On Noether's inequality for threefolds

By Masanori Kobayashi

(Received March 14, 1990)
(Revised Jan. 9, 1991)

Introduction.

Let S be a complex minimal algebraic surface of general type. Let K_{S} be the canonical bundle of S and $p_{g}(S)$ be the geometric genus of S. Then in general, we have a classical inequality: $K_{S}^{2} \geqq 2 p_{g}(S)-4$, which is Noether's inequality.

In this paper, we will study a three-dimensional analogue. Since we have Noether's inequality for minimal surfaces (and also canonical models of surfaces) we expect some inequalities between the geometric genus and the cube of the first Chern class for three dimensional canonical models, which may be singular and not factorial. Very optimistically, we might expect that: for any canonical model X of a threefold of general type, we should have $K_{X}^{3} \geqq 2 p_{g}(X)-6$. But that is not the case in general.

Main Theorem (Theorems 2.4, 3.1, 4.1). Let X be a three-dimensional algebraic variety defined over \boldsymbol{C}. Assume that X has at most canonical singularities and that a canonical divisor K_{X} is nef and big. Let $d=\operatorname{dim} \Phi_{K_{X}}(X)$.
(1) If $d=3$, then $K_{X}^{3} \geqq 2 p_{g}-6$.
(2) If $d=2$ and K_{X} is Cartier, then either

2a) $K_{X}^{3} \geqq 2 p_{g}(X)-4$ or
2b) $\Phi_{K_{X}}$ is birationally equivalent to a fibration of curves of genus two with a rational section over a birationally ruled surface.
(3) If $d=1, K_{X}$ is ample and X is factorial, then either

3a) $K_{X}^{3} \geqq 2 p_{g}(X)-2$,
3b) X is singular, the image is a rational curve, all the fibers are connected, $K_{X}^{3}=1$ and $p_{g}(X)=2$ or
3c) the rational map $\Phi_{K_{X}}$ is a morphism and the general fibers of $\Phi_{K_{X}}$ are normal algebraic irreducible surfaces with only canonical singularities which have ample canonical divisors, $c_{1}^{2}=1, q=0$ and $1 \leqq p_{g}$ $\leqq 2$.

Moreover, the case 2 b) really occurs. In (3.2), we will construct a smooth projective variety X with an ample canonical divisor K_{X} such that $\operatorname{dim} \Phi_{K_{X}}(X)$
$=2$ and $K_{X}^{3}=\left(4 p_{g}(X)-10\right) / 3\left(p_{g}(X)=7,10,13, \cdots\right)$. We do not know yet whether the case 3 b) or 3 c) should occur or not.

In Section 1, we shall recall some classical results. We shall prove the theorem in the case $a=3,2$ and 1 in Sections 2, 3 and 4, respectively. In Section 2 , results are valid for arbitrary dimension $\geqq 2$. In the case where the equality holds, a detailed classification of X is systematically done by Fujita ([F2]).

The author was very inspired by Horikawa's results [H2], [H3], where Horikawa studied threefolds with trivial canonical bundle.

The author wishes to thank Professor Y. Kawamata and Professor N. Nakayama for their useful advices and warm encouragement. He also thanks for the referee who simplified the original proof of theorem 4.1.

Notation

Throughout the paper, everything will be assumed to be defined over \boldsymbol{C}. We refer to [KMM] as for the definition of \boldsymbol{Q}-divisor, canonical singularity, terminal singularity, nef, big and so forth.

Let X be an n-dimensional normal complete variety. For a divisor D on X, Φ_{D} denotes the rational map associated to the complete linear system $|D|$. When D is a canonical divisor K_{X}, rational map $\Phi_{K_{X}}$ is called the canonical map of X. Let Y be a smooth model of X.
$\mathrm{Bs}|D|$: the base locus of $|D|$, namely the set-theoretical intersection of all the members of $|D|$.
$|D|_{\text {red }}$: the reduced part of $|D|$, namely $|D|$-(the fixed component of $\left.|D|\right)$.
$H^{i}\left(X, \mathcal{O}(D)\right.$) (or simply $H^{i}(X, D)$ or $H^{i}(D)$): the i-th cohomology group of the sheaf of module associated to D.
$h^{i}(D)=\operatorname{dim}_{C} H^{i}(D)$.
$\chi(X, D)=\Sigma_{i}(-1)^{i} h^{i}(D)$: the Euler characteristic of $\mathcal{O}(D)$.
$\Delta(X, D)=n+D^{n}-h^{0}(D)$: the Δ-genus of a prepolarized variety $(X, D)([\mathbf{F 1}])$.
$p_{g}(X)=h^{0}\left(K_{Y}\right)=H^{2}\left(X, \mathcal{O}_{X}\right)$: the geometric genus of X.
$q(X)=H^{1}\left(X, \mathcal{O}_{X}\right)$: the irregularity of X.
$c_{i}(X)$: the i-th Chern class of X.
\sim : algebraic equivalence.
\approx : numerical equivalence.
$={ }_{Q}$: \boldsymbol{Q}-linear equivalence.

§ 1. Preliminaries.

We will recall here classical results concerned with linear systems without proof.
(1.1) Definition. Let C be a curve and D be a divisor on C. We say D is a special divisor if and only if $h^{0}(D)>0$ and $h^{1}(D)>0$.
(1.2) Clifford's Theorem ([Ha, IV, 5.4]). Let C be a curve and D be a special divisor on C. Then $\operatorname{deg} D \geqq 2 h^{\circ}(D)-2$. Moreover, the equality holds if and only if either $D=0, K_{C}$ or a multiple of g_{2}^{1} (in the last case C is hyperelliptic).

We frequently use the following lemma.
(1.3) Lemma. Let $Z \subset \boldsymbol{P}^{N}$ be a variety which is not contained in any hyperplane. Then $\operatorname{deg} Z \geqq N-\operatorname{dim} Z+1$.

In the following, a minimal surface means a smooth surface which has no (-1)-curves.
(1.4) Noether's Inequality ([BPV, VII, (3.1)]). Let S be a minimal algebraic surface of general type. Then $K_{S}^{2} \geqq 2 p_{g}(S)-4$.

We remark that even if S is a normal surface with canonical singularities with a nef and big canonical divisor, we have the same inequality.
(1.5) Castelnuovo's Inequality ([C], [E, p. 297], [Be, Theorem 5.5]). Let S be a minimal surface of general type. Suppose that $K_{S}^{2}<3 p_{g}(S)-7$ holds. Then $\Phi_{K_{S}}$ is a rational map of degree 2 onto a ruled surface.
(1.6) In particular, if $\Phi_{K_{S}}$ is birational or composed with a pencil, we have $K_{S}^{2} \geqq 3 p_{g}(S)-7$.

§ 2. Case $\operatorname{dim} \Phi_{K_{X}}(X)=\operatorname{dim} X$.

In this section, we will treat an n-dimensional algebraic variety ($n \geqq 2$).
(2.1) Proposition ([F1]). Let X be an n-dimensional complete normal algebraic variety and let H be a nef and big Cartier divisor such that $\operatorname{dim} \Phi_{H}(X)=n$. Assume $p_{g}(X)>0$. Then $H^{n} \geqq 2 h^{0}(X, H)-2 n$.

Proof. By taking a resolution of singularities, we may assume that X is nonsingular.

Step 1. First of all, we treat the case $\mathrm{Bs}|H|=\phi$. By Bertini's theorem, we can take general divisors $H_{1}, H_{2}, \cdots, H_{n-1} \in|H|$ such that the intersections $X_{k}:=H_{1} \cap H_{2} \cap \cdots \cap H_{k}$ are smooth irreducible varieties for $k \leqq n-1$. We denote X_{n-1} by C. We shall show that $H_{i C}$ is a special divisor. From the exact sequence:

$$
0 \longrightarrow \mathcal{O}_{X_{k}} \longrightarrow \mathcal{O}_{X_{k}}(H) \longrightarrow \mathcal{O}_{X_{k+1}}(H) \longrightarrow 0,
$$

we have $h^{0}\left(X_{k}, H_{\mid X_{k}}\right)-1 \leqq h^{0}\left(X_{k+1}, H_{\mid X_{k+1}}\right)$ for $k \leqq n-2$. Thus we have $h^{0}\left(H_{\mid C}\right)$
$\geqq h^{0}(H)-(n-1) \geqq 2$. On the other hand, we have:

$$
0 \longrightarrow H^{0}\left(K_{X_{n-2}}-H_{1 X_{n-2}}\right) \longrightarrow H^{0}\left(K_{X_{n-2}}\right) \longrightarrow H^{0}\left(K_{C}-H_{1 C}\right) .
$$

Since $K_{x_{n-2}}=\left(K_{X}+(n-2) H\right)_{1 X_{n-2}}$ and $p_{g}(X)>0$, we have $p_{g}\left(X_{n-2}\right)>0$. Since $h^{0}\left(H_{\mid X_{n-2}}\right) \geqq 3>2, H_{\mid X_{n-2}}$ is not contained in Bs $\left|K_{X_{n-2} \mid}\right|$.

Thus we have $h^{1}\left(H_{1 C}\right)=h^{0}\left(K_{C}-H_{\mid C}\right)>0$. We can apply Clifford's theorem for $H_{I C}$ and we have $H^{n} \geqq 2 h^{0}\left(H_{\mid C}\right)-2 \geqq 2 h^{0}(H)-2 n$.

Step 2. Next we shall treat general cases. Let $\mu: Y \rightarrow X$ be a modification such that $\Phi_{\mu * H}$ is a morphism. Let Z be the image of $\Phi_{\mu * H}$. We write $\mu^{*} H=$ $M+F$ where F and M are the fixed part and the movable part of $\mu^{*} H$, respectively. By the definition of $\mu,|M|$ is free from base points, and in particular, M is nef. And we have $\left(\mu^{*} H\right)^{n-1} \cdot F \geqq 0$ since H is nef. Thus we have:

$$
\begin{aligned}
H^{n} & =\left(\mu^{*} H\right)^{n}=\left(\mu^{*} H\right)^{n-1} \cdot(M+F) \geqq\left(\mu^{*} H\right)^{n-1} \cdot M \\
& =\left(\mu^{*} H\right)^{n-2} \cdot(M+F) \cdot M \geqq\left(\mu^{*} H\right)^{n-2} \cdot M^{2} \geqq \cdots \geqq M^{n} .
\end{aligned}
$$

By Step $1, M^{n} \geqq 2 h^{0}(M)-2 n$.
Next we shall study the case where the equality holds (cf. [F2]).
(2.2) Proposition. Let X be an n-dimensional normal complete algebraic variety, H a nef Cartier divisor on X with $\operatorname{dim} \Phi_{H}(X)=n$. Suppose that $H^{n}=$ $2 h^{\circ}(H)-2 n$ holds. Then $\mathrm{Bs}|H|=\phi$ and one of the following conditions is satisfied:
a) Φ_{H} is birational,
b) Φ_{H} is a generically finite double cover onto a normal variety $Z \subset \boldsymbol{P}^{h^{0}(H)-1}$, where 4 -genus $\Delta\left(Z, \mathcal{O}_{Z}(1)\right)=0$.

Proof. By Step 2 of the proof of (2.1), we see that $\left(\mu^{*} H\right)^{k} M^{n-k-1} F=0$ for $0 \leqq k \leqq n-1$. These yield $M^{n-l} F^{l}=0$ for $1 \leqq l \leqq n$. In particular, when $l=1$ we see that the codimension of $\Phi_{M}(F)$ in $\Phi_{M}(Y)$ is greater than one. Note that $F=\mu^{*} H-M$ is Φ_{M}-nef.

Lemma. Let $f: X \rightarrow Y$ be a projective surjective morphism between normal projective n-dimensional varieties. Suppose a divisor E in X is contracted to a subscheme Z whose codimension in Y is greater than one. Then E is not f-nef.

Proof. Take a hyperplane section H of Y. Choose general sections L_{1}, \cdots, L_{n-2} from $\left|f^{*} H\right|$ such that the intersection $S=L_{1} \cap \cdots \cap L_{n-2}$ is a smooth irreducible surface. Then $E_{1 S}$ is collapsed to points, so we have $\left(E \cdot E_{\mid S}\right)=$ $\left(E_{\mid S}\right)^{2}<0$.

Proof of 2.2 continued. Using this lemma, we come to a contradiction. Thus, we get $F=0 . \Phi_{H}$ is in fact a morphism, and we have $\mathrm{Bs}|H|=\phi$.

Hence we have $\operatorname{deg} Z \cdot \operatorname{deg} \Phi_{H}=H^{n}=2 h^{0}(H)-2 n$. On the other hand, we have $\operatorname{deg} Z \geqq h^{0}(H)-n$ by (1.3). Thus we have $\operatorname{deg} \Phi_{H}=1$ or 2 . In the case $\operatorname{deg} \Phi_{H}$ $=2$, we have $\Delta\left(Z, \mathcal{O}_{z}(1)\right)=\operatorname{deg} Z+n-h^{0}(H)=0$.

Fujita gave a classification of polarized varieties with Δ-genus 0 in his paper ([F1]).
(2.3) Example ([F2]):
a-1) Let C be a canonical curve of genus $\geqq 2$. Then $X=C, H=K_{C}$ satisfies the condition of (2.2).
a-2) Let S be a K3-surface embedded in some projective space. Then $X=$ $S, H=\mathcal{O}_{S}(1)$ satisfies the condition.
b-1) Let X be a double covering of \boldsymbol{P}^{n} branched along a smooth hypersurface of degree $(2 n+4)$. Then $X, H=K_{X}$ satisfies the condition.
b-2) Let X be a double covering of a smooth quadric $\boldsymbol{Q}^{n} \subset \boldsymbol{P}^{n+1}$ branched along a smooth member of $\left|\mathcal{O}_{Q n}(2 n+2)\right|$. Then $X, H=K_{X}$ satisfies the condition.
Next we will study canonical models.
(2.4) Theorem. Let X be a normal complete variety of general type of dimension n with at most canonical singularities. Suppose that K_{X} is nef and that ${ }^{\top} \operatorname{dim} \Phi_{K_{X}}(X)=n$. Then $K_{X}^{n} \geqq 2 p_{g}(X)-2 n$.

Proof. Note that K_{X} is a \boldsymbol{Q}-divisor. Let $\mu: Y \rightarrow X$ is a modification such that Y is a smooth projective variety and $\left|K_{Y}\right|_{\text {red }}$ is free from base points. We write:

$$
K_{Y}={ }_{Q} \mu^{*} K_{X}+\sum a_{j} E_{j}\left(a_{j} \in \boldsymbol{Q}, a_{j} \geqq 0\right)={ }_{Q} M+F,
$$

where F and M are the fixed part and the movable part of K_{Y}, respectively, and E_{j} are exceptional divisors. Then we have:

$$
\begin{aligned}
K_{X}^{n} & =\left(\mu^{*} K_{X}\right)^{n}=\left(\mu^{*} K_{X}\right)^{n-1}\left(M+F-\Sigma a_{j} E_{j}\right) \geqq\left(\mu^{*} K_{X}\right)^{n-1} M \\
& =\left(\mu^{*} K_{X}\right)^{n-2}\left(M+F-\Sigma a_{j} E_{j}\right) M \geqq\left(\mu^{*} K_{X}\right)^{n-2} M^{2} \geqq \cdots \geqq M^{n}
\end{aligned}
$$

as in the proof of (2.1). Since $|M|$ is base-point-free and $\operatorname{dim} \Phi_{M}(Y)=n$, the inequality follows.
(2.5) Proposition. Let X be the same as in the assumption of (2.4). Assume moreover that the equality holds and $n \geqq 2$. Then K_{X} is a Cartier divisor and $\Phi_{K_{X}}$ is a double covering onto a normal variety $Z \subset \boldsymbol{P}^{g_{g}(X)-1}$, where Δ-genus $\Delta\left(Z, \mathcal{O}_{Z}(1)\right)=0$.

Proof. Similarly as the proof of (2.2), one can show that $K_{X}=\mu_{*} M$ is Cartier and that $\left|K_{X}\right|$ is free from base points. Take general members H_{1}, \cdots,
$H_{n-1} \in\left|K_{X}\right|$ such that $C=H_{1} \cap \cdots \cap H_{n-1}$ is a smooth curve. We put $D=K_{X \mid C}$. Then we have $\operatorname{deg} D=2 h^{0}(D)-2$ from the proof of (2.1), and by adjunction formula, $K_{C}=n K_{X \mid C}=n D \neq D \neq 0$. Thus by Clifford's theorem, D is a multiple of g_{2}^{1} and $\Phi_{K_{X \mid C}}$ is a double covering of \boldsymbol{P}^{1}. This completes the proof.
§ 3. Case $\operatorname{dim} \Phi_{K_{X}}(X)=2$.
We shall prove here the following:
(3.1) Theorem. Let X be a complete canonical Gorenstein algebraic threefold of general type. Suppose that a canonical divisor K_{X} is nef and that $\operatorname{dim} \Phi_{K_{X}}(X)$ $=2$. Then $K_{X}^{3} \geqq 2 p_{g}(X)-4$, unless $\Phi_{K_{X}}$ is birationally equivalent to a fibration of curves of genus two with a rational section over a birationally ruled surface.

Proof. First we may assume that X is \boldsymbol{Q}-factorial terminal Gorenstein by $[\mathrm{R}],[\mathrm{K}]$. It follows that X is factorial. We note that a terminal Gorenstein singularity is an isolated hypersurface singularity of multiplicity at most two ([R]). Let

$$
\mu: Y=\underset{\substack{\cup \\ D_{j}}}{X_{m}} \longrightarrow \cdots \xrightarrow[E_{j}]{\cup} \rightarrow \underset{Z_{j}}{X_{j}} \xrightarrow{\bigcup_{j}} \xrightarrow{U_{j-1}} \longrightarrow \cdots \longrightarrow X_{0}=X
$$

be a successive blowings-up such that: ([Hi])
a) the center Z_{j} of the blowing-up μ_{j} is a smooth subvariety,
b) $\oplus_{m=0}^{\infty} \mathcal{S}_{Z_{j}}^{m} / \mathcal{S}_{Z_{j}}^{m+1}$ is $\mathcal{O}_{X_{j-1}} / \mathcal{G}_{Z_{j}}$ flat,
c) every point in Z_{j} is a point of indeterminancy,
d) $\Phi_{\mu * K_{X}}$ is a morphism.

We note that in every X_{j}, the multiplicity of each singular locus is at most two, and that the singularities are hypersurface singularities. Let F_{0} and M_{0} be the fixed and movable part of $\left|K_{X}\right|$, respectively. Since X is factorial, M_{0} is a Cartier divisor. Thus we have Cartier divisors $\mu_{j}^{*} \cdots \mu_{1}^{*} M_{0}$. Let E, be the exceptional Cartier divisor of μ_{j} and D_{j} the total transform of E_{j} in Y. We write:

$$
\begin{aligned}
& \mu^{*} M_{0}=M+\sum_{j=1}^{m} r_{j} D_{j}\left(r_{j} \in \boldsymbol{Z}\right), \\
& K_{Y}=\mu^{*} K_{X}+\sum_{j=1}^{m} a_{j} D_{j}\left(a_{j} \in \boldsymbol{Z}\right),
\end{aligned}
$$

where M is the movable part of $\mu^{*} K_{X}$. We note that each r_{j} is a positive integer by the condition c). The discrepancies a_{j} are as follows:
i) $a_{j}=2$ if Z_{j} is a point of multiplicity one on X_{j-1},
ii) $a_{j}=1$ if Z_{j} is a point of multiplicity two or if Z_{j} is a curve of mul-
tiplicity one,
iii) $a_{j}=0$ if Z_{j} is a curve of multiplicity two,
iv) $a_{j}=-1$ if Z_{j} is a surface of multiplicity two.

Let S be the image of Φ_{M}. We have the Stein factorization of $\Phi_{M}=\psi^{\circ} \varphi$, where $\varphi: Y \rightarrow Z$ has connected fibers and $\psi: Z \rightarrow S$ is finite. We denote the general fiber of φ by f. We have $M^{2} \sim(\operatorname{deg} \psi)(\operatorname{deg} S) f$. We have $K_{X}^{3}=\left(\mu^{*} K_{X}\right)^{3}$ $=\left(\mu^{*} K_{X}\right)^{2} \cdot\left(M+\mu^{*} F_{0}+\sum_{j=1}^{m} r_{j} D_{j}\right) \geqq\left(\mu^{*} K_{X}\right)^{2} \cdot M$, since K_{X} is nef and D_{j} is exceptional. We have moreover $\left(\mu^{*} K_{X}\right)^{2} \cdot M=\left(\mu^{*} K_{X}\right) \cdot\left(M+\mu^{*} F_{0}+\sum_{j=1}^{m} r_{j} D_{j}\right) \cdot M \geqq\left(\mu^{*} K_{X}\right)$ $\cdot M^{2}$, since $\mu^{*} K_{x}$ and M are nef. Also we have $\operatorname{deg} S \geqq p_{g}(X)-2$ by (1.3). Consequently we have $K_{X}^{3} \geqq(\operatorname{deg} \psi)\left(p_{g}(X)-2\right)\left(\mu^{*} K_{X}\right) \cdot f$. Thus if either $\operatorname{deg} \psi \geqq 2$ or $\mu^{*} K_{X} \cdot f \geqq 2$ then we are done.

In what follows, we assume that $\operatorname{deg} \psi=\mu^{*} K_{X} \cdot f=1$. We define a set \mathcal{I} to be $\left\{j \mid D_{j} \cdot f \neq 0\right\}$. And we have

$$
\begin{equation*}
1=\mu^{*} K_{X} \cdot f=\left(M+\mu^{*} F_{0}+\sum_{j=1}^{m} r_{j} D_{j}\right) \cdot f=\left(\mu^{*} F_{0}\right) \cdot f+\sum_{j=1}^{m} r_{j}\left(D_{j} \cdot f\right) \tag{A}
\end{equation*}
$$

where $\mu^{*} F_{0} \cdot f \geqq 0$ and $D_{j} \cdot f \geqq 0$. On the other hand, by adjunction, we have:

$$
\begin{equation*}
2 p_{a}(f)-2=K_{Y} \cdot f=\mu^{*} K_{X} \cdot f+\sum_{j=1}^{m} a_{j}\left(D_{j} \cdot f\right)=1+\sum_{j=1}^{m} a_{j}\left(D_{j} \cdot f\right) \tag{B}
\end{equation*}
$$

Since the left-hand side of (B) is an even integer, the set \mathcal{J} is not empty. From (A), we have exactly one i such that $\mathcal{g}=\{i\}, D_{i} \cdot f=r_{i}=1$ and $D_{j} \cdot f=0$ for $j \neq i$. If the center Z_{i} is contained in some exceptional divisor $E_{i^{\prime}}\left(i^{\prime}<i\right)$, then we have $D_{i^{\prime}}, f>0$ since f is nef and $D_{i} \leqq D_{i^{\prime}}$, which is a contradiction. Thus the morphism μ_{i} is a blowing-up of a curve or a point. It follows that $0 \leqq a_{i} \leqq 2$ and in fact $a_{i}=1$ by (B). We have moreover $\mu^{*} F_{0} \cdot f=0$ and $p_{a}(f)=2$. Taking a resolution of Y, we have a fibration of curves with genus $p_{g}(f)$. Since X is of general type, $p_{g}(f)=2$. Since $a_{i}=1$ and Z_{i} is not contained in any exceptional locus, Z_{i} is a terminal point or a smooth curve. Hence the component(s) of E_{i} is a birationally ruled surface and its strict transform E_{i}^{\prime} in Y is a birationally ruled surface. We have also that $E_{i}^{\prime} \cdot f=1$, which means E_{i}^{\prime} is a rational section.

There really exist varieties X which do not satisfy the inequality $K_{X}^{3} \geqq$ $2 p_{g}(X)-4$, even if we restrict ourselves to projective complex manifolds. We will show a construction of examples of such varieties.
(3.2) Proposition. There is a smooth projective threefold X of general type such that K_{X} is ample, $\operatorname{dim} \Phi_{K_{X}}(X)=2$ and $K_{X}^{3}=\left(4 p_{g}(X)-10\right) / 3\left(p_{g}(X)=7,10\right.$, $13, \cdots$).

Proof. We construct such X as the image of a rational morphism from the double covering of \boldsymbol{P}^{1}-bundle over a Hirzebruch surface.

Let S be a Hirzebruch surface $\Sigma_{e}=\boldsymbol{P}_{P_{1}}(\mathcal{O} \oplus \mathcal{O}(-e))$, s the negative section which corresponds to the tautological line bundle $\mathcal{O}(1), l$ the fiber. We take a divisor $L=s+e l$ and a line bundle $\mathcal{L}=\mathcal{O}(L)$. We put $\boldsymbol{P}=\boldsymbol{P}_{S}\left(O \oplus \mathcal{L}^{-2}\right)$, and let $\pi: \boldsymbol{P} \rightarrow S$ be its structure morphism, Σ the section corresponding to $\mathcal{O}_{P}(1)$. We take a divisor $M=5\left(\Sigma+2 \pi^{*} L\right)$, which is free from base points. Let $T \in|M|$ be a general smooth member. Since $\Sigma_{1 \Sigma} \cong-2 L$, we see that $M_{1 \Sigma}$ is trivial. Thus we may assume that Σ and T are disjoint. Since $\Sigma+T \in\left|2\left(3 \Sigma+5 \pi^{*} L\right)\right|$, we can take the double covering $\tau: Y \rightarrow \boldsymbol{P}$ branched along $\Sigma+T$. We can write $\tau^{*} \Sigma=2 \Sigma_{0}$ and $\tau^{*} T=2 T_{0}$. Then we have $\Sigma_{0}+T_{0}=\tau^{*}\left(3 \Sigma+5 \pi^{*} L\right)$. Since $\Sigma_{0} \cap T_{0}$ $=\phi$, we have $\Sigma_{0 \mid \Sigma_{0}}=\left(3 \Sigma+5 \pi^{*} L\right)_{\mid \Sigma} \cong-L$. We also have $K_{Y}=\tau^{*}\left(K_{P}+3 \Sigma+5 \pi^{*} L\right)$ $=\tau^{*}\left(\pi^{*}\left(K_{S}-2 L\right)-2 \Sigma+3 \Sigma+5 \pi^{*} L\right)=\tau^{*}\left(\pi^{*}(s+(2 e-2) l)+\Sigma\right)$. We put $N=s+(2 e-$ $2) l$ and take a divisor $H=K_{Y}-\Sigma_{0}=\Sigma_{0}+\tau^{*} \pi^{*}(N)$.

In what follows, we assume that $e \geqq 3$.

(3.3) Lemma.

a) H is nef and big.
b) $3 H-K_{Y}$ is nef and big.
c) for an irreducible curve Γ in $Y, H \cdot \Gamma=0$ holds if and only if Γ is a fiber of the ruling of $\Sigma_{0} \cong S$.

Proof. a) We first note that $H_{1 \Sigma_{0}} \cong \Sigma_{0 \mid \Sigma_{0}}-N \cong(e-2) l$, which is nef. Suppose that there exists a curve Γ such that $H \cdot \Gamma<0$. Since $\tau^{*} \pi^{*} N$ is nef, we have $\Sigma_{0} \cdot \Gamma<0$, which means $\Gamma \subset \Sigma_{0}$. But $H_{\mid \Sigma_{0}} \cong \Sigma_{0 \mid \Sigma_{0}}-N \cong(e-2) l$, which is nef. Contradiction.

On the other hand, we have $H^{3}=H^{2} \cdot \Sigma_{0}+H^{2} \cdot \tau^{*} \pi^{*} N=0+H \cdot \tau^{*} \pi^{*} N \cdot \Sigma_{0}+H$. $\left(\tau^{*} \pi^{*} N\right)^{2}=(e-2) \ell \cdot N+\left(\Sigma_{0}+\tau^{*} \pi^{*} N\right) \cdot\left(\tau^{*} \pi^{*} N\right)=e-2+N^{2}=4 e-6>0$, which shows that H is big.
b) Obvious from $3 H-K_{Y}=H+\tau^{*} \pi^{*} N$.
c) We suppose $H \cdot \Gamma=0$. If $\pi(\tau(\Gamma))$ is a point, then $H \cdot \Gamma=\Sigma_{0} \cdot \Gamma=(1 / 2) \tau \Sigma$. $\Gamma>0$, which is a contradiction. Thus $\pi(\tau(\Gamma))$ is a curve. Since $N=s+(2 e-2) l$ is ample, we have $\Sigma_{0} \cdot \Gamma<0$ and $\Gamma \subset \Sigma_{0}$. Since $H_{\mid \Sigma_{0}}=(e-2) l, \Gamma$ is a fiber.
(3.4) We will go back to the proof of (3.2). By the Base Point Free Theorem ([KMM, Theorem 3-1-1]), we have Bs $|m H|=\phi$ for $m \gg 0$. Thus we have a morphism $\varphi:=\Phi_{m H}: Y \rightarrow X \subset \boldsymbol{P}\left(H^{0}(m H)\right)$. By the lemma above, φ is the blowing-down along the ruling of Σ_{0}. Since $\Sigma_{0 \mid \Sigma_{0}}=-L=-s-2 l, X$ is smooth. We have $\varphi^{*} K_{X} \cong H$ by the Base Point Free Theorem. The rest of the proposition follows from the following lemma.

$$
\begin{equation*}
\text { Lemma. } \quad p_{g}(X)=3 e-2 . \tag{3.5}
\end{equation*}
$$

Proof. We have $p_{g}(X)=h^{0}(H)=h^{0}\left(\Sigma_{0}+\tau^{*} \pi^{*} N\right)$. Here we consider the following exact sequence on Y :

$$
0 \longrightarrow \mathcal{O}_{Y}\left(\Sigma_{0}\right) \longrightarrow \mathcal{O}_{Y}\left(\Sigma_{0}+T_{0}\right) \longrightarrow \mathcal{O}_{T_{0}}\left(\Sigma_{0}+T_{0}\right) \longrightarrow 0 .
$$

By taking the direct image by τ, we have:

since T is contained in the branch locus of τ. Thus we have $\tau_{*} \mathcal{O}\left(\Sigma_{0}\right) \cong \mathcal{O} \oplus$ $\mathcal{O}\left(3 \Sigma+5 \pi^{*} L-T\right) \cong \mathcal{O} \oplus \mathcal{O}\left(-2 \Sigma-5 \pi^{*} L\right)$. We have:

$$
\begin{aligned}
h^{0}\left(\Sigma_{0}+\tau^{*} \pi^{*} N\right) & =h^{0}\left(\tau_{*} \Sigma_{0}+\pi^{*} N\right) \\
& =h^{0}\left(\left(\mathcal{O} \oplus \mathcal{O}\left(-2 \Sigma-5 \pi^{*}(s+e l)\right)\right) \otimes \pi^{*}(s+(2 e-2) l)\right) \\
& =h^{0}(S, s+(2 e-2) l) \\
& =h^{0}\left(\boldsymbol{P}^{1},(\mathcal{O} \oplus \mathcal{O}(-e)) \otimes \mathcal{O}(2 e-2)\right) \\
& =3 e-2 .
\end{aligned}
$$

We also see that in the case $\operatorname{dim} \Phi_{K_{X}}(X)=2$ we can not expect a generalization of Beauville's result (1.6 pencil case), namely, a general inequality of the form $K_{X}^{3} \geqq 3$ (or 4 etc.) $p_{g}(X)+$ const.
§4. Case $\operatorname{dim} \Phi_{K_{X}}(X)=1$.
(4.1) Theorem. Let X be a three dimensional canonical model which is factorial. Assume that $\operatorname{dim} \Phi_{K_{X}}(X)=1$. Then
a) $K_{X}^{3} \geqq 2 p_{g}(X)-2$,
b) X is singular, the image is a rational curve, all the fibers are connected, $K_{X}^{3}=1$ and $p_{g}(X)=2$ or
c) the canonical map $\Phi_{K_{X}}$ is a morphism onto a rational curve and the general fibers of $\Phi_{K_{X}}$ are surfaces with only canonical singularities, ample canonical divisors, $c_{1}^{2}=1, q=0$ and $p_{g}=1$ or 2 .

Proof. Let $\mu_{0}: X_{0} \rightarrow X$ be a crepant blowing-up such that X_{0} is \boldsymbol{Q}-factorial Gorenstein terminal. X_{0} is automatically factorial. We use the similar notation $\mu_{j}, \mu, X_{j}, E_{j}, D_{j}, Z_{j}$, and so on as in (3.1) except that X_{0} is possibly different from X. Let C be the image of $\Phi_{K_{Y}}$ and $Y \xrightarrow{\varphi} Z \xrightarrow{\phi} C$ be the Stein factorization of $\Phi_{K_{Y}}$. We write:

$$
\begin{gathered}
n=\operatorname{deg} \psi \cdot \operatorname{deg} C, \\
\mu^{*} K_{X}=M+F \sim n S+F, \\
K_{X}=M_{0}+F_{0} \sim n S_{0}+F_{0},
\end{gathered}
$$

$$
\begin{gathered}
F=\mu^{*} F_{0}+\sum_{j=0}^{m} r_{j} D_{j}\left(r_{j} \in \boldsymbol{Z}\right), \\
K_{Y}=\mu^{*} K_{X}+\sum_{j=0}^{m} a_{j} D_{j}\left(a_{j} \in \boldsymbol{Z}, a_{j} \leqq 2\right),
\end{gathered}
$$

where F (resp. F_{0}) is the fixed part of $\mu^{*} K_{X}$ (resp. K_{X}) and S is the general fiber of φ. We take r_{0} to be 1 . We note that $r_{j}>0$ for all j and that $a_{0}=0$. We have $K_{X}^{3}=\left(\mu^{*} K_{X}\right)^{3}=\left(\mu^{*} K_{X}\right)^{2} \cdot\left(n S+\mu^{*} F_{0}+\sum r_{j} D_{j}\right)=n\left(\mu^{*} K_{X}\right)^{2} \cdot S+\left(\mu^{*} K_{X}\right)^{2}$. $\left(\mu^{*} F_{0}\right) \geqq n\left(\mu^{*} K_{X}\right)^{2} \cdot S>0$ since K_{X} is nef and big. By (1.3), we have $n \geqq\left(p_{g}(X)\right.$ $-1) \operatorname{deg} \phi$. Thus if $\left(\mu^{*} K_{X}\right)^{2} \cdot S \geqq 2$ or $\operatorname{deg} \phi \geqq 2$ then the inequality holds.

In what follows, we assume that $\left(\mu^{*} K_{X}\right)^{2} \cdot S=\operatorname{deg} \psi=1$. Then we have $1=$ $\left(\mu^{*} K_{X}\right)^{2} \cdot S=\mu^{*} K_{X} \cdot\left(\mu^{*} F_{0}+\sum r_{j} D_{j}\right) \cdot S$.

CASE 1. $\left|K_{X}\right|_{\text {red }}$ has base points.
In this case, since the exceptional divisors arising from the resolution of base points dominates the curve C, C is rational. Since $\mu^{*} K_{X}$ and S are nef, one of the following conditions is satisfied:

1) $\left(\mu^{*} K_{X}\right) \cdot\left(\sum r_{j} D_{j}\right) \cdot S=1$ and $\left(\mu^{*} K_{X}\right) \cdot\left(\mu^{*} F_{0}\right) \cdot S=0$,
2) $\left(\mu^{*} K_{X}\right) \cdot\left(\sum r_{j} D_{j}\right) \cdot S=0$ and $\left(\mu^{*} K_{X}\right) \cdot\left(\mu^{*} F_{0}\right) \cdot S=1$.

Case 1-1). By the first equality, it holds that $r_{i}=\left(\mu^{*} K_{X}\right) \cdot D_{i} \cdot S=1$ and $\left(\mu^{*} K_{X}\right) \cdot D_{j} \cdot S=0(\forall j \neq i)$ for some i. Moreover, together with $\sum r_{j} D_{j}=n\left(\mu^{*} S_{0}-S\right)$, we get $n\left(\mu^{*} K_{X}\right) \cdot\left(\mu^{*} S_{0}-S\right) \cdot S=1$, from which $n=1$ follows. Thus $p_{g}(X) \leqq 2$ holds. And $K_{X}^{3} \geqq 2 p_{g}(X)-2$ holds except that $K_{X}^{3}=1$ and $p_{g}(X)=2$. As in the proof of (3.1), we can show that Z_{i} is not contained in the exceptional locus in X_{i-1} (or possibly $i=0$). Suppose X is smooth. Then we have $K_{S} \cdot\left(\mu^{*} K_{X}\right)_{\mid S}=$ $\left(\mu^{*} K_{X}+\sum a_{j} D_{j}\right) \cdot \mu^{*} K_{X} \cdot S=1+\left(\sum a_{j} D_{j}\right) \cdot \mu^{*} K_{X} \cdot S$. This value is odd, because by Riemann-Roch formula we see that $\chi\left(\mu^{*} K_{X \mid S}\right)-\chi\left(\Theta_{S}\right)=1 / 2\left\{\left(\mu^{*} K_{X \mid S}\right)\left(\mu^{*} K_{X \mid S}-\right.\right.$ $\left.\left.K_{S}\right)\right\}=1 / 2\left\{1-\mu^{*} K_{X \mid S} \cdot K_{S}\right\}$ is an integer. Thus $\left(\sum a_{j} D_{j}\right) \cdot \mu^{*} K_{X} \cdot S=a_{i}$ (note that μ_{0} is the identity map) is even, so we have $a_{i}=2$. Hence D_{i} comes from a blowing-up of a point, which contradicts to $\left(\mu^{*} K_{X}\right) \cdot D_{i} \cdot S>0$.

Case 1-2). We take a sufficiently large positive integer m and a general smooth member $H \in\left|m \mu^{*} K_{X}\right|$. Then we have $0=m \mu^{*} K_{X} \cdot\left(\Sigma r_{j} D_{j}\right) \cdot n S=m \mu^{*} K_{X}$. $\left(\sum r_{j} D_{j}\right) \cdot\left\{\mu^{*}\left(n S_{0}\right)-\sum r_{j} D_{j}\right\}=-\left(\sum r_{j} D_{j i H}\right)^{2}$. This means that for each $j, \mu\left(D_{j}\right)$ is a point on X. Thus we have $0=\mu^{*} K_{X} \cdot\left(\sum r_{j} D_{j}\right) \cdot S=(n S+F) \cdot\left(\sum r_{j} D_{j}\right) \cdot S=F$. $\left(\sum r_{j} D_{j}\right) \cdot S=\left(\mu^{*} F_{0}+\sum r_{j} D_{j}\right) \cdot\left(\sum r_{j} D_{j}\right) \cdot S=\left(\sum r_{j} D_{j \mid S}\right)^{2}$. This means for each $j, D_{j \mid S}$ ≈ 0 and D_{j} is mapped to a point on Z. Thus applying Zariski's Main Theorem between a normalization Y^{\prime} of Y which is projective over Y and the normalization of Z, we have $\mathrm{Bs}\left|K_{X}\right|_{\text {red }}=\phi$ and we have come to a contradiction.

Case 2. $\left|K_{X}\right|_{\text {red }}$ is base-point-free.
We note that if C is irrational, $\left|K_{X}\right|_{\text {red }}$ is always base-point-free.
The general fiber S_{0} is a surface with at most canonical singularities without
(-1) - or (-2)-curves. $K_{S_{0}}$ is ample. Since $K_{X} \sim n S_{0}+F_{0}$, we have $K_{S_{0}}=K_{X \mid S_{0}}=$ $=F_{0 \mid S_{0}}$, and $K_{S_{0}}^{2}=K_{X}^{2} \cdot S_{0}=1$. By Noether's inequality, we have $p_{g}\left(S_{0}\right) \leqq(1 / 2) K_{S_{0}}^{2}$ +2 . That means $p_{g}\left(S_{0}\right) \leqq 2$. On the other hand, consider a standard exact sequence:

$$
0 \longrightarrow H^{0}\left(K_{X}-S_{0}\right) \longrightarrow H^{0}\left(K_{X}\right) \longrightarrow H^{0}\left(K_{S_{0}}\right) .
$$

Since the second arrow is not an isomorphism, it follows that $H^{0}\left(K_{S_{0}}\right) \neq 0$. Thus we have $1 \leqq p_{g}\left(S_{0}\right) \leqq 2$. The equality $q\left(S_{0}\right)=0$ automatically follows from $K_{S_{0}}^{2}=1$ (Kodaira, see [Bo, Theorem 11]).

We note that the surfaces with small K^{2} are studied in detail (cf. [H1]).
(4.2) Problem. We assume that $\operatorname{dim} \Phi_{K_{X}}(X)=1$. Our assumption that X is factorial is a quite strong condition, which we cannot get rid of. We have not yet found an example which does not satisfy the inequality $K_{X}^{3} \geqq 2 p_{g}(X)-2$.

References

[Be] A Beauville, L’application canonique pour les surfaces de type général, Invent. Math., 55 (1979), 121-140.
[Bo] E. Bombieri, Canonical models of surfaces of general type, Publ. I.H.E.S., 42 (1973), 171-219.
[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, SpringerVerlag, Berlin, Heidelberg, 1984.
[C] G. Castelnuovo, Intorno alla geometria sopra una superficie algebrica, Nota II, Osservazioni, Rendiconti del R. Istituto Lombardo, s. II, 24 (1891), 307-318.
[E] F. Enriques, Le Superficie algebriche, Bologne, Zanichelli, 1949.
[F1] T. Fujita, On the structure of polarized varieties of Δ-genera 0, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103-115.
[F 2] -, On hyperelliptic polarized varieties, Tôhoku Math., 35 (1984), 1-44.
[F3] -, On polarized manifolds of Δ-genus two, part I, J. Math. Soc. Japan, 36 (1984), 709-730.
[H1] E. Horikawa, Algebraic surfaces of general type with small $c_{1}^{2} \mathrm{I}$, Ann. of Math. 104 (1976), 357-387 ; II, Invent. Math., 37 (1976), 121-155; III, ibid., 47 (1978), 209248 ; IV, ibid. 50 (1979), 103-128; V, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1982), 745-755.
[H2] -, Regular threefolds with trivial canonical bundle, Recent Topics in Algebraic Geometry, RIMS, Kokyuroku, 409 (1980), 39-45, (in Japanese).
[H3] ——, ibid., Kaisekitayôtai-seminar kinoku, Univ. of Tokyo, (1981), notes on 1/17 (in Japanese).
[Ha] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, Ann. of Math., 79 (1964), 109-203, II, ibid., 205-326.
[Hu] B. Hunt, Complex manifold geography in dimension 2 and 3, J. Diff. Geom., 30 (1989), 51-153.
[K] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math., 127 (1988), 93-163.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in Algebraic geometry, Sendai 1985, Adv. Stud. in Pure Math., 10, Kinokuniya, Tokyo and North-Holland Amsterdam, 1987, pp. 283-360.
[R] M. Reid, Minimal Models of Canonical 3-folds, in Algebraic Varieties and Analytic Varieties, Adv. Stud. in Pure Math. 1, Kinokuniya, Tokyo and North-Holland, Amsterdam, 1983, pp. 131-180.

Masanori Kobayashi
Department of Mathematics Faculty of Science Tokyo Institute of Technology Meguro, Tokyo, 152
Japan

