Strong minimal pair theorem for the honest polynomial degrees of Δ_{2}^{0} low sets

By Kunimasa Aoki, Juichi Shinoda and Teruko Tsuda

(Received Aug. 13, 1991)

§ 1. Introduction.

Homer [3] has shown that assuming $\mathrm{P}=\mathrm{NP}$ there is a Δ_{3}^{0} set which is minimal with respect to the honest polynomial time Turing reducibility, $\leqq \frac{h}{T}$, while it is known that the honest polynomial time Turing degrees (hp-T degrees) of recursive sets are dense. In [3], Homer raised a question whether a recursively enumerable (r.e.) set can be \leqq_{T}^{h} minimal. An affirmative answer has been given by Ambos-Spies [1] (assuming $\mathrm{P}=\mathrm{NP}$). He has shown that every high r.e. Turing degree contains a \leqq_{T}^{h} minimal element. Downey [2], on the other hand, has proved that no low Turing degree contains a $\leqq \frac{n}{T}$ minimal set. It has also been shown there that the hp-T degrees of low r.e. sets are dense. He asks if the hp-T degrees of Δ_{2}^{0} sets are dense. An affirmative answer evidently implies $\mathrm{P} \neq \mathrm{NP}$. We notice that in contrast to the hp-T degrees, the polynomial time Turing degrees ($\mathrm{p}-\mathrm{T}$ degrees) of all sets are dense, which can be proved by relativizing the proof of the density of the p-T degrees of recursive sets due to Ladner [4].

Concerning Downey's question, we shall prove the following strong minimal pair theorem which obviously implies the density of the hp-T degrees of Δ_{2}^{0} low sets.

Theorem. If A and B are Δ_{2}^{0} low sets such that $B<_{T}^{h} A$, then there are two sets C and D which satisfy the following two conditions:
(1) $B<{ }_{T}^{h} C<{ }_{T}^{h} A$ and $B<{ }_{T}^{h} D<{ }_{T}^{h} A$,
(2) $\operatorname{deg}_{T}^{h}(B)=\operatorname{deg}_{T}^{h}(C) \wedge \operatorname{deg}_{T}^{h}(D)$.

In [5], Landweber, Lipton and Robertson have proved the strong minimal pair theorem for the p-T degrees of recursive sets. In $\S 2$, we shall give a proof of the theorem for the hp-T degrees of recursive sets. The proof is a typical example of a Ladner style "looking back" technique. In §3, we shall give a proof of the theorem for the Δ_{2}^{0} low sets. Since our proof heavily depends on the notion of hp-T reducibility, it is not known whether the strong minimal pair theorem holds for the p-T degrees of Δ_{2}^{0} low sets.

Given A and B with $B<_{T}^{h} A$, we may construct two sets C and D so that they look like A on some intervals of Σ^{*} and look like B elsewhere. The switching points $\left\{l_{n}\right\}_{n}$ are effectively computed from A and B. If A and B are recursive, the sequence $\left\{l_{n}\right\}_{n}$ turns out to be recursive. However, when A and B are non-recursive, we can not expect that the sequence is recursive any more. This causes a difficulty in proving the second condition of the theorem. If A and B are Δ_{2}^{0} besides, then, by the limit lemma, they are approximated by recursive sets. We can use these approximations to construct recursively the switching points $\left\{l_{n}\right\}_{n}$ as in the case of recursive sets. This time, however, other difficulty occurs in proving the first condition of the theorem. Especially, it is hard to prove the inequalities $C \not \equiv_{T}^{h} B$ and $D \not \equiv_{T}^{h} B$. The lowness of A and B will resolve these difficulties.

Our notation is standard. Let $\Sigma=\{0,1\} . \Sigma^{*}$ is the set of finite strings of elements of Σ. Lower case letters x, y, z, \cdots denote elements of Σ^{*} and capital letters $A, B, C \cdots$ denote subsets of $\Sigma^{*} .|x|$ denotes the length of x. We order Σ^{*} in the canonical way:

$$
\lambda<0<1<00<01<10<11<000<001<010<\cdots
$$

We sometimes identify an integer n and the $n+1$ st string z_{n} in this order. $A \oplus B=\{0 x: x \in A\} \cup\{1 x: x \in B\}$ is the effective disjoint union of A and B. For an oracle Turing machine $M, M(A, x)=1$ denotes that M with oracle A accepts x, and $M(A, x)=0$ denotes that x is refuted. Finally, let \langle,$\rangle denote$ some polynomial time computable bijection from $\Sigma^{*} \times \Sigma^{*}$ onto Σ^{*} which has polynomial time computable inverses and which satisfies $x, y \leqq\langle x, y\rangle$ for all $x, y \in \Sigma^{*}$.

§ 2. The hp-T degrees of recursive sets.

An oracle Turing machine M is polynomially honest if there are polynomials p and q such that on input x, M halts within $p(|x|)$ steps and if M queries the oracle on a string y then $|x| \leqq q(|y|)$. We recursively enumerate all the polynomially honest oracle Turing machines and their associated polynomials, $\left\{\left(M_{e}, p_{e}, q_{e}\right): e \in \boldsymbol{N}\right\}$. Let A and B be two subsets of Σ^{*}. A is said to be hpT reducible to B, write $A \leqq{ }_{T}^{h} B$, if there is a polynomially honest oracle Turing machine M such that $A(x)=M(B, x)$ for all $x \in \Sigma^{*} . A$ and B have the same honest polynomial time Turing degrees (hp-T degrees), $A \equiv_{T}^{h} B$, if $A \varliminf_{T}^{h} B$ and $B \leqq{ }_{T}^{h} A$. The hp-T degree of A is denoted by $\operatorname{deg}_{T}^{h}(A)$. If $A \leqq{ }_{T}^{h} B$ and $A \neq{ }_{T}^{h} B$, we write $A<{ }_{T}^{h} B$. The greatest lower bound of $\operatorname{deg}_{T}^{h}(A)$ and $\operatorname{deg}_{T}^{h}(B)$, if exists, is written $\operatorname{deg}_{T}^{h}(A) \wedge \operatorname{deg}_{T}^{h}(B)$.

As Ambos-Spies points out in [1], most results on the structure of the
polynomial time Turing degrees ($\mathrm{p}-\mathrm{T}$ degrees) of the recursive sets hold for the hp-T degrees. We support his observation in proving the strong minimal pair theorem for the hp-T degrees of recursive sets. The theorem for the p-T degrees has given by Landweber, Lipton and Robertson [5].

Theorem 2.1. Given recursive sets A and B, if $B<_{T}^{h} A$, then there exist recursive sets C and D such that
(1) $B<{ }_{T}^{h} C<_{T}^{h} A$ and $B<{ }_{T}^{h} D<{ }_{T}^{h} A$,
(2) $\operatorname{deg}_{T}^{h}(B)=\operatorname{deg}_{T}^{h}(C) \wedge \operatorname{deg}_{T}^{h}(D)$.

Proof. Since $A \oplus B \equiv{ }_{T}^{h} A$, we may assume $B=A \cap 1 \Sigma^{*}$. We effectively construct a strictly increasing sequence $\left\{l_{n}: n \in \boldsymbol{N}\right\}$ as follows.

Stage 0. $\quad l_{0}=0$.
Stage $6 e+i+1(i=0,3)$. Let $n=6 e+i$. Since $B<_{T}^{h} A$, there is an x with $l_{n} \leqq|x|$ such that $A(x) \neq M_{e}(B, x)$. We take the least such x, and let $l_{n+1}=$ $l_{n}+2^{l_{n}}+m$, where m is the number of steps performed to find x and verify the inequality $A(x) \neq M_{e}(B, x)$. This means that if we perform the construction in l_{n+1} steps then we can find the least x such that $l_{n} \leqq|x|$ and $A(x) \neq M_{e}(B, x)$.

Stage $6 e+i+1(i=1,2,4,5)$. We let $l_{6 e+i+1}=l_{6 e+i}+2^{l_{6++i}}$.
We define C and D as follows:

$$
\begin{aligned}
& C(x)= \begin{cases}A(x) & \text { if } l_{6 e} \leqq|x|<l_{6 e+1} \text { for some } e, \\
B(x) & \text { otherwise }\end{cases} \\
& D(x)= \begin{cases}A(x) & \text { if } l_{6 e+3} \leqq|x|<l_{6 e+4} \\
B(x) & \text { otherwise some } e\end{cases}
\end{aligned}
$$

C looks like A on the intervals $\left\{x: l_{6 e} \leqq|x|<l_{6 e+1}\right\}$ and looks like B on other intervals, while D looks like A on the intervals $\left\{x: l_{6 e+3} \leqq|x|<l_{6 e+4}\right\}$ and B elsewhere.

Since $B=C \cap 1 \Sigma^{*}, B$ is hp-T computable from C in the obvious way. By the definition of $l_{6 e+1}$, there is an x such that $l_{6 e} \leqq|x|<l_{6 e+1}$ and $A(x) \neq M_{e}(B, x)$. A and C agree on this interval. Thus, we see that $C(x) \neq M_{e}(B, x)$. It follows that C is not hp-T reducible to B. Therefore, we have $B<{ }_{T}^{h} C$.

To see that $C \leqq{ }_{T}^{h} A$, suppose $x \in \Sigma^{*}$. By performing the construction of $\left\{l_{n}\right\}_{n}$ in $|x|$ steps, we can compute the n such that $l_{n} \leqq|x|<l_{n+1}$, and then compute $C(x)$ from A in several more steps. This "looking back" algorithm gives an hp-T reduction of C to A. In the same manner, we can show that $B<_{T}^{h} D \leqq{ }_{T}^{h} A$.

Suppose $M_{i}(C)=M_{j}(D)=Z$ to see that C and D satisfies the condition (2). We must show that Z is hp -T reducible to B. First, take a sufficiently large n_{0} so that

$$
(\forall n)\left[n_{0} \leqq n \Longrightarrow p_{i}\left(l_{n-1}\right), q_{i}\left(l_{n-1}\right), p_{j}\left(l_{n-1}\right), q_{j}\left(l_{n-1}\right)<l_{n}\right] .
$$

For each x with $|x| \geqq l_{n_{0}}, Z(x)$ is computed from B as follows. Given x with $|x| \geqq l_{n_{0}}$, find the unique n such that $l_{n} \leqq|x|<l_{n+1}$ by looking back the construction of the sequence $\left\{l_{n}: n \in \boldsymbol{N}\right\}$ in $|x|$ steps. In the case where $n=6 e$, $6 e+1$ or $6 e+5$ for some e, B and D agree on the interval $\left\{z: l_{n-1} \leqq|z|<l_{n+2}\right\}$ by the definition of D. If M_{j} queries D on a string y during the computation of $M_{j}(D, x)$, then y must be in the interval $\left\{z: l_{n-1} \leqq|z|<l_{n+2}\right\}$ by the choice of n_{0}, and therefore the query is answered by B. Thus, in this case, we may compute $M_{j}(B, x)$ to obtain the value of $Z(x)$. Similarly, if $n=6 e+2,6 e+3$ or $6 e+4$ for some e, then we can compute $M_{i}(B, x)$ to obtain the value of $Z(x)$.

§ 3. The hp-T degrees of Δ_{2}^{0} low sets.

A set A is low if the Turing jump A^{\prime} of A has the least possible Turing degree, namely that of $\phi^{\prime} . \Delta_{2}^{0}$ sets are approximated by recursive sets (see [8, Limit lemma]): if A is Δ_{2}^{0}, then there is a recursive function $f(x, s)$ such that $f(x, s) \leqq 1$ and $A(x)=\lim _{s} f(x, s)$.

Theorem 3.1. The strong minimal pair theorem holds for the hp-T degrees of the Δ_{2}^{0} low sets: for all Δ_{2}^{0} low sets A and B with $B<{ }_{T}^{h} A$, there are two sets C and D that satisfy the following conditions.
(1) $B<{ }_{T}^{h} C<{ }_{T}^{h} A$ and $B<{ }_{T}^{h} D<{ }_{T}^{h} A$,
(2) $\operatorname{deg}_{T}^{h}(B)=\operatorname{deg}_{T}^{h}(C) \wedge \operatorname{deg}_{T}^{h}(D)$.

Proof. Suppose A and B are given low sets with $B<{ }_{T}^{h} A$. We may assume that $B=A \cap 1 \Sigma^{*}$ as before. As A and B are Δ_{2}^{0}, there are recursive functions $f(x, s)$ and $g(x, s)$ with $f(x, s), g(x, s) \leqq 1$ such that

$$
\lim _{s} f(x, s)=A(x), \quad \lim _{s} g(x, s)=B(x) .
$$

Let $A_{s}(x)=f(x, s)$ and $B_{s}(x)=g(x, s)$.
The basic idea of the proof is essentially the same as that of Theorem 2.1. We will construct a strictly increasing sequence $\left\{l_{n}: n \in N\right\}$ as before but use the approximation A_{s} and B_{s} instead, and then define C, D from the sequence as in the proof of Theorem 2.1:

$$
\begin{aligned}
& C(x)= \begin{cases}A(x) & \text { if } l_{6 e} \leqq|x|<l_{6 e+1} \text { for some } e, \\
B(x) & \text { otherwise },\end{cases} \\
& D(x)= \begin{cases}A(x) & \text { if } l_{6 e+3} \leqq|x|<l_{6 e+4} \\
B(x) & \text { otherwise some } e\end{cases}
\end{aligned}
$$

The sequence $\left\{l_{n}: n \in \boldsymbol{N}\right\}$ will be constructed so that given x, the unique n with $l_{n} \leqq|x|<l_{n+1}$ is calculated in $|x|$ steps by looking back the construction. It, then, follows that $B \leqq_{T}^{h} C \leqq{ }_{T}^{h} A$ and $B \leqq_{T}^{h} D \leqq_{T}^{h} A$. The condition (2) of the theorem will be verified in the same way as in the preceding section since $\left\{l_{n}\right\}_{n}$ will be constructed to satisfy $2^{l_{n}} \leqq l_{n+1}$ for all n.

To ensure that $C \not \mathbb{K}_{T}^{h} B$ and $D \not{ }_{T}^{h} B$, we require the following:
$\begin{array}{ll}\left(R_{2 e}\right) & C \neq M_{e}(B), \\ \left(R_{2 e+1}\right) & D \neq M_{e}(B) .\end{array}$
At stage $6 e+1$, we will try to meet the first requirement $R_{2 i}(i \leqq e)$ that is not certified at the point entering this stage by searching for some x with $|x| \geqq l_{6 e}$ such that $A_{s}(x) \neq M_{i}\left(B_{s}, x\right)$ at some $s \geqq l_{s e}$. Such an x exists since we are assuming $B<{ }_{T}^{h} A$. At this point we would know $R_{2 i}$ is met. However, at later stage, this disagreement might be injured, because it might happen that $A_{t}(x) \neq A_{s}(x)$ or $B_{t} \backslash p_{i}(|x|) \neq B_{s} \backslash p_{i}(|x|)$ at some point $t>s$. Then, we must attack $R_{2 i}$ again. We can not expect that $R_{2 i}$ is injured only finitely often. The lowness of A and B will resolve this difficulty. We use a variation of the method of Robinson [6] known as the "Robinson trick".

We fix a recursive enumeration $\left\{\sigma_{k}: k \in N\right\}$ of the finite functions σ such that

$$
\operatorname{dom}(\sigma)=\left\{z \in \Sigma^{*}:|z| \leqq l\right\} \text { for some } l \text {, and } \operatorname{rng}(\sigma) \leqq\{0,1\} .
$$

Let $\operatorname{lh}(\sigma)$ denote the maximum length of the strings in $\operatorname{dom}\left(\sigma_{k}\right) . \quad B \upharpoonright l$ and $B_{s} \upharpoonright l$ denote the restrictions of B and B_{s} to $\{x:|x| \leqq l\}$ respectively. Note that for each l, we can effectively find a k such that $B_{s} \upharpoonright l=\sigma_{k}$. Define H and \hat{H} by

$$
\begin{aligned}
& H=\left\{e:\left(\exists\langle x, k\rangle \in W_{e}\right)\left[x \in A \& \sigma_{k}=B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)\right]\right\}, \\
& \hat{H}=\left\{e:\left(\exists\langle x, k\rangle \in W_{e}\right)\left[x \notin A \& \sigma_{k}=B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)\right]\right\} .
\end{aligned}
$$

Since A and B are low, these sets are both Δ_{2}^{0}. Let $h(e, s)$ and $\hat{h}(e, s)$ be recursive functions with $h(x, s), \hat{h}(x, s) \leqq 1$ such that

$$
\lim _{s} h(e, s)=H(e), \quad \lim _{s} \hat{h}(e, s)=\hat{H}(e) .
$$

We will build recursive sequences $\left\{V_{i, s}\right\}_{i, s \in N}$ and $\left\{\hat{V}_{i, s}\right\}_{i, s \in N}$ during the construction. Let $V_{i}=\cup_{s} V_{i, s}$ and $\hat{V}_{i}=\cup_{s} \hat{V}_{i, s}$. Then, V_{i} and \hat{V}_{i} are recursively enumerable. By the Recursion Theorem we may assume that we have in advance an index $\theta(i)$ of V_{i} and $\hat{\theta}(i)$ of \hat{V}_{i} with some recursive functions θ and $\hat{\theta}$.

Definition 3.2. Suppose i and s are given.
(1) R_{i} is h-certified at s if $h(\theta(i), s)=1$ and there is a $\langle x, k\rangle \in V_{i, s}$ such
that $A_{s}(x)=1$ and $B_{s} \operatorname{lh}\left(\sigma_{k}\right)=\sigma_{k}$,
(2) R_{i} is \hat{h}-certified at s if $\hat{h}(\hat{\theta}(i), s)=1$ and there is a $\langle x, k\rangle \in \hat{V}_{i, s}$ such that $A_{s}(x)=0$ and $B_{s} \operatorname{lh}\left(\sigma_{k}\right)=\sigma_{k}$,
(3) R_{i} is certified at s if R_{i} is either h-certified or \hat{h}-certified at s.

We now give the construction of $\left\{l_{n}\right\}_{n}$. We use s as a variable that counts the steps of the construction. $V_{i, s}$ represents the finite set of elements enumerated into V_{i} up to step s during the construction. Similar for $\hat{V}_{i, s}$.

Stage 0. Let $l_{0}=0$ and $V_{i, 0}=\hat{V}_{i, 0}=\emptyset$ for all i.
Stage $6 e+i+1(i=1,2,4,5)$. We let $n=6 e+i$. Let $l_{n+1}=l_{n}+2^{l_{n}}$. No new elements are enumerated into V_{i} and \hat{V}_{i} for all i at this stage: $V_{i, s+1}=V_{i, s}$; $\hat{V}_{i, s+1}=\hat{V}_{i, s}$ for all i and s with $l_{n} \leqq s<l_{n+1}$.

Stage $6 e+1$. Take the least $i \leqq e$ such that $R_{2 i}$ is not certified at $l_{6 e}$. We say that $R_{2 i}$ is attacked at this stage. Our construction in this stage consists of one main routine and 5 subroutines. No new elements are enumerated into V_{j} and \hat{V}_{j} for all j with $j \neq 2 i$. We enumerate some new elements into $V_{2 i}$ or into $\hat{V}_{2 i}$ only when the construction enters Subroutine 1 below.

Main Routine. We set $s:=l_{6 e}$. Go to Subroutine 1 .
Claim 1. For every s, there exist $t>s, x \in \Sigma^{*}$ and k with $l_{6 e} \leqq|x| \leqq|\langle x, k\rangle|$ $\leqq t$ such that $\sigma_{k}=B_{t} \upharpoonright p_{i}(|x|)$ and such that one of the following holds:
(1.1) $\quad A_{t}(x)=1 \& M_{i}\left(B_{t}, x\right)=0$,
(1.2) $\quad A_{t}(x)=0 \& M_{i}\left(B_{t}, x\right)=1$.

Proof of Claim 1. Since $B<{ }_{T}^{h} A$, there is an x with $l_{6 e} \leqq|x|$ such that $A(x) \neq M_{i}(B, x)$. Take a sufficiently large $s_{0}>s$ such that $|x| \leqq s_{0}$ and

$$
(\forall t)\left[s_{0} \leqq t \Longrightarrow A_{t}(x)=A(x) \& B_{t} \upharpoonright p_{i}(|x|)=B \upharpoonright p_{i}(|x|)\right] .
$$

Let k be an integer such that $B \upharpoonright p(|x|)=\sigma_{k}$, and take a $t \geqq s_{0}$ so that $|\langle x, k\rangle|$ $\leqq t$. If $A(x)=1$ then (1.1) holds, and if $A(x)=0$ then (1.2) holds.

Subroutine 1. Suppose that the construction enters this subroutine with ${ }_{-}{ }^{\circ}$. We take the least t that satisfies Claim 1. Let $\langle x, k\rangle$ be the least pair which satisfies the conditions of the claim. If (1.1) holds, then enumerate $\langle x, k\rangle$ into $V_{2 i}$, set $s:=t$, and go to Subroutine 2. If (1.2) holds, then enumerate $\langle x, k\rangle$ into $\hat{V}_{2 i}$, set $s:=t$, and go to Subroutine 3.

Claim 2. Given s, suppose that $V_{2 i, t}=V_{2 i, s}$ for all $t \geqq s$. Then there is a $t>s$ such that one of the following holds:
(2.1) $R_{2 i}$ is h-certified at t,

$$
\begin{equation*}
h(\theta(2 i), t)=0 \&\left(\forall\langle x, k\rangle \in V_{2 i, t}\right)\left[A_{i}(x)=0 \vee B_{t} \upharpoonleft \operatorname{lh}\left(\sigma_{k}\right) \neq \sigma_{k}\right] . \tag{2.2}
\end{equation*}
$$

Proof of Claim 2. Note that $V_{2 i, t}=V_{2 i}$ for all $t \geqq s$, and therefore $V_{2 i}$ is finite. Take a sufficiently large $t>s$ so that $h(\theta(2 i), t)=H(\theta(2 i))$ and

$$
\left(\forall\langle x, k\rangle \in V_{2 i}\right)\left[A_{t}(x)=A(x) \& B_{t} 川 \operatorname{lh}\left(\sigma_{k}\right)=B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)\right] .
$$

Suppose $H(\theta(2 i))=1$. By the definition of H, we have

$$
\left(\exists\langle x, k\rangle \in V_{2 i}\right)\left[A(x)=1 \& B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)=\sigma_{k}\right] .
$$

Then, we have $h(\theta(2 i), t)=1$ and

$$
\left(\exists\langle x, k\rangle \in V_{2 i, t}\right)\left[A_{t}(x)=1 \& B_{t} \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)=\sigma_{k}\right] .
$$

Thus, $R_{2 i}$ is h-certified at t. Similarly, if $H(\theta(2 i))=0$, then (2.2) holds at t.
Similarly, we have the following.
Claim 3. Suppose that $\hat{V}_{2 i, t}=\hat{V}_{2 i, s}$ for all t with $t \geqq s$. Then there is a $t>s$ such that one of the following holds:
(3.1) $R_{2 i}$ is \hat{h}-certified at t,
(3.2) $\hat{h}(\hat{\theta}(2 i), t)=0 \&\left(\forall\langle x, k\rangle \in \hat{V}_{2 i, t}\right)\left[A_{t}(x)=1 \vee B_{t} \operatorname{\operatorname {lh}}\left(\sigma_{k}\right) \neq \sigma_{k}\right]$.

Subroutine 2. Suppose we enter this subroutine with s. Set $t:=s$, and repeat $t:=t+1$ until either (2.1) or (2.2) of Claim 2 holds. Set $s:=t$. If (2.1) holds at t then go to Subroutine 5, and if (2.2) holds then go to Subroutine 4.

Subroutine 3. Similar to Subroutine 2.
Claim 4. Given s, suppose that $V_{2 i, t}=V_{2 i, s}$ and $\hat{V}_{2 i, t}=\hat{V}_{2 i, s}$ for all $t>s$. Then there is a $t \geqq s$ such that one of the following holds:
(4.1) $R_{2 i}$ is h-certified at t,
(4.2) $R_{2 i}$ is \hat{h}-certified at t,

$$
\begin{align*}
& h(\theta(2 i), t)=0 \&\left(\forall\langle x, k\rangle \in V_{2 i, t}\right)\left[A_{t}(x)=0 \vee B_{t} \operatorname{lh}\left(\sigma_{k}\right) \neq \sigma_{k}\right] \text { and } \tag{4.3}\\
& \hat{h}(\hat{\theta}(2 i), t)=0 \&\left(\forall\langle x, k\rangle \in \hat{V}_{2 i, t}\right)\left[A_{t}(x)=1 \vee B_{t} \operatorname{lh}\left(\sigma_{k}\right) \neq \sigma_{k}\right] .
\end{align*}
$$

Proof of Claim 4. By the assumption, for all sufficiently large $t, V_{2 i, t}$ $=V_{2 i}$ and $\hat{V}_{2 i, t}=\hat{V}_{2 i}$. Take a sufficiently large t with $t>s$ which satisfies the following:
(a) $h(\theta(2 i), t)=H(\theta(2 i))$ and $\hat{h}(\hat{\theta}(2 i), t)=\hat{H}(\hat{\theta}(2 i))$,
(b) $\left(\forall\langle x, k\rangle \in V_{2 i}\right)\left[A_{t}(x)=A(x) \& B_{t} \operatorname{lh}\left(\sigma_{k}\right)=B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)\right]$,
(c) $\left(\forall\langle x, k\rangle \in \hat{V}_{2 i}\right)\left[A_{t}(x)=A(x) \& B_{t} \upharpoonleft \operatorname{lh}\left(\sigma_{k}\right)=B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)\right]$.

As in the proof of Claim 2, we see that if $H(\theta(2 i))=1$ then $R_{2 i}$ is h-certified at t, and if $\hat{H}(\hat{\theta}(2 i))=1$ then $R_{2 i}$ is \hat{h}-certified. Similarly, if $H(\theta(2 i))=0$ and $\hat{H}(\hat{\theta}(2 i))$ $=0$, then (4.3) holds.

Subroutine 4. Similar to Subroutine 2. Suppose that the construction enters this subroutine with s. We wait for the least $t>s$ that satisfies one of the conditions of Claim 4. Set $s:=t$. If (4.1) or (4.2) holds, then go to Subroutine 5. Otherwise, go to Subroutine 1.

Subroutine 5. Suppose we reach this subroutine with s. Let $l_{6 e+1}=$ $l_{\text {se }}+2^{l_{6 e}}+m$, where m is the number of steps in which the construction up to this point is performed. Set $s:=l_{6 e+1}$ and exist from the main routine.

Stage $6 e+4$. Similar to Stage $6 e+1$. Take the least $i \leqq e$ such that $R_{2 i+1}$ is not certified at $l_{6 e+3}$. The requirement $R_{2 i+1}$ is attacked in this stage. We leave the details to the reader.

Thus, we complete the construction of $\left\{l_{n}\right\}_{n \in N}$.
Lemma 3.3. $l_{6 e+1}$ and $l_{6 e+4}$ are defined.
Proof. We prove that $l_{6 e+1}$ is defined. It is sufficient to show that we reach Subroutine 5 while executing the main routine. Suppose not. Then, we always exit from Subroutine 2 with (2.2), Subroutine 3 with (3.2) and Subroutine 4 with (4.3). Since $B<{ }_{T}^{h} A$, there is an x such that $A(x) \neq M_{i}(B, x)$. Take the least such x with $|x| \geqq l_{\text {ee }}$ and let k be the least integer with $B \upharpoonright p_{i}(|x|)=\sigma_{k}$. Suppose, say, $A(x)=1$ and $M_{i}(B, x)=0$. Take s_{0} large enough to satisfy

$$
(\forall s)\left[s_{0} \leqq s \Longrightarrow A_{s}(x)=1 \& B_{s} \upharpoonright p_{i}(|x|)=B \upharpoonright p_{i}(|x|)\right] .
$$

We may assume that $|x| \leqq s_{0}$. If $\langle x, k\rangle$ is not enumerated into $V_{2 i}$ up to s_{0}, then $\langle x, k\rangle$ is witnessed each time Subroutine 1 is executed after s_{0}. By the assumption, we enter Subroutine 1 infinitely often. Thus, eventually, $\langle x, k\rangle$ must be enumerated into $V_{2 i}$. Then, we have $H(\theta(2 i))=1$ by the definition of H. Take sufficiently large $\left.s_{1}\right\rangle s_{0}$ so that $\langle x, k\rangle \in V_{2 i, s_{1}}$ and $h(\theta(2 i), s)=1$ for all $s \geqq s_{1}$. Then, $R_{2 i}$ is h-certified at all points after s_{1}. Thus, we reach Subroutine 5 whenever we exit from one of Subroutine 2-4 after s_{1}, which is a contradiction.

Lemma 3.4. For all i, the requirement $R_{2 i}$ is attacked only finitely often.
Proof. We prove the lemma by induction on i. Suppose that no requirement $R_{2 j}$ with $j<i$ is attacked at any stage after n_{0}, which means that every requirement $R_{2 j}(j<i)$ is certified at $l_{6 e}$ for all e with $n_{0}<6 e$. Let $s_{0} \geqq n_{0}$ be large enough to satisfy

$$
(\forall s)\left[s_{0} \leqq s \Longrightarrow h(\theta(2 i), s)=H(\theta(2 i)) \& \hat{h}(\hat{\theta}(2 i), s)=\hat{H}(\hat{\theta}(2 i))\right] .
$$

Suppose $H(\theta(2 i))=1$. Then, by the definition of H, there is a $\langle x, k\rangle \in V_{2 i}$ such that $A(x)=1$ and $B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)=\sigma_{k}$. Take a sufficiently large $s_{1} \geqq s_{0}$ so that

$$
(\forall s)\left[s_{1} \leqq s \Longrightarrow\langle x, k\rangle \in V_{2 i, s} \& A_{s}(x)=1 \& B_{s} \upharpoonleft \operatorname{lh}\left(\sigma_{k}\right)=B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)\right] .
$$

Then, $R_{2 i}$ is h-certified at every point s with $s \geqq s_{1}$. It follows that $R_{2 i}$ is not attacked at any stage n with $s_{1} \leqq l_{n}$. Similarly, if $\hat{H}(\hat{\theta}(2 i))=1$, then $R_{2 i}$ is not attacked infinitely often. Finally, suppose that $H(\theta(2 i))=\hat{H}(\hat{\theta}(2 i))=0$. We take a sufficiently large $s_{2} \geqq s_{0}$ so that

$$
(\forall s)\left[s_{2} \leqq s \Longrightarrow h(\theta(2 i), s)=\hat{h}(\hat{\theta}(2 i), s)=0\right] .
$$

It follows that $R_{2 i}$ is never certified after s_{2}. Thus, for every $e \geqq i$ with $n_{0}<6 e$, if $s_{2} \leqq l_{6 e}$ and $R_{2 i}$ is attacked at stage $6 e+1$, then we can not enter Subroutine 5 during stage $6 e+1$, which contradicts Lemma 3.3.

Similarly, we can prove the following.
LEMMA 3.5. For all i, the requirement $R_{2 i+1}$ is attacked only finitely often.
LEMMA 3.6. For every i the requirements $R_{2 i}$ and $R_{2 i+1}$ are met.
Proof. We prove that the requirement $R_{2 i}$ is met. Take an n_{0} so that $R_{2 i}$ is not attacked after n_{0}. Then, for all e with $n_{0}<6 e, R_{2 i}$ is certified at $l_{6 e}$. It follows that either $H(\theta(2 i))=1$ or $\hat{H}(\hat{\theta}(2 i))=1$. Suppose, say, $H(\theta(2 i))=1$. Then, by the definition, there is a $\langle x, k\rangle \in V_{2 i}$ such that $A(x)=1$ and $B \upharpoonright \operatorname{lh}\left(\sigma_{k}\right)$ $=\sigma_{k}$. Suppose $\langle x, k\rangle$ is enumerated into $V_{2 i}$ during stage $6 e+1$. Then, there is a t with $l_{6 e}<t<l_{6 e+1}$ such that $B_{t} \upharpoonright p_{i}(|x|)=\sigma_{k}$ and $M_{i}\left(B_{t}, x\right)=0$. Since $B_{t} \upharpoonright p_{i}(|x|)$ and $B \upharpoonright p_{i}(|x|)$ are both equal to σ_{k}, we see that $M_{i}(B, x)=0$. Thus we have the inequality $A(x) \neq M_{i}(B, x)$. A and C agree on the interval $\left\{z: l_{6 e}\right.$ $\left.\leqq|z|<l_{6 e+1}\right\}$. Consequently, we obtain the desired inequality $C(x) \neq M_{i}(B, x)$.

This completes the proof of Theorem 3.1. The method presented here can be applied to other problems on the theory of the hp-T degrees of Δ_{2}^{0} low sets. For example, we can extend the result of Shore-Slaman [7] on the decidability of the Π_{2} theory of the p-T degrees of recursive sets to the hp-T degrees of Δ_{2}^{0} low sets.

References

[1] K. Ambos-Spies, Honest polynomial time reducibilities and $P=? N P$ problem, J. Comput. and System Sci., 39 (1989), 250-289.
[2] R. Downey, On computational complexity and honest polynomial degrees, Theoret. Comput. Sci., 78 (1991), 305-317.
[3] S. Homer, Minimal polynomial degrees for nonrecursive sets, Lecture Notes in Math., 1141, Springer-Verlag, 1985, pp. 193-202.
[4] R.E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mech., 22 (1975), 155-171.
[5] L.H. Landweber, R. J. Lipton and E. L. Robertson, On the structure of sets in $N P$
and other complexity classes, Theoret. Comput. Sci., 15 (1981), 181-200.
[6] R.W. Robinson, Interpolation and embedding in the recursively enumerable degrees, Ann. of Math., 93 (1971), 285-314.
[7] R.A. Shore and T.A. Slaman, The $p-T$ degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two quantifier theory, in Proc. Structures in Complexity Theory, 4th Annual Conf., 1989, to appear.
[8] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.

Kunimasa Aoki
Department of Mathematics School of Science Nagoya University Chikusa-ku, Nagoya 464-01 Japan

Juichi Shinoda
Department of mathematics
College of General Education Nagoya University Chikusa-ku, Nagoya 464-01
Japan
Teruko Tsuda
Division of Intelligence Science
Graduate School of Science and Technology
Kobe University
Nada-ku, Kobe 657
Japan

