_{3}^{5} q_{3} \\
&-36016821822240 p_{3}^{9} q_{3}+4971002400 q_{2} q_{3} \\
&\left.+521644115232 p_{3}^{3} q_{3}^{2}\right) / 65945880000 .
\end{aligned}
$$

Then the elliptic curve over $\boldsymbol{Q}(t)$

$$
\begin{equation*}
E: y^{2}=x^{3}+x\left(\sum_{i=0}^{3} p_{i} t^{i}\right)+\left(\sum_{i=0}^{3} q_{i} t^{i}+t^{5}\right) \tag{2.26}
\end{equation*}
$$

has a torsion-free Mordell-Weil group of rank 8, and as a lattice, it is isomorphic to the root lattice E_{8}. It has the 8 rational points

$$
\begin{equation*}
P_{i}=\left(g_{i} t^{2}+a_{i} t+b_{i}, h_{i} t^{3}+c_{i} t^{2}+d_{i} t+e_{i}\right) \quad(1 \leqq i \leqq 8) \tag{2.27}
\end{equation*}
$$

having the Gram matrix

$$
\begin{equation*}
\left(\left\langle P_{i}, P_{j}\right\rangle\right)=I_{8} . \tag{2.28}
\end{equation*}
$$

The coefficients of P_{i} are determined as follows: first

$$
g_{i}=u_{i}^{-2}, \quad h_{i}=u_{i}^{-3},
$$

where u_{i} has the prescribed value, and $a_{i}, b_{i}, c_{i}, d_{i}, e_{i}$ are given by certain expressions in $\boldsymbol{Q}\left[u_{1}, \cdots, u_{8}\right]\left[u_{i}^{-1}\right]$ which are also expressed by some rational functions of u_{i} with coefficients in $\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right)$.

There are exactly 240 rational points P_{i} of the form (2.27), which correspond to the roots in the lattice E_{8}. In case $\delta_{1}(u) \neq 0$, each P_{i} is uniquely determined by $u_{i}(1 \leqq i \leqq 240)$.

Application to elliptic curves over \boldsymbol{Q}. Following the tradition since A. Néron [N1], for each elliptic curve E over $\boldsymbol{Q}(t)$ constructed by the above method, we can further specialize t to some rational numbers (called t again) to obtain a family of elliptic curves $E^{(t)}$ over \boldsymbol{Q}, given with the rational points $\left\{P_{i}^{(t)}\right\}$, where $\left\{P_{i} \mid 1 \leqq i \leqq r\right\}$ denotes a basis of $E(\boldsymbol{Q}(t))$. By a theorem of Néron, Silverman and Tate (cf. [Si], [T2]), we have:

Corollary. The Mordell-Weil group $E^{(t)}(\boldsymbol{Q})$ has rank at least r and the rational points $P_{i}^{(t)}(i=1, \cdots, r)$ are independent, for all $t \in \boldsymbol{Q}$ with only finitely many exception. The "partial" regulator of these points (with respect to the canonical height on $\left.E^{(t)}(\boldsymbol{Q})\right)$ has the asymptotic behavior:

$$
\begin{equation*}
\lim _{h(t) \rightarrow \infty} \operatorname{det}\left(\left\langle P_{i}^{(t)}, P_{j}^{(t)}\right\rangle_{c a n} / h(t)\right)=1 /\left(2^{r} \cdot d\right) \tag{2.29}
\end{equation*}
$$

where $h(t)$ is the standard height of a point $t \in \boldsymbol{P}^{\mathbf{1}}$ (esp. $h(t)=\log |t|$ for $\left.t \in \boldsymbol{Z}\right)$, and d is the determinant of the corresponding root lattice. Thus, according to the cases $A_{2}, D_{4}, E_{6}, E_{7}$ or E_{8}, the right hand side of (2.29) is equal to

$$
1 / 12,1 / 64,1 / 192,1 / 256 \text { or } 1 / 256 .
$$

3. Examples.

The algorithm given by Theorems $\left(A_{2}\right)$ and $\left(D_{4}\right)$ is so explicit that it may not be necessary to give any numerical examples. But, just for fun, we write down one such example for each type. Then we go on to the examples for E_{6}, E_{7}, E_{8}.

Example $\left(A_{2}\right)$. Take $b_{1}=0, b_{2}=1, b_{3}=-1$. The elliptic curve E over $\boldsymbol{Q}(t)$ defined by

$$
y^{2}=x^{3}-x+t^{2}
$$

has the Mordell-Weil group of rank 2, generated by

$$
P_{1}=(0, t) \quad \text { and } \quad P_{2}=(1, t) .
$$

When,we specialize t to any rational number, $E^{(t)}$ is an elliptic curve over \boldsymbol{Q} (note that the discriminant $-2^{4}\left(27 t^{4}-4\right)$ never vanishes for any $t \in \boldsymbol{Q}$). The points $P_{1}^{(t)}$ and $P_{2}^{(t)}$ are independent except for a finite number of t (such as $t=0,1$, etc.) and we have

$$
\lim _{n(t) \rightarrow \infty} \operatorname{det}\left(\left\langle P_{i}^{(t)}, P_{j}^{(t)}\right\rangle_{c a n} / h(t)\right)=1 / 12 .
$$

$\operatorname{Example}\left(D_{4}\right)$. Take $\left(d_{1}, \cdots, d_{4}\right)=(1,2,3,4)$. Then the elliptic curve E has the equation

$$
y^{2}=x^{3}-x\left(t^{2}+27\right)+\left(10 t^{2}+48 t+90\right) .
$$

Then $E(\boldsymbol{Q}(t))$ has rank 4 and it is generated by

$$
\begin{aligned}
& P_{1}=(9, t+24) \\
& P_{2}=(6,2 t+12) \\
& P_{3}=(1,3 t+8) \\
& P_{4}=(t+3,4 t+6) .
\end{aligned}
$$

For the specialized curves, we have rank $E^{(t)}(\boldsymbol{Q}) \geqq 4$ for almost all $t \in \boldsymbol{Q}$ and

$$
\lim _{h(t) \rightarrow \infty} \operatorname{det}\left(\left\langle P_{i}^{(t)}, P_{j}^{(t)}\right\rangle_{c a n} / h(t)\right)=1 / 64 .
$$

$\operatorname{Example}\left(E_{6}\right)$. Take $\left(a_{1}, \cdots, a_{6}\right)=(0,1,3,7,11,21) \in \boldsymbol{Q}^{6}$. Then we have

$$
\begin{aligned}
E: y^{2}= & x^{3}+x\left(-381 t^{2}+202752 t-36577584\right) \\
& +t^{4}+427420 t^{2}-319993344 t+61357067136 .
\end{aligned}
$$

The Mordell-Weil group $E(\boldsymbol{Q}(t))$ is free of rank 6 , and the 6 generators P_{i} of $E(\boldsymbol{Q}(t)) \cong E_{6}^{*}$ corresponding to the given values of a_{i} are as follows:

$$
\begin{aligned}
& P_{1}=\left(6313 / 4, t^{2}-695573 / 8\right) \\
& P_{2}=\left(t+1788, t^{2}-190 t-40896\right) \\
& P_{3}=\left(3 t+1420, t^{2}-558 t+110816\right) \\
& P_{4}=\left(7 t+12, t^{2}-1162 t+246816\right) \\
& P_{5}=\left(11 t-1092, t^{2}-1430 t+316224\right) \\
& P_{6}=\left(21 t-5252, t^{2}+630 t-329563\right) .
\end{aligned}
$$

Furthermore, for the specialized curves, we have rank $E^{(t)}(\boldsymbol{Q}) \geqq 6$ for almost all $t \in \boldsymbol{Q}$ and

$$
\lim _{h(t) \rightarrow \infty} \operatorname{det}\left(\left\langle P_{i}^{(t)}, P_{j}^{(t)}\right\rangle_{c a n} / h(t)\right)=1 / 192 .
$$

We insert a remark about the 27 lines on a cubic surface. For an elliptic curve over $\boldsymbol{Q}(t)$ having the Mordell-Weil lattice of type E_{6}, the associated elliptic surface can be blown down to a smooth cubic surface defined over \boldsymbol{Q} so that the 27 minimal sections (i.e. those corresponding to the 27 rational points mentioned in Theorem $\left(E_{6}\right)$) are mapped to the 27 lines on this cubic surface. Therefore these 27 lines are all defined over \boldsymbol{Q}. The existence of such a cubic surface over \boldsymbol{Q} is classically known, but our construction provides explicit examples of such in a systematic way.

ExAmple $\left(E_{7}\right)$. Take $\left(c_{1}, \cdots, c_{7}\right)=(1,2,4,8,16,32,64) \in \boldsymbol{Q}^{7}$. Then we have

$$
\begin{aligned}
E: y^{2}= & x^{3}+x\left(t^{3}-2716410100150129 / 27 \cdot t\right. \\
& \left.-281715490868677435751762 / 3^{6}\right) \\
& +8878 / 3 \cdot t^{4}+1195761874250 / 27 \cdot t^{3} \\
& +1666490318377404686 / 9 \cdot t^{2} \\
& +20193960549267845801903566 / 3^{7} \cdot t \\
& -17219105683784186196665593491513616 / 3^{9} .
\end{aligned}
$$

The Mordell-Weil group $E(\boldsymbol{Q}(t))$ is free of rank 7, and the 7 generators P_{i} of $E(\boldsymbol{Q}(t)) \cong E_{7}^{*}$ corresponding to the given values of c_{i} are as follows:

$$
\begin{aligned}
P_{1}= & (-8875 / 3 \cdot t-494991007099 / 27, \\
& \left.t^{2}+287657546 / 9 \cdot t+17764798463061529 / 81\right), \\
P_{2}= & (-8866 / 3 \cdot t-493630525042 / 27, \\
& \left.2 t^{2}+434245276 / 9 \cdot t+22809130472754890 / 81\right), \\
P_{3}= & (-8830 / 3 \cdot t-490138015714 / 27, \\
& \left.4 t^{2}+714936314 / 9 \cdot t+32207272905385006 / 81\right), \\
P_{4}= & (-8686 / 3 \cdot t-478143731698 / 27, \\
& \left.8 t^{2}+1297687702 / 9 \cdot t+52177541751701366 / 81\right), \\
P_{5}= & (-8110 / 3 \cdot t-427412515282 / 27, \\
& \left.16 t^{2}+2447266958 / 9 \cdot t+91486391172386950 / 81\right), \\
P_{6}= & (-5806 / 3 \cdot t-224940010642 / 27, \\
& \left.32 t^{2}+4036998526 / 9 \cdot t+107654483240065190 / 81\right), \\
P_{7}= & (+3410 / 3 \cdot t+584853492206 / 27, \\
& \left.64 t^{2}+4740279134 / 9 \cdot t-77609819934613274 / 81\right) .
\end{aligned}
$$

The specialized elliptic curve $E^{(t)}(\boldsymbol{Q})$ has rank $\geqq 7$ for almost all $t \in \boldsymbol{Q}$, and the
rational points $P_{i}^{(t)}$ have the regulator asymptotic to $h(t)^{7} / 256$ as $h(t) \rightarrow \infty$.
The above examples for the case $\left(E_{6}\right)$ or $\left(E_{7}\right)$ are constructed from the data $\left(a_{i}\right)_{i \leq 6}$ or $\left(c_{i}\right)_{i \leq 7}$ satisfying the (stronger) non-degeneracy condition $\delta_{1} \neq 0$. Likewise, we have given the first example for the case (E_{8}) in [S2] corresponding to the data $u_{i}=2^{i-1}(1 \leqq i \leqq 8)$ which satisfies the condition $\delta_{1} \neq 0$. (Indeed, Theorem 7.2 of [S1] has been stated with this stronger assumption. Thus Theorem (E_{8}) given above is not only more explicit but also stronger than the previously announced one. Note that δ_{0} is a factor of δ_{1} in this case.)

Below we give a new example for (E_{8}) corresponding to the prescribed data $u_{i}=1(1 \leqq i \leqq 8)$, which satisfies the condition $\delta_{0} \neq 0$ but $\delta_{1}=0$. We have much smaller coefficients here than in [S2].

Example (E_{8}). Let $u_{i}=1$ for $i=1, \cdots, 8$. Then the 120 "positive roots" u_{j} take the value 18 -times, $2, \cdots$, or 77 -times, and so on; symbolically, they are:

$$
\begin{align*}
& 1^{8},\{2,3,4,5,6,7\}^{7},\{8,9,10,11\}^{6},\{12,13\}^{5},\{14,15,16,17\}^{4}, \\
& \{18,19\}^{3},\{20,21,22,23\}^{2},\{24,25,26,27,28,29\}^{1} . \tag{*}
\end{align*}
$$

Hence $\delta_{0} \neq 0$ and we can apply Theorem (E_{8}) to obtain an elliptic curve E over $\boldsymbol{Q}(t)$ with rank $E(\boldsymbol{Q}(t))=8$. The equation of E reads:

$$
\begin{aligned}
& y^{2}=x^{3}+x\left(-310 t^{3}+243896065 t^{2}-60857017136860 t\right. \\
&+13936180986780637484 / 3) \\
&+t^{5}-2763436738910 / 3 \cdot t^{3}+1681300207452917540 / 3 \cdot t^{2} \\
&-384550638908428401057560 / 3 \cdot t \\
&+282412962406880649939736350128 / 27,
\end{aligned}
$$

The 8 generators P_{i} of $E(\boldsymbol{Q}(t))$ are given as follows:

$$
\begin{aligned}
P_{1}= & \left(t^{2}-541045 t+218476650754 / 3,\right. \\
& \left.t^{3}-811722 t^{2}+219092370780 t-19661726638639000\right), \\
P_{2}= & \left(t^{2}-618805 t+286705607554 / 3,\right. \\
& \left.t^{3}-928362 t^{2}+287022107100 t-29551900557554200\right), \\
P_{3}= & \left(t^{2}-651925 t+319030396354 / 3,\right. \\
& \left.t^{3}-978042 t^{2}+318964426140 t-34686244462893400\right), \\
P_{4}= & \left(t^{2}-682165 t+348384666754 / 3,\right. \\
& \left.t^{3}-1023402 t^{2}+348767821020 t-39580648307551000\right), \\
P_{5}= & \left(t^{2}-782965 t+457679889154 / 3,\right. \\
& \left.t^{3}-1174602 t^{2}+458789609820 t-59594315820808600\right),
\end{aligned}
$$

$$
\begin{aligned}
P_{6}= & \left(t^{2}-951445 t+673629129154 / 3,\right. \\
& \left.t^{3}-1427322 t^{2}+676331322780 t-106406856287968600\right), \\
P_{7}= & \left(t^{2}-1206325 t+1079980986754 / 3,\right. \\
& \left.t^{3}-1809642 t^{2}+1085727346140 t-215998191424639000\right), \\
P_{8}= & \left(t^{2}-1569205 t+1824534541954 / 3,\right. \\
& \left.t^{3}-2353962 t^{2}+1835670395100 t-474295484395883800\right) .
\end{aligned}
$$

The coefficient of t^{2} (resp. t^{3}) in the x (resp. y)-coordinate of each P_{i} is 1 , as prescribed. The 8 points P_{i} are so arranged that the Gram matrix ($\left\langle P_{i}, P_{j}\right\rangle$) is equal to the standard Cartan matrix of E_{8} as in [B]. We note that there are altogether 240 rational points P of the above form, and the t^{2}-coefficients of x-coordinate of P can be read off from (*): there are so many P 's corresponding to a given value in (*) as the multiplicity there indicates.

As before, the specialized elliptic curve $E^{(t)}(\boldsymbol{Q})$ has rank $\geqq 8$ for almost all $t \in \boldsymbol{Q}$, and the rational points $P_{i}^{(t)}$ have the regulator asymptotic to $h(t)^{8} / 256$ as $h(t) \rightarrow \infty$.

4. General outline of the proof.

We start from the elliptic curve E_{λ} over $K=k(t)$

$$
\begin{align*}
y^{2} & =x^{3}+x \cdot p(t)+q(t) \tag{4.1}\\
\lambda & =\left(p_{i}, q_{j}\right) \in \boldsymbol{A}^{r}
\end{align*}
$$

which is given in the introduction by one of the equations $\left(E_{8}\right)(=(1.6)),\left(E_{7}\right)$, $\left(E_{6}\right),\left(D_{4}\right)$ or $\left(A_{2}\right)$. The ground field k is supposed to be an algebraically closed field of characteristic 0 containing p_{i} and q_{j} (cf. Remark at the end of this section).

Let

$$
\begin{equation*}
f: S_{\lambda} \longrightarrow P^{1} \tag{4.2}
\end{equation*}
$$

denote the associated elliptic surface (the Kodaira-Néron model) of E_{λ} / K. In general, an elliptic surface of the form (4.1) is a rational surface, provided that $p(t)$ and $q(t)$ are polynomials in t of degree $\leqq 4$ and $\leqq 6$. (This follows from the canonical bundle formula of an elliptic surface and Castelnuovo's rationality criterion.) In particular, our S_{λ} is a rational elliptic surface, and hence we can make use of the basic results on the Mordell-Weil lattice of such a surface (cf. [S1, II], [S5, § 10]).

First let us briefly review the generalities on Mordell-Weil lattices, fixing some notation (cf. [S1, I], [S5, §7-9]).

In general, consider an elliptic surface $f: S \rightarrow C$ with the generic fibre E over $K=k(C)$ where S (or C) is a smooth projective surface (or curve) defined over an algebraically closed field k of arbitrary characteristic and $k(C)$ denotes the function field of C. Then the global sections of $f: S \rightarrow C$ are in a natural one-to-one correspondence with the K-rational points of E so that we identify $E(K)$ with the group of sections of f. For $P \in E(K)$, we denote by (P) the image curve of the section $P: C \rightarrow S$.

We can define a natural bilinear pairing on $E(K)$ as follows, by using intersection theory on the surface S.

Let $N S(S)$ be the Néron-Severi group of S, which is an indefinite integral lattice with respect to the intersection pairing $\left(D_{1} \cdot D_{2}\right)$. Let T be the "trivial" sublattice of $N S(S)$, which is generated by the zero section and all the irreducible components of fibres. The quotient group $N S(S) / T$ is naturally isomorphic to $E(K)$. There is a unique map $\varphi: E(K) \rightarrow N S(S) \otimes \boldsymbol{Q}$ splitting this isomorphism such that $\operatorname{Im}(\varphi)$ is orthogonal to T. Now the orthogonal complement of T in $N S(S), L=T^{\perp}$, is a negative-definite even integral lattice (by the Hodge index theorem and the adjunction formula). Then the map φ induces an injection of $E(K) / E(K)_{t o r}$ into $L \otimes \boldsymbol{Q}$. For $P, Q \in E(K)$, we define

$$
\begin{equation*}
\langle P, Q\rangle=-(\varphi(P) \cdot \varphi(Q)) . \tag{4.3}
\end{equation*}
$$

The Mordell-Weil lattice of E / K or $f: S \rightarrow C$ is defined as $E(K) / E(K)_{t o r}$ with the above pairing \langle,$\rangle . Further, let E(K)^{\circ}$ be the subgroup of finite index in the Mordell-Weil group $E(K)$ consisting of those sections which pass through the same irreducible component of every fibre as the zero section. Then φ maps $E(K)^{\circ}$ isomorphically onto L, and we call it the narrow Mordell-Weil lattice of E / K or f, which is a positive-definite even integral lattice.

More explicitly, the pairing is given by the formula

$$
\begin{equation*}
\langle P, Q\rangle=\chi+(P O)+(Q O)-(P Q)-\Sigma_{v \in R} \operatorname{contr}_{v}(P, Q) . \tag{4.4}
\end{equation*}
$$

Here χ is the arithmetic genus of S and we write $(P O)$ for the intersection \mathbb{Z} number $((P) \cdot(O))$, and similarly for $(Q O)$ or $(P Q) . \quad R$ is the set of reducible fibres of f, and for each $v \in R$, the local contribution $\operatorname{contr}_{v}(P, Q)$ is a rational number depending only on the type of the singular fibre $f^{-1}(v)$ and on its components hit by the sections (P) and (Q) (see below). In particular, we have

$$
\begin{equation*}
\langle P, P\rangle=2 \chi+2(P O)-\sum_{i \in R} \operatorname{contr}_{\imath}(P) \tag{4.5}
\end{equation*}
$$

and

$$
\langle P, Q\rangle=\chi+(P O)+(Q O)-(P Q) \in \boldsymbol{Z} \quad \text { if } P \text { or } Q \in E(K)^{\circ} .
$$

Also the other data can be made more explicit in terms of the singular fibres. For each $v \in R$, write

$$
\begin{equation*}
f^{-1}(v)=\Theta_{v, 0}+\sum_{i \geq 1} \mu_{v, i} \Theta_{v, i} \quad\left(\mu_{v, 0}=1\right) \tag{4.6}
\end{equation*}
$$

where $\Theta_{v, i}\left(0 \leqq i \leqq m_{v}-1\right)$ are the irreducible components, m_{v} being their number, such that $\Theta_{v, 0}$ is the unique component of $f^{-1}(v)$ meeting the zero section. Let F be any fixed fibre of f. Then the trivial sublattice T of $N S(S)$ is the direct sum of $\langle(O), F\rangle$ and $T_{v}=\left\langle\Theta_{v, i}(i \geqq 1)\right\rangle(v \in R)$, with $\operatorname{rk}(T)=2+\Sigma_{v \in R}\left(m_{v}-1\right)$, and we have

$$
\begin{align*}
& \operatorname{rk} E(K)=\rho(S)-2-\sum_{v \in R}\left(m_{v}-1\right), \tag{4.7}\\
& \operatorname{det} T=\Pi_{v \in R} m_{v}^{(1)}, \quad m_{v}^{(1)}=\operatorname{det} T_{v}=\#\left\{i \geqq 0 \mid \mu_{v, i}=1\right\} \tag{4.8}
\end{align*}
$$

where $\rho(S)=$ rk $N S(S)$ is the Picard number of S. Further, if we denote by $A_{v}=\left(\left(\Theta_{v, i} \Theta_{v, j}\right)\right)_{i, j \geq 1}$ the Gram matrix of T_{v}, then

$$
\begin{equation*}
\operatorname{contr}_{v}(P, Q)=(i, j) \text {-entry of }\left(-A_{v}\right)^{-1} \tag{4.9}
\end{equation*}
$$

if P meets $\Theta_{v, i}$ and Q meets $\Theta_{v, j}$, with $i, j \geqq 1$, and $=0$ otherwise.
Now we suppose that S is a rational surface. In this case, we have $C=\boldsymbol{P}^{1}$, $K=k(t), \chi=1$ and $\rho(S)=10$. Then the narrow Mordell-Weil lattice $M=E(K)^{\circ}$ is a positive-definite even integral lattice of rank

$$
\begin{equation*}
r=8-\Sigma_{v \in R}\left(m_{v}-1\right) . \tag{4.10}
\end{equation*}
$$

The Mordell-Weil lattice $E(K) / E(K)_{\text {tor }}$ is isomorphic to the dual lattice M^{*} of M. We have $\operatorname{det} M^{*}=1 / \operatorname{det} M$ and

$$
\begin{equation*}
\operatorname{det} M=\operatorname{det} T / n^{2}, \quad \operatorname{det} T=\Pi_{v \in R} m_{v}^{(1)} \tag{4.11}
\end{equation*}
$$

where n is the order of the torsion subgroup $E(K)_{\text {tor }}$. In particular, the Mordell-Weil group is torsion-free if $\operatorname{det} T$ is square-free.

When E is defined by a Weierstrass equation such as (4.1), a rational point $P=(x, y)$ in $E(K)$ has the property $(P O)=0$ if and only if x, y are polynomials in t of degree at most 2 or 3, i.e.,

$$
\begin{equation*}
x=g t^{2}+a t+b, \quad y=h t^{3}+c t^{2}+d t+e \tag{4.12}
\end{equation*}
$$

Now, going back to the situation at the beginning of this section, we describe the general outline of the proof of the theorems stated in $\S 2$. It will be done in each case in the following steps.

Step 1. First we determine the singular fibre $f^{-1}(\infty)$ of f at $t=\infty$. Letting $s=1 / t, X=x / t^{2}, Y=y / t^{3}$, we rewrite (4.1) as

$$
\begin{equation*}
Y^{2}=X^{3}+X \cdot P(s)+Q(s) \tag{4.13}
\end{equation*}
$$

where $P(s)=p(t) / t^{4}$ and $Q(s)=q(t) / t^{6}$ are polynomials in s. (Later (4.13) will be referred to as the " ∞-model" of (4.1).) The type of the singular fibre $f^{-1}(\infty)$
is determined by the order of the discriminant

$$
\Delta=-2^{4} \cdot\left(4 P(s)^{3}+27 Q(s)^{2}\right)
$$

at $s=0$ (cf. [K], [N2], [T1]). The result is summarized as follows :

case	$\left(E_{8}\right)$	$\left(E_{7}\right)$	$\left(E_{6}\right)$	$\left(D_{4}\right)$	$\left(A_{2}\right)$
type	II	III	IV	I_{0}^{*}	IV^{*}
m_{∞}	1	2	3	5	7
T_{∞}	$\{0\}$	A_{1}^{-}	A_{2}^{-}	D_{4}^{-}	E_{6}^{-}
$\operatorname{det} T_{\infty}$	1	2	3	4	3

Here A_{1}^{-}, \cdots denotes the root lattice A_{1}, \cdots with opposite inner product.
Step 2. Until Step 5, assume that (\#) $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ has no reducible singular fibres other than $f^{-1}(\infty)$. This is certainly the case for λ generic. Under this assumption, the Mordell-Weil group $E_{\lambda}(K)$ is torsion-free and the structure of the Mordell-Weil lattice on $E_{\lambda}(K)$ is completely determined. It is isomorphic to the dual lattice of the root lattice corresponding to the type of the equation we started with. Namely we have

$$
\begin{equation*}
E_{\lambda}(K) \cong E_{3}, E_{\overparen{*}}^{*}, E_{6}^{*}, D_{4}^{*} \text { or } A_{2}^{*}, \tag{4.15}
\end{equation*}
$$

according to the case $\left(E_{8}\right),\left(E_{7}\right),\left(E_{6}\right),\left(D_{4}\right)$ or $\left(A_{2}\right)$ (cf. [S5, §10], [OS]). The minimal norm and the number of the minimal vectors in these lattices are wellknown (cf. [CS, Ch. 4]):

$$
\begin{array}{l|rrrrr}
\text { minimal norm } & 2 & 3 / 2 & 4 / 3 & 1 & 2 / 3 \tag{4.16}\\
\# \text { min. vectors } & 240 & 56 & 54 & 24 & 6 .
\end{array}
$$

Compare the minimal norms with the following values of contr ${ }_{\infty}(P)$ for P meeting $\Theta_{\infty, i}$ for some $i \geqq 1$, computed by (4.9) (cf. [S5, (8.16)] :

$$
\begin{array}{l|lllll}
\operatorname{contr}_{\infty}(P) & 0 & 1 / 2 & 2 / 3 & 1 & 4 / 3 \tag{4.17}
\end{array}
$$

By (4.5), we see that a minimal section of $E(K)$ takes the form (4.12),
Step 3. Next we consider the specialization homomorphism

$$
\begin{equation*}
s p_{\infty}: E_{\lambda}(K) \longrightarrow f^{-1}(\infty)^{\#} \tag{4.18}
\end{equation*}
$$

which maps each K-rational point P of E_{λ} to the unique intersection point of (P) and $f^{-1}(\infty)$. In the above, $f^{-1}(\infty)^{\#}$ is the smooth part of $f^{-1}(\infty)$, which has a natural structure of algebraic group over k. More explicitly, it is a direct product of the additive group G_{a} and a finite abelian group H of order $m_{\infty}^{(1)}=\operatorname{det} T_{0}$, and we have

$$
\begin{equation*}
H \cong\{0\}, \boldsymbol{Z} / 2, \boldsymbol{Z} / 3,(\boldsymbol{Z} / 2)^{\oplus 2} \text { or } \boldsymbol{Z} / 3 \tag{4.19}
\end{equation*}
$$

according to the case $\left(E_{8}\right), \cdots,\left(A_{2}\right)$ (cf. [K], [N2], [T1]).
Now we take the minimal sections $P \in E_{\lambda}(K)$ and consider $s p_{\infty}(P)$. It turns out that the \boldsymbol{G}_{a}-component of $s p_{\infty}(P)$, say $s p_{\alpha}^{\prime}(P)$, is a very important parameter, which determines P for λ generic.

Step 4. Next we choose a basis $\left\{P_{\nu} \mid 1 \leqq \nu \leqq r\right\}$ of $E_{\lambda}(K)$ consisting of minimal sections, and let

$$
\begin{equation*}
u_{\nu}=s p_{\infty}^{\prime}\left(P_{\nu}\right) . \tag{4.20}
\end{equation*}
$$

Then $\left(u_{1}, \cdots, u_{r}\right)$ completely determines the coefficients p_{i}, q_{j} of the equation (4.1) of the elliptic curve E_{λ}. This step is crucial.

For the case $\left(E_{r}\right)(r=6,7,8)$, we consider the universal polynomial of type E_{r}

$$
\begin{equation*}
\Phi_{E_{r}}(X)=\Pi_{\nu=1}^{N}\left(X-u_{\nu}\right), \quad u_{\nu}=s p_{\infty}^{\prime}\left(P_{\nu}\right), \tag{4.21}
\end{equation*}
$$

where $P_{\nu}(1 \leqq \nu \leqq N)$ denote all the minimal sections in $E_{\nu}(K) \cong E_{r}^{*}$. On the one hand, this can be expressed by the elementary symmetric functions of u_{ν} 's, which are obviously the invariants of the Weyl group $W\left(E_{r}\right)$. On the other hand, we can prove that it is a polynomial with coefficients in $\boldsymbol{Q}[\lambda]=\boldsymbol{Q}\left[p_{i}, q_{j}\right]$, by means of elimination method. Comparing the two expressions, we obtain the relations of p_{i} and q_{j} as the fundamental invariants of $W\left(E_{r}\right)$, as stated in Theorem (E_{r}).

Step 5. Finally we note that the non-degeneracy assumption such as $\delta_{0}(u) \neq 0$ in the theorems is equivalent to the assumption (\#) in the Step 2 that $f::_{i}^{3} \rightarrow \boldsymbol{P}^{1}$ has no reducible fibres other than $f^{-1}(\infty)$.

Then, specializing $\left(u_{1}, \cdots, u_{r}\right)$ to some rational values in \boldsymbol{Q}^{r} such that $\delta_{0}(u)$ $\neq 0$, we complete the proof.

For the case $\left(A_{2}\right)$ and (D_{4}), we can skip or reverse some of the above steps and verify the theorem in a more elementary way.

Remark. This method of the proof will make it clear that we can replace \boldsymbol{Q} by any field of characteristic 0 in the statement of the theorems, or even by one of characteristic p, provided that p is different from a small number of prime numbers which come into the denominators of some expression in the course of the proof. The primes to be avoided are the following:

$$
\begin{array}{ll}
p=2,3 & \text { in case }\left(A_{2}\right) \text { or }\left(D_{4}\right) \\
p=2,3,5,7 & \text { in case }\left(E_{6}\right) \\
p \leqq 11 \text { or } p=29,1229 & \text { in case }\left(E_{7}\right)
\end{array}
$$

$$
p \leqq 19 \text { or } p=41,61,199 \quad \text { in case }\left(E_{8}\right) .
$$

5. Case $\left(A_{2}\right)$.

We begin with the case $\left(A_{2}\right)$, where the elliptic curve $E=E_{\lambda}$ is given by

$$
\begin{align*}
y^{2} & =x^{3}+p_{0} x+q_{0}+t^{2} \tag{5.1}\\
\lambda & =\left(p_{0}, q_{0}\right) \in \boldsymbol{A}^{2}
\end{align*}
$$

Letting b_{1}, b_{2}, b_{3} be the roots of $x^{3}+p_{0} x+q_{0}=0$, we have

$$
\left\{\begin{array}{l}
p_{0}=b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1} \quad\left(b_{1}+b_{2}+b_{3}=0\right) \tag{5.2}\\
q_{0}=-b_{1} b_{2} b_{3} .
\end{array}\right.
$$

The assumption (\#) is that

$$
\begin{equation*}
b_{1}, b_{2}, b_{3} \text { are distinct, } \tag{5.3}
\end{equation*}
$$

which is equivalent to the condition:

$$
\begin{equation*}
\Delta_{0}=4 p_{0}^{3}+27 q_{0}^{2} \neq 0 . \tag{5.3}
\end{equation*}
$$

Step 1. The elliptic surface $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ has a singular fibre ${ }^{-}$of type IV^{*} at $t=\infty$:

$$
\begin{equation*}
f^{-1}(\infty)=\Theta_{0}+\Theta_{1}+\Theta_{2}+2\left(\Theta_{3}+\Theta_{4}+\Theta_{5}\right)+3 \Theta_{6}, \tag{5.4}
\end{equation*}
$$

where the irreducible components Θ_{i} are smooth rational curves with selfintersection number - 2 intersecting other components as in the figure below. We always choose Θ_{0} to be the unique component meeting the zero-section (O).

Step 2. Let us check the "Step 5" first.
LEMMA 5.1. There are no reducible fibres of $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ other than $f^{-1}(\infty)$ under the assumption (5.3).

Proof. The discriminant of (5.1) is

$$
\Delta=4 p_{0}^{3}+27\left(q_{0}+t^{2}\right)^{2}=\Delta_{0}+54 q_{0} t^{2}+27 t^{4} .
$$

By (5.3)', Δ has either 4 simple roots ($p_{0} \neq 0$) or 2 double roots ($p_{0}=0$). Hence the singular fibre $f^{-1}(v)$ at $v \neq \infty$ is either of type I_{1} or II (a rational curve with a node or cusp) (cf. [K], [N2], [T1]), hence irreducible.
q.e.d.

It follows from (4.10), (4.11) that the rank of $E(K)$ is $r=2$ and $\operatorname{det} T=$ $m_{\infty}^{(1)}=3$. Hence $E(K)$ is torsion-free (3 is square-free) and we have $E(K)^{\circ} \cong A_{2}$ and $E(K) \cong A_{2}^{*}$ by the general theory. But we see this more directly below.

Step 3. Now we look at the 3 obvious points of $E(K)$:

$$
\begin{equation*}
P_{i}=\left(b_{i}, t\right) \quad(i=1,2,3) \tag{5.5}
\end{equation*}
$$

Since they are collinear, lying on the line $y=t$, we have

$$
\begin{equation*}
P_{1}+P_{2}+P_{3}=0 \tag{5.6}
\end{equation*}
$$

by the definition of the group law on E.
Let us see how the section $\left(P_{i}\right)$ intersects the singular fibre $f^{-1}(\infty)$. At any rate, a section meets the smooth part $f^{-1}(\infty)^{\#}$, and

$$
\begin{equation*}
f^{-1}(\infty)^{\#}=\Theta_{0}^{\#} \cup \Theta_{i}^{\#} \cup \Theta_{2}^{\#} \cong \boldsymbol{G}_{a} \times \boldsymbol{Z} / 3 \boldsymbol{Z} \tag{5.7}
\end{equation*}
$$

where Θ_{i}^{F} is Θ_{i} minus the points meeting other Θ_{j} and corresponds to the $\operatorname{coset} \boldsymbol{G}_{a} \times \bar{i}(i=0,1,2)$.

Lemma 5.2. All the 3 sections (P_{i}) intersect the same non-identity component of $f^{-1}(\infty), \Theta_{1}$ or Θ_{2}.

Proof. In terms of the ∞-model of (5.1) (cf. (4.13)), we have $P_{i}=\left(b_{i} s^{2}, s^{2}\right)$, which passes the singular point $(0,0)$ of the cuspidal cubic $Y^{2}=X^{3}$ at $s=0$. The latter is the fibre $f^{\prime-1}(\infty)$, where we denote by $f^{\prime}: S^{\prime} \rightarrow \boldsymbol{P}^{1}$ the associated Weierstrass fibration; namely, S^{\prime} is the normal surface obtained from S by collapsing all the non-identity components $\cup_{i \geqq 1} \Theta_{i}$ in $f^{-1}(\infty)$. Thus each $\left(P_{i}\right)$ in S must meet either Θ_{1} or Θ_{2}.

Suppose, for instance, that $\left(P_{1}\right)$ meets Θ_{1} and $\left(P_{2}\right)$ meets Θ_{2}. Then P_{3} would meet Θ_{0} by (5.6) and (5.7), a contradiction. Hence all the $P_{i}(i=1,2,3)$ meet one and the same component.

Step 4. Let us rename Θ_{1} as the component meeting all P_{i}.
Lemma 5.3. Let

$$
s p_{\infty}: E(K) \longrightarrow f^{-1}(\infty)^{\#}=\boldsymbol{G}_{a} \times \boldsymbol{Z} / 3
$$

be the specialization homomorphism. Then we have

$$
\begin{equation*}
s p_{\infty}\left(P_{i}\right)=\left(-\frac{b_{i}}{2}, \overline{1}\right) \quad(i=1,2,3) \tag{5.8}
\end{equation*}
$$

Proof. To compute the \boldsymbol{G}_{a}-component of $s p_{\infty}\left(P_{i}\right)$, it is enough to compute $s p_{\infty}(Q)$ for $Q=3 P_{i} \in E(K)^{\circ}$. This can be done directly by using the addition formula (5.9) below, but we proceed in a slightly different way.

In general, if $P_{i}=\left(x_{i}, y_{i}\right)(i=1,2)$ are two points of E, the sum $P=P_{1}+P_{2}$ has the coordinates x, y given by

$$
\left\{\begin{array}{l}
x=-x_{1}-x_{2}+m^{2}, \quad m=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right), \tag{5.9}\\
y=-y_{1}-m\left(x-x_{1}\right) .
\end{array}\right.
$$

Applying this to $Q_{1}=P_{2}-P_{3} \in E(K)^{\circ}$, we have

$$
\left\{\begin{array}{l}
x\left(Q_{1}\right)=-\left(b_{2}+b_{3}\right)+\left\{2 /\left(b_{2}-b_{3}\right)\right\}^{2} \cdot t^{2} \\
y\left(Q_{1}\right)=-3 b_{1} /\left(b_{2}-b_{3}\right) \cdot t-\left\{2 /\left(b_{2}-b_{3}\right)\right\}^{3} \cdot t^{3} .
\end{array}\right.
$$

Rewriting these in terms of the coordinates X, Y of the ∞-model (4.13), we have

$$
s p_{\infty}\left(Q_{1}\right)=\left.(X / Y)\right|_{s=0}=-\left(b_{2}-b_{3}\right) / 2 .
$$

Similarly, for $Q_{2}=P_{3}-P_{1} \in E(K)^{\circ}$, we have

$$
s p_{\infty}\left(Q_{2}\right)=-\left(b_{3}-b_{1}\right) / 2 .
$$

By (5.6), we have $Q_{1}=P_{1}+2 P_{2}$ and $Q_{2}=-2 P_{1}-P_{2}$ so that $3 P_{1}=-\left(Q_{1}+2 Q_{2}\right)$. Hence

$$
s p_{\infty}\left(3 P_{1}\right)=\left(b_{2}-b_{3}\right) / 2+\left(b_{3}-b_{1}\right)=-3 b_{1} / 2 .
$$

This proves that the \boldsymbol{G}_{a}-component of $s p_{\infty}\left(P_{1}\right)$ is $-b_{1} / 2$, as asserted. q.e.d.
Corollary 5.4. The 3 sections $\left(P_{i}\right)(i=1,2,3)$ are disjoint from each other and also from the zero section (O).

Proof. Clearly $\left(P_{i}\right)$ and $\left(P_{j}\right)(i \neq j)$ do not meet at $t \neq \infty$, because $b_{i} \neq b_{j}$ by assumption. Further they cannot meet at ∞ by (5.8). It is easy to see that $\left(P_{i}\right)$ and (O) are disjoint.

Lemma 5.5. The value of the pairing $\left\langle P_{i}, P_{j}\right\rangle$ is as follows:

$$
\left\langle P_{i}, P_{j}\right\rangle=\left\{\begin{align*}
2 / 3 & (i=j) \tag{5.10}\\
-1 / 3 & (i \neq j) .
\end{align*}\right.
$$

In particular, $\operatorname{det}\left(\left\langle P_{i}, P_{j}\right\rangle\right)_{i, j \leq 2}=1 / 3$.
Proof. This follows from (4.4), (4.5) and Corollary 5.4, since we have $\operatorname{contr}_{\infty}\left(P_{i}, P_{j}\right)=4 / 3$. The latter is in the table (4.17) for $i=j$, and we have the same value for $i \neq j$ because all sections P_{i} pass the same component Θ_{1} in the singular fibre $f^{-1}(\infty)$ of type IV*.
q.e.d.

Now the rational points (or sections) $Q_{1}, Q_{2} \in E(K)^{\circ}$, given in the proof of Lemma 5.3, have Gram matrix

$$
\left(\left\langle Q_{i}, Q_{j}\right\rangle\right\rangle_{i, j \leq 2}=\left(\begin{array}{rr}
2 & -1 \tag{5.11}\\
-1 & 2
\end{array}\right) .
$$

This clearly shows the isomorphism of lattices:

$$
\begin{equation*}
E(K)^{\circ} \cong A_{2} \quad \text { and } \quad E(K) \cong A_{2}^{*}, \tag{5.12}
\end{equation*}
$$

proving also that $\left\{Q_{1}, Q_{2}\right\}$ and $\left\{P_{1}, P_{2}\right\}$ give the generators of the Mordell-Weil lattices $E(K)^{\circ}$ and $E(K)$. Note that $\pm P_{i}(i=1,2,3)$ correspond to the 6 minimal vectors of A_{2}^{*} and $P_{i}-P_{j}(i \neq j)$ to the 6 minimal vectors (the 6 "roots") of A_{2}.

This completes the analysis of the case $\left(A_{2}\right)$, and in particular, the proof of Theorem $\left(A_{2}\right)$.

6. Case $\left(D_{4}\right)$.

We consider the elliptic curve $E=E_{\lambda}$

$$
\begin{align*}
y^{2} & =x^{3}+x\left(p_{0}-t^{2}\right)+q_{0}+q_{1} t+q_{2} t^{2} \tag{6.1}\\
\lambda & =\left(p_{0}, q_{0}, q_{1}, q_{2}\right) \in \boldsymbol{A}^{2} .
\end{align*}
$$

Step 1. The associated elliptic surface $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ has a singular fibre of type I_{0}^{*} at $t=\infty$:

$$
\begin{equation*}
f^{-1}(\infty)=\Theta_{0}+\Theta_{1}+\Theta_{2}+\Theta_{3}+2 \Theta_{4} \tag{6.2}
\end{equation*}
$$

where we use the similar notation as before; see the figure below.

Step 2. Until Step 5, we assume that (\#) f has no reducible fibres other than $f^{-1}(\infty)$. Then we have by (4.10) and (4.11)

$$
r=8-(5-1)=4, \quad \operatorname{det} T=m_{\infty}^{(1)}=4 .
$$

This implies that the Mordell-Weil group $E(K)$ is torsion-free of rank 4 such that $\operatorname{det} E(K)^{\circ}=4$. (Indeed, if n is the order of $E(K)_{\text {tor }}$, then n^{2} must divide 4. Hence $n=1$ or 2 . If $n=2$, then $E(K)^{\circ}$ would be an even unimodular lattice of rank 4, a contradiction.) It follows that (under the assumption (\#))

$$
\begin{equation*}
E(K)^{\circ} \cong D_{4} \quad \text { and } \quad E(K) \cong D_{4}^{*} . \tag{6.3}
\end{equation*}
$$

In particular, the minimal norm of $E(K)$ is 1 and the number of the minimal sections is 24 .

The minimal sections are characterized as follows:
Lemma 6.1. Let $P \in E(K), P \neq O$. Then we have $\langle P, P\rangle=1$ if and only if (P) is disjoint from (O) and Θ_{0}. In terms of the coordinates $P=(x, y)$, this is
so if and only if

$$
\begin{equation*}
x=a t+b, \quad y=d t+e \quad(a, b, d, e \in k) . \tag{6.4}
\end{equation*}
$$

Thus there exist exactly 24 rational points of this form.
Proof. We have

$$
\langle P, P\rangle=2+2(P O)--\operatorname{contr}_{\infty}(P)
$$

and, for the singular fibre of type I_{0}^{*},

$$
\operatorname{contr}_{\infty}(P)= \begin{cases}0 & \text { if }(P) \text { meets } \Theta_{0} \tag{6.5}\\ 1 & \text { otherwise }\end{cases}
$$

Hence the first assertion holds. Next, by (4.12), $P==(x, y)$ is of the form (cf. [S1, Lemma 3.1] or [S3, Proposition 5.1]):

$$
x=g t^{2}+a t+b, \quad y=h t^{3}+c t^{2}+d t+e
$$

If (P) does not meet Θ_{0} (i.e. it meets Θ_{i} for some $i=1,2$ or 3), then it passes the cusp $(0,0)$ of the cuspidal cubic at $t=\infty$ (cf. the arguments given for the case $\left(A_{2}\right)$), and hence we have $g=h=0$. Moreover, we have $c=0$ from the equation (6.1), hence P is of the form (6.4). The converse is easily verified.
q.e.d.

Step 3. Next let us consider the specialization map:

$$
s p_{\infty}: E(K) \longrightarrow f^{-1}(\infty)^{\#} .
$$

Since the singular fibre $f^{-1}(\infty)$ is of type I_{0}^{*}, its smooth part is

$$
\begin{equation*}
f^{-1}(\infty)^{\#}=\cup_{i=0}^{3} \Theta_{i}^{*} \cong \boldsymbol{G}_{a} \times(\boldsymbol{Z} / 2)^{\oplus 2} . \tag{6.6}
\end{equation*}
$$

If Θ_{i}^{*} corresponds to the coset $\boldsymbol{G}_{a} \times \theta$, then write $\left[\Theta_{i}\right]=\theta \in(\boldsymbol{Z} / 2)^{\oplus 2}$.
Lemma 6.2. The 24 rational points ($a t+b$, $c t+d$) are grouped into the 3 sets of 8 points, corresponding to $a=0,1$ or -1 . The 8 points in each set pass through the same irreducible component Θ_{i}, so we can label Θ_{i} so that $\Theta_{1}, \Theta_{2}, \Theta_{3}$ correspond to $a=0,1,-1$. Then we have

$$
s p_{\infty}(P)= \begin{cases}\left(d,\left[\Theta_{1}\right]\right) & \text { if } a=0 \tag{6.7}\\ \left(-d / 2,\left[\Theta_{i}\right]\right) & \text { if } a= \pm 1(i \geqq 2) .\end{cases}
$$

Proof. Let us analyse the condition for $P=(a t+b, *)$ to belong to $E(K)$. It is necessary and sufficient for this that

$$
\begin{equation*}
(a t+b)^{3}+(a t+b)\left(p_{0}-t^{2}\right)+\left(q_{0}+q_{1} t+q_{2} t^{2}\right) \tag{6.8}
\end{equation*}
$$

is a square in $k[t]$. The coefficient of t^{3} must vanish, so we have

$$
a^{3}-a=0, \quad \text { i. e., } \quad a=0,1 \text { or }-1
$$

First consider the case $a=0$. Then (6.8) is a square if and only if b is a root of the quartic equation

$$
\begin{equation*}
h(X)=\left(X^{3}+p_{0} X+q_{0}\right)\left(X-q_{2}\right)+q_{1}^{2} / 4=0 . \tag{6.9}
\end{equation*}
$$

For any such $b, P=(b, d t+e)$ belongs to $E(K)$ if and only if

$$
\begin{equation*}
d^{2}=-b+q_{2}, \quad e^{2}=b^{3}+p_{0} b+q_{0}, \quad 2 d e=q_{1}, \tag{6.10}
\end{equation*}
$$

and hence there are exactly 2 choices of (d, e). (The case $d=e=0$ does not occur, because then P becomes a torsion point of order 2.) Thus we obtain 8 points of the form ($b, d t+e$), provided that 4 roots of (6.9) are distinct.

The case $a=1$ or -1 can be treated in the same way, and we obtain (at most) 8 points each, of the form ($\pm t+b, d t+e$).

Since the number of minimal vectors in D_{4}^{*} is 24 , the $3.8=24$ points so obtained must be all distinct. In particular, $h(X)$ must have 4 distinct roots b_{1}, \cdots, b_{4} under (\#).

Next we see that the 8 points for each value of a pass through the same irreducible component Θ_{i} (some $i \geqq 1$), by checking that their differences intersect the identity component Θ_{0} at $t=\infty$. For instance, we have by the addition formula (5.9)

$$
\left.X\left(P_{1}-P_{2}\right)\right|_{s=0}=1 /\left(d_{1}-d_{2}\right)^{2},\left.\quad Y\left(P_{1}-P_{2}\right)\right|_{s=0}=1 /\left(d_{1}-d_{2}\right)^{3}
$$

for $P_{i}=\left(b_{i}, d_{i} t+e_{i}\right)$, in terms of the ∞-model (cf. (4.13)). This shows first that $P_{1}-P_{2}$ intersects Θ_{0} at $t=\infty$ and that

$$
\begin{equation*}
s p_{\infty}\left(P_{1}-P_{2}\right)=d_{1}-d_{2} \neq 0 . \tag{6.11}
\end{equation*}
$$

In other words, P_{1} and P_{2} intersect the same component, say $\Theta_{j}(j \geqq 1)$, at distinct points.

Similarly it is easy to check that two sections corresponding to different values of $a=0,1,-1$ meet the different components of $f^{-1}(\infty)$. Hence we may suppose that the 3 components $\Theta_{1}, \Theta_{2}, \Theta_{3}$ correspond to $a=0,1,-1$.

Finally, to prove the formula (6.7), we have only to compute $s p_{\infty}(2 P) \in \boldsymbol{G}_{a}$ (note that $\left.2 P \in E(K)^{\circ}\right)$. By the addition formula again, we see easily

$$
s p_{\infty}(2 P)=2 d /\left(1-3 a^{2}\right),
$$

which implies (6.7).
Corollary 6.3. For $P_{i}=\left(b_{i}, d_{i} t+e_{i}\right) \in E(K)(i=1, \cdots, 4)$, the Gram matrix $\left(\left\langle P_{i}, P_{j}\right\rangle\right)$ is equal to the identity matrix of degree 4 . Hence P_{1}, \cdots, P_{4} are independent and they generate a subgroup of index 2 in $E(K)$. If Q is any rational
point of the form ($\pm t+b^{\prime}, d^{\prime} t+e^{\prime}$), then P_{1}, P_{2}, P_{3} and Q generate the full MordellWeil group $E(K)$.

Proof. By the above lemma, the sections $\left(P_{i}\right)$ are disjoint from each other and also from the zero section. We can compute $\left\langle P_{i}, P_{j}\right\rangle$ by (4.4), (4.5) and (6.5), noting that $\operatorname{contr}_{\infty}\left(P_{i}, P_{j}\right)=1$ for all i, j since all P_{i} pass through the same Θ_{1}. Hence the first assertion. Then $\operatorname{det}\left(\left\langle P_{i}, P_{j}\right\rangle\right)=1$, and since we know $\operatorname{det}(E(K))=1 / 4, P_{i}$ generates a subgroup of index 2 in $E(K)$. Finally Q is not in this subgroup, since $\left\langle P_{i}, Q\right\rangle \equiv 1 / 2(\bmod 1)$. Hence the last assertion. q.e.d.

Step 4. Let $P_{i}(i=1, \cdots, 4)$ be as in Corollary 6.3. Since b_{i} are the 4 roots of $h(X)=0$ in (6.9), the relation of the roots and coefficients give

$$
\left\{\begin{array}{l}
b_{1}+\cdots+b_{4}=q_{2} \tag{6.12}\\
b_{1} b_{2}+\cdots=p_{0} \\
b_{1} b_{2} b_{3}+\cdots=p_{0} q_{2}-q_{0} \\
b_{1} b_{2} b_{3} b_{4}=q_{1}^{2} / 4-q_{0} q_{2} .
\end{array}\right.
$$

Using the relation $b_{i}=-d_{i}^{2}+q_{2}$ in (6.10), we can rewrite (6.12) as the relations of d_{i}. By a simple computation (which is not so tedious because it leads very naturally to the fundamental invariants of the Weyl group $W\left(D_{4}\right)$; cf. [B]), we have:

$$
\left\{\begin{array}{l}
\sum_{i} d_{i}^{2}=3 q_{2} \tag{6.13}\\
\sum_{i<j} d_{i}^{2} d_{j}^{2}=p_{0}+3 q_{2}^{2} \\
\sum_{i<j<k} d_{i}^{2} d_{j}^{2} d_{k}^{2}=q_{0}+p_{0} q_{2}+q_{2}^{3} \\
d_{1} d_{2} d_{3} d_{4}=\varepsilon q_{1} / 2 \quad(\varepsilon= \pm 1)
\end{array}\right.
$$

Step 5 . Now we reverse the above arguments. Take arbitrary d_{1}, \cdots, d_{4} such that (\#\#) $d_{1}^{2}, \cdots, d_{4}^{2}$ are distinct. Then define q_{2}, p_{0}, q_{0} and q_{1} by (6.13). Letting $\lambda=\left(p_{0}, q_{0}, q_{1}, q_{2}\right)$, consider the elliptic curve E_{λ} and the elliptic surface S_{λ} defined by (6.1). Define also b_{i}, e_{i} by

$$
b_{i}=-d_{i}^{2}+q_{2}, \quad e_{i}=\varepsilon d_{j} d_{k} d_{1}\left(=q_{1} / 2 d_{i} \text { if } d_{i} \neq 0\right) .
$$

Then

$$
P_{i}=\left(b_{i}, d_{i} t+e_{i}\right) \quad(i=1, \cdots, 4)
$$

give 4 rational points of E_{λ} over $k_{0}(t), k_{0}=\boldsymbol{Q}(\lambda)=\boldsymbol{Q}\left(p_{0}, \cdots, q_{2}\right)$, such that $s p_{\infty}\left(P_{i}\right)$ $=\left(d_{i},\left[\Theta_{1}\right]\right)$. The Mordell-Weil lattice $E(K)$ will be isomorphic to D_{4}^{*}, once the condition (\#) (that $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ has no reducible fibres other than $f^{-1}(\infty)$) is verified.

LEMMA 6.4. The two conditions (\#) and (\#\#) are equivalent. In other words,
there are no reducible fibres of $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ other than $f^{-1}(\infty)$, precisely when $d_{1}^{2}, \cdots, d_{4}^{2}$ are distinct.

Proof. We have seen in Steps 2 and 3 that the condition (\#) implies that b_{1}, \cdots, b_{4} are distinct, and the latter is equivalent to the condition (\#\#). Let us show the converse: $(\# \#) \Rightarrow(\#)$.

Assume for a moment that d_{1}, \cdots, d_{4} are algebraically independent over \boldsymbol{Q}. Then p_{0}, \cdots, q_{2} are so too, in which case it is obvious that f has no other reducible fibres at $t \neq \infty$. Then the narrow Mordell-Weil lattice $E_{\lambda}(K)^{\circ}$ is isomorphic to D_{4} by (6.3).

Recall that the narrow Mordell-Weil lattice is isomorphic (up to the sign) to the orthogonal complement L of the trivial sublattice in $N S\left(S_{2}\right)$. The 24 "roots" $Q \in E(K)^{\circ} \cong D_{4}$ define the 24 elements $D(Q)=(Q)-(O) \in N S\left(S_{\lambda}\right)$ such that

$$
\begin{equation*}
(D \cdot D)=-2, \quad(D \cdot(O))=\left(D \cdot \Theta_{i}\right)=0 \quad(\text { all } i \geqq 0) . \tag{6.14}
\end{equation*}
$$

Observe that $\{Q\}=\left\{ \pm P_{i} \pm P_{j} \mid 1 \leqq i<j \leqq 4\right\},\left\{P_{i}\right\}$ being as before. Now we specialize d_{1}, \cdots, d_{4} in such a way that they still satisfy (\#\#), then we still get 24 divisor classes $D=(Q)-(O)$ in $N S\left(S_{\lambda}\right)$ satisfying (6.14), using the 4 points $P_{i}=\left(b_{i}, d_{i} t+e_{i}\right)$. Therefore there is no room for the non-identity components $\Theta_{v, j}$ for $v \neq \infty$ (note $\Theta_{v, j}$ will satisfy (6.14) too). Thus there is no reducible singular fibres other than $f^{-1}(\infty)$. (Compare the arguments involving the " $E_{8^{-}}$ frame" in [S4]; here we implicitly considered the " D_{4}-frame".) q.e.d.

Finally, taking (d_{1}, \cdots, d_{4}) in Q^{4} satisfying (\#\#) and applying the above argument, we complete the proof of Theorem $\left(D_{4}\right)$.

7. Preliminaries for the cases $\left(\boldsymbol{E}_{r}\right)$.

First we recall basic facts on the root lattices E_{6}, E_{7} and E_{8}; we refer to [B, Ch. 6], [CS, Ch. 4] or [M, Ch. 4] for the details.
(i) The most fundamental of these three lattices is the root lattice E_{8}. It is characterized as the unique positive-definite even integral unimodular lattice of rank 8. The minimal norm is 2 , and there are 240 minimal vectors ("roots") in E_{8}, which form the root system of type E_{8} in the Euclidean space $E_{8} \otimes \boldsymbol{R}$ $=\boldsymbol{R}^{8}$. Any root spans a sublattice $\cong A_{1}$, and its orthogonal complement in E_{8} defines the root lattice E_{7}, whose isomorphism class is independent of the choice of A_{1}. It has det=2 and 126 minimal vectors ("roots") of norm 2. Similarly, the orthogonal complement in E_{8} of any sublattice isomorphic to A_{2} defines the root lattice E_{6}, which is unique up to isomorphism. It has det=3 and 72 minimal vectors of norm 2 .
(ii) The dual lattice L^{*} of a lattice L is the subgroup of $L \otimes Q$ consisting
of those elements x such that $\langle x, y\rangle \in \boldsymbol{Z}$ for all $y \in L$. We have $\operatorname{det} L=\left[L^{*}: L\right]$ for any integral lattice L. The root lattice E_{8} is self-dual, since it is unimodular. The dual lattice E_{7}^{*} of E_{7} has det $=1 / 2$ and 56 minimal vectors of norm $3 / 2$, and $\left[E_{7}^{*}: E_{7}\right]=2$. The dual lattice E_{6}^{*} of E_{6} has det $=1 / 3$ and 54 minimal vectors of norm $4 / 3$, and $\left[E_{6}^{*}: E_{6}\right]=3$.
(iii) The automorphism group of $E_{8}, \operatorname{Aut}\left(E_{8}\right)$, is equal to the Weyl group $W\left(E_{8}\right)$, which is of order $2^{14} 3^{4} 5^{2} 7$ and contains -1_{8}, with the quotient group $W\left(E_{8}\right) /\{ \pm 1\}$ having a simple subgroup of index 2 . Similarly we have $\operatorname{Aut}\left(E_{7}\right)$ $=W\left(E_{7}\right)$, which is of order $2^{10} 3^{4} 5 \cdot 7$ and contains -1 such that $W\left(E_{7}\right) /\{ \pm 1\}$ is a simple group. For E_{6}, we have $\operatorname{Aut}\left(E_{6}\right)=W\left(E_{6}\right) \cdot\{ \pm 1\}, W\left(E_{6}\right)$ being of order $2^{7} 3^{4} 5$ and not containing -1 ; further $W\left(E_{6}\right)$ has a simple subgroup of index 2. According to the ATLAS, these simple groups are $U_{4}(2) \cong S_{4}(3), S_{6}(2)$ and $O_{8}^{+}(2)$ for E_{6}, E_{7} and E_{8} respectively.

The Weyl group $W\left(E_{r}\right)$ acts transitively on the set of roots in E_{r} as well as on the set of minimal vectors in E_{r}^{*}, except that, in case $r=6, W\left(E_{6}\right)$ has 2 orbits there.
(iv) Now let $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be a basis (or a system of simple roots) of E_{r}, which has the familiar Dynkin diagram:

For E_{6} or E_{7}, ignore those α_{j} with $j>6$ or 7 .
If we denote by $\left\{\alpha_{j} \mid 1 \leqq j \leqq m\right\}$ all the "positive roots" of E_{r}, i. e., those roots which can be written as a linear combination of $\alpha_{1}, \cdots, \alpha_{r}$ with nonnegative integral coefficients (cf. [B, tables at the end of Ch. 6]), then $\pm \alpha_{j}$ give all the roots of E_{r}. Thus $n=2 m$ is equal to the number of the roots, i. e., $n=240,126$ or 72 for $r=8,7$ or 6 .
(v) Now choose a basis $\left\{u_{1}, \cdots, u_{r}\right\}$ of the dual lattice E_{r}^{*} consisting of minimal vectors. The Gram matrix of E_{r}^{*} is then given by

$$
I_{r}=\left(\left\langle u_{i}, u_{j}\right\rangle\right)_{1 \leq i, j \leq r} \quad(r=8,7,6) .
$$

Let us denote by $\left\{u_{i} \mid 1 \leqq i \leqq N\right\}$ all the minimal vectors of E_{r}^{*}; thus $N=240,56$ or 54 according as $r=8,7$ or 6 . We arrange $\left\{u_{i}\right\}$ so that they coincide with $\left\{ \pm u_{i} \mid 1 \leqq i \leqq N / 2\right\}$.
(vi) The symmetric algebra of E_{r}^{*} is identified with the polynomial ring $\boldsymbol{Z}\left[u_{1}, \cdots, u_{r}\right]$. Writing u_{i} and α_{j} as a Z-linear combination of u_{1}, \cdots, u_{r}, we regard them as elements of $\boldsymbol{Z}\left[u_{1}, \cdots, u_{r}\right]$.

Definition 7.1. We define the following polynomial in X with coefficients
in $\boldsymbol{Z}\left[u_{1}, \cdots, u_{r}\right]$:

$$
\begin{equation*}
\Phi_{E_{r}}(X)=\Pi_{i=1}^{N}\left(X-u_{i}\right)=\Pi_{i=1}^{N_{1}^{\prime 2}}\left(X^{2}-u_{i}^{2}\right), \tag{7.1}
\end{equation*}
$$

which will be called the universal polynomial of type E_{r}.
Letting

$$
\begin{align*}
& \varepsilon_{\nu}=\nu \text {-th elementary symmetric function of } u_{1}, \cdots, u_{N} \tag{7.2}\\
& \varepsilon_{\nu}^{\prime}=\nu \text {-th elementary symmetric function of } u_{1}^{2}, \cdots, u_{N / 2}^{2}, \tag{7.3}
\end{align*}
$$

we have $\varepsilon_{\nu}=0$ for ν odd and $\varepsilon_{2 \nu}=(-1)^{\nu} \varepsilon_{\nu}^{\prime}$. Obviously, we have

$$
\begin{equation*}
\Phi_{E_{r}}(X)=X^{N}+\sum_{\nu=1}^{N / 2} \varepsilon_{2 \nu} X^{N-2 \nu} . \tag{7.4}
\end{equation*}
$$

The coefficients ε_{ν} are invariant under $W\left(E_{r}\right)$ as polynomials in u_{1}, \cdots, u_{r}.
(vii) The structure of the ring of $W\left(E_{r}\right)$-invariants in $\boldsymbol{Q}\left[u_{1}, \cdots, u_{r}\right]$ is well-known. It is a graded polynomial ring generated by r homogeneous elements of weights

$$
\begin{cases}2,8,12,14,18,20,24,30 & (r=8) \tag{7.5}\\ 2,6,8,10,12,14,18 & (r=7) \\ 2,5,6,8,9,12 & (r=6) .\end{cases}
$$

(viii) As a by-product of the proof of Theorem (E_{r}) given in the next sections, we can prove that, for $r=8$ or $7, \varepsilon_{w}$ with w ranging over the weights in (7.5) form a set of fundamental invariants of $W\left(E_{r}\right)$. In other words, we I obtain :

Theorem 7.2.

$$
\begin{align*}
& \boldsymbol{Q}\left[u_{1}, \cdots, u_{8}\right]^{W\left(E_{8}\right)}=\boldsymbol{Q}\left[\varepsilon_{2}, \varepsilon_{8}, \varepsilon_{12}, \varepsilon_{14}, \varepsilon_{18}, \varepsilon_{20}, \varepsilon_{24}, \varepsilon_{30}\right] \tag{7.6}\\
& \boldsymbol{Q}\left[u_{1}, \cdots, u_{7}\right]^{W\left(E_{7}\right)}=\boldsymbol{Q}\left[\varepsilon_{2}, \varepsilon_{6}, \varepsilon_{8}, \varepsilon_{10}, \varepsilon_{12}, \varepsilon_{14}, \varepsilon_{18}\right] \tag{7.7}
\end{align*}
$$

(ix) For the case of E_{6}, we slightly modify the notation as follows. We can choose u_{1}, \cdots, u_{6} so that $\left\langle u_{i}, u_{j}\right\rangle \equiv 1 / 3(\bmod 1)$ for all $i, j \leqq 6$, and arrange $\left\{u_{i}\right\}$ so that the same congruence holds for all $i, j \leqq N / 2=27$. Thus $\left\{u_{i} \mid 1 \leqq i \leqq 27\right\}$ and $\left\{-u_{i} \mid 1 \leqq i \leqq 27\right\}$ give the 2 orbits mentioned in (iii). We redefine ε_{ν} as the ν-th elementary symmetric function of u_{1}, \cdots, u_{27}. Let

$$
\begin{align*}
\Psi_{E_{6}}(X) & =\prod_{i=1}^{2 \eta}\left(X-u_{i}\right) \tag{7.8}\\
& =X^{2 \tau}+\sum_{\nu=1}^{2 \eta}(-1)^{2} \varepsilon_{\nu} X^{2 \tau-\nu} .
\end{align*}
$$

Note that ε_{ν} are invariant under $W\left(E_{6}\right)$, since $\left\{u_{1}, \cdots, u_{27}\right\}$ is stable under $W\left(E_{6}\right)$. We have

$$
\begin{equation*}
\Phi_{E_{6}}(X)=\Psi_{E_{6}}(X) \Psi_{E_{6}}(-X), \tag{7.9}
\end{equation*}
$$

so we rename the universal polynomial of type E_{6} to mean this newly defined polynomial $\Psi_{E_{6}}(X)$ of degree 27.

With this modified notation, we can state:
Theorem 7.3.

$$
\begin{equation*}
\boldsymbol{Q}\left[u_{1}, \cdots, u_{6}\right]^{W\left(E_{6}\right)}=\boldsymbol{Q}\left[\varepsilon_{2}, \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{8}, \varepsilon_{9}, \varepsilon_{12}\right] . \tag{7.10}
\end{equation*}
$$

Remark 7.4. The fundamental invariants of the Weyl group $W\left(E_{r}\right)$ seem to have been studied by many authors (e.g. $[\mathbf{F}]$ for $E_{6},[\mathbf{B r}]$ for E_{7}), but we have not found in the literature such a simple statement as above. This comes out automatically in our approach via the Mordell-Weil lattices (see the proof of Theorem 8.3, 9.3 or 10.3).
(x) Using the minimal vectors (roots) in E_{r} instead of those in E_{r}^{*}, we can define similar polynomial:

$$
\begin{equation*}
\Pi_{j=1}^{n}\left(X-\alpha_{j}\right) \in \boldsymbol{Z}\left[u_{1}, \cdots, u_{r}\right][X] \tag{7.11}
\end{equation*}
$$

of degree $n=240,126$ or 72 for $r=8,7$ or 6 ; for $r=8$, this is the same as $\dot{\Phi}_{E_{8}}$. The coefficients of (7.11) are again invariant under $W\left(E_{r}\right)$. In particular, the constant term

$$
\begin{equation*}
\delta_{0}(u)=\Pi_{i=1}^{n} \alpha_{j}= \pm\left(\prod_{j=1}^{n / 2} \alpha_{j}\right)^{2} \tag{7.12}
\end{equation*}
$$

is an important invariant, playing the role of the difference product or the dis: criminant, which appears in the statement of Theorem $\left(E_{r}\right)$. It is known that the Jacobian determinant of any sets of fundamental invariants of $W\left(E_{r}\right)$ with respect to u_{1}, \cdots, u_{r} is equal to $\Pi_{j=1}^{n / 2} \alpha_{j}$, up to a constant.

8. Case $\left(\boldsymbol{E}_{8}\right)$.

Let us consider the elliptic curve $E=E_{\lambda}$

$$
\begin{align*}
y^{2} & =x^{3}+x\left(\sum_{i=0}^{3} p_{i} t^{i}\right)+\left(\sum_{i=0}^{3} q_{i} t^{i}+t^{5}\right) \tag{8.1}\\
\lambda & =\left(p_{0}, p_{1}, p_{2}, p_{3}, q_{0}, q_{1}, q_{2}, q_{3}\right) \in \boldsymbol{A}^{8} .
\end{align*}
$$

As before, let $K=k(t)$ be the rational function field over an algebraically closed field k containing p_{i} and q_{j}.

Step 1. The elliptic surface $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ has an irreducible singular fibre of type II at $t=\infty$:

$$
\begin{align*}
& f^{-1}(\infty)=\Theta_{0} \quad \text { (a rational curve with a cusp) } \tag{8.2}\\
& f^{-1}(\infty)^{\#}=\Theta_{0}^{\#} \cong G_{a} \quad \text { (the additive group) } . \tag{8.3}
\end{align*}
$$

Step 2. Assume that (\#) f has no reducible fibres at all. This is certainly the case if λ is generic (over the prime field) or if λ is sufficiently general. Then
we have $E(K)=E(K)^{\circ}$, which has rank $r=8$ and det $=1$ by (4.10) and (4.11), Hence the Mordell-Weil lattice $E(K)$ is an even unimodular lattice of rank 8 , and as such, it is isomorphic to the root lattice E_{8} :

$$
\begin{equation*}
E(K)=E(K)^{\circ} \cong E_{8} . \tag{8.4}
\end{equation*}
$$

It has 240 roots (minimal vectors of norm 2). Since

$$
\langle P, P\rangle=2+2(P O) \geqq 2 \quad \text { for any } P \in E(K), \quad P \neq 0,
$$

P is a minimal section if and only if $(P O)=0$. By (4.12), we have :
Lemma 8.1. Under the assumption (\#), there are exactly 240 rational points $P=(x, y)$ in $E(K)$ of the form:

$$
\begin{equation*}
x=g t^{2}+a t+b, \quad y=h t^{3}+c t^{2}+d t+e, \tag{8.5}
\end{equation*}
$$

with some constants a, b, \cdots, g, h in k.
Step 3. Consider the specialization homomorphism:

$$
\begin{equation*}
s p_{\infty}: E(K) \longrightarrow f^{-1}(\infty)^{\#} \cong \boldsymbol{G}_{a} . \tag{8.6}
\end{equation*}
$$

Lemma 8.2. If P is given by (8.5), then $g \neq 0, h \neq 0$, and

$$
\begin{equation*}
s p_{\infty}(P)=g / h . \tag{8.7}
\end{equation*}
$$

Proof. In terms of the ∞-model (cf. (4.13)), P is written as

$$
X=g+a s+b s^{2}, \quad Y=h+c s+d s^{2}+e s^{3} .
$$

Hence the section (P) meets $f^{-1}(\infty)$ at $(X, Y)=(g, h)$, which must be different from the singular point $(0,0)$ of the curve $Y^{2}=X^{3}$. Hence both g and h are $\neq 0$, and we have

$$
s p_{\infty}(P)=\left.(X / Y)\right|_{s=0}=g / h
$$

Step 4. Now we assume that λ is generic over \boldsymbol{Q}, i.e., p_{0}, \cdots, q_{3} are algebraically independent over \boldsymbol{Q}, and let k be the algebraic closure of $\boldsymbol{Q}(\lambda)=$ $\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right)$. Then the condition (\#) holds, and hence we have $E_{\lambda}(K) \cong E_{8}$ by (8.4). We choose a basis $\left\{P_{1}, \cdots, P_{s}\right\}$ of $E_{\lambda}(K)$ with Gram matrix ($\left.\left\langle P_{i}, P_{j}\right\rangle\right)$ $=I_{8}$, and label the 240 points $P_{i}(1 \leqq i \leqq 240)$ in the same way as in $\S 7$ (v). Letting

$$
\begin{equation*}
u_{i}=s p_{\infty}\left(P_{i}\right) \in k, \tag{8.8}
\end{equation*}
$$

we define the polynomial

$$
\begin{equation*}
\Phi(X, \lambda)=\Pi_{i=1}^{240}\left(X-u_{i}\right) \in \boldsymbol{Q}(\lambda)[X] . \tag{8.9}
\end{equation*}
$$

It has coefficients in $\boldsymbol{Q}(\lambda)$ because $\left\{u_{i}\right\}$ is stable under $\operatorname{Gal}(k / \boldsymbol{Q}(\lambda))$. Since $s p_{\infty}$ is $\$$ homomorphism, $\Phi(X, \lambda)$ will coincide with the universal polynomial of type E_{8} defined by (7.1), once we see that u_{1}, \cdots, u_{8} are algebraically independent over \boldsymbol{Q}. At any rate, the coefficients $\pm \varepsilon_{\nu}$ of $\Phi(X, \lambda)$ are contained in $\boldsymbol{Z}\left[u_{1}, \cdots, u_{240}\right]^{\Xi_{240}} \subset \boldsymbol{Z}\left[u_{1}, \cdots, u_{8}\right]^{W\left(E_{8}\right)}$.

Theorem 8.3. Assume that $\lambda=\left(p_{0}, \cdots, q_{3}\right)$ is generic over \boldsymbol{Q}. Then the polynomial $\Phi(X, \lambda)$ has the coefficients in the polynomial ring $\boldsymbol{Z}[\lambda]=\boldsymbol{Z}\left[p_{0}, \cdots, q_{3}\right]$. The elements u_{1}, \cdots, u_{8} are algebraically independent over \boldsymbol{Q}, and we have

$$
\begin{equation*}
\boldsymbol{Q}\left[u_{1}, \cdots, u_{8}\right]^{W\left(E_{8}\right)}=\boldsymbol{Q}\left[p_{0}, \cdots, q_{3}\right], \tag{8.10}
\end{equation*}
$$

which also coincides with $\boldsymbol{Q}\left[\varepsilon_{2}, \varepsilon_{8}, \varepsilon_{12}, \varepsilon_{14}, \varepsilon_{18}, \varepsilon_{20}, \varepsilon_{24}, \varepsilon_{30}\right]$. In other words, both $\left\{p_{0}, \cdots, q_{3}\right\}$ and $\left\{\varepsilon_{2}, \cdots, \varepsilon_{30}\right\}$ form the fundamental invariants of the Weyl group $W\left(E_{8}\right)$. The explicit relation between them is given by the formulas (2.25) of Theorem (E_{8}).

Theorem 8.4. Under the same assumption, the polynomial $\Phi(X, \lambda)$ is irreducible over the rational function field $\boldsymbol{Q}(\lambda)=\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right)$. The splitting field of $\Phi(X, \lambda)$ over $\boldsymbol{Q}(\lambda)$

$$
\begin{equation*}
\mathcal{K}=\boldsymbol{Q}(\lambda)\left(u_{1}, \cdots, u_{240}\right) \tag{8.11}
\end{equation*}
$$

is a Galois extension of $\boldsymbol{Q}(\boldsymbol{\lambda})$ with the Galois group

$$
\begin{equation*}
\operatorname{Gal}(\mathcal{K} / \boldsymbol{Q}(\lambda))=W\left(E_{8}\right) \quad\left(\text { the Weyl group of type } E_{8}\right) \tag{8.12}
\end{equation*}
$$

and it is a purely transcendental extension of the prime field \boldsymbol{Q} :

$$
\begin{equation*}
\mathscr{K}=\boldsymbol{Q}\left(u_{1}, \cdots, u_{\delta}\right) . \tag{8.13}
\end{equation*}
$$

Theorem 8.5. For λ generic, the specialization map

$$
s p_{\infty}: E_{\lambda}(k(t)) \longrightarrow k
$$

is an injective homomorphism, whose image $\sum_{i=0}^{8} \boldsymbol{Z} u_{i}$ is a submodule of rank 8 in $\mathcal{K}=\boldsymbol{Q}\left(u_{1}, \cdots, u_{8}\right)$ with $W\left(E_{8}\right)$-action. In particular, each minimal section P is uniquely determined by $u=s p_{\infty}(P)$.

More explicitly, for each root u of the equation $\Phi(X, \lambda)=0$, there is a unique rational point $P=P(u)$ of $E_{\lambda}(k(t))$ with $s p_{\infty}(P)=u$. It is of the form (8.5), i.e., $P=(x, y)$ with

$$
x=g t^{2}+a t+b, \quad y=h t^{3}+c t^{2}+d t+e,
$$

in which g, h, a, \cdots, e are determined by u as follows:

$$
\left\{\begin{array}{l}
g=u^{-2}, \quad h=u^{-3} \tag{8.14}\\
a, b, c, d, e \in \boldsymbol{Q}\left[u_{1}, \cdots, u_{8}\right]\left[u^{-1}\right] \cap \boldsymbol{Q}(\lambda)(u) .
\end{array}\right.
$$

These results (and Theorems 7.2 , (7.6)) will be proven almost at the same time.

Proof of Theorem 8.3. Let us analyse the condition for the point (8.5) to belong to $E(K)$, by means of the elimination method. For that purpose, we substitute (8.5) into the equation (8.1) and look at the coefficients of t^{m} for $m=6,5, \cdots, 0$. Then we get 7 polynomial relations among a, b, \cdots, g, h over $\boldsymbol{Q}\left[p_{0}, \cdots, q_{3}\right]:$

$$
\begin{align*}
& h^{2}=g^{3} \tag{8.15}\\
& 2 c h=1+3 a g^{2}+p_{3} g \tag{8.15}\\
& c^{2}+2 d h=3 a^{2} g+3 b g^{2}+p_{2} g+p_{3} a \tag{8.15}\\
& 2 c d+2 e h=a^{3}+6 a b g+p_{1} g+p_{2} a+p_{3} b+q_{3} \tag{8.15}\\
& d^{2}+2 c e=3 a^{2} b+3 b^{2} g+p_{0} g+p_{1} a+p_{2} b+q_{2} \tag{8.15}\\
& 2 d e=3 a b^{2}+p_{0} a+p_{1} b+q_{1} \tag{8.15}\\
& e^{2}=b^{3}+p_{0} b+q_{0} . \tag{8.15}
\end{align*}
$$

Now, we set $u=g / h$ in view of (8.7). Then, by (8.15) $)_{1}$, we have

$$
g=u^{-2}, \quad h=u^{-3} .
$$

The next 3 relations $(8.15)_{2}, \cdots,(8.15)_{4}$ determine c, d, e as elements of $\boldsymbol{Q}\left[p_{0}, \cdots, q_{3}\right]\left[u, u^{-1}, a, b\right]$. Substitute these into the remaining 3 relations, and we get 3 relations among u, a, b over $\boldsymbol{Q}\left[p_{0}, \cdots, q_{3}\right]$. Then, eliminating a and b from them, we obtain a monic polynomial of degree 240 in u with coefficients in $\boldsymbol{Q}\left[p_{0}, \cdots, q_{3}\right]$.

In carrying out the elimination process sketched above (and also for constructing numerical examples), it is useful to note that we are dealing with a weighted homogeneous equation. Namely we have

$$
\begin{array}{rrr|rrrrrrrr|rrrrrrrr}
x & y & t & p_{0} & p_{1} & p_{2} & p_{3} & q_{0} & q_{1} & q_{2} & q_{3} & a & b & c & d & e & g & h & u \\
\hline 10 & 15 & 6 & 20 & 14 & 8 & 2 & 30 & 24 & 18 & 12 & 4 & 10 & 3 & 9 & 15 & -2 & -3 & 1
\end{array}
$$

where the second row gives the weight of the letter above.
Let us introduce the homogeneous elements of weight 0 :

$$
\left\{\begin{array}{l}
A=a / u^{4}, \quad B=b / u^{10}, \quad C=c / u^{3}, \quad D=d / u^{9}, \quad E=e / u^{15}, \tag{8.16}\\
P_{i}=p_{i} / u^{20-6 i}, \quad Q_{i}=q_{i} / u^{30-6 i} \quad(i=0,1,2,3) .
\end{array}\right.
$$

Then $(8.15)_{2}, \cdots,(8.15)_{4}$ imply

$$
\begin{equation*}
C, D, E \in \boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right][A, B] \tag{8.17}
\end{equation*}
$$

(for instance, $C=\left(1+3 A+P_{3}\right) / 2$, etc.). Substituting these into $(8.15)_{5}, \cdots,(8.15)_{7}$, we obtain 3 relations of B over $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right][A]$ of the form:

$$
\begin{align*}
& B^{2}+f_{2}(A) \cdot B+f_{4}(A)=0 \tag{8.18}\\
& f_{1}^{\prime}(A) \cdot B^{2}+f_{3}^{\prime}(A) \cdot B+f_{5}^{\prime}(A)=0 \tag{8.19}\\
& B^{3}+f_{2}^{\prime \prime}(A) \cdot B^{2}+f_{4}^{\prime \prime}(A) \cdot B+f_{6}^{\prime \prime}(A)=0, \tag{8.20}
\end{align*}
$$

where $f_{d}(A), \cdots$ are polynomials of degree d in A over $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right]$. Under (8.18), the last two are equivalent to the following:

$$
\begin{align*}
& h_{2}(A) \cdot B+h_{4}(A)=0 \tag{8.19}\\
& h_{3}(A) \cdot B+h_{5}(A)=0 .
\end{align*}
$$

Eliminating B from $(8,19)^{\prime}$, (8.20) and (8.18), we obtain two relations of A over $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right]$ of degree 8 and 7 :

$$
\begin{equation*}
A^{8}+\cdots=0, \quad\left(310+P_{3}\right) \cdot A^{7}+\cdots=0 . \tag{8.21}
\end{equation*}
$$

In particular, we see that A is integral over $\mathbf{Q}\left[P_{0}, \cdots, Q_{3}\right]$, and so are B, C, D, E, by (8.18) and (8.17), Next we eliminate A from (8.21) to obtain a relation $R=0$ among P_{0}, \cdots, Q_{3}. In other words, R is the resultant of two relations in (8.21), On the other hand, let L be the resultant of $h_{2}(A)$ and $h_{4}(A)$ appearing in (8.19)' Then we have

$$
\begin{equation*}
R=\text { const. } L^{2} \cdot F \tag{8.22}
\end{equation*}
$$

where F is a polynomial in $\boldsymbol{Z}\left[P_{0}, \cdots, Q_{3}\right]$ with the constant term 1 . Writing P_{0}, \cdots, Q_{3} in terms of p_{0}, \cdots, q_{3} and u by (8.16), and multiplying u^{240} to F, we finally obtain a monic relation of u over $Z\left[p_{0}, \cdots, q_{3}\right]$:

$$
\begin{equation*}
\Phi(u)=u^{240}+60 p_{3} u^{238}+1764 p_{3}^{2} u^{236}+\cdots=0 . \tag{8.23}
\end{equation*}
$$

Conversely, for any root u of (8.23), we have a common root A of (8.21), which uniquely determines B satisfying (8.18), $\cdots, 8.20$, and also C, D, E by (8.17), Hence we obtain, for a given u, at least one set of g, h, a, \cdots, e satisfying all the relations of (8.15), and thus a rational point P of the form (8.5) such that $s p_{\infty}(P)=u$. Noting that $\Phi(X)$ is separable (which can be checked by specialzing p_{i} and q_{j} to numerical values), we see that $\Phi(X)$ divides $\Phi(X, \lambda)$ defined by (8.9). Therefore, comparing the degree, we conclude that

$$
\begin{equation*}
\Phi(X)=\Phi(X, \lambda) \tag{8.24}
\end{equation*}
$$

This proves the first assertion in Theorem 8.3.
Next we compare the coefficients of X^{d} in (8.24) for $d=2,8,12,14,18,20$, 24,30 , which are the weights of the fundamental invariants of the Weyl group $W\left(E_{8}\right)$ (cf. (7.5)). Then we find the following explicit formulas:

$$
\left\{\begin{array}{l}
\varepsilon_{2}=60 p_{3}, \tag{8.25}\\
\varepsilon_{8}=720 p_{2}+478170 p_{3}^{4}, \\
\varepsilon_{12}=15120 q_{3}+\cdots, \\
\varepsilon_{14}=79200 p_{1}+\cdots, \\
\varepsilon_{18}=2620800 q_{2}+\cdots, \\
\varepsilon_{20}=11040480 p_{0}+\cdots, \\
\varepsilon_{24}=419237280 q_{1}+\cdots, \\
\varepsilon_{30}=65945880000 q_{0}+\cdots,
\end{array}\right.
$$

where \cdots stands for a sum of terms in p_{i} or q_{j} of lower weights.
Obviously it follows that

$$
\begin{equation*}
\boldsymbol{Q}\left[\varepsilon_{2}, \cdots, \varepsilon_{30}\right]=\boldsymbol{Q}\left[p_{3}, p_{2}, q_{3}, p_{1}, q_{2}, p_{0}, q_{1}, q_{0}\right] . \tag{8.26}
\end{equation*}
$$

This shows first that $\varepsilon_{2}, \cdots, \varepsilon_{30}$ are algebraically independent over \boldsymbol{Q}, since p_{i}, q_{j} are so by assumption, and second that they form the fundamental invariants of $W\left(E_{8}\right)$ because they have the right weights. For the same reason, p_{0}, \cdots, q_{3} form the fundamental invariants, which proves (8.10). It is by now clear that u_{1}, \cdots, u_{s} are algebraically independent over \boldsymbol{Q}.

Writing out the part \cdots of (8.25) and letting $\varepsilon_{2 \nu}=(-1)^{\nu} \varepsilon_{\nu}^{\prime}$, we obtain the formula expressing p_{i}, q_{j} in terms of $\varepsilon_{d}^{\prime}(d=1,4, \cdots, 15)$, which is nothing but the formula (2.25) of Theorem (E_{8}). To emphasize the dependence of p_{i}, q_{j} upon u_{1}, \cdots, u_{8}, we write it here in the form:

$$
\begin{equation*}
p_{i}=I_{20-6 i}\left(u_{1}, \cdots, u_{8}\right), \quad q_{i}=I_{30-6 i}\left(u_{1}, \cdots, u_{8}\right), \tag{8.27}
\end{equation*}
$$

where I_{w} stands for an invariant of weight w for the Weyl group $W\left(E_{8}\right)$. Thus we have proven Theorem 8.3 (and (7.6) of Theorem 7.2).

Proof of Theorem 8.4. For the splitting field \mathcal{K} of $\Phi(X, \lambda)$ over $\boldsymbol{Q}(\lambda)$, we have

$$
\mathcal{K}=\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right)\left(u_{1}, \cdots, u_{240}\right)=\boldsymbol{Q}\left(u_{1}, \cdots, u_{s}\right)
$$

by (8.27), since all u_{i} are Z-linear combination of u_{1}, \cdots, u_{8}. Next, taking the field of fractions in both sides in (8.10), we have

$$
\begin{equation*}
\boldsymbol{Q}\left(u_{1}, \cdots, u_{8}\right)^{W\left(E_{8}\right)}=\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right) . \tag{8.28}
\end{equation*}
$$

By Galois theory, it is then immediate that $\boldsymbol{Q}\left(u_{1}, \cdots, u_{8}\right)$ is a Galois extension of $\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right)$ with Galois group $W\left(E_{8}\right)$. Moreover this Galois group acts transitively on the 240 roots u_{i} of the polynomial $\Phi(X, \lambda)$, since the Weyl group $W\left(E_{8}\right)$ acts transitively on the "roots" of E_{8}. This proves the irreducibility of Φ over $\boldsymbol{Q}\left(p_{0}, \cdots, q_{3}\right)$. Thus we have proven Theorem 8.4.

Proof of Theorem 8.5. First of all, the specialization map $s p_{\infty}$ is injective, because u_{1}, \cdots, u_{8} are linearly independent over \boldsymbol{Q} (they are even algebraically independent).

To prove other assertion, we use the notation in the proof of Theorem 8.1. Take a root u of $\Phi(X, \lambda)=0$ and define P_{i}, Q_{i} by (8.16) using this u. As noted before, we have a common root A of (8.21), which is obviously integral over $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right]$. On the other hand, applying the Euclid algorithm to the 2 relations in (8.21), we obtain a relation of degree 1 in A (one step before getting the resultant R). This means that A is in the quotient field of $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right]$. Hence A belongs to the normalization of the ring $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right]$, which is contained in $V=\boldsymbol{Q}\left[u_{1}, \cdots, u_{8}\right]\left[u^{-1}\right]$. Thus $a=u^{4} \cdot A$ belongs to V.

Similarly, B is integral over $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right][A]$ by (8.18), hence over $\boldsymbol{Q}\left[P_{0}, \cdots, Q_{3}\right]$, and it belongs to $\boldsymbol{Q}\left(P_{0}, \cdots, Q_{3}\right)(A)=\boldsymbol{Q}\left(P_{0}, \cdots, Q_{3}\right)$ by (8.19). Hence we have $B \in V$ and $b=u^{10} \cdot B \in V$. By (8.17) and (8.16), we see also c, d, $e \in V$.

This completes the proof of Theorem 8.5.
Step 5. It follows from Theorem 8.5 that the specialization map $s p_{\infty}$ is a group isomorphism of $E_{\lambda}(k(t))$ to $\sum_{i=1}^{8} Z u_{i}$ for λ generic, and we can introduce the lattice structure on the latter to make $s p_{\infty}$ a lattice isomorphism. In particular, we have

$$
\begin{equation*}
\left(\left\langle P_{i}, P_{j}\right\rangle\right)=\left(\left\langle u_{i}, u_{j}\right\rangle\right)=I_{\delta} . \tag{8.29}
\end{equation*}
$$

Now we observe that the condition ($\#$) in Step 2 is equivalent to the nonvanishing of the invariant δ_{0} in Theorem (E_{8}). Indeed, if (\#) holds, then the Mordell-Weil lattice $E(K)$ is E_{8} so that it has 240 roots P, and $s p_{\infty}(P) \neq 0$ by (8.7), Since δ_{0} is the constant term of $\Phi(X, \lambda)=\Phi_{E_{8}}(X)$ (cf. the end of $\S 7$), we have $\delta_{0} \neq 0$. Conversely, if there is a reducible fibre for $f: S_{2} \rightarrow \boldsymbol{P}^{1}$, the non-identity components give rise to zeros of $\Phi(X)$, hence $\delta_{0}=0$ (cf. [S4]).

Now we specialize the generic $u=\left(u_{1}, \cdots, u_{8}\right)$ to $u^{\circ}=\left(u_{1}^{\circ}, \cdots, u_{8}^{\circ}\right)$ in \boldsymbol{Q}^{8} such that $\delta_{0}\left(u^{\circ}\right) \neq 0$. (For the notion of specialization, we refer to [W2].) Then $\lambda=\left(p_{0}, \cdots, q_{3}\right)$ specializes to $\lambda^{\circ}=\left(p_{0}^{\circ}, \cdots, q_{3}^{\circ}\right)$ in \boldsymbol{Q}^{8}, which is uniquely determined from u° by (8.27) or by (2.25). The Mordell-Weil lattice $E_{\lambda}(K)$ specializes to $E_{\lambda} \circ(K)$, and the 240 roots $\left\{P_{i} \mid 1 \leqq i \leqq 240\right\}$ in the former specialize to $\left\{P_{i}^{\circ}\right\}$ in the latter. Each P_{i}° is a $\boldsymbol{Q}(t)$-rational point of $E_{\lambda^{\circ}}$ of the form (8.5):

$$
x=\left(u_{i}^{0}\right)^{-2} t^{2}+\cdots, \quad y=\left(u_{i}^{0}\right)^{-3} t^{3}+\cdots,
$$

as it is obtained from a $\boldsymbol{Q}\left(u_{1}, \cdots, u_{8}\right)(t)$-rational point P_{i} of E_{λ} (given by Theorem 8.5) under the specialization of (u_{1}, \cdots, u_{8}) to ($u_{1}^{\circ}, \cdots, u_{8}^{\circ}$) $\in \boldsymbol{Q}^{8}$.

On the other hand, recall that we have

$$
\left\langle P_{i}, P_{j}\right\rangle=1-\left(P_{i} P_{j}\right)
$$

since there are no reducible fibres. By the invariance of the intersection number under specialization (cf. [W2]), we have therefore

$$
\begin{equation*}
\left(\left\langle P_{i}^{\circ}, P_{j}^{\circ}\right\rangle\right)_{i, j \leqq 8}=\left(\left\langle P_{i}, P_{j}\right\rangle\right)_{i, j \leqq 8}=I_{8} . \tag{8.30}
\end{equation*}
$$

Thus we have shown that, given any $u^{\circ} \in \boldsymbol{Q}^{8}$ such that $\delta_{0}\left(u^{\circ}\right) \neq 0$, we can define an elliptic curve $E=E_{\lambda}$ 。defined over $\boldsymbol{Q}(t)$, having the 8 generators $\left\{P_{i}^{\circ}\right\}$ of the Mordell-Weil group $E(\boldsymbol{Q}(t)$) of rank 8, satisfying (8.30). Further, if $\delta_{1}\left(u^{\circ}\right) \neq 0$, then all $u_{i}^{\circ}(1 \leqq i \leqq 240)$ are distinct, and the proof of Theorem 8.5 (and 8.3) gives the algorithm to uniquely determine the rational point P_{i}° for each u_{i}.

This completes the proof of Theorem $\left(E_{8}\right)$ stated in $\S 2$.

9. Case $\left(\boldsymbol{E}_{7}\right)$.

The remaining cases $\left(E_{7}\right)$ and $\left(E_{6}\right)$ are similar to the case $\left(E_{8}\right)$, and indeed, the formulation of the results and the proof can be given in a surprisingly parallel way. It should be noticed that the crucial step using the elimination argument is considerably simpler here.

In this section, we treat the case $\left(E_{7}\right)$.
Thus we consider the elliptic curve $E=E_{\lambda}$

$$
\begin{align*}
y^{2} & =x^{3}+x\left(p_{0}+p_{1} t+t^{3}\right)+\left(\sum_{i=0}^{4} q_{i} t^{i}\right) \tag{9.1}\\
\lambda & =\left(p_{0}, p_{1}, q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right) \in \boldsymbol{A}^{7}
\end{align*}
$$

As before, $K=k(t)$ is the rational function field over an algebraically closed field k containing p_{i} and q_{j}.

Step 1. The elliptic surface $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ has a reducible singular fibre of type III at $t=\infty$:

$$
\begin{equation*}
f^{-1}(\infty)=\Theta_{0}+\Theta_{1}, \quad\left(\Theta_{0} \cdot \Theta_{1}\right)=2 \tag{9.2}
\end{equation*}
$$

where Θ_{0}, Θ_{1} are smooth rational curves tangent at the unique point of their intersection. The associated algebraic group is:

$$
\begin{equation*}
f^{-1}(\infty)^{\#}=\Theta_{0}^{\#} \cup \Theta_{1}^{\#} \cong \boldsymbol{G}_{a} \times \boldsymbol{Z} / 2 \tag{9.3}
\end{equation*}
$$

Step 2. Assume that (\#) f has no reducible fibres other than $f^{-1}(\infty)$. This is certainly the case if λ is generic or sufficiently general. Then the narrow Mordell-Weil lattice $E(K)^{\circ}$ has rank $r=7$ and det $=2$ by (4.10) and (4.11). Hence it is isomorphic to the root lattice E_{7}, because its opposite lattice is the orthogonal complement of Θ_{1} (a "root") in E_{8}^{-}, where E_{8}^{-}is itself the
orthogonal complement of $\langle(O), F\rangle$ in $N S\left(S_{\lambda}\right)$ (cf. § 7 (i) and Step 2 in case $\left(E_{8}\right)$). In general, we call such an E_{8}^{-}the " E_{8}-frame" of a rational elliptic surface with a section (O) (cf. [S4]). Thus we have

$$
\begin{equation*}
E(K) \cong E_{7}^{*}, \quad E(K)^{\circ} \cong E_{7} \tag{9.4}
\end{equation*}
$$

There are 56 minimal sections of $E(K)$ of norm $3 / 2$. Recalling that

$$
\langle P, P\rangle=2+2(P O)- \begin{cases}0 & \left(P \Theta_{0}\right)=1 \\ 1 / 2 & \text { otherwise },\end{cases}
$$

for any $P \in E(K), P \neq O$ (see (4.17)), P is a minimal section if and only if ($P O$) $=0$ and $\left(P \Theta_{1}\right)=1$. Then we have :

Lemma 9.1. Under the assumption (\#), there are exactly 56 rational points $P=(x, y)$ in $E(K)$ of the form:

$$
\begin{equation*}
x=a t+b, \quad y=c t^{2}+d t+e \quad(a, b, \cdots, e \in k) . \tag{9.5}
\end{equation*}
$$

Proof. Using (4.12), argue as in Lemma 6.1.

> q.e.d.

Step 3. Consider the specialization homomorphism:

$$
\begin{equation*}
s p_{\infty}: E(K) \longrightarrow f^{-1}(\infty)^{\#} \cong \boldsymbol{G}_{a} \times \boldsymbol{Z} / 2 . \tag{9.6}
\end{equation*}
$$

Lemma 9.2. If P is given by (9.5), then

$$
\begin{equation*}
s p_{\infty}(P)=(-c, \overline{1}) . \tag{9.7}
\end{equation*}
$$

Proof. We have to show that the \boldsymbol{G}_{a}-component $s p_{\infty}^{\prime}(P)$ of $s p_{\infty}(P)$ is equal to $-c$, for which it suffices to see that $s p_{\infty}(Q)=-2 c$ for $Q=2 P \in E(K)^{\circ}$. By the addition formula (5.9) (or its variant: the duplication formula), this can be easily verified (cf. the proof of (6.17) of Lemma 6.2).

Step 4. Now we assume that λ is generic over \boldsymbol{Q}, i.e., p_{0}, \cdots, q_{4} are algebraically independent over \boldsymbol{Q}, and let k be the algebraic closure of $\boldsymbol{Q}(\lambda)=$ $\boldsymbol{Q}\left(p_{0}, \cdots, q_{4}\right)$. Then the condition (\#) holds, and hence we have $E_{\lambda}(K) \cong E_{7}^{*}$ by (9.4). We choose a basis $\left\{P_{1}, \cdots, P_{7}\right\}$ of $E_{\lambda}(K)$ with Gram matrix ($\left\langle P_{i}, P_{j}\right\rangle$) $=I_{7}$, and arrange the 56 points $P_{i}(1 \leqq i \leqq 56)$ in the same way as in $\S 7(\mathrm{v})$. Letting

$$
\begin{equation*}
u_{i}=s p_{c \infty}^{\prime}\left(P_{i}\right)=-c_{i} \in k, \tag{9.8}
\end{equation*}
$$

we define the polynomial

$$
\begin{equation*}
\Phi(X, \lambda)=\Pi_{i=1}^{56}\left(X-u_{i}\right) \in \boldsymbol{Q}(\lambda)[X] . \tag{9.9}
\end{equation*}
$$

As in the case $\left(E_{8}\right)$, this will coincide with the universal polynomial of type E_{7} defined by (7.1), provided that u_{1}, \cdots, u_{7} are algebraically independent over
Q. Note $\Phi(-X, \lambda)=\Phi(X, \lambda)$.

Theorem 9.3. Assume that $\lambda=\left(p_{0}, \cdots, q_{4}\right)$ is generic over \boldsymbol{Q}. Then the polynomial $\Phi(X, \lambda)$ has the coefficients in the polynomial ring $\boldsymbol{Z}\left[p_{0}, \cdots, q_{4}\right]$. The elements u_{1}, \cdots, u_{7} are algebraically independent over \boldsymbol{Q}, and we have

$$
\begin{align*}
\boldsymbol{Q}\left[u_{1}, \cdots, u_{7}\right]^{W\left(E_{7}\right)} & =\boldsymbol{Q}\left[p_{0}, p_{1}, q_{0}, \cdots, q_{4}\right], \tag{9.10}\\
& =\boldsymbol{Q}\left[\varepsilon_{2}, \varepsilon_{6}, \varepsilon_{8}, \varepsilon_{10}, \varepsilon_{12}, \varepsilon_{14}, \varepsilon_{18}\right]
\end{align*}
$$

Thus both $\left\{p_{0}, \cdots, q_{4}\right\}$ and $\left\{\varepsilon_{2}, \cdots, \varepsilon_{18}\right\}$ form the fundamental invariants of the Weyl group $W\left(E_{7}\right)$. The explicit relation between them is given by the formulas (2.21) of Theorem (E_{7}).

Theorem 9.4. Under the same assumption, the polynomial $\Phi(X, \lambda)$ is irreducible over the rational function field $\boldsymbol{Q}(\boldsymbol{\lambda})=\boldsymbol{Q}\left(p_{0}, \cdots, q_{4}\right)$. The splitting field of $\Phi(X, \lambda)$ over $\boldsymbol{Q}(\lambda)$

$$
\begin{equation*}
\mathcal{K}=\boldsymbol{Q}(\lambda)\left(u_{1}, \cdots, u_{56}\right) \tag{9.11}
\end{equation*}
$$

is a Galois extension of $\boldsymbol{Q}(\lambda)$ with the Galois group

$$
\operatorname{Gal}(\mathcal{K} / \boldsymbol{Q}(\lambda))=W\left(E_{7}\right) \quad\left(\text { the Weyl group of type } E_{7}\right)
$$

and it is a purely transcendental extension of \boldsymbol{Q} :

$$
\begin{equation*}
\mathcal{K}=\boldsymbol{Q}\left(u_{1}, \cdots, u_{\tau}\right) . \tag{9.13}
\end{equation*}
$$

Theorem 9.5. For λ generic, the composed map

$$
\begin{equation*}
s p_{\infty}^{\prime}=p r_{1} \circ s p_{\infty}: E_{\lambda}(k(t)) \longrightarrow \boldsymbol{G}_{a}(k) \times \boldsymbol{Z} / 2 \longrightarrow \boldsymbol{G}_{a}(k)=k \tag{9.14}
\end{equation*}
$$

is an injective homomorphism, whose image $\sum_{i=1}^{7} Z u_{i}$ is a submodule of rank 7 in $\mathcal{K}=\mathbf{Q}\left(u_{1}, \cdots, u_{7}\right)$ with $W\left(E_{7}\right)$-action. In particular, each minimal section P is uniquely determined by $u=s p_{\infty}^{\prime}(P)(=--c)$.

More explicitly, for each root c of the equation $\Phi(X, \lambda)=0$, there is a unique rational point $P=(x, y)$ of $E_{\lambda}(k(t))$ such that

$$
x=a t+b, \quad y=c t^{2}+d t+e,
$$

where a, b, d, e are determined by c as follows:

$$
\left\{\begin{array}{l}
a=c^{2}-q_{4} \tag{9.15}\\
d=d(c) \in \boldsymbol{Q}\left[u_{1}, \cdots, u_{7}\right] \cap \boldsymbol{Q}(\lambda)(c) \\
b=-a^{3}+2 c d-q_{3} \\
e=\left(3 a^{2} b-d^{2}+p_{1} a+q_{2}\right) /(2 c),
\end{array}\right.
$$

$d(c)$ being certain rational function of c with coefficients in $\boldsymbol{Q}(\lambda)=\boldsymbol{Q}\left(p_{0}, \cdots, q_{4}\right)$
which is also expressed as a polynomial in u_{1}, \cdots, u_{7}.
Proof of Theorem 9.3. As before, we substitute (9.5) into (9.1) and look at the coefficients of t^{m} for $m=4,3, \cdots, 0$. Then we get 5 relations among a, b, \cdots, e over $\boldsymbol{Q}\left[p_{0}, \cdots, q_{4}\right]$:

$$
\left\{\begin{array}{l}
c^{2}=a+q_{4} \tag{9.16}\\
2 c d=a^{3}+b+q_{3} \\
d^{2}+2 c e=3 a^{2} b+p_{1} a+q_{2} \\
2 d e=3 a b^{2}+p_{0} a+p_{1} b+q_{1} \\
e^{2}=b^{3}+p_{0} b+q_{0} .
\end{array}\right.
$$

By the first 3 relations, a, b, e are determined as elements of $\boldsymbol{Q}\left[p_{0}, \cdots, q_{4}\right]$ $\left[c, c^{-1}, d\right]$, as in (9.15). Substituting these into the last 2 relations, we get 2 monic relations of d over $\boldsymbol{Z}\left[p_{0}, \cdots, q_{4}\right][c]$ of degree 3 and 4:

$$
\begin{equation*}
d^{3}+\cdots=0, \quad d^{4}+\cdots=0 . \tag{9.17}
\end{equation*}
$$

Then, eliminating d from them, we obtain a monic polynomial of degree 56 in c with coefficients in $\boldsymbol{Z}\left[p_{0}, \cdots, q_{4}\right]$:

$$
\begin{equation*}
\Phi(c)=c^{56}-36 q_{4} c^{54}+594 q_{4}^{2} c^{52}+\left(72 q_{3}-6084 q_{4}^{3}\right) c^{50}+\cdots=0 . \tag{9.18}
\end{equation*}
$$

Note, as before, that we have the weighted homogeneity, the weights being given in this case by

$$
\begin{array}{ccc|ccccccc|ccccc}
x & y & t & p_{0} & p_{1} & q_{0} & q_{1} & q_{2} & q_{3} & q_{4} & a & b & c & d & e \tag{9.19}\\
\hline 6 & 9 & 4 & 12 & 8 & 18 & 14 & 10 & 6 & 2 & 2 & 6 & 1 & 5 & 9
\end{array}
$$

Now, for any root c of (9.18), we have a common root d of (9.17), which uniquely determines a, b, e by the formulas in (9.15). Hence, for each c, there is at least one rational point P of the form (9.5). As before, this implies:

$$
\begin{equation*}
\Phi(X)=\Phi(X, \lambda) . \tag{9.20}
\end{equation*}
$$

This proves the first assertion in Theorem 9.1.
Next we compare the coefficients of X^{d} in 9.20 for $d=2,6,8,10,12,14$, 18, which are the weights of the fundamental invariants of the Weyl group $W\left(E_{7}\right)$ (cf. (7.5)). Then we find the following:

$$
\left\{\begin{array}{l}
\varepsilon_{2}=-36 q_{4} \tag{9.21}\\
\varepsilon_{6}=72 q_{3}-6084 q_{4}^{3}, \\
\varepsilon_{8}=60 p_{1}-1800 q_{3} q_{4}+43875 q_{4}^{4} \\
\varepsilon_{10}=-504 q_{2}+\cdots \\
\varepsilon_{12}=-540 p_{0}+\cdots \\
\varepsilon_{14}=3828 q_{1}+\cdots \\
\varepsilon_{18}=-29496 q_{0}+\cdots
\end{array}\right.
$$

where \cdots stands for a sum of terms in p_{i} or q_{j} of lower weights.
Hence we have

$$
\begin{equation*}
\boldsymbol{Q}\left[\varepsilon_{2}, \cdots, \varepsilon_{18}\right]=\boldsymbol{Q}\left[q_{4}, q_{3}, p_{1}, q_{2}, p_{0}, q_{1}, q_{0}\right] \tag{9.22}
\end{equation*}
$$

which proves (9.10), together with the algebraic independence of $u_{1}, \cdots, u_{\text {; }}$ over \boldsymbol{Q}.

Letting $\varepsilon_{2 \nu}=(-1)^{\nu} \varepsilon_{\nu}^{\prime}$, we obtain from (9.21) the formula expressing p_{i}, q_{j} in terms of $\varepsilon_{d}^{\prime}(d=1,3, \cdots 9)$, which is nothing but the formula (2.21) of Theorem $\left(E_{7}\right)$. In particular, we can write

$$
\begin{equation*}
p_{i}=I_{12-4 i}\left(u_{1}, \cdots, u_{\tau}\right), \quad q_{j}=I_{18-4 j}\left(u_{1}, \cdots, u_{\eta}\right), \tag{9.23}
\end{equation*}
$$

where I_{w} denotes an invariant of weight w for the Weyl group $W\left(E_{7}\right)$. Thus we have proven Theorem 9.3 (and (7.7) of Theorem 7.2).

Theorems 9.4 and 9.5 can be proven exactly in the same way as before, so we omit the proof.

Step 5. It follows from Theorem 9.5 that the specialization map $s p_{\infty}^{\prime}$ is a group isomorphism of $E_{\lambda}(k(t))$ to $\sum_{i=1}^{\eta} \boldsymbol{Z} u_{i}$ for λ generic, and we can introduce the lattice structure on the latter to make $s p_{\infty}^{\prime}$ a lattice isomorphism. In particular, we have

$$
\begin{equation*}
\left(\left\langle P_{i}, P_{j}\right\rangle\right)=\left(\left\langle u_{i}, u_{j}\right\rangle\right)=I_{7} . \tag{9.25}
\end{equation*}
$$

Now we observe that the condition (\#) in Step 2 is equivalent to the nonvanishing of the invariant δ_{0} in Theorem (E_{7}). Indeed, if (\#) holds, then the narrow Mordell-Weil lattice $E(K)^{\circ}$ is E_{7} so that it has 126 roots P, and we have $s p_{\infty}(P) \neq 0$ by the same proof as (8.7). Since δ_{0} is the product of these (cf. the end of $\S 7$), we have $\delta_{0} \neq 0$. Conversely, if there is a reducible fibre for $f: S_{\lambda} \rightarrow \boldsymbol{P}^{1}$ other than $f^{-1}(\infty)$, then its non-identity components, say Θ, give rise to the roots $(\Theta \cdot \Theta)=-2$ of the " E_{γ}-frame" in $N S\left(S_{\lambda}\right)$, which implies $\delta_{0}=0$ (cf. [S4]). The condition $\delta_{0} \neq 0$ is also equivalent to the smoothness of the affine surface defined by (9.1).

Now we specialize the generic $u=\left(u_{1}, \cdots, u_{7}\right)$ to $c=\left(c_{1}, \cdots, c_{7}\right)$ in \boldsymbol{Q}^{7} such
that $\delta_{0}(c) \neq 0$. Then $\lambda=\left(p_{0}, \cdots, q_{4}\right)$ specializes to $\lambda^{\circ}=\left(p_{0}^{\circ}, \cdots, q_{4}^{\circ}\right) \in \boldsymbol{Q}^{7}$, which is uniquely determined from c by (9.23) or by (2.21). The Mordell-Weil lattice $E_{\lambda}(K)$ specializes to $E_{\lambda^{\circ}}(K)$, and the 56 minimal vectors $\left\{P_{i} \mid 1 \leqq i \leqq 56\right\}$ in the former specialize to $\left\{P_{i}^{\circ}\right\}$ in the latter. Each P_{i}° is a $\boldsymbol{Q}(t)$-rational point of E_{λ} 。 of the form (9.5), as it is obtained from a $\boldsymbol{Q}\left(u_{1}, \cdots, u_{7}\right)(t)$-rational point P_{i} of E_{2} (given by Theorem 9.5) under the specialization of (u_{1}, \cdots, u_{7}) to (c_{1}, \cdots, c_{7}) $\in \boldsymbol{Q}^{7}$.

On the other hand, we have

$$
\left\langle P_{i}, P_{j}\right\rangle=1 / 2-\left(P_{i} P_{j}\right),
$$

since $f^{-1}(\infty)$ is the only reducible fibre. By the invariance of the intersection number under specialization, we have therefore

$$
\begin{equation*}
\left(\left\langle P_{i}^{\circ}, P_{j}^{0}\right\rangle\right\rangle_{i, j \leqslant 7}=\left(\left\langle P_{i}, P_{j}\right\rangle\right)_{i, j \leqslant 7}=I_{7} . \tag{9.26}
\end{equation*}
$$

Thus we have shown that, given any $c \in \boldsymbol{Q}^{7}$ such that $\delta_{0}(c) \neq 0$, we can define an elliptic curve $E=E_{\lambda}$ 。 defined over $\boldsymbol{Q}(t)$, having the 7 generators $\left\{P_{i}^{\circ}\right\}$ of the Mordell-Weil group $E(\boldsymbol{Q}(t))$ of rank 7, satisfying (9.26). Further, if $\delta_{1}(c)$ $\neq 0$, then all $c_{i}(1 \leqq i \leqq 56)$ are distinct, and the proof of Theorem 9.3 (and 9.1) gives the algorithm to uniquely determine the rational point P_{i}° for each c_{i}.

This completes the proof of Theorem $\left(E_{7}\right)$ stated in $\S 2$.
10. Case (E_{6}).

Finally we consider the case (E_{6}).
The elliptic curve $E=E_{\lambda}$ is given by

$$
\begin{align*}
y^{2} & =x^{3}+x\left(p_{0}+p_{1} t+p_{2} t^{2}\right)+\left(q_{0}+q_{1} t+q_{2} t^{2}+t^{4}\right) \tag{10.1}\\
\lambda & =\left(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}\right) \in \boldsymbol{A}^{6} .
\end{align*}
$$

As before, $K=k(t)$ is the rational function field over an algebraically closed field k containing p_{i} and q_{j}.

Step 1. The elliptic surface $f: S_{\boldsymbol{\lambda}} \rightarrow \boldsymbol{P}^{1}$ has a reducible singular fibre of type IV at $t=\infty$:

$$
\begin{equation*}
f^{-1}(\infty)=\Theta_{0}+\Theta_{1}+\Theta_{2} \tag{10.2}
\end{equation*}
$$

where $\Theta_{0}, \Theta_{1}, \Theta_{2}$ are smooth rational curves meeting transversally at the unique point of their intersection. The associated algebraic group is:

$$
\begin{equation*}
f^{-2}(\infty)^{\#}=\Theta_{0}^{\#} \cup \Theta_{1}^{\#} \cup \Theta_{2}^{\#} \cong \boldsymbol{G}_{a} \times \boldsymbol{Z} / 3 . \tag{10.3}
\end{equation*}
$$

Step 2. Assume that (\#) f has no reducible fibres other than $f^{-1}(\infty)$. This
is certainly the case if λ is generic or sufficiently general. Then the narrow Mordell-Weil lattice $E(K)^{\circ}$ has rank $r=6$ and det $=3$ by (4.10) and (4.11), Hence it is isomorphic to the root lattice E_{6}, because its opposite lattice is the orthogonal complement of $T_{\infty}=\left\langle\Theta_{1}, \Theta_{2}\right\rangle \cong A_{2}^{-}$in the E_{8}-frame E_{8}^{-}in $N S\left(S_{2}\right)$ (cf. $\S 7$ (i) and Step 2 in case (E_{7})). Therefore we have

$$
\begin{equation*}
E(K) \cong E_{6}^{*}, \quad E(K)^{\circ} \cong E_{6} . \tag{10.4}
\end{equation*}
$$

There are 54 minimal sections of $E(K)$ of norm $4 / 3$. Recall that

$$
\langle P, P\rangle=2+2(P O)- \begin{cases}0 & \left(P \Theta_{0}\right)=1 \\ 2 / 3 & \text { otherwise },\end{cases}
$$

for any $P \in E(K), P \neq O$ (see (4.5) and (4.17)). Hence P is a minimal section if and only if $(P O)=0$ and $\left(P \Theta_{i}\right)=1$ for $i=1$ or 2.

Lemma 10.1. Under the assumption (\#), there are exactly 27 rational points $P=(x, y)$ in $E(K)$ of the form:

$$
\begin{equation*}
x=a t+b, \quad y=t^{2}+d t+e \quad(a, b, d, e \in k) \tag{10.5}
\end{equation*}
$$

and the corresponding sections (P) intersect one and the same component of $f^{-1}(\infty)$, say Θ_{1}.

Proof. The first assertion is shown in the same way as Lemma 9.1. Now take P, P^{\prime} as in (10.5). By the addition formula (5.9), we see that $P-P^{\prime}$ passes through the identity component Θ_{0} (so that $P-P^{\prime}$ belongs to $E(K)^{\circ}$), which proves the second assertion.
q.e.d.

Step 3. Consider the specialization homomorphism:

$$
\begin{equation*}
s p_{\infty}: E(K) \longrightarrow f^{-1}(\infty)^{\#} \cong \boldsymbol{G}_{a} \times \boldsymbol{Z} / 3 . \tag{10.6}
\end{equation*}
$$

Lemma 10.2. If P is given by (10.5), then

$$
\begin{equation*}
s p_{\infty}(P)=(-a / 2, \overline{1}) . \tag{10.7}
\end{equation*}
$$

The proof is similar to that of Lemma 9. 1, and will be omitted.
Step 4. Now we assume that λ is generic over \boldsymbol{Q}, i.e., p_{0}, \cdots, q_{2} are algebraically independent over \boldsymbol{Q}, and let k be the algebraic closure of $\boldsymbol{Q}(\lambda)=$ $\boldsymbol{Q}\left(p_{0}, \cdots, q_{2}\right)$. Then the condition (\#) holds, and hence we have $E_{\lambda}(K) \cong E_{6}^{*}$ by (10.4). We choose a basis $\left\{P_{1}, \cdots, P_{6}\right\}$ of $E_{\lambda}(K)$ with Gram matrix ($\left\langle P_{i}, P_{j}\right\rangle$) $=I_{6}$, and arrange the 54 points $P_{i}(1 \leqq i \leqq 54)$ in the same way as in $\S 7$ (ix). Letting

$$
\begin{equation*}
u_{i}=-2 \cdot s p_{\infty}^{\prime}\left(P_{i}\right)=a_{i} \in k, \tag{10.8}
\end{equation*}
$$

we define the polynomial

$$
\begin{equation*}
\Psi(X, \lambda)=\Pi_{i=1}^{2 \tau}\left(X-u_{i}\right) \in \boldsymbol{Q}(\lambda)[X] . \tag{10.9}
\end{equation*}
$$

As before, this will coincide with the universal polynomial of type E_{6} defined by (7.8), provided that u_{1}, \cdots, u_{6} are algebraically independent over \boldsymbol{Q}.

Theorem 10.3. Assume that $\lambda=\left(p_{0}, \cdots, q_{2}\right)$ is generic over \boldsymbol{Q}. Then the polynomial $\Psi(X, \lambda)$ has the coefficients in the polynomial ring $\boldsymbol{Z}\left[p_{0}, \cdots, q_{2}\right]$. The elements u_{1}, \cdots, u_{6} are algebraically independent over \boldsymbol{Q}, and we have

$$
\begin{align*}
\boldsymbol{Q}\left[u_{1}, \cdots, u_{6}\right]^{W\left(E_{6}\right)} & =\boldsymbol{Q}\left[p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}\right] \tag{10.10}\\
& =\boldsymbol{Q}\left[\varepsilon_{2}, \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{8}, \varepsilon_{9}, \varepsilon_{12}\right] .
\end{align*}
$$

Thus both $\left\{p_{0}, \cdots, q_{2}\right\}$ and $\left\{\varepsilon_{2}, \cdots, \varepsilon_{12}\right\}$ form the fundamental invariants of the Weyl group $W\left(E_{6}\right)$. The explicit relation between them is given by the formulas (2.15) of Theorem (E_{6}).

Theorem 10.4. Under the same assumption, the polynomial $\Psi(X, \lambda)$ is irreducible over the rational function field $\boldsymbol{Q}(\lambda)=\boldsymbol{Q}\left(p_{0}, \cdots, q_{2}\right)$. The splitting field of $\Psi(X, \lambda)$ over $\boldsymbol{Q}(\lambda)$

$$
\begin{equation*}
\mathcal{K}=\boldsymbol{Q}(\lambda)\left(u_{1}, \cdots, u_{27}\right) \tag{10.11}
\end{equation*}
$$

is a Galois extension of $\boldsymbol{Q}(\lambda)$ with the Galois group

$$
\begin{equation*}
\left.\operatorname{Gal}(\mathcal{H} / \boldsymbol{Q}(\lambda))=W\left(E_{6}\right) \quad \text { (the Weyl group of type } E_{6}\right) \tag{10.12}
\end{equation*}
$$

and it is a purely transcendental extension of \boldsymbol{Q} :

$$
\begin{equation*}
\mathcal{K}=\boldsymbol{Q}\left(u_{1}, \cdots, u_{6}\right) . \tag{10.13}
\end{equation*}
$$

Theorem 10.5. For λ generic, the composed map

$$
\begin{equation*}
s p_{\infty}^{\prime}=p r_{1} \circ s p_{\infty}: E_{\lambda}(k(t)) \longrightarrow \boldsymbol{G}_{a}(k) \times \boldsymbol{Z} / 3 \longrightarrow \boldsymbol{G}_{a}(k)=k \tag{10.14}
\end{equation*}
$$

is an injective homomorphism, whose image $\sum_{i=0}^{6} \boldsymbol{Z} u_{i} / 2$ is a submodule of rank 6 in $\mathcal{K}=\boldsymbol{Q}\left(u_{1}, \cdots, u_{6}\right)$ with $W\left(E_{6}\right)$-action. In particular, each minimal section P is uniquely determined by $s p_{\infty}^{\prime}(P)(=-a / 2)$.

More explicitly, for each root a of the equation $\Psi(X, \lambda)=0$, there is a unique rational point $P=(x, y)$ of $E_{\lambda}(k(t))$ such that

$$
x=a t+b, \quad y=t^{2}+d t+e,
$$

where b, d, e are determined by a as follows:

$$
\left\{\begin{array}{l}
b=\beta_{a}\left(u_{1}, \cdots, u_{6}\right) \in \boldsymbol{Q}\left[u_{1}, \cdots, u_{6}\right] \cap \boldsymbol{Q}(\lambda)(a) \tag{10.15}\\
d=\left(a^{3}+p_{2} a\right) / 2 \\
e=\left(3 a^{2} b-d^{2}+p_{1} a+p_{2} b+q_{2}\right) / 2
\end{array}\right.
$$

Here $\beta_{a}\left(u_{1}, \cdots, u_{\sigma}\right)$ is a certain rational function of a with coefficients in $\boldsymbol{Q}(\lambda)=$ $\boldsymbol{Q}\left(p_{0}, \cdots, q_{2}\right)$ which is also expressed as a polynomial in u_{1}, \cdots, u_{6}.

Proof of Theorem 10.3. As before, we substitute (10.5) into (10.1) and look at the coefficients of t^{m} for $m=3, \cdots, 0$. Then we get 4 relations among a, b, \cdots, e over $\boldsymbol{Q}\left[p_{0}, \cdots, q_{2}\right]$:

$$
\left\{\begin{array}{l}
2 d=a^{3}+p_{2} a \tag{10.16}\\
d^{2}+2 e=3 a^{2} b+p_{1} a+p_{2} b+q_{2} \\
2 d e=3 a b^{2}+p_{0} a+p_{1} b+q_{1} \\
e^{2}=b^{3}+p_{0} b+q_{0}
\end{array}\right.
$$

By the first 2 relations, d, e are determined as in (10.15). Substituting these into the remaining relations in (10.16), we get 2 relations of b over $\boldsymbol{Z}\left[p_{0}, \cdots, q_{2}\right][a]$ of degree 3 and 2:

$$
\begin{equation*}
b^{3}+\cdots=0, \quad a b^{2}+\cdots=0 \tag{10.17}
\end{equation*}
$$

Then, eliminating b, we obtain a monic relation $\Psi(a)=0$ of degree 27 in a with coefficients in $\boldsymbol{Z}\left[p_{0}, \cdots, q_{2}\right]$: explicitly, we have

$$
\begin{align*}
\Psi(X)=X^{27} & +12 p_{2} X^{25}+60 p_{2}^{2} X^{23} \tag{10.18}\\
& -48 p_{1} X^{22}+\left(96 q_{2}+168 p_{2}^{3}\right) X^{21}+\cdots \\
& +\left(480 p_{0}+294 p_{2}^{4}+528 p_{2} q_{2}\right) X^{19} \\
& -\left(1344 q_{1}+1008 p_{1} p_{2}^{2}\right) X^{18}+\cdots \\
& +\left(17280 q_{0}+4768 p_{0} p_{2}^{2}-1248 q_{2}^{2}\right. \\
& \left.+1200 p_{2}^{3} q_{2}+608 p_{1}^{2} p_{2}+252 p_{2}^{6}\right) X^{15}+\cdots
\end{align*}
$$

The weights in this case are defined as follows:

x	y	t	p_{0}	p_{1}	p_{2}	q_{0}	q_{1}	q_{2}	a	b	d	e
4	6	3	8	5	2	12	9	6	1	4	3	6

The rest of the proof is completely analogous to that of Theorem 8.3 or 9.3 , and it can be safely omitted.

Also Theorems 10,4 and 10,5 can be proven exactly in the same way as before.

Step 5. It remains to check that the condition (\#) in Step 2 is equivalent
to $\delta_{0} \neq 0$ in Theorem (E_{6}), but again this can be verified by the same method. (These conditions are also equivalent to the smoothness of the affine surface defined by (10.1).)

Finally we specialize the generic $u=\left(u_{1}, \cdots, u_{6}\right)$ to some $a=\left(a_{1}, \cdots, a_{6}\right)$ in \boldsymbol{Q}^{6} such that $\delta_{0}(a) \neq 0$. Then we obtain an elliptic curve E defined over $\boldsymbol{Q}(t)$, having the 6 explicit generators $\left\{P_{i}^{\circ}\right\}$ of the Mordell-Weil $\operatorname{group} E(\boldsymbol{Q}(t))$ of rank 6 , such that the Gram matrix $\left(\left\langle P_{i}^{\circ}, P_{j}^{\circ}\right\rangle\right)=I_{6}$. Further, if $\delta_{1}(a) \neq 0$, then all $a_{i}(1 \leqq i \leqq 27)$ are distinct, and the proof of Theorem 10.1 gives the algorithm to uniquely determine the rational point P_{i}° for each a_{i}.

This completes the proof of Theorem $\left(E_{6}\right)$.
Remark 10.6. As we have seen above, the cases for E_{6} and E_{7} can be treated exactly in the same way as the case for E_{8}, and thus, for the purpose of just proving Theorem (E_{6}) or $\left(E_{7}\right)$, the last two sections could have been spared by pointing out the analogy.

However, we have chosen to give the detailed formulation in each case, allowing some repetition. The reason for this is as follows. We think that each pair of Theorems 8.3 and 8.4, 9.3 and $9.4,10.3$ and 10.4 , constitutes the fundamental theorems for the algebraic equations of type E_{r} for $r=8,7,6$, which are comparable to the classical theory of the generic algebraic equations (cf. Introduction). As such, these results will have ample applications (see e.g. [S4] for an application to the deformation of singularities). Moreover, for $r=6$ or 7 , they are closely related to the algebraic equation for the 27 lines on a cubic surface or the 28 double tangents to a plane quartic curve, and our results based on the Mordell-Weil lattices will throw some new light on these classical topics, which we hope to discuss in some other occasion (cf. [S6]).

Remark 10.7. We have greatly benefited from the recent progress of a personal computer, which enables a mathematician like me without too much knowledge of computer to use it for the useful purpose. We have used it both in carrying out the elimination process in the cases $\left(E_{r}\right)$ and in constructing numerical examples.

It should be noted that our method is safe against the possible errors caused by a computer or a software (we have encountered some bugs, indeed), because we have a safety check: after all, a rational point obtained must satisfy the equation of a given elliptic curve! For instance, take Example (E_{8}) in $\S 3$ and check whether or not the coordinates (x, y) of the points P_{i} satisfy the equation $y^{2}=x^{3}+\cdots$ given there. If we made any mistake in the course of computing the fundamental invariants of the Weyl group or in determining the rational points P_{i}, there would be little chance for such a point to satisfy the given equation.

Acknowledgements. I would like to thank Professor J-P. Serre for many valuable comments on my work on the Mordell-Weil lattices. I would like to dedicate this paper to Professor G. Shimura whose philosophy to seek for significant algebraic equations or extensions has greatly influenced me in the present work.

Addendum (June 12, 1991).
I) Some of questions mentioned at the end of the Introduction have since been settled.
Page 676, Paragraph (2): For the Galois representations of type E_{6}, E_{7}, E_{8}, see the article [S6, §6-7].
Page 677, Paragraph (4): Indeed, this is the case. We now have an effective version of Néron's construction; see [S7].
II) I would like to thank Professor N. Elkies who has kindly made several comments on this paper in his letter dated July 25, 1990. With his permission, let me include here some of his remarks which might be helpful to other readers. (A few minor points have been incorporated in the text). a) The reader should be aware of "the consistent use of the same notation for a vector (such as a root or dual root vector) in the space containing a root system, and the inner product of that vector with a generic vector in the same space". It is expected that the reader will get used to it, since this is a useful point of view.
b) Page 695, Lemma 6.2: "This partition of 24 minimal vectors of D_{4} into three sets of 8 is the well-known partition of the twenty-four units in the Hurwitz quaternions into the three cosets of the normal subgroup $\{ \pm 1, \pm i, \pm j, \pm k\}$, each forming an orthogonal frame for \boldsymbol{R}^{4}."
c) Page 700, paragraph (ix): "I suspect that the facts about E_{6}^{*} that permit this construction will not be familiar to many readers of this paper; at any rate they were new to me. But it's easy to derive them directly from the fact that E_{6} is a root lattice of discriminant 3 : the inner product gives rise to a nondegenerate $((1 / 3 \boldsymbol{Z}) / \boldsymbol{Z})$-valued quadratic form on $E_{6}^{*} / E_{6} \cong \boldsymbol{Z} / 3$; the short vectors of E_{6}^{*} must all be in the two nontrivial classes of E_{6}^{*} / E_{6}, and divided equally between them. The Weyl group permutes each of the two classes because it is generated by reflections $u \leftrightarrow u-(\alpha, u) \alpha \equiv u \bmod E_{6}$. Provided u and u^{\prime} are in the same class $\bmod E_{6},\left(u, u^{\prime}\right) \bmod 1$ is independent of the choice of u, u^{\prime} and is either $1 / 3$ or $2 / 3$, but the latter cannot occur, for then if u_{1}, u_{2}, u_{3} are any minimal vectors of E_{6}^{*} in the same class $\bmod E_{6}$ we would have $\left(u_{i}, u_{j}\right)=\delta_{i j}-1 / 3$ whence $u_{1}+u_{2}+u_{3}=0$, so the minimal vectors would span only a rank-2 sublattice of E_{6}^{*}, which is ridiculous."

References

[Br] C. Bramble, A collineation group isomorphic with the group of the double tangents of the plane quartic, Amer. J. Math., XL (1918), 351-365.
[B] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 et 6, Hermann, Paris, 1968.
[CS] J. Conway and N. Sloane, Sphere Packings, Lattices and Groups, Grundlehren Math. Wiss., 290, Springer, 1988.
[F] J. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Annali di Mat. Ser. IV, 32 (1951), 83-119.
[K] K. Kodaira, On compact analytic surfaces II-III, Ann. of Math., 77 (1963), 563-626; 78, 1-40 (1963) ; Collected Works, vol. III, Iwanami and Princeton Univ. Press, (1975), 1269-1372.
[M] Ju. Manin, Cubic Forms, 2nd ed., North-Holland, 1986.
[N1] A. Néron, Propriétés arithmétiques de certaines familles de courbes algébriques, Proc. Intern. Math. Congr. Amsterdam 1954, vol. III, 481-488.
[N2] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I. H. E. S., 21 (1964).
[OS] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli, 40 (1991), 83-99.
[S1] T. Shioda, Mordell-Weil lattices and Galois representation, I, II, III, Proc. Japan Acad., 65A (1989), 267-271, 296-299, 300-303.
[S2] T. Shioda, Construction of elliptic curves over $\boldsymbol{Q}(t)$ with high rank: a preview, Proc. Japan Acad., 66A (1990), 57-60.
[S3] T. Shioda, Mordell-Weil lattices and sphere packings, to appear in Amer. J. Math..
[S4] T. Shioda, Mordell-Weil lattices of type E_{8} and deformation of singularities, in Prospects in Complex Geometry, SLN, 1468 (1991), 177-202.
[S5] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, 39 (1990), 211-240.
[S6] T. Shioda, Theory of Mordell-Weil lattices, to appear in Proc. ICM 1990, Kyoto.
[S7] T. Shioda, An infinite family of elliptic curves over \boldsymbol{Q} with large rank via Néron's method, to appear in Invent. Math..
[Si] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.
[T1] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Lecture Notes in Math., 476 (1975), 33-52.
[T2] J. Tate, Variation of the canonical height of a point depending on a parameter, Amer. J. Math., 105 (1983), 287-294.
[W1] A. Weil, Abstract versus classical algebraic geometry, Proc. Intern. Math. Congr. Amsterdam 1954, vol. III, 550-558; Collected Papers, vol. II, Springer-Verlag, 1980, 180-188.
[W2] A. Weil, Foundations of Algebraic Geometry, AMS, 1962.
Tetsuji Shioda
Department of Mathematics
Rikkyo University
Nishi-Ikebukuro, 'Tokyo
Japan

