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0. Introduction.

Let G be an open set in R% and let m be a Radon measure on G. Let S
be a symmetric linear operator on L* G, m) with the domain 9[S] being dense
in L¥G, m). Let us define a symmetric form by Ecs)(u, v)=(—Su, v)n, U, VE
D[S] and assume that the symmetric form &5, is Markovian in the sense of
[8]. Then, the Friedrichs extension of S, the self-adjoint operator associated
with the smallest closed extension of &y, generates Markovian semigroup ([8;
Theorem 2.117). Let us denote by A4(S) the family of all self-adjoint exten-
sions which generate Markovian semigroups, and let us call an element of
Ax(S) a Markovian extension of S. Recall that semi-order “<” on A(S) is
defined by

A, < A, if 9[A, ] 9[A,] and

(V=Au, V—Au)n =z V=Au, V—Au), for ucd[v—A].

Then, the Friedrichs extension of S is the minimum one of A4(S) with this
semi-order. Now, it is natural to ask whether the maximum element of 4 4(S)
exists and what is the maximum one if it exists.

In the case that m is the Lebesgue measure and S is the Laplacian A de-
fined on C%(G) (in notation AT C<(G)), the maximum element of A .4(A) is the
self-adjoint operator associated with the Sobolev space W% G) ([8; Theorem
2.3.1]). Here C%(G) is the space of infinitely differentiable functions with com-
pact support in G. In this paper, we shall extend this result to “generalized
Schridinger operators”. More precisely, let p be a measurable function on G
which is strictly positive almost everywhere and locally square integrable with
respect to the Lebesgue measure 1°. Let us assume that p is differentiable in
the sense of the Schwartz distribution and its derivatives V;p are also locally
square integrable. Then, we define a generalized Schrodinger operator by

d
(0.1) Lop=A8p+2 5 Vip/0-Vip,  ¢=CUG),
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which is a symmetric operator on L* G, p*2*). We shall pay attention to the
maximum element of A 4(L,), and obtain the following theorem.

THEOREM. Let us define
there exist gi=L¥G, p*2%) such that
Fr= 1 us LXG, p*2"); (u, —Vi0—2Y,0/0-¢)p21a=(g1, ©)o2sa,
for any o= CYG) (1=1, -+, d)

Let us denote g, by D,u and define the symmetric form by

d

e u, v)= 32 SGDiu-Divpzdld , u, vEFT,

i=1

Then, the self-adjoint operator associated with (&%, F%) is the maximum element
of Aa(L),).

In recent years, the operators of the type (0. 1) have been investigated in
physical literatures ([2], [3], [4], [16], [18]), and in relation to the quantum
field theory the infinite dimensional versions of also have been done ([5],
[6]). In particular, in Albeverio and Kusuoka [5], they characterized the maxi-
mum element when the symmetric operator S is one associated with a “classical
Dirichlet space” on an infinite dimensional vector space. Their method is very
probabilistic and without using the hypoellipticity of the symmetric operator S,
and the proof of our theorem depends heavily on it. But since in our case the
basic measure m is not supposed to be a finite measure, we can not follow the
argument in [5, §2]. Hence, we need a different idea, that is, the regular
representation of Dirichlet forms (cf. [10]).

As an application of the above theorem, we obtain the necessary and suf-
ficient condition for the symmetric operator L, T C3(G) having a unique Markovian
extension, i.e. #(A4(L,))=1. Indeed, let (€°, °) be the smallest closed exten-
sion of & - Then we can say that the operator L, 71 C%(G) has a unique
Markovian extension if and only if the space F° is identified with ™.

In the case that p=1, the spaces ¥* and ¢° are nothing but the Sobolev
spaces W'%G) and WiiG) respectively. On the other hand, we see from
Theorem 3.31 in that the space W' G) is identified with W} % G) if and
only if R®\G, the complement of G, is (1, 2)-polar. Combining these facts, we
see that if R\G is (1, 2)-polar, the symmetric operator A 1 C3(G) has a unique
Markovian extension which is nothing but the Friedrichs extension. In parti-
cular, the operator A1 C3(R*\{0}) has a unique Markovian extension if and
only if d=2. But, it is known that the operator A 1 C3(R*\{0}) is essentially
self-adjoint if and only if d=4 ([15; Theorem X.111]). Thus, we see that the
uniqueness of Markovian extension is really a weaker notion than the essential
self-adjointness.
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In §3, we shall give another three examples of symmetric operators which
have a unique Markovian extension but are not essentially self-adjoint.

In Example 1, we consider the case that G is an interval (»,, ;) in R'. In
Wielens [18], he studied the relation between the boundary classification of
Feller and the essential self-adjointness. In particular, he showed that the
operator L, is essentially self-adjoint if both #», and #, are strong entrance
boundaries but is not if », or », is a weak entrance boundary (cf. [16; pp. 111]).
On the other hand, we shall show that L, has a unique Markovian extension
if and only if both #», and », are not regular boundaries. Thus, we can say
that the difference between the uniqueness of Markovian extension and the
essential self-adjointness appears if either r,or », is a weak entrance boundary.

In Example 2, we deal with the case that G is the complement of the origin
{0} and p(x) is the function |x|7. Since the operator L, is spherically sym-
metric, the uniqueness problem for L,,r is reduced to Example 1. But we
prove the uniqueness of Markovian extension in relation to the capacity of {0},
and which enable us to extend to more general cases (Remark 2).

We can regard the Dirichlet space (&*, 97) as the Sobolev space with the
weight function p®. On the other hand, Sobolev spaces with the weight func-
tion dist(x, 0G)* were investigated in detail (cf. [13]). In Example 3, we shall
deal with the case that G is a bounded Lipschitz domain and p(x) is a function
such that 0<c¢,dist(x, 0G)*<p(x)<c,dist(x, dG)*, and state that the operator
L, has a unique Markovian extension if u#<—1/2 or p#>1/2.

1. Preliminaries.

Let G be an open set of R? and p be a measurable function on G such that

i) p>0, 2*a.e. on G
(1.1)

i) p= Li(G, A%) and Vo = LG, 2%) (=1, -, d).

Let us denote p®2* by m and 2V;0/p by B: simply. Then, we define a sym-
metric operator on L* G, m) by

d
(1.2) Lo =080+ 5 B:Vip,  ¢=Ci(0).

Denote by A4(L,) the totality of Markovian extensions of L,. For AeAu(L,)
let F4=9[~v—A] and €4(u; v)=(—=Au, v'—Au)n. Then, (€4, F.) becomes a
Dirichlet form on L*G, m). We set A%(L,)={(€4, F4); A=Ax(L,)}. It was
shown in Fukushima [10] that each (&, F)=A%(L,) has a regular representa-
tion. In this section, we fix (&, F)=A%(L,) and its regular representation
(G, m, &, &, @), i.e. (&, ) is a regular Dirichlet form on L%G, m) and @ is
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an isometrically isomorphic map between two Dirichlet rings (cf. [9]). The
map @ is constructed through the Gel’fand representation of a certain Banach
algebra (R, || |») included in &}'~, where F,=FNLG, m) (see [9], for
detail). In our case, we can assume that the Banach algebra R includes CS(G).
Theorem 2 and (5.7) in say that @ can be extended to a unitary map from
L¥G, m) to LG, /) and the Dirichlet form (&, &) has the following relation
with (&, ):

F = @Q(F)
(1.3) . -
Eu, v) =D u, D) for u, ve g .

Moreover, denoting by L and L the self-adjoint operators corresponding to (&, &)
and (&, &) respectively, we see from the relation (6.8) in that for any fe
DLL], O(f) belongs to D[L] and

(1.4) Lo)y=o(Lf).

Let I be so called Carré du Champ operator, i.e. I'(f, g)=L(fg)—fLg—gLf
and let I' be the Carré du Champ operator associated with the form (&, &).
Note that for f, g=CYG)

(1.5) I(f, =257 Vg
We simply denote I'(f, f) by I'(f).
LEMMA 1. For fCYG)
(1.6) D) = F(Df)).
PROOF. By (1.4), we have for f<CY(G)

OU(f))=D(Lf*—2fLf)
= LO(fP—20(/)LO(f)
=Lo(fP—20(HLO(f)
= I(@f)). q.e.d.

Let C«G) be the family of all continuous functions with compact support
in G. Let u, v€C«(G) with supp [u]Nsupp [v]=@. Take relatively compact
open sets U, U’, V, V’ so that i) supp [u]CU’CU’'CU and supp [v]CV'CV'CV,
i) UNV=g, and choose f, g=C%(G) such that

{1 on U’ {1 on V'’
0 on G—U 0 on G—V.
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Then, noting that O(u)=0(fu)=0(f)P(u), we have @(f)=1 on {@(u)+#0}. By
the same reason, d)(g):Nl on {@(v)#0}. Note that for f€C(G)CR, @(f) is a
continuous function on G by the definition of the Gel’fand representation. Then
we have

supp [O(w)] C {D(f)>0}

supp [@(v)] C {D(g)>0}.

On the other hand, {@(f)>0}N{D(g)>0}=@ because @(f)P(g)=D(fg)=0,
which leads to supp [@(u)]Nsupp [P(v)]=@. Next take w<CyG) such that
w=Fk (constant) on U. Then, since @(w)D(f)=P(wf)=0kf)=rD(f), Plw)=F
on {@(f)>0}>Dsupp [P(u)]. Thus, the above observation leads us to the next
lemma.

(1.7)

LEMMA 2. For u, v, w=Cy(G) such that supp [ulNsupp [v]=@ and w=k
(constant) on neighbourhood of supp [u],

i) supp [@(u)]Nsupp [P(v)] = @

(1.8)
i) O(w)=*F on some neighbourhood of supp [D(u)].

Now, according to the Beuling-Deny formula, the regular Dirichlet form
(&€, &) can be decomposed as

&u, v) = &, )+ @O ANE0—(9)(dxdy)

5xa—d
+S5a(x>ﬁ<x>;§<dx), for u, v=&

where f is a symmetric positive Radon measure on the product space GXG off
the diagonal d and £ is a positive Radon measure on G. (see Lemma 4.5.4 in
[8]). Here, & and ¥ mean quasi-continuous versions of » and v. Let us define
Radon measures J on GXG—d and %2 on G as ones corresponding to the fol-
lowing operators respectively : for f, g€ Cy(G) with supp [f]Nsupp [g]1=@

L.9) [ OB dxdy)
and for f=C\(G)
(1.10) Saqx FXx)Edx) .

Note that is well defined by Moreover, let us define the sym-
metric form &%u, v) by

(1.11) Eu, v) = &(D(u), O(v)), u, veFNC|(G).
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Then, the Dirichlet form € can be decomposed as

Eu, v) = E(P(u), Pv))

= &(D(u), @(v))-i-g 5 LO)x)= () 3N P(u)x) = P(y))](dxdy)

GG

(1.12) +§5¢<u><x>a><v><x>5<dx>

= &, v+ @ —u)e00—un) dady)+| uConnkd,

GxG
for u, vEﬂ'ﬂCo(G).

This decomposition is nothing but the Beuling-Deny formula for the Dirichlet
form (&, F) because the strong local property of £¢ leads to that of &° by
(cf. [T]). Thus, the equality gives us

24 Ve Tigdm =7, @)+ (F0—F)atn)—g(3)](dxdy)
(1.13) ’

+ gk, f, g=CHE).

Hence, Saf(x)g@)](dxdy):O for f, g=C3(G) with supp [f1Nsupp [g]=@, and

which implies that /=0. Next by applying (1.13) for f, g=C%(G) such that
g=1 on some neighbourhood of supp[f], we have k=0. Thus, for f, g=
FNCG)

elf, gy=¢é(f, g)
and consequently

(1.14) D), Pg)=¢&f, g)=&f, g) = (D), (g)).

Let M:(ﬁx, )?c) be the Hunt process corresponding to the regular Dirichlet
form (£, 4). Then it was proved in that the additive functional A{*’=
W X)—(X,), u=F can be decomposed as

(X)) —i(Xy) = M+ N2,

where M is a martingale additive functional of finite energy and NI is a
continuous additive functional of zero energy. Denote by Mecua (resp. M‘if’”) a
continuous (resp. purely discontinuous) part of M1, Let us denote by fiecsrs
(resp. fi%¢;»,) the Revuz measure corresponding to the continuous additive func-
tional (MY (resp. (M4®H13), Then, by Theorem 2.1 in the equality
implies that 7%, =0 for feFNC(G). Thus we get
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LEMMA 3. 1) For f=aNC{G)
(1.15) M1 = Jfer®e,
ity For fegNC(G) and usg
(1.16) Eu, O(f) = &E%u, O(f)).

Here, we mention a lemma concerned with the measure ji¢,,.

LEMMA 4. It holds that for f=C%G)
(1.17) ditocsy, = T(D(f))din.

ProOOF. By the derivation property of i¢,, ([11; Theorem 2.2]), we have
for any g=9,

———
S~@'\g)d/jfrp<f>> = S~Gﬂfcb(g>d>q>.<b<f>>—*‘S~d{1<c<z>cf>2,¢(g)>
(1.18) G ¢ 2%

= 25D()D(f), D N—EC(D(FF, D(g)).
By the right hand side of (1.18) is equal to
26(D(DD(S), DU N—ED(f), D(g))
= 2| 0@ 0(r )~ Lot nam—| DX —L o5 rim,

= oG Locrr—20HL O(f)dm

= | 0@ @i,
which implies that djfpcs,=1(D(f))din. q.e.d.

REMARK 1. In general, a regular representation (&, §) does not always
become local. In fact, consider S=d%/dx* with 2[S]=C3((0, 1)). Then the
self-adjoint operator corresponding to the Dirichlet space

g =W, 1))
5 vdf db ., N ~ N
o, v) = || T8 dae (D) — 20D —2(0)
odx dx
is an extension of S, but it is not local. Here # and # mean absolutely con-
tinuous versions of u and v respectively.
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2. Proof of Theorem

In this section, we shall give the proof of our theorem stated in section 0.
First, we have

LEMMA 5. (&%, %) is a closed form on L* G, m).

PROOF. Suppose that E7(up—um, Un—un)—0, m, n—oco. Then, there exist
u, g:= L¥G, m) such that u,—u and D;u,—g; in L*G, m), and consequently

(u, =Vip—Bip)n = L{q:(un, —Vip—=Bip)n = lIm (Dsstn, PIn = (g5 Pl -
Hence, D;u=g; and u= %" accordingly. . g.e.d.

Let us denote by A* the self-adjoint operator associated with the closed
symmetric bilinear form (&%, &*). Then in order to prove our theorem we must
show following statements:

(I) A*e da(L,)
(II) for any (&, )= A%(L,)
a) FC gt b) &u, u)=E(u, u) for usg.

(2.1)

First we prove (I). Let G;={(x,, -+, x4)=R%'; there exists x, such that
(x5, X, =+, x0)EG}. Let g be a A%version of p which is absolutely con-
tinuous in the x;-axis for A% *-a.e. (x,, -+, x4) In G,. Then we introduce the
linear space

there exists the function #‘® such that i) #V=u,

_ m-a.e. ii) for 297 a.e. (x., -, x0)=G; AP (x1, X9,

gl: uELZ(G,m), ) <.-) y.d) 1 ( 1y 12
-+, x4) is absolutely continuous in x; on {x;=R';
6P(xy, X9, -, x0)>0} and 04V /0x,= LG, m)

Note that the space &, is independent of choice of version 5 and 04V)dx; is
defined m-almost everywhere. Let us define &; (=2, ---, d) by the same manner
as F,. Define §="\;-,F;. For u=Z let us denote 04‘“’/dx; by 0;u and define
a symmetric bilinear form & by

d ——
Elu, v)= 3} Saaiu-aivdm , for u, veg.
=1

Then, we obtain

LEMMA 6. F=9* and 0:=D; (i=1, -+, d).
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PrROOF. Let #” and g be versions of u and p which appear in the de-
finition of &,;. Then by the integration by part

(u, =Vip—Bi@)m = (PP, —=Vip)2t—2upV:ip, ¢)ia
= (Qiup’+2upVip, ©)1¢—2upVip, ¢)ia
= (aluy €0>m ’ (‘DECCS(G) ’

and which vyields that §C g+ and d;u=D;u for u=&. On the other hand, sup-
pose that u=J*. Then it follows from the definition of Z* that there are some
functions g; satisfying that for any ¢=C3(G), (up?, —V:0):¢=(g:p*+20V:0u, ¢),°.

Note that for any compact set KCG S u 2d,7‘i<<§ u? 2d1d)1/2.(g p2d,2d>1/2
o )= JK o K

< oo, and in the same way S_{gip2d2d<oo. Further, since SKpVipud,ng
£

(SKu2p2d2d>”2-(SK(Vip)zdld)U2<OO, the functions uo® and g,0’+20%:ou are in-

cluded in LLc(G, 2%). Thus, there exist A-versions up>" of up® which are
absolutely continuous in the x;-axis. Let g be the functions which appear in
the definition of the spaces &;. Then, since for 42 *a.e. (xy, , Xi-1, X141, Xa)

5/ 1 1 95
a—xi("(ﬁ(“f) = _2—(ﬁ(i>)3 apxi on {5®>0}

and u:;;;““-l/(p“’)z, m-a.e., we have
_ 0 (~u 1
0iu = axi<up : (pa))z)
_ 0 O 1 IS 0 1
__a—xi(up )(ﬁ(i))z +up %((‘5(1)>2>

1 1
J— N2 X Pl 2 Bty 2
= (g0 +29Vuou>pz up (2psvho)

= gi, m-a.e..

Therefore, we can conclude that $+*C &, and attain this lemma. q.e.d.

LEMMA 7. Let p be a function satisfying (1.1). Then the self-adjoint operator
A* corresponding to (€%, *) belongs to Aa(L,).

PROOF. By we have (¢*, $7)=(Z, ). On the other hand, we
can easily show that (£, &) has the Markov property. (which implies that A* is
included in Ag(L,).)

Let us denote by {Gf} the resolvent corresponding to (&*, ¢+). Then for
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JE€ LG, m) and o= CH(G)

d
(f, @) = €2(GEf, )= 2 | DiGif -Digdm+a| Gif-gdm
d
= 2| Gif (—VTip—pTipim+a| Gif-gdm

= SGG;f-(—Lpgo-{—ago)dm.

Hence Gi{f<c D[ L}], and (— L¥+a)Gif=f, where L} is the adjoint operator
of L,. Therefore we can conclude that A* is an extension of L,. g.e.d.

Secondly, we shall prove the statement (II). In accordance with notations
in [5] let us define T{*¥(g)=(u, —Vig—B:ig)m, &=C5(G). Then we have the
next key lemma.

LEMMA 8. Let (&, F)=A%(L,). Then it holds that for usg and g= C(G)
2.2) T5*(g) = &(u, u)”zflgHLm.m), i=1, -, d.

ProoOF. For avoiding complication- we prove this lemma in the case that
d=2 and i=1. Since F, is dense in F, it suffices to prove [2.2)] for u=JF,. Set
Dy={f€C¥G); f(x, y)=¢(x)P(y) and ¢, p=CFRY}. Given ¢(x)P(y)ED,, we
take ¢, ¢” and ¢'=C%(R') such that

i) ¢’=1 on suppl[¢], ¢” =1 on supp [¢]
(2.3) ii) ¢’=1 on supp [¢]
iii) @”(x)'(y) € D,.

Since
—7.79.( | poze(0g0)— 7| ptidrg(06)
= =70+, @ Tp"(0)) — B¢+ el Tipn ()
=~ T~ | DT (06— Brp ()P )T, (),
we have

(g0, =7.7:({ et x)p) = .7, | eoueg ()p)),
(2.4) = (up'(x), —V1p()N(3)—Big )P Y Nm
= (1, =Vp(x)(3)— Brp(2 )5 D
= TEAp(x)9()).
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On the other hand, the left hand side of (2.4) is equal to

(kg 0090, —TT4([ ptodrp (0 () = .0 gtrzg (g ()
25) = (g9, — L[ etereg (g ())

= &(ug (2100, | pddep"(0g(3)).

Now, let (&, &, G, m, ®) be a regular representation of the Dirichlet space
(&, ¢). Then, by (1.3) and the right hand side of is equal to

(DDl (g3, @(S:ga(f)dfg&”(x)gb’(y)». Let us use notations in the pre-

vious section. Then, by virtue of the derivation property of the measure 7, .,
we obtain '

2 (2dig (g, (| peldre"(xp(»))

1
(2.6) = 785@(u>dﬁ”<¢<¢ @19y, O ([Eemdeprcrg () ) -

1
+ 7§5@<90'(-’C)9’)(y)>dﬂc<¢<u>, o(fTomdrerzrgran)d -

Note that Lemma 1 and Lemma 4l lead us to the relation

dﬁc<a><¢' @¢y», P ([T dre @)y () )

@7) = 10/, O\ eedrg"(0g () )

= (1 (¢, || pleddeg()g(3)))drn.

Then the first term of the right hand side of disappear because

I(g'0g), | glmeg"(x)g(2))
= T (g (g ) + [ et (09 (3))

+¢'(x )stb(y)SjSD(T)dT(P”(x)VZSMW
=0.

Therefore, the follewing key relation is established:
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(2.8) T§u1<¢<x>¢’(y)) = %SECMW(x)¢’(y))dﬂc<¢(u), D ([Eomdrem g (wd) e

By Lemma 5.4.3 in the left hand side of is dominated by
1 /2 ¢1] 1/2
(E-Sadﬂ'i@(u») -(fga(@(go’(x)(p'(y))zdlﬁc((p(_Yggo(ndn,o"cx)w(y>)>>

<é&(u, u)'? (%SGW,(JC)S[}(}’ ))U‘(S:(p(f)dr(p”(x)gb’(y))dm)UZ .

Since by [1.5)
(@ T (|] prze"(x)g () = 2Ag)F,

the inequality holds for g=D,.
Next suppose that g=317-10:(x)e(y), @u(X)Pe(¥)ED,. We choose ¢z, ¢F
and ¢:=C5(RY) (k=1, -, n) in the same way as (2.3). Then it follows from

the equality that

1 = ,

Ti"(g) = —z“kgl SE@(SDk(x>¢k(J’))dﬂc<q>(u),@(j§¢k(r)¢r¢; @y, ) >

—_13 1 x T erdu 5 ’ 1% Al @($Z0pmdre; e, :|
- ltlgl z_tEﬁL[<M A kgl So@(spkgbk)(XS)d‘ws[ (SO' HOTL )‘fk(y))]>t

1 ~ ~ 12 71 ~
i —E. eLPud A=F.
@9 = tim (5 Bl @n.0)" (5 £a]

o Eal 3 | (@igndioignr T

k=1
d<M c[o(§fercrarerep)] Npe[2(JEerazg; ¢;)]> D”z

1/2

= etu, we- (33 | gignoig (|| oodretgn, | odrergr)am)

Since ¢;¢k¢;¢1F(S:¢k(f>dw,;'¢,g, S:gol(‘r)drgof’gb;):g0k<plgbkgbl, the right hand side

n 2
of (2.9) is equal to &(u, u)1’2-( > SGgf)kQDL(ﬁkgﬁzdm)l/ =&(u, u)"?-ilgl 26 m>-

k,l=1
For a general g=C%(G) there exists a sequence of functions g,=
SREeP(x)p(y) such that PP <D,, |8—&pll2c. my—0, and [[g—g,let
21lVig—Vig,le—0. Then by the approximating argument we can conclude
the inequality g.e.d.

Now the statement (II) a) in (2.1) has been established. Let ¢;=(0, ---, i, e 0
=R?, f,=C%G) =1, -, d) and define the operator on LG, m)QR? by
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(2.10) Tes( 37 @e) = 3 TIFD.
Then, we obtain

LEMMA 9. For any (&, F)=A%(L,) and u=3F, the inequality
(2.11) T(F) = &u, W | Flre, mere,  for FELXG, m)QR?
holds.

Proor. We prove only in the case that d=2. Let ¢, ¢:0.=D,, where
D, is the space defined in the proof of Lemma 8 Then let us choose ¢i, ¢7,
&1, @i, O3, 5= CH(RY) such that

¢1 =1 on supp [¢:] ¢;=1 on supp [¢.]
o of=1 onsupp[¢i]  ¢:=1 on supp [¢]
g ¢1 =1 on supp[¢:] & ¢7 =1 on supp [¢]

o1(x)Pi(y) € Do e x)P3(y) € Do

By the same calculation as in Lemma 8 we get
TN x)P(¥ )+ T 5 o x)ha(¥))

. 1 ~ "7 ¢ u ’ / v 1 ¢ ($Toimrdze” ¢
= ltlfll;lgﬂm[<ﬂf roc )], So@(solgbl)(XJdMg[@duf1<~>d-?1‘f1)]

+S'd><<p2¢g)<)?3)dﬂ [0} § g¢2<f>d:¢;)3>z]

< e, w)* (| (piRgram+| (g ram) .

By the approximating method as in [Lemma 8, we can conclude that for F=
f1Re+f:Re, = LG, m)QR?, THI(F) < &(u, w)''*-(|f 1. my+ | fel oo, m)? =
E(u, u)"*| Fllr2ce, m>ere. g.e.d.

Following the argument in [5], we obtain

LEMMA 10. Suppose that a measurable function p satisfies (1.1). If (&, F)= ]
Au(L,), then for ue g

(2.12) EX(u, u) £ &u, u) for usg.
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PROOF. Let (¢, ¥)=4%(L,) and u%. Then by there exists
He L} G, m)QR*® such that T F)=(H, F)re¢. mygre for any FEL¥ G, m)QR®.
In particular, taking F=¢&e;, o= CHG), we see that u=F* and D;u=(H, ¢;)ga.
On the other hand, the Riesz theorem tells us that the norm || H||z26. myere 1S
equal to the operator norm of 7t*3, But the inequality (2.11) implies that the
operator norm of 7Tt“! is not greater than &(u, u). Therefore, the inequality

EXu, u)

I

é SG(H, e)dadm

- ijfjifizca. mIGRA

=< &lu, u)

is established. gq.e.d.

By virture of Lemma 8 and Lemma 10, we have shown the maximality of
the self-adjoint extension A*, and which completes the proof of our theorem.

3. Examples

In this section, we give three examples which indicate the difference be-
tween the uniqueness of Markovian extension and the essential self-adjointness.

ExAaMPLE 1. Let G=(r,, r,) with —co<r,<r;=<co. Let p be a function
satisfying (1.1). Moreover let us assume that the function p is strictly positive
everywhere. Then it is easily shown that the adjoint operator LY is given by

1d df

xf __ = Y 2GS
Lir =73 dx('o dx)

DILF1={f=LXG, p*dx); f is continuously differentiable on G, df/dx

is absolutely continuous, and 1/p*-d(p*df/dx)/dx=L*G, p*dx)}.

Let us define m(x):gxpz(t)dl‘ and s(x):gxl/‘oz(t)dt (ro<c<r). Then the operator

L, can be represented as L,=d/dm-d/ds. In the same way as in Example
1.2.2 in [8], we can show that F*"Ker (a—L¥)={0} if and only if both of 7,
and r, are not regular boundaries. Let us denote by ¢° the smallest closed
extension. Then, since &% can be orthogonally decomposed as F*=F°EH(F™N
Ker(a—L})), we can conclude that $*=&° and consequently L, satisfies the
uniqueness of Markovian extension if and only if both », and r, are not regular.
On the other hand, by virtue of the table in Wielens [18; pp. 111] we see that
the operator L, is not essentially self-adjoint if », or », is a weak entrance

T |
boundary, i.e. lg s(Pdmt)| < oo (r=r, Or r,).

|
lJe
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ExaMPLE 2. Let G=R* {0} and p(x)=|x|". Let us denote L,, ;v by L,
simply. Then the operator L, is written as Lyp=A¢+2r2&,] x| *x: V0, o=
C5(R™{0}). If r>—d/2, the function |x|” belongs to Lz (R¢?, 1%) and the

symmetric form &(u, L’):2§=lgkd‘7ﬂt-vilei27d2d, i, ve C<(RY), is closable on

L*R?, |x|*2*) by Theorem 2.4 in [4]. Let us denote by & the closure of
C35(R?) with respect to &,=&-(,)i.12r2¢ and by Cap the capacity associated
with the Dirichlet form (&, ). Then, if —d/2<y<1-—d/2, Cap({0})>0 ([2;
Theorem 4.1]). Consequently, we see that $°CF, where §° is the closure of
C5(R*™{0}) with respect to &,. In fact, if $° is equal to &, then for f C<(R?%)
with f=1 on B,={|x|<r} there exists a sequence {f,}CC3(R*\{0}) such
that &(f—fn, f—fn)—0 (n--0). But since Cap ({0})<&(f—fn, f—fr), we have
Cap ({0})=0, and which is contradictory to the fact that Cap({0})>0. There-
fore, noting that FCF*, we can say that non-uniqueness of Markovian exten-
sion of L, holds.

On the other hand, if y=1—d,2, Cap ({0})=0([2; Theorem 4.13). By Prob-
lem 3.3.2 in [8], we see that Cap ({0})=limn... Cap (By/»)=lim.c infuep &:(u, u),
where D,={u=C%; u=l on B,,}. Hence, there exists a sequence {f,}C
C%(R%) such that f,=1 on B,,, and &,(f ., f»)—0 (n—0). Moreover we assume
that f,—0, A%a.e. by taking a sebsequence if necessary. Given u<=&3, define
Uup=u—uf,=%;. Then we obtain

ET(U—tUn, u—un) = EXufn, ufr)

- i gG(Di(ufn)) [x|?7dA*+ gcuzf%[xﬁi’dzd

=1/

I
M&

S (Diwe-fatu ‘7fnflxlzrd,zd+SGu2f%!x}zrdzd

1

-
I

<23 | (Do £ 17t 42128 Fry F)0 (n0).

Next let us choose a sequence of C3(R?)-functions ¢, satisfying that i) ¢,(x)
:{ 1 |x|=£p

0 [xlzp+1
easily see that &,(up—u,¢y, Un—U@,)—0 as p—co. Moreover since u,¢,&
WLB,,,—B,,,), there exists a sequence {¢,}CC%(Bysi—Bya) such that
[tn@p—ll1,o—0 (g—e0) and equivalently & (U n@p—¢y, Un@pr—da)—0 (g—co).
Therefore we can say that F,=*, and which implies the uniqueness of
Markovian extension of L,. Noting that the operator L,T C5(R*\{0}) on
LR, | x|%2%) is unitary equivalent with A—{y(r+d—2)}/1x|* T C5(R*\{0}), it
follows from Kalf-Walter-Schmincke-Simon theorem (see [15]) that the operator
L. 1 C(R*{0}) is essentially seif-adjoint if and only if 7{(7+d+2)=z—d(d—4)/4

ii) jgrad ¢,//<2. Then by the same argument as above, we
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(or=—d/2, y=2—d/2+2).
Figure 1. The operator A—i—Zr_}d“_J x| 72x;-V; 1 C(R®—{0})
i=1

[4

¢ [ 3T
v —

—d/2 —d/2+1 —d/2+2 7

£

1), 4): essentially self-adjoint

2), 3): not essentially self-adjoint
2): non-unique Markovian extension
3): unique Markovian extension

REMARK 2. Let p be a function in L2 (R?, A%) satisfying that there exists

a closed set N of Lebesgue measure zero such that derivatives V;p are in

L (R N). Furthermore, let us suppose that ess- Ii&nf o(x)>0 and ess: sup o(x)
zeK re

<o for any compact set KCR“ N. Then, by applying Theorem 2.4 in [4]
we see that the symmetric form on L*R? p®1%) defined by &(u, v)=

2?=1SRdViu'viUp2d;td, u, veCP(R?) is closable. Let us denote by & the closure

of C3(R%). Then, if the set N is not only of zero Lebesgue measure but also
of zero capacity introduced by the Dirichlet form (&, &), we can prove by the
same discussion as in Example 2 that the symmetric operator L, T CH(R*\N)
has a unique Markovian extension.

EXAMPLE 3. Let G be a bounded Lipschitz domain and p be a function
satisfying (1.1). Let d(x)=inf{|x—y|; y=dG}. In [13], Sobolev spaces with
the weight function d(x)* (in notation W*G; d, #)) were investigated. In
particular, it was shown that the space W#*!G; d, p) is identified with
WeHG; d, ) if p<—1 or p>ki—1. Here, Wi (G; d, p) is the closure of C3(G)
in W#YG; d, p). Therefore, if the function p satisfies that 0<c,d(x)"=<p(x)
<c,d(x)*, the operator L, T C5(G) has a unique Markovian extension if p<—1/2
or #>1/2. On the other hand, we see from Theorem 3.3 in that L, is
not essentially self-adjoint if —1/2<x<1/2, and do not know when L, becomes
essentially self-adjoint.



Maximum Markovian extensions 129

REMARK 3. Even in the case treated in [5], [6], our method is efficient.

But in that case, Radon measures J and %2 which are introduced in and
(1.10) must be replaced by cylindrical Radon measures.
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