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\S 1. Introduction.

Let $H=\{z=x+iy\in C|{\rm Im} z=y>0\}$ be the complex upper half plane given
the Riemann structure

(1.1) $ds^{2}=y^{-2}(dx^{2}+dy^{2})$ ,

and let $G=PSL(2, R)=SL(2, R)/\{\pm 1\}$ . Then the group $G$ acts on $H$ as linear
fractional transformation:

$\gamma z=\frac{az+b}{cz+d}$ , $\gamma=(\begin{array}{ll}a bc d\end{array})\in G$ ,

and moreover the metric (1.1) gives rise to a $G$-invariant measure and the
Laplace operator whose explicit forms are

(1.2) $d\mu(z)=y^{-2}dxdy$

and

(1.3) $D=y^{2}( \frac{\partial^{2}}{\partial_{X^{2}}}+\frac{\partial^{2}}{\partial y^{2}})$ .

Throughout this paper, we will suppose that $\Gamma(\subset G)$ is a congruence sub-
group, though there is no need to make this restriction. In fact, all results
given in this material can be generalized to any Fuchsian group of the first
kind with a cusp $\infty$ by slight modifications. We further denote by $9_{\Gamma}(=\Gamma\backslash H)$

the fundamental domain of $\Gamma$ , which is always noncompact.
Let now $L^{2}(9_{\Gamma})$ be the Hilbert space consisting of all functions which are

automorphic with respect to $\Gamma$ and square integrable on $9_{\Gamma},$ $i.e.$ ,

$L^{2}(9_{\Gamma})=\{f_{\vee}|f(\gamma z)=f(z)$ for $\gamma\in\Gamma,$ $\int_{g_{\Gamma}}|f(z)|^{2}d\mu(z)<\infty\}$ .

Then, the space $L^{2}(9_{\Gamma})$ has a spectral decomposition in accordance with the
operation of $D$ :

$L^{2}(9_{\Gamma})=L_{0}^{2}(9_{\Gamma})\oplus C\oplus L_{c}^{2}(9_{\Gamma})$ ,
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where each term on the right hand side denotes respectively the space of cusp
forms, the space of constant functions and continuous part of the spectrum.
Furthermore the space $L_{0}^{2}(9_{\Gamma})$ has an orthogonal basis $\{f_{j}\}_{j\geqq 1}$ consisting of
eigenforms of $D$ , which are called Maass wave forms (see [9: Theorem 5.2.4]
and [6: Remark 9.7] $)$ . We write $Df_{j}=-\lambda_{j}f_{j}$ and $\lambda_{j}=s_{j}(1-s_{j}),$ $s_{j}\in C$ for each
$j\geqq 1$ . If we plot the points $s_{j}(j\geqq 1)$ on the complex plane, which are determined
correspondingly by the value of $\lambda_{j}$ , since all $\lambda_{j}$ are positive, infinite number of
$s_{j}$ lie in the critical line and a finite number of $s_{j}$ in the real segment $(0,1)$ if
there exists. The eigenvalue $\lambda_{j}$ which produces a real point $s_{j}$ is called the
exceptional eigenvalue. Whether or not exceptional eigenvalues are in existence
is an important problem. Non-existence of such eigenvalues for congruence
subgroups $\Gamma$ has been conjectured by Selberg [15], which is equivalent to the
assertion $\lambda_{j}\geqq 1/4$ for all $j\geqq 1$ .

REMARK 1. This conjecture was proved for $\Gamma=PSL(2, Z)$ by Maass [11]

or Roelcke [13], and recently proved by Huxley [7] for Hecke congruence
groups $\Gamma_{0}(N)$ with $N\leqq 17$( $cf$ . $[8$ : P. 173]). For more examples which satisfy
$\lambda_{j}\geqq 1/4$ , see also Sarnak [14] or Hejhal [5: Notes for chapter eleven].

Let $q$ be the smallest positive integer such that ( $q1)\in\Gamma$ . Then the
Kloosterman sum is defined by

$S(m, n, c, \Gamma)=$ $\sum_{0\leqq a,0\leqq a\epsilon_{qc}^{qc}}e(\frac{1}{qc}(ma+nd))$ , $(\begin{array}{ll}a *c d\end{array})\in\Gamma$

for $c>0$ , where $m,$ $n\in Z_{\neq 0}$ and $e(x)=\exp(2\pi ix)$ . Moreover we denote Selberg’s
Kloosterman zeta function by

(1.4) $Z_{m,n}(s, \Gamma)=\sum_{c>0}\frac{S(m,n,c,\Gamma)}{c^{2S}}$ .

Since it is clear that $|S(m, n, c, \Gamma)|\leqq qc$ , this series converges absolutely for
${\rm Re}(s)>1$ . If we then use Weil’s estimate for Kloosterman sums (cf. [8: P.
178]), it follows that the range of absolute convergence can be taken as ${\rm Re}(s)>$

$3/4$ . The analytic properties of the Kloosterman zeta function after continued
to ${\rm Re}(s)>1/2$ are closely connected with, through the estimation of sums of
Kloosterman sums, a problem for Fourier coefficients of holomorphic automorphic
forms or several kinds of ones in analytic number theory (see [1] or [8]).

Next, let us denote by $T$ the set of exceptional eigenvalues $s_{j}$ which satisfy
$1/2<s_{j}<1$ . Then, for any positive $\epsilon$ chosen so that $(1/2, (1/2)+2\epsilon)\cap T=\phi$ , we
define the domain $U_{\epsilon}$ in the complex $s$-plane to be

(1.5) $\{\sigma|\frac{1}{2}<\sigma<\frac{1}{2}+\epsilon\}\cross\{\tau||\tau|\leqq 1\}$
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for $s=\sigma+i\tau$ . Moreover put $M$ to be any fixed positive number such as $M>1$ .
Under this setting, the purpose in the present article is to prove the following

THEOREM. The Kloosterman zeta function $Z_{m,n}(s, \Gamma)$ defined by (1.4) can
be continued meromorphically to ${\rm Re}(s)>1/2$ with at most a finite number of simple
poles at $s=s_{j}$ lying in (1/2, 1), and satisfies the following estimate

(1.6) $Z_{m.n}(s, \Gamma)=0(q^{2\sigma}\frac{|mn|^{1/2}|\tau|^{1/2}}{(\sigma-(1/2))^{3}})$

for $s=a+i\tau,$ $1/2<a<M$ as $|\tau|\geqq 1$ , where the implied constant depends solely on
$M$, and moreover

(1.7) $Z_{m,n}(s, \Gamma)=O(q^{2\sigma}\frac{|mn|^{1/2}}{(a-(1/2))^{3}\sqrt{}\overline{\tau}^{2}\overline{+(a-(1/2))^{2}}})$

for $s\in U_{\epsilon}$ with an absolute constant in O-symbol.

The first advances in this direction were made by Goldfeld-Sarnak [4:

Theorem 1]. They obtained $o$ ($\frac{|mn|}{q^{2}}$ $\frac{|\tau|^{1/2}}{a-(1/2)}vol(9_{\Gamma})$) as $|\tau|_{=}1$ , and Hejhal

[5: P. 709] more refined formula, say, roughly speaking, $\min\{|m||n|^{1/2}, |m|^{1/2}|n|\}$

and $(\sigma-(1/2))^{2}$ instead of $|mn|$ and $(a-(1/2))$ . Hence our result is a slight
improvement of them with respect to the growth of $m$ and $n$ . In addition, it
should be noted that both Goldfeld-Sarnak and Hejhal observed such problem
in more general situations.

In order to derive the growth condition of the Kloosterman zeta function,
the usual way is to consider the inner product with respect to the non-holomor-
phic Poincar\’e series. Such inner product has already been calculated by several
authors, and known up to now, to have two types of representations. The
one is by Goldfeld-Sarnak or Hejhal, and the other is by Kuznetsov [10: Lemma
in section 4] or Deshouillers-Iwaniec [1: Lemma 4.1 and 4.3]. On the other
hand, in [18], we derived new formula for Fourier coefficients of the non-
holomorphic Poincar\’e series. By making use of such formula, we can obtain
the new type of representation for the inner product in the case of $mn>0(see$

Proposition in section 2). From this, the assertion of Theorem follows naturally.
Furthermore, if we apply Theorem to the estimation for sums of Kloosterman
sums, by similar process of evaluation as in Hejhal [5: Appendix $E$], we can
see, for example, the following

COROLLARY. Let $\Gamma$ be the Hecke congruence group $\Gamma_{0}(N)$ with $N\leqq 17$ .
Then, since Selberg’s eigenvalue conjecture is true, and since $q=1$ , we have

$\sum_{c<x}\frac{S(m,n,c,\Gamma)}{c}=O(|mn|^{1/2}x^{1/6}(\log x)^{2})$
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with an absolute constant in O-symbol.

The above result is also a slight improvement of [4: Theorem 2] and [5:

P. 694] when we restrict ourselves to such congruence groups.

\S 2. Inner product formula.

In thls section, we will calculate the inner product of the non-holomorphic
Poincar\’e series, and at that time, we use the formula obtained in [18] as a
representation for Fourier coefficients of such series. We now start with in-
troducing the non-holomorphic Poincar\’e series.

Let $\Gamma_{\infty}$ be the stabilizer of a cusp $\infty$ in $\Gamma$ , i. e., $\Gamma_{\infty}=\{$( $qn1$) $|n\in Z\}$ , and

let $m$ be an arbitrary nonzero integer. Then the non-holomorphic Poincar\’e
series is defined by

(2.1) $P_{m}(z, s, \Gamma)=\sum_{\gamma\in\Gamma_{\infty}\backslash \Gamma}\exp\{\frac{2\pi}{q}i(mx(\gamma z)-|m|y(\gamma z))\}y(\gamma z)^{s}$

for $z\in H$ and $s\in C$ , where $\gamma z=x(\gamma z)+iy(\gamma z)$ . This series converges absolutely
for ${\rm Re}(s)>1$ and belongs to the Hilbert space $L^{2}(9_{\Gamma})$ in this region. Moreover
we set $a_{m}(y, s, n, \Gamma)$ to be the nth Fourier coefficient of $P_{m}(z, s, \Gamma)$ , namely

$\{$

$P_{m}(z, s, \Gamma)=\sum_{n=-\infty}^{\infty}a_{m}(y, s, n, \Gamma)e(\frac{n}{q}x)$ ,

$a_{m}(y, s, n, \Gamma)=\frac{1}{q}\int_{0}^{q}P_{m}(x+iy, s, \Gamma)e(-\frac{n}{q}x)dx$ .

For two elements $f$ and $g$ of $L^{2}(9_{\Gamma})$ , the inner product denoted by $\langle f, g\rangle$

implies the following integral:

$\int_{9_{\Gamma}}f(z)\overline{g(z)}d\mu(z)$ ,

where $\overline{g}$ is the complex conjugate of $g$ . Note that $f(z\overline{)g(z)}$ and $d\mu(z)$ are in-
variant under the action of $\Gamma$ . Thus the above integral is well-defined.

If we consider the inner product for $P_{m}$ and $P_{n}$ , it is well known to hold
that

(2.2) $\langle P_{m}(z, s, \Gamma), P_{n}(z,\overline{w}, \Gamma)\rangle=q\int_{0}^{\infty}a_{m}(y, s, n, \Gamma)y^{w-2}e^{-2\pi|n\}y/q}dy$

where $m,$ $n\in Z_{\neq 0}$ and $s,$ $w\in C$ with ${\rm Re}(s)>1,$ ${\rm Re}(w)>1$ , furthermore $\overline{w}$ means
the complex conjugate of $w$ . Then calculations of the right hand side of (2.2)

after substituting the formula described in [18] for $a_{m}$ give the following

PROPOSITION. Let $m$ and $n$ be nonzero integers, and for two complex numbers
$s$ and $w$ , let us denote by $P_{m}(z, s, \Gamma)$ and $P_{n}(z,\overline{w}, \Gamma)$ two non-holomorphic Poincar\’e

senes defined by (2.1). Then, under the conditions ${\rm Re}(s)>1$ and ${\rm Re}(w)>1$ , we have
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$\langle P_{m}(z, s, \Gamma), P_{n}(z,\overline{w}, \Gamma)\rangle=\delta_{m,n}q(4\pi\frac{|m|}{q})^{1- S- w}\Gamma(s+w-1)$

(2.3) $+2f_{m,n}(s, w) \sum_{c>0}S(m, n, c, \Gamma)c^{-(1+S)}\alpha^{w-1}K_{w- s}(\alpha)$

$- \epsilon_{m,n}f_{m.n}(s, w)\sum_{c>0}S(m, n, c, \Gamma)c^{-(1+S)}\alpha^{w}R_{m,n}(s, w, c, \Gamma)$

where $\delta_{m,n}$ is the Kronecker symbol, $\epsilon_{m.n}$ equals 1 or $0$ according as $mn>0$ or
$mn<0,$ $\alpha=4\pi|mn|^{1/2}(qc)^{-1}$ and

$f_{m,n}(s, w)=2^{4- s- 3w} \pi^{2- w}q^{w- 1}\frac{\Gamma(s+w-1)}{\Gamma(s)\Gamma(w)}|m|^{(1-S)/2}|n|^{(s- 2w+1)/2}$

furthermore

$R_{m,n}(s, w, c, \Gamma)=\int_{0}^{1}K_{w- s}(\alpha u^{1/2})u^{(S+w)/2}(1-u)^{-1/2}J_{1}(\alpha(1-u)^{1/2})du$

$+ \int_{0}^{1}K_{w- s}(\alpha u^{1/2})u^{(S+w-2)/2}(1-u)^{1/2}J_{1}(\alpha(1-u)^{1/2})du$

in which $K_{w-s}$ and $J_{1}$ denote the modified Bessel function and the Bessel function
respectively.

REMARK 2. In the case of $mn<0$ , the inner product formula for $P_{m}$ and
$P_{n}$ is very simple. This formula for $mn<0$ has already been obtained by
Deshouillers-Iwaniec [1: Lemma 4.3] with complete coincidence, while they
used a usual representation for $a_{m}(y, s, n, \Gamma)$ different from ours. But, it
should be noted that even in the case of $mn<0$ , we can not prove the assertion
of Theorem without using the formula in the case of $mn>0$ as stated in (2.3).

This fact is readily shown from taking Lemma in section 3 into our consideration.

The modified Bessel function $K_{\nu}$ is defined, for example, by

(2.4) $K_{\nu}(y)= \frac{1}{2}(\frac{y}{2})^{\nu}\int_{0}^{\infty}\exp(-t-\frac{y^{2}}{4t})t^{-v-1}dt$

for $y>0$ ([16: P. 183, (15)]), and the Bessel function $J_{\nu}$ by

(2.5) $J_{\nu}(y)= \pi^{-1/2}\Gamma(\nu+\frac{1}{2})^{-1}(\frac{y}{2})^{\nu}\int_{-1}^{1}e^{iyt}(1-t^{2})^{\nu-(1/2)}dt$

for ${\rm Re}(\nu)>-1/2$ and $y>0$ ( $[2$ : Vol. 2, P. 81, (7)]). Then it follows immediately
from (2.5) that the Bessel function can be estimated by

(2.6) $J_{\nu} \langle y)=O(|\Gamma(\nu+\frac{1}{2})|^{-1}y^{{\rm Re}(v)}\frac{1}{{\rm Re}(\nu)+(1/2)})$

under the restriction ${\rm Re}(\nu)>-1/2$ and $y>0$ .

PROOF OF PROPOSITION. We will denOte, frOm nOW On, $P_{m}(z, s, \Gamma),$ $a_{m}(y$ ,
$s,$ $n,$

$\Gamma)$ and $S(m, n, c, \Gamma)$ respectively by $P_{m}(z, s),$ $a_{m}(y, s, n)$ and $S(m, n, c)$
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for simplicity. As stated in [18: Theorem $B$], the nth Fourier coefficient
$a_{m}(y, s, n)$ of $P_{m}(z, s)$ has the following representation subject to the condition
${\rm Re}(s)>1$ :

$a_{m}(y, s, n)=\delta_{m,n}y^{s}e^{-2\pi|n|y/q}$

(2.7)
$+ \frac{2}{\Gamma(s)}(\frac{2\pi}{q})^{s+1}|m|^{(1- s)/2}|n|^{(3s- 1)/2}y^{s}\sum_{C>0}S(m, n, c)c^{-(1+S)}\tilde{A}_{m}(y, s, n, c)$

where $\tilde{A}_{m}(y, s, n, c)$ denotes

$\int_{0}^{\infty}\exp\{-\beta y(1+2t^{2})\}t^{2s- 1}(1+t^{2})^{(s- 1)/2}J_{S-1}(\alpha(1+t^{2})^{1/2})dt$

for $mn>0$ , and

$\int_{0}^{\infty}\exp\{-\beta y(1+2t^{2})\}t^{S}(1+t^{2})^{s-1}J_{S-1}(\alpha t)dt$

for $mn<0$ , in which $\alpha=4\pi|mn|^{1/2}(qc)^{-1}$ and $\beta=2\pi|n|/q$ .
What we must carry out is to compute the integral on the right side of

(2.2) after replacing $a_{m}(y, s, n)$ by the right in (2.7). To do this, we first need
to verify the absolute convergence of such representation. It follows directly
from (2.6) that

$\tilde{A}_{m}(y, s, n, c)=O\{e^{-\beta y}\alpha^{\sigma-1}(1+\frac{(\beta y)^{1-2\sigma}}{|\Gamma(s-(1/2))|}\cdot\frac{1}{a-(1/2)})\}$

for $\sigma={\rm Re}(s)>1/2$ in both cases $mn>0$ and $mn<0$ . Since $a=4\pi|mn|^{1/2}(qc)^{-1}$ ,
the integrand on the right side of (2.2) can be estimated, after substituting the
above into (2.7), by

$0\{\delta_{m,n}y^{\sigma’+\sigma- 2}e^{-2\beta y}+\sum_{c}\frac{|S(m,n,c)|}{c^{2\sigma}}y^{\sigma’+\sigma-2}e^{-2\beta y}(1+\frac{(\beta y)^{1-2\sigma}}{|\Gamma(s-(1/2))|}\cdot\frac{1}{a-(1/2)})\}$

where $a={\rm Re}(s)$ with at least $\sigma>1/2,$ $\sigma’={\rm Re}(w)$ and $\beta=2\pi|n|/q$ . Here, if we
temporarily suppose that $a’>a>1$ , the absolute convergence of the integral in
(2.2) follows. Thus, under this condition, we can change not only the order
of summation over $c$ and integration over $y$ , but also that of integrations over
$y$ and $t$ . Then after integration with respect to $y$ under the integral sign
with respect to $t$ , the integral in (2.2), and hence the inner product $\langle P_{m}(z, s)$ ,
$P_{n}(z,\overline{w})\rangle$ can be expressed, for which ${\rm Re}(w)>{\rm Re}(s)>1$ , as

$\delta_{m,n}q(4\pi\frac{|m|}{q})^{1- s-w}\Gamma(s+w-1)$

(2.8)

$+f_{m.n}(s, w)2^{w} \Gamma(w)\sum_{>c0}S(m, n, c)c^{-(1+S)}\tilde{B}_{m}(s, w, n, c)$

where $f_{m.n}(s, w)$ is as in (2.3) and $B_{m}(s, w, n, c)$ presents the following integral
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according to the condition of $mn$ :

(2.9) $\int_{0}^{\infty}t^{2s- 1}(1+t^{2})^{(1- s- 2w)/2}J_{S-1}(a(1+t^{2})^{1/2})dt$

for $mn>0$ and

(2.10) $\int_{0}^{\infty}t^{s}(1+t^{2})^{-w}J_{S- 1}(at)dt$

for $mn<0$ .
In case of $mn<0$ , one knows from [2: Vol. 2, P. 95, (51)] that

$\int_{0}^{\infty}t^{\mu+1}(1+t^{2})^{-\nu}J_{\mu}(bt)dt=2^{1-\nu}b^{\nu-1}\Gamma(\nu)^{-1}K_{\nu-\mu- 1}(b)$

for $2{\rm Re}(\nu)-(1/2)>{\rm Re}(\mu)>-1$ and $b>0$ . By using tbis, the integral in (2.10)

turns out to be equal to $2^{1-w}\alpha^{w-1}\Gamma(w)^{-1}K_{w-s}(a)$ if we recall $K_{w-S}=K_{s-w}$ .
Thus considering (2.8), we obtain the desired formula still under the assumption
that ${\rm Re}(w)>{\rm Re}(s)>1$ . The condition ${\rm Re}(w)>{\rm Re}(s)$ is not essential. Indeed, we
can exclude it later. The formula obtained just now completely coincides with
that of [1: Lemma 4.3].

Next, let us consider the case $mn>0$ . Thus $\tilde{B}_{m}(s, w, n, c)$ stands for the
integral in (2.9), which itself converges absolutely for ${\rm Re}(w)>{\rm Re}(s)>1/2$ . This
case requires more calculations than that of $mn<0$ . We first recall the recur-
rence relation for the Bessel function ([16: P. 45, (1)]):

$J.-1(y)=2\nu y^{-1}J_{\nu}(y)-J_{\nu+1}(y)$ .

Utilizing this, we then divide the integrand in (2.9) into two terms and realize

$\tilde{B}_{m}(s, w, n, c)=2sa^{-1}\int_{0}^{\infty}t^{2s- 1}(1+t^{2})^{-w-(S/2)}J_{s}(a(1+t^{2})^{1/2})dt$

(2.11)

$- \int_{0}^{\infty}t^{2s- 1}(1+t^{2})^{-w+1-(S+1)/2}]_{s+1}(a(1+t^{2})^{1/2})dt$ .

We note here that the first term in the above converges absolutely for ${\rm Re}(w)>$

${\rm Re}(s)>0$ and the second term for ${\rm Re}(w)-(1/2)>{\rm Re}(s)>0$ . Both the first term
and the second term on the right hand side of (2.11) have quite similar process
of evaluation to each other. Thus, we mainly focus our attention on the first
term and will discuss this term in detail.

From now on, we will denote the first term in (2.11) by $\tilde{B}_{m,1}(s, w, n, c)$ .
In the beginning, from the addition formula for the Bessel function stated in
[16: P. 366, (13)], we have

(2.12) $(1+t^{2})^{-S/2}J_{s}(a(1+t^{2})^{1/2})=2^{s} \sum_{\iota=0}^{\infty}g(s, l)\frac{J_{S+2l}(at)}{t^{s}}\cdot\frac{J_{S+2l}(a)}{\alpha^{s}}$

where $g(s, l)=(-1)^{l}(s+2l)\Gamma(s+l)/l!$ . Then, it is found from [16: P. 50, (3) or
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P. 369, (8) $]$ that

$J_{s+2l}(y)= \pi^{-1/2}(-1)^{\iota}\frac{\Gamma(2s)(2l)[}{\Gamma(s+(1/2))\Gamma(2s+2l)}(\frac{y}{2})^{s}\int_{-1}^{1}e^{iyx}(1-x^{2})^{s-(1/2)}C_{2l}^{s}(x)dx$

for any non-negative integer $l,$ ${\rm Re}(s)>-1/2$ and $y>0$ , where $C_{2}^{s_{l}}(x)$ is Gegen-
bauer’s polynomial defined, for example, by [2: Vol. 1, P. 176, (10) or Vol.
2, P. 175, (11) $]$ . By using the integral representation [2: Vol. 2, P. 177, (31)],
$C_{2}^{s_{l}}(x)$ can be estimated by

$0( \frac{\Gamma(2s+2l)}{(2l)!}\cdot\frac{1}{{\rm Re}(s)})$

for ${\rm Re}(s)>0$ and $|x|\leqq 1$ , where the constant in $0$-symbol depends on $s$ alone.
Thus, it is readily shown from this to hold that

(2.13) $J_{s+2\iota}(y)=O(y^{{\rm Re}(S)} \frac{1}{{\rm Re}(s)})$

for ${\rm Re}(s)>0$ , where the implied constant depends only on $s$ . Applying (2.13)

to $J_{s+2l}(\alpha t)$ and (2.6) to $J_{s+2l}(\alpha)$ , we easily obtain

$\sum_{l}|g(s, l)\frac{J_{s+2\iota}(at)}{t^{s}}\cdot\frac{J_{S+2l}(a)}{\alpha^{s}}|=O(\frac{1}{{\rm Re}(s)})$

for ${\rm Re}(s)>0$ , where the constant in $0$-symbol depends on $s$ and $a$ . Here, if we
impose the condition on $s$ and $w$ that ${\rm Re}(w)>{\rm Re}(s)>0$ , it is derived from the
last estimate that the function $B_{m,1}(s, w, n, c)$ after substitution as in (2.12)
converges absolutely. Therefore, under such condition for $s$ and $w$ , we can
change the order of summation over 1 and integration over $t$ . After this, we
further use the following integral representation:

$(1+t^{2})^{-w}= \frac{1}{\Gamma(w)}\int_{0}^{\infty}e^{-(1+t^{2})v}v^{w- 1}dv$

for ${\rm Re}(w)>0$ . Then, again from (2.13), it is easily seen that the two multiple
integral over $t$ and $v$ in each summand with respect to $l$ converges absolutely
under ${\rm Re}(w)>{\rm Re}(s)>0$ . Thus, we can also interchange the order of integrations
with respect to $t$ and $v$ . Consequently, these arguments bring

$\tilde{B}_{m,1}(s, w, n, c)=2^{s+1}\frac{sa^{-1-S}}{\Gamma(w)}\sum_{l=0}^{\infty}g(s, l)J_{s+2l}(a)$

(2.14)
$\cross\int_{0}^{\infty}e^{-v}v^{w-1}\int_{0}^{\infty}e^{-vt^{2}}t^{s-1}J_{S+2l}(\alpha t)dtdv$

for ${\rm Re}(w)>{\rm Re}(s)>0$ , where $g(s, l)=(-1)^{\iota}(s+2l)\Gamma(s+l)/l$ !
We now proceed further. Noting [2: Vol. 2, P. 50, (22)] or [16: P. 393,
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(2) $]$ and using the integral representation for a confluent hypergeometrlc func-
tion, we see

$\int_{0}^{\infty}e^{-vt^{2}}t^{s- 1}J_{s+2l}(\alpha t)dt$

$=2^{-(s+1+2\iota)}v^{-(S+l)} \frac{a^{s+2\iota}}{\Gamma(1+l)}\int_{0}^{1}\exp(-\frac{\alpha^{2}}{4v}(1-u))u^{l}(1-u)^{s- 1+l}du$

for ${\rm Re}(s)>0$ . Then repeating partial integration $l$ -times, the last formula may
be rewritten as

(2.15) $(-1)^{l}2^{-(1+s)}v^{-S} \frac{\alpha^{s}}{l!}\int_{0}^{1}\exp(-\frac{a^{2}}{4v}(1-u))\frac{d^{\iota}}{du^{l}}[u^{\iota}(1-u)^{s- 1+l}]du$

for ${\rm Re}(s)>0$ . In order to evaluate the integral in (2.15) more explicitly, we
shall introduce Jacobi’s polynomial. As stated in [2: Vol. 2, P. 169, (10)], it
is defined, after slight modification by putting $x=2u-1$ , by the equation:

(2.16) $\tilde{P}_{l}(\mu, \eta, 2u-1)=\frac{(-1)^{l}}{l!}(1-u)^{-\mu}u^{-\eta}\frac{d^{l}}{du^{l}}[u^{\eta+l}(1-u)^{\mu+l}]$ .

Moreover, the formula described in [2: Vol. 2, P. 170, (16)] shows

(2.17) $fl_{\iota}( \mu, \eta, 2u-1)=(-1)^{l}\frac{\Gamma(\eta+1+l)}{\Gamma(\eta+1)l!}F(-l, \mu+\eta+1+l;\eta+1;u)$

where $F=_{2}F_{1}$ is a hypergeometric function. Then the equality (2.16) under the
assumption ${\rm Re}(\mu)\geqq 0,$ ${\rm Re}(\eta)\geqq 0$ and $0<u<1$ gives

(2.18) $| \tilde{P}_{l}(\mu, \eta, 2u-1)|\leqq 2^{l}l!|_{(\mu+1)l!}^{(\mu+1+l)}\frac{\Gamma}{\Gamma}$ $| \frac{\Gamma(\eta+1+l)}{\Gamma(\eta+1)l!}$ .

Keeping (2.14) and (2.15) in mind, and taking $\mu=s-1,$ $\eta=0$ in (2.16) or
(2.17), we now consider the following series:

$\sum_{l=0}^{\infty}g(s, l)\tilde{P}_{\iota}(s-1,0,2u-1)J_{S+2l}(a)$

(2.19)

$= \sum_{l=0}^{\infty}(-1)^{l}g(s, l)F(-l, s+l;1;u)J_{s+2l}(a)$

where $g(s, 1)=(-1)^{l}(s+2l)\Gamma(s+l)/l$ !. In view of (2.18) and (2.6), it follows
immediately that the series in (2.19) converges absolutely for ${\rm Re}(s)\geqq 1$ . Then
we further show that the function $B_{m,1}(s, w, n, c)$ defined by (2.14) after replac-
ing the integral over $t$ by the right in (2.15) also converges absolutely for
${\rm Re}(w)>{\rm Re}(s)$ . After all, in such representation for $\tilde{B}_{m.1}(s, w, n, c)$ , it is possible
to change the order of summation over 1 and integrations over $v$ and $u$ as far
as ${\rm Re}(w)>{\rm Re}(s)\geqq 1$ . Here, recalling the formula stated in [16: P. 140, (3)], we
easily find that the series in (2.19) is identical with $2^{-s}\alpha^{s}J_{0}(au^{1/2})$ . Collecting
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these facts, we can obtain the following equality:

$\tilde{B}_{m.1}(s, w, n, c)=2^{-s}\alpha^{s-1}\frac{s}{\Gamma(w)}\int_{0}^{\infty}e^{-v}v^{w-s-1}$

(2.20)
$\cross\int_{0}^{1}\exp(-\frac{a^{2}}{4v}(1-u))(1-u)^{s-1}J_{0}(\alpha u^{1/2})dudv$

for ${\rm Re}(w)>{\rm Re}(s)\geqq 1$ .
TO deduce the desired formula, more computation is necessary. Regarding

$s(1-u)^{s-1}$ as $-(d/du)\{(1-u)^{s}\}$ , we first integrate by parts over $u$ under the
integral sign with respect to $v$ and at that time note that

$\frac{d}{du}(u^{-\nu/2}J_{\nu}(\sqrt{}\overline{au}))=-\frac{a^{1/2}}{2}u^{-(\nu+1)/2}J_{\nu+1}(\tau’au)$ ,

which is readily seen from [2: Vol. 2, P. 11, (51)]. Thus, by using $J_{0}(0)=1$ ,

we can reformulate the integral over $u$ completely. Secondly, we replace the
inner integral over $u$ on the right in (2.20) by such formula obtained just now
and make a change of variable $u$ to $1-u$ , then moreover interchange the order
of integrations with respect to $v$ and $u$ . After these processes, we now obtain
the final formula for $B_{m,1}(s, w, n, c)$ :

$\tilde{B}_{m.1}(s, w, n, c)=\frac{2^{-S}}{\Gamma(w)}\alpha^{s-1}\int_{0}^{\infty}\exp(-v-\frac{\alpha^{2}}{4v})v^{w-s-1}dv$

(2.21) $+ \frac{2^{-2-S}}{\Gamma(w)}\alpha^{s}\{\alpha\int_{0}^{1}\int_{0}^{\infty}\exp(-v-\frac{a^{2}}{4v}u\lambda)^{w-s-2}dvu^{S}J_{0}(a(1-u)^{1/2})du$

$-2 \int_{0}^{1}\int_{0}^{\infty}\exp(-v-\frac{\alpha^{2}}{4v}u)v^{w-s-1}dvu^{s}(1-u)^{-1/2}J_{1}(\alpha(1-u)^{1/2})du\}$ .

The second term on the right in the above converges absolutely at least for
${\rm Re}(w)-1>{\rm Re}(s)>-1$ , the first term for ${\rm Re}(w)>{\rm Re}(s)$ and the third term for
${\rm Re}(w)>{\rm Re}(s)>-1$ . Thus considering the condition in (2.20), we temporarily
realize that the equation in (2.21) is valid for ${\rm Re}(w)-1>{\rm Re}(s)\geqq 1$ , while this
restriction is not essential. Anyway we avoid here the arguments of analytic
continuation.

AS for the second term on the right side of (2.11), completely analogous
process of evaluation is possible. We will denote such term by $\tilde{B}_{m.2}(s, w, n, c)$

and describe the results of calculation without detailed proof. Hence we start
with the fact that the function $B_{m,2}(s, w, n, c)$ converges absolutely for ${\rm Re}(w)$

$-1>{\rm Re}(s)>0$ . At first, we have the following representation which corresponds

to (2.14):



On the order of growth of the Kloosterman zeta function 63

$B_{m,2}(s, w, n, c)=-2^{s+1} \frac{\alpha^{-1-s}}{\Gamma(w-1)}\sum_{l=0}^{\infty}g(s+1, l)J_{s+1+2l}(a)$

$\cross\int_{0}^{\infty}e^{-v}v^{w- 2}\int_{0}^{\infty}e^{-vt^{2}}t^{s- 2}Js+1+2l(\alpha t)dtdv$

for ${\rm Re}(w)-1>{\rm Re}(s)>0$ , where $g(s+1,1)=(-1)^{\iota}(s+1+2l)\Gamma(s+1+l)/l$ !. Then,

$\int_{0}^{\infty}e^{-vt^{2}}t^{s-2}J_{S+1+2l}(at)dt$

$=(-1)^{l}2^{-(2+s)}v^{-s_{\frac{\alpha^{s+1}}{\Gamma(2+l)}}} \int_{0}^{1}\exp(-\frac{\alpha^{2}}{4v}(1-u))\frac{d^{\iota}}{du^{l}}[u^{1+l}(1-u)^{s-1+l}]du$

for ${\rm Re}(s)>0$ . If we consider the following series:

$\frac{1}{\Gamma(2)}\sum_{l=0}^{\infty}\frac{l!}{\Gamma(2+l)}g(s+1, l)F_{l}(s-1,1,2u-1)J_{s+1+2l}(\alpha)$

$= \frac{1}{\Gamma(2)}\sum_{l=0}^{\infty}(-1)^{\iota}g(s+1, l)F(-l, s+1+l;2;u)J_{s+1+2\iota}(\alpha)$ ,

it follows from (2.18) and (2.6) that this converges absolutely for ${\rm Re}(s)\geqq 1$ .
Moreover from [16: P. 140, (3)] again, it turns out to be equal to $2^{-S}u^{-1/2}\alpha^{S}\cross$

$J_{1}(au^{1/2})$ . Therefore we find

$\tilde{B}_{m,2}(s, w, n, c)=-2^{-1-S}a^{s}\frac{1}{\Gamma(w-1)}\int_{0}^{\infty}e^{-v}v^{w-S-2}$

$\cross\int_{0}^{1}\exp(-\frac{\alpha^{2}}{4v}(1-u))(1-u)^{s-1}u^{1/2}J_{1}(\alpha u^{1/2})dudv$

for ${\rm Re}(w)-1>{\rm Re}(s)\geqq 1$ which ccrresponds to (2.20). The condition for $s$ and
$w$ is not essential, in fact the above formula itself converges absolutely for
${\rm Re}(w)-1>{\rm Re}(s)>0$ . But we adopt the former in order to avoid the arguments
of analytic continuation.

Before proceeding further, we first make a change of variable $v$ to $v=$

$\alpha^{2}(1-u)v’$ after interchanging the order of integrations over $u$ and $v$ . Again
changing the order of integrations with respect to $u$ and $v$ , the last formula
may be rewritten as

$-2^{-1- s} \alpha^{2(w- 1)-s}\frac{1}{\Gamma(w-}\int_{0}^{\infty}e^{-1/(4v)}v^{w- s- 2}$

$\cross\int_{0}^{1}\exp(-\alpha^{2}v(1-u))(1-u)^{w- 2}u^{1/2}J_{1}(\alpha u^{1/2})dudv$

for ${\rm Re}(w)-1>{\rm Re}(s)\geqq 1$ . Then, regarding $(1-u)^{w-2}$ as $-(1/(w-1))(d/du)\{(1-$

$u)^{w-1}\},$ $aPd$ noting $J_{1}(0)=0$ and

$\frac{d}{du}(u^{\nu/2}]_{\nu}(\sqrt{}\overline{au}))=\frac{a^{1/2}}{2}\iota l^{(\prime^{-1)/2}}J_{\nu- 1}(\sqrt{}\overline{au})$
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which follows immediately from [2: Vol. 2, P. 11, (50)], we apply partial in-
tegration to the inner integral over $u$ . After this, by making a change of
variable $v$ to $\{\alpha^{2}(1-u)\}^{-1}v’$ and $u$ to $1-u$ , we obtain the following equality:

$\tilde{B}_{m,2}(s, w, n, c)$

$=- \frac{2^{-2-S}}{\Gamma(w)}\alpha^{s}\{\alpha\int_{0}^{1}\int_{0}^{\infty}\exp(-v-\frac{\alpha^{2}}{4v}u)v^{w- s- 2}dvu^{S}J_{0}(\alpha(1-u)^{1/2})du$

(2.22)

$+2 \int_{0}^{1}\int_{0}^{\infty}\exp(-v-\frac{a^{2}}{4v}u)v^{w- s- 1}dvu^{s- 1}(1-u)^{1/2}J_{1}(\alpha(1-u)^{1/2})du\}$

for ${\rm Re}(w)-1>{\rm Re}(s)\geqq 1$ .
We will return to the equation in (2.11). The function $\tilde{B}_{m}(s, w, n, c)$ has

been defined by the integral in (2.9) and it converges absolutely for ${\rm Re}(w)>$

${\rm Re}(s)>1/2$ . On the other hand, we have just now calculated each term on the
right side of (2.11) explicitly which is expressed as (2.21) or (2.22). Substituting
(2.21) and (2.22) into the first term and the second term in (2.11) respectively,
we can obtain the following formula:

$\tilde{B}_{m}(s, w, n, c)=\tilde{B}_{m.1}(s, w, n, c)+\tilde{B}_{m,2}(s, w, n, c)$

$= \frac{2^{-s}}{\Gamma(w)}\alpha^{s- 1}\int_{0}^{\infty}\exp(-v-\frac{\alpha^{2}}{4v})v^{w-s-1}dv$

(2.23)
$- \frac{2^{-1-S}}{\Gamma(w)}\alpha^{s}\{\int_{0}^{1}\int_{0}^{\infty}\exp(-v-\frac{\alpha^{2}}{4v}u)v^{w- s- 1}dvu^{s}(1-u)^{-1/2}J_{1}(\alpha(1-u)^{1/2})du$

$+ \int_{0}^{1}\int_{0}^{\infty}\exp(-v-\frac{\alpha^{2}}{4v}u)v^{w- s- 1}dvu^{s- 1}(1-u)^{1/2}J_{1}(\alpha(1-u)^{1/2})du\}$

for ${\rm Re}(w)-1>{\rm Re}(s)\geqq 1$ . Here if we replace the integration over $v$ by $K_{w-s}=$

$K_{S-w}$ in view of (2.4) and recalling the equality (2.8) which is valid for ${\rm Re}(w)$

$>{\rm Re}(s)>1$ , the desired formula stated in (2.3) follows, but still under the condi-
tion ${\rm Re}(w)-1>{\rm Re}(s)>1$ in the case of $mn>0$ .

The inner product $\langle P_{m}(z, s), P_{n}(z,\overline{w})\rangle$ clearly determines a regular function
of the other variable in the half plane ${\rm Re}(s)>1$ and ${\rm Re}(w)>1$ for a fixed value
$s$ and $w$ . Hence it remains to verify that, under the conditions ${\rm Re}(s)>1$ and
${\rm Re}(w)>1$ , the series in (2.8) converges absolutely after substitution (2.23) or
only the first term in (2.23) for $B_{m}(s, w, n, c)$ , according as $mn>0$ or $mn<0$ .
Then by the principle of analytic continuation, we can discard our earlier as-
sumption during the computations that ${\rm Re}(w)-1>{\rm Re}(s)>1$ for $mn>0$ and ${\rm Re}(w)$

$>{\rm Re}(s)>1$ for $mn<0$ . As is easily seen, we have only to consider the case
$mn>0$ , namely the right hand side of (2.23), because tbis case includes that of
$mn<0$ . In general, for $a>0$ , we have the following estimate:
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$\int_{0}^{\infty}\exp(-v-\frac{a}{v})v^{\nu-1}dv=\{$

0(1) for ${\rm Re}(\nu)>0$ ,
$O(1+|\log a|)$ for ${\rm Re}(\nu)=0$ ,
$0(a^{{\rm Re}(\nu)})$ for ${\rm Re}(\nu)<0$ .

Utilizing this estimate, (2.6) and recalling $\alpha=4\pi|mn|^{1/2}(qc)^{-1}$ , we see that
$c^{-(1+S)}\tilde{B}_{m}(s, w, n, c)$ can be estimated by

$O \{c^{-2\min(\sigma.\sigma’)}(1+c^{-1}\frac{1}{\min(a,a’)})\}$

for $\sigma\neq\sigma’$ and

$0 \{c^{-2\sigma}\log c+c^{-1- 2\sigma}(\lim_{uarrow 0}|\log u\cdot u^{\sigma-1}|+\log c)\}$

for $a=\sigma’$ where $\sigma={\rm Re}(s)$ and $a’={\rm Re}(w)$ . This implies that the series in (2.8)

is absolutely convergent under the conditions ${\rm Re}(s)>1$ and ${\rm Re}(w)>1$ , and deter-
mines a holomorphic function of $s$ and $w$ in these regions. Consequently, we
can remove the earlier restriction, and hence the assertion of Proposition is
completely proved.

\S 3. Proof of Theorem.

In this section, we also denote $P_{m}(z, s, \Gamma),$ $S(m, n, c, \Gamma)$ , etc by $P_{m}(z, s)$ ,
$S(m, n, c)$ etc, for the sake of simplicity. In the equation (2.3), the most im-
portant term is

$\langle$ 3.1) $2f_{m.n}(s, w) \sum_{c>0}S(m, n, c)c^{-(1+S)}\alpha^{w-1}K_{w- s}(a)$ .

Then, one knows from [9: P. 15] the following integral representation:

(3.2) $K_{\nu}(y)=2^{\nu-1} \pi^{-1/2}y^{-\nu}\Gamma(\nu+\frac{1}{2})\int_{-\infty}^{\infty}\frac{e^{-iyt}}{(1+t^{2})^{\nu+(1/2)}}dt$

for ${\rm Re}(\nu)>0$ and $y>0$ . Regarding $e^{-\iota yt}=1+(e^{-iyt}-1)$ and noting

$\int_{-\infty}^{\infty}\frac{1}{(1+t^{2})^{\nu+(1/2)}}dt=\pi^{1/2}\frac{\Gamma(\nu)}{\Gamma(\nu+(1/2))}$ ,

we can decompose the function $K_{\nu}(y)$ into two terms, that is

(3.3) $K_{\nu}(y)=2^{\nu-1}y^{-\nu} \Gamma(\nu)+2^{y-1}\pi^{-1/2}y^{-\nu}\Gamma(\nu+\frac{1}{2})Q(\nu, y)$

where

(3.4) $Q( \nu, y)=\int_{-\infty}^{\infty}\frac{(e^{-iyt}-1)}{(1+t^{2})^{\nu+(1/2)}}dt$ .
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Then, it follows from $yt\in R$ that $|e^{-iyt}-1|\leqq|yt|$ . Thus the function $Q(\nu, y)$

converges absolutely for Re(v) $>1/2$ and satisfies

(3.5) $|Q( \nu, y)|\leqq y(2+\frac{1}{{\rm Re}(\nu)-(1/2)})$ .

Hence, the decomposition (3.3) is valid only for Re(v) $>1/2$ . If we apply the
decomposition (3.3) to the function $K_{w\cdot s}(a)$ in (3.1), and moreover if we take
$w=s+1$ , then the equality (2.3) can be rewritten as

$2^{-2s}q \frac{\Gamma(2s)}{\Gamma(s)\Gamma(s+1)}|n|^{-1}Z_{m.n}(s)$

(3.6)
$= \langle P_{m}(z, s), P_{n}(z,\overline{s}+1)\rangle-\delta_{m.n}q(4\pi\frac{|m|}{q})^{-2S}\Gamma(2s)$

$-f_{m,n}(s, s+1) \sum_{c>0}S(m, n, c)c^{-(1+S)}\alpha^{s-1}Q(1, \alpha)$

$+ \epsilon_{m,n}f_{m.n}(s, s+1)\sum_{>co}S(m, n, c)c^{-(1+S)}\alpha^{S+1}R_{m}n(S, s+1, c)$

for ${\rm Re}(s)>1$ , where $\alpha=4\pi|mn|$ $‘/2(qc)^{-1}$ and

$f_{m,n}(s, s+1)=2^{1-4s} \pi^{1-s}q^{s}\frac{\Gamma(2s)}{\Gamma(s)\Gamma(s+1)}|m|^{(1-S)/2}|n|^{-(1+s)/}2$

In order to derive the assertion of Theorem, it is necessary to verify that
each term on the right hand side of (3.6) can be continued to ${\rm Re}(s)>1/2$ and
majorized by $|m|^{1/2}|n|^{-1/2}$ at least for $m$ and $n$ . In the following, we will
denote $s=a+i\tau$ .

3.1. Estimation of the third and fourth terms in (3.6).

Since $|S(m, n, c)|\leqq qc$ , it follows from (3.5) that

$| \sum_{\iota}S(m, n, c)c^{-(1+S)}a^{S-1}Q(1, \alpha)|\leqq 2^{\iota+\sigma}\pi^{\sigma}q^{1-\sigma}|mn|^{\sigma/2}\sum_{c}c^{-2\sigma}$ .

This means that the third term on the right in (3.6) converges absolutely and
uniformly for $a>1/2$ . Thus it becomes a regular function in $a>1/2$ and can
be estimated by

(3.7) $0\{|\frac{\Gamma(2s)}{\Gamma(s)\Gamma(s+1)}|\cdot|\frac{m}{n}|^{1/2}q(1+\frac{1}{a-(1/2)})\}$

with an absolute constant in the O-symbol.
We next consider the fourth term on the right side of (3.6), in which the

function $R_{m,n}(s, s+1, c)$ stands for
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$\int_{0}^{1}K_{1}(au^{1/2})u^{(2s+1)/2}(1-u)^{-1/2}J_{1}(\alpha(1-u)^{1/2})du$

$+ \int_{0}^{1}K_{1}(au^{1/2})u^{(2s-1)/2}(1-u)^{1/2}J_{1}(a(1-u)^{1/2})du$ .

AS shown in [9: P. 29], if we perform Partial integration on the right in (3.2),
it is found that

$K_{\nu}(y)=2^{\nu} \pi^{-1/2}iy^{-(\nu+1)}\Gamma(\nu+\overline{2})\int_{-\infty}^{\infty}\frac{te^{-iyt}}{(1+t^{2})^{v+(3/2)}}dt$ .

This representation gives

(3.8) $K_{\nu}(y)=O \{|\Gamma(\nu+\frac{3}{2})|y^{-{\rm Re}(\nu)-1}(1+\frac{1}{{\rm Re}(\nu)+(1/2)})\}$

for Re(v) $>-1/2$ . Therefore we have $K_{1}(\alpha u^{1/2})=O(\alpha^{-2}u^{-1})$ . By using this
estimate and recalling (2.6), the function $R_{m}n(S, s+1, c)$ is now majorized by

$0(a^{-1} \frac{1}{a-(1/2)})$ .

Consequently, we see that the fourth term on the right hand side of (3.6) can
be estimated by

(3.9) $0\{|\frac{\Gamma(2s)}{\Gamma(s)\Gamma(s+1)}|\cdot|\frac{m}{n}|^{\iota/2}q(1+\frac{1}{\sigma-(1/2)})(\frac{1}{a-(1/2)})\}$

for $\sigma>1/2$ , in which the $0$-symbol is an absolute constant. This estimate also
implies that the series in question converges absolutely and uniformly for $\sigma>1/2$

and determines a holomorphic function in this region.

3.2. Estimation of the inner Product $\langle P_{m}(z, s), P_{n}(z,\overline{s}+1)\rangle$ .
Suppose that ${\rm Re}(s)>1$ . Then the non-holomorphic Poincar\’e series $P_{m}(z,$ $s\rangle$

belongs to the Hilbert space $L^{2}(9_{\Gamma})$ , and satisfies the following recursion
relation:

$\{s(1-s)+D\}P_{m}(z, s)=-4\pi\frac{|m|}{q}sP_{m}(z, s+1)$ .

In other words,

(3.10) $P_{m}(z, s)=-4 \pi\frac{|m|}{q}sR{}_{\lambda}P_{m}(z, s+1)$

for ${\rm Re}(s)>1$ , where $\Re_{\lambda}=(\lambda+D)^{-1},$ $\lambda=s(1-s)$ is the resolvent of the Laplace
operator $D$ . As is well known, the resolvent $R_{\lambda}$ is meromorphic in ${\rm Re}(s)>1/2$

with at most a finite number of simple poles at the points $s=s_{j}$ for $1/2<s_{j}<1$
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which correspond to exceptional eigenvalues. It then follows from (3.10) that
the function $P_{m}(z, s)$ may be continued holomorphically to ${\rm Re}(s)>1/2$ except
possibly at the points $s_{j}$ and becomes an element of $L^{2}(9_{\Gamma})$ in this region.
And moreover, as stated in [5: P. 688], we see that the inner product $\langle P_{m}(z, s)$ ,
$P_{n}(z,\overline{s}+1)\rangle$ also determines a meromorphic function of $s$ in ${\rm Re}(s)>1/2$ .

In order to evaluate the order of growth for such inner product, we first
use the Cauchy-Schwarz inequality:

$\langle$ 3.11) $| \langle P_{m}(z, s), P_{n}(z,\overline{s}+1)\rangle|\leqq 4\pi\frac{|m|}{q}|s|||R_{\lambda}||\cdot||P_{m}(z, s+1)||\cdot||P_{n}(z,\overline{s}+1)||$ ,

where $||\cdot||$ is the norm of $L^{2}(9_{\Gamma})$ . As for the norm of $P_{m}(z, s+1)$ , we have
the following

LEMMA. Let $M$ be an arbitrary fixed Positive number such that $M>1$ . For
any comPlex vanable $s$ with $1/2<{\rm Re}(s)<M$, we see

$\langle$ 3.12) $||P_{m}(z, s+1)||=0 \{q^{1+\sigma}|m|^{-1/2}\frac{1}{a-(1/2)}\}$ ,

where $a={\rm Re}(s)$ and the implied constant depends on $M$ alone.

PROOF. Since $||P_{m}(z, s+1)||^{2}=\langle P_{m}(z, s+1), P_{m}(z, s+1)\rangle$ , the formula of
Proposition in section 2 is again applicable. Indeed, after taking $w=S+l,$ $n=m$

and replacing $s$ by $s+1$ , we have

$||P_{m}(z, s+1)||^{2}=q(4 \pi\frac{|m|}{q})^{-\mathfrak{c}s+\overline{s}+1)}\Gamma(s+\overline{s}+1)$

$+2^{-(s+3\overline{s})} \pi^{1-\overline{s}}q^{\overline{s}}\frac{\Gamma(s+\overline{s}+1)}{\Gamma(s+1)\Gamma(\overline{s}+1)}|m|^{-\overline{s}}\sum_{c>0}S(m, m, c)c^{-(2+s)}$

$\cross(2\alpha K_{\overline{s}- s}(\alpha)-\alpha^{\overline{s}+1}R_{m.m}(s+1-,\overline{s}+1, c))$

for ${\rm Re}(s+1)>1$ , where $\alpha=4\pi|m|(qc)^{-1}$ and

$R_{m.m}(s+1,\overline{s}+1, c)$

$= \int_{0}^{1}K_{\overline{s}- s}(\alpha u^{1/2})u^{(s+\overline{s}+2)/2}(1-u)^{-1/2}J_{1}(\alpha(1-u)^{1/2})du$

$+ \int_{0}^{1}K_{\overline{s}-s}(\alpha u^{1/2})u^{(s+\overline{s})2}/(1-u)^{1/2}J_{1}(\alpha(1-u)^{1/2})du$ .

Regarding $(1-u)^{-1/2}J_{1}(a(1-u)^{1/2})=d/du\{(2/\alpha)]_{0}(\alpha(1-u)^{1/2})\}$ , and noting (3.8)

and $J_{0}(0)=1$ , if we integrate by parts each term in $R_{m.m}$ , we have
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$R_{m,m}(s+1,\overline{s}+1, c)=2\alpha^{-1}K_{\overline{s}-s}(\alpha)$

$-2 \alpha^{-1}\int_{0}^{1}\frac{d}{du}\{K_{\S-S}(\alpha u^{1/2})u^{(s+\overline{s}+2)/2}\}J_{0}(\alpha(1-u)^{1/2})du$

$-2 \alpha^{-1}\int_{0}^{1}\frac{d}{du}\{K_{s-s}(\alpha u^{1/2})u^{(S+\S)/2}(1-u)\}J_{0}(\alpha(1-u)^{1/2}\rangle du$ .

Then, it is found from [16: P. 79, (2)] or [2: Vol. 2, P. 79, (23)] and $K_{-\nu}=K_{\nu}$

that

$\frac{d}{du}K_{\overline{s}-s}(\alpha u^{1/2})=-\frac{\alpha}{4}u^{-1/2}(K_{s-\overline{s}+1}(\alpha u^{1/2})+K_{\overline{S}-S+1}(\alpha u^{1/2}))$ .

Thus, further calculation yields

$2a^{\overline{s}}K_{\overline{s}-s}(\alpha)-\alpha^{\overline{s}+1}R_{m,m}(s+1,\overline{s}+1, c)$

$=(s+ \overline{s})\alpha^{\overline{s}}\int_{0}^{1}K_{\overline{s}-s}(\alpha u^{1/^{z}})u^{(s+\overline{s}- 2)/2}J_{0}(\alpha(1-u)^{1/2})du$

$- \frac{1}{2}\alpha^{\overline{s}+1}\int_{0}^{1}(K_{S-\overline{s}+1}(\alpha u^{1/2})+K_{\overline{s}- s+1}(\alpha u^{1/2}))u^{(s+\overline{s}-1)/2}J_{0}(\alpha(1-u)^{1/2})du$ .

From (3.8) and $J_{0}(y)=0(1)$ , the last formula is estimated by

$0 \{\alpha^{\sigma-1}(2a|\Gamma(\frac{3}{2}-2i\tau)|+2|\Gamma(\frac{5}{2}+2i\tau)|)\frac{1}{a-(1/2)}\}$

for $\sigma>1/2$ , where $s=\sigma+i\tau$ and the $O$-symbol is an absolute constant. Hence,
as a conclusion, by using Stirling’s formula, we have

$||P_{m}(z, s+1)||^{2}=O(q^{2(1+\sigma)}|m|^{-(1+2\sigma)})+O(q^{2}|m|^{-1} \sum_{c}c^{-2\sigma}(\frac{1}{\sigma-(1/2)}))$

for $1/2<a<M$, where the constant in the $0$-symbol depends only on $M$ . This
completes the proof.

In the same way as in the preceding case, we also show

(3.13) $||P_{n}(z, \overline{s}+1)||=0\{q^{1+\sigma}|n|^{-1/2}\frac{1}{a-(1/2)}\}$

for $1/2<\sigma<M$, where the implied constant depends on $M$ alone.
AS for the norm of the resolvent, it is known from the general theory of

the Hilbert space that

$|| \Re_{\lambda}||\leqq\sup\frac{1}{|s(1-s)-\lambda_{j}|}\lambda_{j}$ $\lambda_{j}=s_{j}(1-s_{j})$ .

AS stated in [5: P. 672] for example, it is majorized more explicitly by
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(3.14) $||R_{\lambda}||\leqq\{$

$\frac{1}{|\tau|(2\sigma-1)}$ for $a>1/2$ and $|\tau|\geqq 1$ ,

$\frac{1}{(\sigma-(1/2))\sqrt{}\overline{\tau}^{2}\overline{+(\sigma-(1/}2\overline{))}^{2^{-}}}$ for $s\in U_{\in}$ ,

where U. is a set defined by (1.5).

Hence, collecting (3.11) through (3.14), we can obtain that the inner product
$\langle P_{m}(z, s), P_{n}(z,\overline{s}+1)\rangle$ is estimated by

(3.15) $o(q^{1+2\sigma}| \frac{m}{n}|^{1/2}|\tau|^{1/2}\frac{1}{(\sigma-(1/2))^{3}})$

for $1/2<\sigma<M$ and $|\tau|\geqq 1$ , where the implied constant depends solely on $M$,
and furthermore

(3.16) $o(q^{1+2\sigma}| \frac{m}{n}|^{1/2}\frac{1}{(\sigma-(1/2))^{3}\sqrt{}\overline{\tau}^{2}\overline{+(a-(1/2))^{2}}})$

for $s\in U_{\epsilon}$ wlth an absolute constant in O-symbol.

3.3. PROOF OF THEOREM.
Substituting (3.7) and (3.9) into (3.6), we finally obtain

$Z_{m.n}(s)=\delta_{m,n}O(q^{2\sigma}|m|^{1-2\sigma}|\Gamma(s)\Gamma(s+1)|)$

$+O(|mn|^{1/2} \frac{1}{\sigma-(1/2)})+\epsilon_{m}no(|mn|^{1/2}\frac{1}{(a-(1/2))^{2}})$

$+| \frac{\Gamma(s)\Gamma(s+1)}{\Gamma(2s)}|q^{-1}|n|\cdot O(\langle P_{m}(z, s), P_{n}(z,\overline{s}+1)\rangle)$

for $1/2<a<M$. In view of Stirling’s formula and combining this formula with
(3.15) or (3.16), we arrive at the assertion of Theorem.

3.4. PROOF OF COROLLARY.
The process to derive the assertion of Corollary is almost analogous to that

in Hejhal [5: Appendix $E$ ]. Thus we only give an outline here.
Let $R$ be the positive number defined by

$R= \lim_{carrow\infty}\sup\frac{\log|S(m,n,c)|}{\log c}$ ,

and $A=A(\delta)$ be a positive constant which satisfies

$|S(m, n, c)|\leqq Ac^{R+\delta}$
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for all $c$ , where $\delta$ is an arbitrary positive number. From $|S(m, n, c)|\leqq qc$ we
see that $R\leqq 1$ . To prove the assertion of Corollary, it is enough to consider
the case $x=\rho+(1/2)$ , where $\rho\in N$ and sufficiently large. Under these, let $T$

be any fixed positive number which satisfies $1\leqq T\leqq x^{R}$ , while this restriction
is not essential. Moreover we put $\epsilon=(\log x)^{-1}$ . Notice here that the notation
$\epsilon$ corresponds to the one in (1.5) or (1.7).

Under the assumption of Corollary, namely $\Gamma$ being the Hecke congruence
group $\Gamma_{0}(N)$ with $N\leqq 17$ , the Kloosterman zeta function turns out to be a
regular function in ${\rm Re}(s)>1/2$ . Thus, it follows that

$\int_{\partial E}Z_{m.n}(\frac{1+s}{2})\frac{x^{s}}{s}ds=0$ ,

where $E=[\epsilon, R+\epsilon]\cross[-T, T]$ .
The Phragm\’en-Lindel\"of principle and (1.6) show that

$Z_{m.n}( \frac{1+s}{2})=O(\frac{A+|mn|^{1/2}}{\epsilon^{3}}|\tau|^{(R+\epsilon-\sigma)/(2R)})$

for $|\tau|\geqq 2$ and $\epsilon\leqq\sigma\leqq R+\epsilon$ , where the $0$-symbol is an absolute constant because
$R\leqq 1$ . Therefore

$\int_{horiz}Z_{m.n}(\frac{1+s}{2})\frac{x^{s}}{-.s}ds$

$=O(1) \frac{A+|mn|^{1/2}x^{\epsilon}}{\epsilon^{3}T^{1/2}}\int_{0}^{R}(xT^{-1/(2R)})^{u}du$

$=O(1) \frac{A+|mn|^{1/2}}{\epsilon^{3}T^{1’ 2}}(\log(xT^{-1/(2R)}))^{-1}[xT^{-1/(2R)}]_{0}^{R}$ .

Since $1\leqq T\leqq x^{R}$ , the last formula is reduced to

$0 \{\frac{A+|mn|^{1f2}}{T}x^{R}(\log x)^{2}\}$

with an absolute constant in O-symbol.
Next, it follows from (1.6) and (1.7) that

$\int_{\epsilon- tT}^{\epsilon+iT}Z_{m,n}(\frac{1+s}{2})\frac{x^{s}}{s}ds$

$= 0(1)\int_{2}^{T}\frac{|mn|^{1/2}t^{1/2}}{\epsilon^{3}}\frac{x^{\epsilon}}{t}dt+0(1)\int_{0}^{2}\frac{|mn|^{1/2}}{\epsilon^{3}\sqrt{}\overline{\epsilon^{2}+t^{2}}}\cdot’\frac{Y^{S}}{\sqrt{}\overline{\epsilon}^{2}\overline{+t^{2}}}dt$

$=0\{|mn|^{1/2}(T^{1/2}+(\log x)^{3})\log x\}$ ,
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where the $0$-symbols are absolute constants.
Moreover, one knows from analytic number theory the following equality:

$\int_{R+\epsilon- iT}^{R+\epsilon+iT}Z_{m,n}(\frac{1+s}{2})\frac{x^{s}}{s}ds=\sum_{C<x}\frac{S(m,n,c)}{c}+O(\frac{Ax^{R}}{T}\log x)$

with an absolute constant in O-symbol.
Gathering together and taking $T=x^{(2R)/3}$ , we obtain

$\sum_{c<x}\frac{S(m,n,c)}{c}=O\{(A+|mn|^{1/2})x^{R/3}(\log x)^{2}\}$

+0 $\{|mn|^{1/2}(x^{R/3}+(\log x)^{3})\log x\}$

$+O(Ax^{R/3}\log x)$

where the $0$-symbols are absolute constants. Here, if we use Weil’s estimate
for the Kloosterman sum (cf. [17] or [1: Lemma 2.6]), we see $R\leqq 1/2$ and at
least $A= \min\{|m|^{1/2}, |n|^{1/2}\}$ . This completes the proof.
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