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\S 1. Introduction.

Homer [3] has shown that assuming $P=NP$ there is a A8 set which is
minimal with respect to the honest polynomial time Turing reducibility, $\leqq_{T}^{h}$ ,
while it is known that the honest polynomial time Turing degrees (hp-T de-
grees) of recursive sets are dense. In [3], Homer raised a question whether a
recursively enumerable $(r.e.)$ set can be $\leqq_{T}^{h}$ minimal. An affirmative answer
has been given by Ambos-Spies [1] (assuming $P=NP$ ). He has shown that
every high $r.e$ . Turing degree contains a $\leqq_{T}^{h}$ minimal element. Downey [2],

on the other hand, has proved that no low Turing degree contains a $\leqq_{T}^{h}$

minimal set. It has also been shown there that the hp-T degrees of low $r.e$ . sets
are dense. He asks if the hp-T degrees of $\Delta_{2}^{0}$ sets are dense. An affirmative
answer evidently implies $P\neq NP$ . We notice that in contrast to the hp-T de-
grees, the polynomial time Turing degrees (p-T degrees) of all sets are dense,
which can be proved by relativizing the proof of the density of the p-T degrees
of recursive sets due to Ladner [4].

Concerning Downey’s question, we shall prove the following strong minimal
pair theorem which obviously implies the density of the hp-T degrees of $\Delta_{2}^{0}$

low sets.

THEOREM. If $A$ and $B$ are $\Delta_{2}^{0}$ low sets such that $B<_{T}^{h}A$ , then there are
two sets $C$ and $D$ which satisfy the following two conditions:

(1) $B<_{T}^{h}C<_{T}^{h}$ $A$ and $B<_{T}^{\hslash}D<_{T}^{h}A$ ,

(2) $\deg_{T}^{h}(B)=\deg_{T}^{\hslash}(C)$ A $\deg_{T}^{h}(D)$ .

In [5], Landweber, Lipton and Robertson have proved the strong minimal
pair theorem for the p-T degrees of recursive sets. In \S 2, we shall give a
proof of the theorem for the hp-T degrees of recursive sets. The proof is a
typical example of a Ladner style “looking back” technique. In \S 3, we shall
give a proof of the theorem for the $\Delta_{2}^{0}$ low sets. Since our proof heavily de-
pends on the notion of hp-T reducibility, it is not known whether the strong
minimal pair theorem holds for the p-T degrees of A8 low sets.
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Given $A$ and $B$ with $B<_{T}^{h}A$ , we may construct two sets $C$ and $D$ so that
they look like $A$ on some intervals of $\Sigma^{*}$ and look like $B$ elsewhere. The
switching points $\{l_{n}\}_{n}$ are effectively computed from $A$ and $B$ . If $A$ and $B$

are recursive, the sequence $\{l_{n}\}_{n}$ turns out to be recursive. However, when $A$

and $B$ are non-recursive, we can not expect that the sequence is recursive any
more. This causes a difficulty in proving the second condition of the theorem.
If $A$ and $B$ are $\Delta_{2}^{0}$ besides, then, by the limit lemma, they are approximated
by recursive sets. We can use these approximations to construct recursively
the switching points $\{l_{n}\}_{n}$ as in the case of recursive sets. This time, how-
ever, other difficulty occurs in proving the first condition of the theorem.
Especially, it is hard to prove the inequalities $C\not\equiv_{T}^{\hslash}B$ and $D\not\equiv_{T}^{h}B$ . The lowness
of $A$ and $B$ will resolve these difficulties.

Our notation is standard. Let $\sum=\{0,1\}$ . $\sum^{*}$ is the set of finite strings
of elements of $\sum$ . Lower case letters $x,$ $y,$ $z,$ $\cdots$ denote elements of $\sum^{*}$ and
capital letters $A,$ $B,$ $C\ldots$ denote subsets of $\sum^{*}$ . $|x|$ denotes the lengtb of $x$ .
We order $\sum^{*}$ in the canonical way:

$\lambda<0<1<00<01<10<11<000<001<010<\cdots$ .

We sometimes identify an integer $n$ and the $n+1st$ string $z_{n}$ in this order.
$A\oplus B=\{0x:x\in A\}\cup\{1x:x\in B\}$ is the effective disjoint union of $A$ and $B$ .
For an oracle Turing machine $M,$ $M(A, x)=1$ denotes that $M$ with oracle $A$

accepts $x$ , and $M(A, x)=0$ denotes that $x$ is refuted. Finally, let $\langle, \rangle$ denote
some polynomial time computable bijection from $\sum^{*}\cross\sum^{*}$ onto $\sum^{*}$ which has
polynomial time computable inverses and which satisfies $x,$ $y<\langle x, y\rangle$ for all
$x,$ $y \in\sum^{*}$ .

\S 2. The hp-T degrees of recursive sets.

An oracle Turing machine $M$ is polynomially honest if there are polynomials
$P$ and $q$ such that on input $x,$ $M$ halts within $p(|x|)$ steps and if $M$ queries
the oracle on a string $y$ then $|x|\leqq q(|y|)$ . We recursively enumerate all the
polynomially honest oracle Turing machines and their associated polynomials,
$\{(M_{e}, p_{e}, q_{e}):e\in N\}$ . Let $A$ and $B$ be two subsets of $\sum^{*}$ . $A$ is said to be hp-
$T$ reducible to $B$ , write $A\leqq_{T}^{h}B$ , if there is a polynomially honest oracle Turing
machine $M$ such that $A(x)=M(B, x)$ for all $x \in\sum^{*}$ . $A$ and $B$ have the same
honest polynomial time Turing degrees (hp-T degrees), $A\equiv_{T}^{h}B$ , if $A\leqq_{T}^{h}B$ and
$B\leqq_{T}^{h}A$ . The hp-T degree of $A$ is denoted by $\deg_{T}^{h}(A)$ . If A;$ii $B$ and $A\not\equiv_{T}^{h}B$ ,

we write $A<_{T}^{h}B$ . The greatest lower bound of $\deg_{T}^{h}(A)$ and $\deg_{T}^{h}(B)$ , if exists,
is written $\deg_{T}^{h}(A)\wedge\deg_{T}^{h}(B)$ .

AS Ambos-Spies points out in [1], most results on the structure of the
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polynomial time Turing degrees (p-T degrees) of the recursive sets hold for
the hp-T degrees. We support his observation in proving the strong minimal
pair theorem for the hp-T degrees of recursive sets. The theorem for the p-T
degrees has given by Landweber, Lipton and Robertson [5].

THEOREM 2.1. Given recursive sets $A$ and $B$ , if $B<_{T}^{h}A$ , then there exist
recursive sets $C$ and $D$ such that

(1) $B<_{T}^{h}C<_{T}^{h}$ $A$ and $B<_{T}^{h}D<_{T}^{h}A$ ,

(2) $\deg_{T}^{h}(B)=\deg_{T}^{\hslash}(C)$ A $\deg_{T}^{h}(D)$ .

PROOF. Since $A\oplus B\equiv_{T}^{h}A$ , we may assume $B=A \cap 1\sum^{*}$ . We effectively
construct a strictly increasing sequence $\{l_{n} : n\in N\}$ as follows.

Stage $0$ . $l_{0}=0$ .
Stage $6e+i+1(i=0,3)$ . Let $n=6e+i$ . Since $B<_{T}^{h}A$ , there is an $x$ with

$l_{n}\leqq|x|$ such that $A(x)\neq M_{e}(B, x)$ . We take the least such $x$ , and let $l_{n+1}=$

$l_{n}+2^{\iota_{n}}+m$ , where $m$ is the number of steps performed to find $x$ and verify the
inequality $A(x)\neq M_{e}(B, x)$ . This means that if we perform the construction
in $l_{n+1}$ steps then we can find the least $x$ such that $l_{n}\leqq|x|$ and $A(x)\neq M_{e}(B, x)$ .

$S$tage $6e+i+1(i=1,2,4,5)$ . We let $l_{6e+i+1}=l_{6e+i}+2^{\iota_{6e+i}}$ .
We define $C$ and $D$ as follows:

$C(x)=\{$
$A(x)$ if $l_{6e}\leqq|x|<l_{\epsilon e+1}$ for some $e$ ,

$B(x)$ otherwise.

$D(x)=\{$
$A(x)$ if $l_{6e+3}\leqq|x|<l_{6e+4}$ for some $e$ ,

$B(x)$ otherwise.
$C$ looks like $A$ on the intervals $\{x : l_{6e}\leqq|x|<l_{6e+1}\}$ and looks like $B$ on other
intervals, while $D$ looks like $A$ on the intervals $\{x:l_{6e+3}\leqq|x|<l_{6e+4}\}$ and $B$

elsewhere.
Since $B=C\cap 1\Sigma^{*},$ $B$ is hp-T computable from $C$ in the obvious way. By

the definition of $l_{\epsilon e+1}$ , there is an $x$ such that $l_{6e}\leqq|x|<l_{6e+1}$ and $A(x)\neq M_{e}(B, x)$ .
$A$ and $C$ agree on this interval. Thus, we see that $C(x)\neq M_{e}(B, x)$ . It follows
that $C$ is not hp-T reducible to $B$ . Therefore, we have $B<_{T}^{h}C$ .

TO see that $C\leqq_{T}^{h}A$ , suppose $x \in\sum^{*}$ . By performing the construction of
$\{l_{n}\}_{n}$ in $|x|$ steps, we can compute the $n$ such that $l_{n}\leqq|x|<l_{n+1}$ , and then
compute $C(x)$ from $A$ in several more steps. This “looking back” algorithm
gives an hp-T reduction of $C$ to $A$ . In the same manner, we can show that
$B<_{T}^{h}D\leqq_{T}^{h}A$ .

Suppose $M_{i}(C)=M_{j}(D)=Z$ to see that $C$ and $D$ satisfies the condition (2).

We must show that $Z$ is hp-T reducible to $B$ . First, take a sufficiently large
$n_{0}$ so that
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$(\forall n)[n_{0}\leqq n\supset p_{i}(l_{n-1}), q_{i}(l_{n-1}), p_{j}(l_{n-1}), q_{j}(l_{n- 1})<l_{n}]$ .

For each $x$ with xllll $l_{n_{0}},$ $Z(x)$ is computed from $B$ as follows. Given $x$ with
$|x|\geqq l_{n_{0}}$ , find the unique $n$ such that $l_{n}\leqq|x|<l_{n+1}$ by looking back the con-
struction of the sequence $\{l_{n} : n\in N\}$ in $|x|$ steps. In the case where $n=6e$ ,

$6e+1$ or $6e+5$ for some $e,$ $B$ and $D$ agree on the interval $\{z:l_{n-1}\leqq|z|<l_{n+2}\}$

by the definition of $D$ . If $M_{j}$ queries $D$ on a string $y$ during the computatlon

of $M_{j}(D, x)$ , then $y$ must be in the interval $\{z:l_{n-1}\leqq|z|<l_{n+2}\}$ by the choice
of $n_{0}$ , and therefore the query is answered by $B$ . Thus, in this case, we may
compute $M_{j}(B, x)$ to obtain the value of $Z(x)$ . Similarly, if $n=6e+2,6e+3$ or
$6e+4$ for some $e$ , then we can compute $M_{i}(B, x)$ to obtain the value of $Z(x)$ . $\square$

\S 3. The hp-T degrees of $\Delta_{2}^{0}$ low sets.

A set $A$ is low if the Turing jump $A’$ of $A$ has the least possible Turing
degree, namely that of $\phi’$ . $\Delta_{2}^{0}$ sets are approximated by recursive sets (see [8,

Limit lemma]): if $A$ is $\Delta_{2}^{0}$ , then there is a recursive function $f(x, s)$ such that
$f(x, s)\leqq 1$ and $A(x)= \lim_{s}f(x, s)$ .

THEOREM 3.1. The strong minimal pair theorem holds for the hp-T degrees
of the $\Delta_{2}^{0}$ low sets: for all $\Delta_{2}^{0}$ low sets $A$ and $B$ with $B<_{T}^{\hslash}A$ , there are two sets
$C$ and $D$ that satisfy the following conditions.

(1) $B<_{T}^{h}C<_{T}^{h}$ $A$ and $B<_{T}^{\hslash}D<_{T}^{\hslash}A$ ,

(2) $\deg_{T}^{\hslash}(B)=\deg_{T}^{\hslash}(C)\wedge\deg_{T}^{\hslash}(D)$ .

PROOF. Suppose $A$ and $B$ are given low sets with $B<_{T}^{\hslash}A$ . We may assume
that $B=A \cap 1\sum^{*}$ as before. As $A$ and $B$ are Ag, there are recursive functions
$f(x, s)$ and $g(x, s)$ with $f(x, s),$ $g(x, s)\leqq 1$ such that

$1il$ $f(x, s)=A(x)$ , $\lim_{s}g(x, s)=B(x)$ .

Let $A_{s}(x)=f(x, s)$ and $B_{s}(x)=g(x, s)$ .
The basic idea of the proof is essentially the same as that of Theorem 2.1.

We will construct a strictly increasing sequence $\{l_{n} : n\in N\}$ as before but use
the approximation $A_{s}$ and $B_{s}$ instead, and then define $C,$ $D$ from the sequence
as in the proof of Theorem 2.1:

$C(x)=\{$
$A(x)$ if $l_{6e}\leqq|x|<l_{6e+1}$ for some $e$ ,

$B(x)$ otherwise,

$D(x)=\{$
$A(x)$ if $l_{6e+3}\leqq|x|<l_{6e+4}$ for some $e$ ,

$B(x)$ otherwise.
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The sequence $\{l_{n} : n\in N\}$ will be constructed so that given $x$ , the unique $n$

with $l_{n}\leqq|x|<l_{n+1}$ is calculated in $|x|$ steps by looking back the construction.
It, then, follows that B;$ ij $C\leqq$ ij $A$ and $B\leqq$ ij $D\leqq_{T}^{h}A$ . The condition (2) of the
theorem will be verified in the same way as in the preceding section since $\{l_{n}\}_{n}$

will be constructed to satisfy $2^{\iota_{n}}\leqq l_{n+1}$ for all $n$ .
TO ensure that $C\not\leqq_{T}^{\hslash}B$ and D$ $T\hslash B$ , we require the following:

$(R_{2e})$ $C\neq M_{e}(B)$ ,

$(R_{2e+1})$ $D\neq M_{e}(B)$ .

At stage $6e+1$ , we will try to meet the first requirement $R_{2i}(i\leqq e)$ that is not
certified at the point entering this stage by searching for some $x$ with $|x|\geqq l_{6e}$

such that $A_{s}(x)\neq M_{i}(B_{s}, x)$ at some $s\geqq l_{6e}$ . Such an $x$ exists since we are
assuming $B<_{T}^{\hslash}A$ . At this point we would know $R_{2i}$ is met. However, at
later stage, this disagreement might be injured, because it might happen that
$A_{t}(x)\neq A_{s}(x)$ or $B_{t}FP_{i}(|x|)\neq B_{s}tp_{i}(|x|)$ at some point $t>s$ . Then, we must
attack $R_{2i}$ again. We can not expect that $R_{2i}$ is injured only finitely often.
The lowness of $A$ and $B$ will resolve this difficulty. We use a variation of
the method of Robinson [6] known as the “Robinson trick”.

We fix a recursive enumeration $\{\sigma_{k} : k\in N\}$ of the finite functions $\sigma$ such
that

dom $( \sigma)=\{z\in\sum^{*} : |z|\leqq l\}$ for some $l$ , and rng $(\sigma)\subseteqq\{0,1\}$ .
Let $1h(\sigma)$ denote the maximum length of the strings in $dom(\sigma_{k})$ . $Btl$ and $B_{s}rl$

denote the restrictions of $B$ and $B_{s}$ to $\{x:|x|\leqq l\}$ respectively. Note that for
each $l$ , we can effectively find a $k$ such that $B_{s}[l=\sigma_{k}$ . Define $H$ and $\hat{H}$ by

$H=\{e:(\exists\langle x, k\rangle\in W_{e})[x\in A\ \sigma_{k}=B(1h(\sigma_{k})]\}$ ,

$\hat{H}=\{e:(\exists\langle x, k\rangle\in W_{e})[x\not\in A\ \sigma_{k}=B[1h(\sigma_{k})]\}$ .

Since $A$ and $B$ are low, these sets are both A8. Let $h(e, s)$ and $\hat{h}(e, s)$ be
recursive functions with $h(x, s),\hat{h}(x, s)\leqq 1$ such that

$li^{mh(e},$ $s)=H(e)$ , $li^{m}h_{(e},$ $s)=H(e)$ .

We will build recursive sequences $\{V_{i.s}\}_{i,s\in N}$ and $\{Vi,s\}_{t,SEN}$ during the con-
struction. Let $V_{i}= \bigcup_{s}V_{i.*}$ and $\hat{V}_{i}=\bigcup_{s}\hat{V}_{i,*}$ . Then, $V_{i}$ and $\hat{V}_{i}$ are recursively
enumerable. By the Recursion Theorem we may assume that we have in
advance an index $\theta(i)$ of $V_{i}$ and 0(i) of $\hat{V}_{i}$ with some recursive functions $\theta$

and $\hat{\theta}$ .

DEFINITION 3.2. Suppose $i$ and $s$ are given.
(1) $R_{i}$ is $h$-certified at $s$ if $h(\theta(i), s)=1$ and there is a $\langle x, k\rangle\in V_{i.*}$ such
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that $A_{s}(x)=1$ and $B_{s}rlh(\sigma_{k})=\sigma_{k}$ ,
(2) $R_{i}$ is $\hat{h}$-certified at $s$ if $\hat{h}(\hat{\theta}(i), s)=1$ and there is a $\langle x, k\rangle\in\hat{V}_{i}$ . such that

$A_{s}(x)=0$ and $B_{s}Nh(\sigma_{k})=\sigma_{k}$ ,
(3) $R_{i}$ is certified at $s$ if $R_{i}$ is either $h$ -certified or $\hat{h}$-certified at $s$ .

We now give the construction of $\{l_{n}\}_{n}$ . We use $s$ as a variable that counts
the steps of the construction. $V_{i.S}$ represents the finite set of elements enumerated
into $V_{i}$ up to step $s$ during the construction. Similar for $\hat{V}_{i.S}$ .

Stage $0$ . Let $l_{0}=0$ and $V_{i.0}=\hat{V}_{i.0}=\emptyset$ for all $i$ .
Stage $6e+i+1(i=1,2,4,5)$ . We let $n=6e+i$ . Let $l_{n+1}=l_{n}+2^{\iota_{n}}$ . No new

elements are enumerated into $V_{i}$ and $\hat{V}_{i}$ for all $i$ at this stage: $V_{i,s+1}=V_{i.s}$ ;
$\hat{V}_{i.s+1}=\hat{V}_{0,\iota}$ for all $i$ and $s$ with $l_{n}\leqq s<l_{n+1}$ .

Stage $6e+1$ . Take the least $i\leqq e$ such that $R_{2i}$ is not certified at $l_{6e}$ . We
say that $R_{zi}$ is attacked at this stage. Our construction in this stage consists
of one main routine and 5 subroutines. No new elements are enumerated into
$V_{j}$ and $\hat{V}_{j}$ for all $j$ with $j\neq 2i$ . We enumerate some new elements into $V_{2i}$ or
into $\hat{V}_{2i}$ only when the construction enters Subroutine 1 below.

MAIN ROUTINE. We set $s:=l_{6e}$ . Go to Subroutine 1.

CLAIM 1. For every $s$ , there exist $t>s,$ $x \in\sum^{*}and$ $k$ with $l_{\epsilon e}\leqq|x|\leqq|\langle x, k\rangle|$

$\leqq t$ such that $\sigma_{k}=B_{t}[p_{i}(|x|)$ and such that one of the following holds:
(1.1) $A_{t}(x)=1\ M_{i}(B_{t}, x)=0$ ,

(1.2) $A_{t}(x)=0\ M_{i}(B_{t}, x)=1$ .

PROOF OF CLAIM 1. Since $B<_{T}^{\hslash}A$ , there is an $x$ with $l_{6e}\leqq|x|$ such that
$A(x)\neq M_{i}(B, x)$ . Take a sufficiently large $s_{0}>s$ such that $|x|\leqq So$ and

$(\forall t)[s_{0}\leqq t\Rightarrow A_{t}(x)=A(x)\ B_{t}\uparrow p_{i}(|x|)=B(p_{i}(|x|)]$ .

Let $k$ be an integer such that $Brp(|x|)=\sigma_{k}$ , and take a $t\geqq s_{0}$ so that $|\langle x, k\rangle|$

$\leqq t$ . If $A(x)=1$ then (1.1) holds, and if $A(x)=0$ then (1.2) holds. $\square$

SUBROUTINE 1. Suppose that the construction enters this subroutine $with:s$ .
We take the least $t$ that satisfies Claim 1. Let $\langle x, k\rangle$ be the least pair which
satisfies the conditions of the claim. If (1.1) holds, then enumerate $\langle x, k\rangle$ into
$V_{2i}$ , set $s:=t$ , and go to Subroutine 2. If (1.2) holds, then enumerate $\langle x, k\rangle$

into $\hat{V}_{2i}$ , set $s:=t$ , and go to Subroutine 3.

CLAIM 2. Given $s,$ suPPose that $V_{2i.t}=V_{2i\partial}$ for all tlll $s$ . Then there is a
$t>s$ such that one of the following holds:

(2.1) $R_{2i}$ is $h$-certified at $t$ ,

(2.2) $h(\theta(2i), t)=0$ &(\forall $\langle$ x, $k\rangle\in V_{2i.t}$ ) $[A_{i}(x)=0B_{t}rlh(\sigma_{k})\neq\sigma_{k}]$ .
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PROOF OF CLAIM 2. Note that $V_{2i.t}=V_{2i}$ for all $t\geqq s$ , and therefore $V_{2i}$ is
finite. Take a sufficiently large $t>s$ so that $h(\theta(2i), t)=H(\theta(2i))$ and

$(\forall\langle x, k\rangle\in V_{2i})[A_{t}(x)=A(x)\ B_{t}\uparrow 1h(\sigma_{k})=B\uparrow 1h(\sigma_{k})]$ .
Suppose $H(\theta(2i))=1$ . By the definition of $H$, we have

$(\exists\langle x, k\rangle\in V_{2i})$[$A(x)=1$ &B $Nh(a_{k})=\sigma_{k}$ ].

Then, we have $h(\theta(2i), t)=1$ and

$(\exists\langle x, k\rangle\in V_{zt.t})[A_{t}(x)=1\ B_{t}[1h(\sigma_{k})=\sigma_{k}]$ .

Thus, $R_{2i}$ is $h$ -certified at $t$ . Similarly, if $H(\theta(2i))=0$ , then (2.2) holds at $t$ . $\square$

Similarly, we have the following.

CLAIM 3. Suppose that $\hat{V}_{2i.t}=\hat{V}_{2i}$ . for all $t$ with $t\geqq s$ . Then there is a
$t>s$ such that one of the following holds:

(3.1) $R_{2i}$ is $\hat{h}$-certified at $t$,

(3.2) $\hat{h}(\hat{\theta}(2i), t)=0$ &(\forall $\langle$ x, $k\rangle\in\hat{V}_{2i.t}$ ) $[A_{t}(x)=1B_{t}[1h(a_{k})\neq a_{k}]$ .

SUBROUTINE 2. Suppose we enter this subroutine with $s$ . Set $t:=s$ , and
repeat $t:=t+1$ until either (2.1) or (2.2) of Claim 2 holds. Set $s:=t$ . If $(2.1\rangle$

holds at $t$ then go to Subroutine 5, and if (2.2) holds then go to Subroutine 4.

SUBROUTINE 3. Similar to Subroutine 2.

CLAIM 4. Given $s$ , suppose that $V_{2i.t}=V_{2i}$ . and $\hat{V}_{2i,t}=\hat{V}_{2i}$ . for all $t>s$ .
Then there is a $t\geqq s$ such that one of the following holds:

(4.1) $R_{2i}$ is $h$-certified at $t$ ,

(4.2) $R_{2i}$ is $h$-certified at $t$ ,

(4.3) $h(\theta(2i), t)=0$ &(\forall $\langle$ x, $k\rangle\in V_{2i,t}$ ) $[A_{t}(x)=0B_{t}(1h(a_{k})\neq a_{k}]$ and
$h(\hat{\theta}(2i), t)=0$ &(\forall $\langle$ x, $k\rangle\in\hat{V}_{2i.t}$ ) $[A_{t}(x)=1B_{t}[1h(\sigma_{k})\neq\sigma_{k}]$ .

PROOF OF CLAIM 4. By the assumption, for all sufficiently large $t,$ $V_{2i.t}$

$=V_{2i}$ and $\hat{V}_{2i.t}=\hat{V}_{2i}$ . Take a sufficiently large $t$ with $t>s$ which satisfies the
following:

(a) $h(\theta(2i), t)=H(\theta(2i))$ and $h(\theta(2i), t)=\rho_{(}\theta(2i))$ ,

(b) $(\forall\langle x, k\rangle\in V_{2i})[A_{t}(x)=A(x)\ B_{t}rlh(\sigma_{k})=B(1h(\sigma_{k})]$ ,

(c) $(\forall\langle x, k\rangle\in\hat{V}_{2i})[A_{t}(x)=A(x)\ B_{t}rlh(\sigma_{k})=B\uparrow 1h(\sigma_{k})]$ .
AS in the proof of Claim 2, we see that if $H(\theta(2i))=1$ then $R_{2i}$ is $h$ -certified at
$t$ , and if $\hat{H}(\hat{\theta}(2i))=1$ then $R_{2i}$ is $\hat{h}$-certified. Similarly, if $H(\theta(2i))=0$ and $\hat{H}(\hat{\theta}(2i))$

$=0$ , then (4.3) holds. $\square$
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SUBROUTINE 4. Similar to Subroutine 2. Suppose that the construction
enters this subroutine with $s$ . We wait for the least $t>s$ that satisfies one of
the conditions of Claim 4. Set $s:=t$ . If (4.1) or (4.2) holds, then go to Sub-
routine 5. Otherwise, go to Subroutine 1.

SUBROUTINE 5. Suppose we reach this subroutine with $s$ . Let $l_{6e+1}=$

$l_{6e}+2^{\iota_{6e}}+m$ , where $m$ is the number of steps in which the construction up to
this point is performed. Set $s:=l_{\epsilon e+1}$ and exist from the main routine.

Stage $6e+4$ . Similar to Stage $6e+1$ . Take the least $i\leqq e$ such that $R_{2i+1}$

is not certified at $l_{\epsilon e+3}$ . The requirement $R_{zt+1}$ is attacked in this stage. We
leave the details to the reader.

Thus, we complete the construction of $\{l_{n}\}_{n\in N}$ .
LEMMA 3.3. $l_{6e+1}$ and $l_{6e+4}$ are defined.
PROOF. We Prove that $l_{6e+1}$ is defined. It is sufficient to show that we

reach Subroutine 5 while executing the main routine. Suppose not. Then, we
always exit from Subroutine 2 with (2.2), Subroutine 3 with (3.2) and Subroutine
4 with (4.3). Since $B<_{T}^{h}A$ , there is an $x$ such that $A(x)\neq M_{i}(B, x)$ . Take the
least such $x$ with $|x|\geqq l_{6e}$ and let $k$ be the least integer with $Brp_{i}(|x|)=a_{k}$ .
Suppose, say, $A(x)=1$ and $M_{i}(B, x)=0$ . Take $s_{0}$ large enough to satisfy

$(\forall s)[s_{0}\leqq s\Rightarrow A_{s}(x)=1\ B_{s}(p_{i}(|x|)=B\uparrow p_{i}(|x|)]$ .
We may assume that $|x|\leqq So.$ If $\langle x, k\rangle$ is not enumerated into $V_{2i}$ up to $s_{0}$ ,
then $\langle x, k\rangle$ is witnessed each time Subroutine 1 is executed after So. By the
assumption, we enter Subroutine 1 infinitely often. Thus, eventually, $\langle x, k\rangle$

must be enumerated into $V_{2i}$ . Then, we have $H(\theta(2i))=1$ by the definition of
$H$. Take sufficiently large $s_{1}>s_{0}$ so that $\langle x, k\rangle\in V_{2i.s_{1}}$ and $h(\theta(2i), s)=1$ for
all $s\geqq s_{1}$ . Then, $R_{2i}$ is $h$-certified at all points after $s_{1}$ . Thus, we reach Sub-
routine 5 whenever we exit from one of Subroutine 2-4 after $s_{1}$ , which is a
tcontradiction. $\square$

LEMMA 3.4. For all $i$, the requirement $R_{2i}$ is attacked only finitely often.
PROOF. We prove the lemma by induction on $i$ . Suppose that no require-

ment $R_{2j}$ with $j<i$ is attacked at any stage after $n_{0}$ , which means that every
Tequirement $R_{2j}(j<i)$ is certified at $l_{6C}$ for all $e$ with $n_{0}<6e$ . Let $s_{0}\geqq n_{0}$ be
large enough to satisfy

$(\forall s)$[ $s_{0}\leqq s\Rightarrow h(\theta(2i),$ $s)=H(\theta(2i))$ &h(\mbox{\boldmath $\theta$}(2i), $s)=\hat{H}(\theta(2i))$].

Suppose $H(\theta(2i))=1$ . Then, by the definition of $H$, there is a $\langle x, k\rangle\in V_{2i}$ such
that $A(x)=1$ and $BNh(a_{k})=\sigma_{h}$ . Take a sufficiently large $s_{1}\geqq s_{0}$ so that
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$(\forall s)[s_{1}\leqq s\Rightarrow\langle x, k\rangle\in V_{2i.\iota}\ A_{s}(x)=1\ B_{s}rlh(a_{k})=Brlh(\sigma_{k})]$ .
Then, $R_{2i}$ is $h$-certified at every point $s$ with slll $s_{1}$ . It follows that $R_{2i}$ is not
attacked at any stage $n$ with $s_{1}\leqq l_{n}$ . Similarly, if $\hat{H}(\hat{\theta}(2i))=1$ , then $R_{2i}$ is not
attacked infinitely often. Finally, suppose that $H(\theta(2i))=\hat{H}(\hat{\theta}(2i))=0$ . We take
a sufficiently large $s_{2}\geqq s_{0}$ so that

(V $s$ ) $[s_{2}\leqq s\Rightarrow h(\theta(2i), s)=\hat{h}(\hat{\theta}(2i), s)=0]$ .
It follows that $R_{2i}$ is never certified after $s_{2}$ . Thus, for every $e\geqq i$ with $n_{0}<6e$ ,
if $s_{2}\leqq l_{6e}$ and $R_{2i}$ is attacked at stage $6e+1$ , then we can not enter Subroutine
5 during stage $6e+1$ , which contradicts Lemma 3.3. $\square$

Similarly, we can prove the following.

LEMMA 3.5. For all $i$ , the requirement $R_{2i+1}$ is attacked only finitely often.
LEMMA 3.6. For every $i$ the requirements $R_{2i}$ and $R_{2i+1}$ are met.

PROOF. We prove that the requirement $R_{2i}$ is met. Take an $n_{0}$ so that
$R_{2i}$ is not attacked after no. Then, for all $e$ with $n_{0}<6e,$ $R_{2i}$ is certified at
$l_{6e}$ . It follows that either $H(\theta(2i))=1$ or $\hat{H}(\hat{\theta}(2i))=1$ . Suppose, say, $H(\theta(2i))=1$ .
Then, by the definition, there is a $\langle x, k\rangle\in V_{2i}$ such that $A(x)=1$ and $Brlh(\sigma_{k})$

$=\sigma_{k}$ . Suppose $\langle x, k\rangle$ is enumerated into $V_{2i}$ during stage $6e+1$ . Then, there
is a $t$ with $l_{\epsilon e}<t<l_{6e+1}$ such that $B_{t}(p_{i}(|x|)=\sigma_{k}$ and $M_{i}(B_{t}, x)=0$ . Since
$B_{t}\uparrow p_{i}(|x|)$ and $B\uparrow p_{i}(|x|)$ are both equal to $\sigma_{k}$ , we see that $M_{i}(B, x)=0$ . Thus
we have the inequality $A(x)\neq M_{i}(B, x)$ . $A$ and $C$ agree on the interval $\{z:l_{6e}$

$\leqq|z|<l_{6e+1}\}$ . Consequently, we obtain the desired inequality $C(x)\# M_{t}(B, x)$ . $\square$

This completes the proof of Theorem 3.1. The method presented here can
be applied to other problems on the theory of the hp-T degrees of $\Delta_{2}^{0}$ low sets.
For example, we can extend the result of Shore-Slaman [7] on the decidability
of the $\Pi_{2}$ theory of the p-T degrees of recursive sets to the hp-T degrees of
A8 low sets.
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