Strong minimal pair theorem for the honest polynomial degrees of Δ_2^0 low sets

By Kunimasa AOKI, Juichi SHINODA and Teruko TSUDA

(Received Aug. 13, 1991)

§1. Introduction.

Homer [3] has shown that assuming P=NP there is a Δ_s^0 set which is minimal with respect to the honest polynomial time Turing reducibility, $\leq \frac{h}{T}$, while it is known that the honest polynomial time Turing degrees (hp-T degrees) of recursive sets are dense. In [3], Homer raised a question whether a recursively enumerable (r.e.) set can be $\leq \frac{h}{T}$ minimal. An affirmative answer has been given by Ambos-Spies [1] (assuming P=NP). He has shown that every high r.e. Turing degree contains a $\leq \frac{h}{T}$ minimal element. Downey [2], on the other hand, has proved that no low Turing degree contains a $\leq \frac{h}{T}$ minimal set. It has also been shown there that the hp-T degrees of low r.e. sets are dense. He asks if the hp-T degrees of Δ_2^0 sets are dense. An affirmative answer evidently implies $P \neq NP$. We notice that in contrast to the hp-T degrees, the polynomial time Turing degrees (p-T degrees) of all sets are dense, which can be proved by relativizing the proof of the density of the p-T degrees of recursive sets due to Ladner [4].

Concerning Downey's question, we shall prove the following strong minimal pair theorem which obviously implies the density of the hp-T degrees of Δ_2^0 low sets.

THEOREM. If A and B are Δ_2^0 low sets such that $B < T^h A$, then there are two sets C and D which satisfy the following two conditions:

- (1) $B <_T^h C <_T^h A$ and $B <_T^h D <_T^h A$,
- (2) $\deg_T^h(B) = \deg_T^h(C) \wedge \deg_T^h(D).$

In [5], Landweber, Lipton and Robertson have proved the strong minimal pair theorem for the p-T degrees of recursive sets. In §2, we shall give a proof of the theorem for the hp-T degrees of recursive sets. The proof is a typical example of a Ladner style "looking back" technique. In §3, we shall give a proof of the theorem for the Δ_2^0 low sets. Since our proof heavily depends on the notion of hp-T reducibility, it is not known whether the strong minimal pair theorem holds for the p-T degrees of Δ_2^0 low sets. Given A and B with $B < {}_{T}^{h} A$, we may construct two sets C and D so that they look like A on some intervals of Σ^{*} and look like B elsewhere. The switching points $\{l_{n}\}_{n}$ are effectively computed from A and B. If A and B are recursive, the sequence $\{l_{n}\}_{n}$ turns out to be recursive. However, when A and B are non-recursive, we can not expect that the sequence is recursive any more. This causes a difficulty in proving the second condition of the theorem. If A and B are Δ_{2}^{0} besides, then, by the limit lemma, they are approximated by recursive sets. We can use these approximations to construct recursively the switching points $\{l_{n}\}_{n}$ as in the case of recursive sets. This time, however, other difficulty occurs in proving the first condition of the theorem. Especially, it is hard to prove the inequalities $C \not\equiv_{T}^{h} B$ and $D \not\equiv_{T}^{h} B$. The lowness of A and B will resolve these difficulties.

Our notation is standard. Let $\Sigma = \{0, 1\}$. Σ^* is the set of finite strings of elements of Σ . Lower case letters x, y, z, \cdots denote elements of Σ^* and capital letters $A, B, C \cdots$ denote subsets of Σ^* . |x| denotes the length of x. We order Σ^* in the canonical way:

 $\lambda < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 < 010 < \cdots$.

We sometimes identify an integer n and the n+1st string z_n in this order. $A \oplus B = \{0x : x \in A\} \cup \{1x : x \in B\}$ is the effective disjoint union of A and B. For an oracle Turing machine M, M(A, x)=1 denotes that M with oracle Aaccepts x, and M(A, x)=0 denotes that x is refuted. Finally, let \langle , \rangle denote some polynomial time computable bijection from $\Sigma^* \times \Sigma^*$ onto Σ^* which has polynomial time computable inverses and which satisfies $x, y \leq \langle x, y \rangle$ for all $x, y \in \Sigma^*$.

$\S 2$. The hp-T degrees of recursive sets.

An oracle Turing machine M is *polynomially honest* if there are polynomials p and q such that on input x, M halts within p(|x|) steps and if M queries the oracle on a string y then $|x| \leq q(|y|)$. We recursively enumerate all the polynomially honest oracle Turing machines and their associated polynomials, $\{(M_e, p_e, q_e): e \in N\}$. Let A and B be two subsets of Σ^* . A is said to be hp-T reducible to B, write $A \leq h B$, if there is a polynomially honest oracle Turing machine M such that A(x)=M(B, x) for all $x \in \Sigma^*$. A and B have the same honest polynomial time Turing degrees (hp-T degrees), $A \equiv h B$, if $A \leq h B$ and $B \leq h B$. The greatest lower bound of $\deg_T^h(A)$ and $\deg_T^h(B)$, if exists, is written $\deg_T^h(A) \wedge \deg_T^h(B)$.

As Ambos-Spies points out in [1], most results on the structure of the

506

polynomial time Turing degrees (p-T degrees) of the recursive sets hold for the hp-T degrees. We support his observation in proving the strong minimal pair theorem for the hp-T degrees of recursive sets. The theorem for the p-T degrees has given by Landweber, Lipton and Robertson [5].

THEOREM 2.1. Given recursive sets A and B, if $B <_T^h A$, then there exist recursive sets C and D such that

- (1) $B <_T^h C <_T^h A$ and $B <_T^h D <_T^h A$,
- (2) $\deg_T^h(B) = \deg_T^h(C) \wedge \deg_T^h(D).$

PROOF. Since $A \oplus B \equiv_T^n A$, we may assume $B = A \cap 1 \Sigma^*$. We effectively construct a strictly increasing sequence $\{l_n : n \in N\}$ as follows.

Stage 0. $l_0=0$.

Stage 6e+i+1 (i=0, 3). Let n=6e+i. Since $B < T^h A$, there is an x with $l_n \le |x|$ such that $A(x) \ne M_e(B, x)$. We take the least such x, and let $l_{n+1} = l_n + 2^{l_n} + m$, where m is the number of steps performed to find x and verify the inequality $A(x) \ne M_e(B, x)$. This means that if we perform the construction in l_{n+1} steps then we can find the least x such that $l_n \le |x|$ and $A(x) \ne M_e(B, x)$.

Stage 6e+i+1 (i=1, 2, 4, 5). We let $l_{6e+i+1}=l_{6e+i}+2^{l_{6e+i}}$.

We define C and D as follows:

$$C(x) = \begin{cases} A(x) & \text{if } l_{6e} \le |x| < l_{6e+1} \text{ for some } e, \\ B(x) & \text{otherwise.} \end{cases}$$
$$D(x) = \begin{cases} A(x) & \text{if } l_{6e+3} \le |x| < l_{6e+4} \text{ for some } e, \\ B(x) & \text{otherwise.} \end{cases}$$

C looks like *A* on the intervals $\{x : l_{6e} \leq |x| < l_{6e+1}\}$ and looks like *B* on other intervals, while *D* looks like *A* on the intervals $\{x : l_{6e+3} \leq |x| < l_{6e+4}\}$ and *B* elsewhere.

Since $B=C\cap 1\Sigma^*$, B is hp-T computable from C in the obvious way. By the definition of l_{6e+1} , there is an x such that $l_{6e} \leq |x| < l_{6e+1}$ and $A(x) \neq M_e(B, x)$. A and C agree on this interval. Thus, we see that $C(x) \neq M_e(B, x)$. It follows that C is not hp-T reducible to B. Therefore, we have $B < \frac{h}{T}C$.

To see that $C \leq \frac{h}{T} A$, suppose $x \in \Sigma^*$. By performing the construction of $\{l_n\}_n$ in |x| steps, we can compute the *n* such that $l_n \leq |x| < l_{n+1}$, and then compute C(x) from *A* in several more steps. This "looking back" algorithm gives an hp-T reduction of *C* to *A*. In the same manner, we can show that $B < \frac{h}{T} D \leq \frac{h}{T} A$.

Suppose $M_i(C) = M_j(D) = Z$ to see that C and D satisfies the condition (2). We must show that Z is hp-T reducible to B. First, take a sufficiently large n_0 so that K. AOKI, J. SHINODA and T. TSUDA

 $(\forall n) [n_0 \leq n \Longrightarrow p_i(l_{n-1}), q_i(l_{n-1}), p_j(l_{n-1}), q_j(l_{n-1}) < l_n].$

For each x with $|x| \ge l_{n_0}$, Z(x) is computed from B as follows. Given x with $|x| \ge l_{n_0}$, find the unique n such that $l_n \le |x| < l_{n+1}$ by looking back the construction of the sequence $\{l_n : n \in N\}$ in |x| steps. In the case where n=6e, 6e+1 or 6e+5 for some e, B and D agree on the interval $\{z : l_{n-1} \le |z| < l_{n+2}\}$ by the definition of D. If M_j queries D on a string y during the computation of $M_j(D, x)$, then y must be in the interval $\{z : l_{n-1} \le |z| < l_{n+2}\}$ by the choice of n_0 , and therefore the query is answered by B. Thus, in this case, we may compute $M_j(B, x)$ to obtain the value of Z(x). Similarly, if n=6e+2, 6e+3 or 6e+4 for some e, then we can compute $M_i(B, x)$ to obtain the value of Z(x).

§ 3. The hp-T degrees of Δ_2^0 low sets.

A set A is *low* if the Turing jump A' of A has the least possible Turing degree, namely that of ϕ' . Δ_2^0 sets are approximated by recursive sets (see [8, Limit lemma]): if A is Δ_2^0 , then there is a recursive function f(x, s) such that $f(x, s) \leq 1$ and $A(x) = \lim_s f(x, s)$.

THEOREM 3.1. The strong minimal pair theorem holds for the hp-T degrees of the Δ_2^0 low sets: for all Δ_2^0 low sets A and B with $B < \frac{h}{T}A$, there are two sets C and D that satisfy the following conditions.

- (1) $B <_T^h C <_T^h A$ and $B <_T^h D <_T^h A$,
- (2) $\deg_T^h(B) = \deg_T^h(C) \wedge \deg_T^h(D).$

PROOF. Suppose A and B are given low sets with $B < {}^{h}_{T}A$. We may assume that $B = A \cap 1\Sigma^{*}$ as before. As A and B are Δ_{2}^{0} , there are recursive functions f(x, s) and g(x, s) with f(x, s), $g(x, s) \leq 1$ such that

$$\lim_{s} f(x, s) = A(x), \qquad \lim_{s} g(x, s) = B(x).$$

Let $A_s(x) = f(x, s)$ and $B_s(x) = g(x, s)$.

The basic idea of the proof is essentially the same as that of Theorem 2.1. We will construct a strictly increasing sequence $\{l_n : n \in N\}$ as before but use the approximation A_s and B_s instead, and then define C, D from the sequence as in the proof of Theorem 2.1:

$$C(x) = \begin{cases} A(x) & \text{if } l_{6e} \leq |x| < l_{6e+1} \text{ for some } e, \\ B(x) & \text{otherwise,} \end{cases}$$
$$D(x) = \begin{cases} A(x) & \text{if } l_{6e+3} \leq |x| < l_{6e+4} \text{ for some } e, \\ B(x) & \text{otherwise.} \end{cases}$$

508

The sequence $\{l_n : n \in \mathbb{N}\}$ will be constructed so that given x, the unique n with $l_n \leq |x| < l_{n+1}$ is calculated in |x| steps by looking back the construction. It, then, follows that $B \leq \frac{h}{T} C \leq \frac{h}{T} A$ and $B \leq \frac{h}{T} D \leq \frac{h}{T} A$. The condition (2) of the theorem will be verified in the same way as in the preceding section since $\{l_n\}_n$ will be constructed to satisfy $2^{l_n} \leq l_{n+1}$ for all n.

To ensure that $C \leq {}_{T}^{h} B$ and $D \leq {}_{T}^{h} B$, we require the following:

$$(R_{2e}) C \neq M_e(B),$$

$$(R_{2e+1}) D \neq M_e(B).$$

At stage 6e+1, we will try to meet the first requirement R_{2i} $(i \leq e)$ that is not certified at the point entering this stage by searching for some x with $|x| \geq l_{6e}$ such that $A_s(x) \neq M_i(B_s, x)$ at some $s \geq l_{6e}$. Such an x exists since we are assuming $B < \frac{h}{T}A$. At this point we would know R_{2i} is met. However, at later stage, this disagreement might be injured, because it might happen that $A_t(x) \neq A_s(x)$ or $B_t \upharpoonright p_i(|x|) \neq B_s \upharpoonright p_i(|x|)$ at some point t > s. Then, we must attack R_{2i} again. We can not expect that R_{2i} is injured only finitely often. The lowness of A and B will resolve this difficulty. We use a variation of the method of Robinson [6] known as the "Robinson trick".

We fix a recursive enumeration $\{\sigma_k: k \in N\}$ of the finite functions σ such that

dom
$$(\sigma) = \{z \in \Sigma^* : |z| \leq l\}$$
 for some l, and rng $(\sigma) \leq \{0, 1\}$.

Let $h(\sigma)$ denote the maximum length of the strings in $dom(\sigma_k)$. $B \upharpoonright l$ and $B_s \upharpoonright l$ denote the restrictions of B and B_s to $\{x : |x| \le l\}$ respectively. Note that for each l, we can effectively find a k such that $B_s \upharpoonright l = \sigma_k$. Define H and \hat{H} by

$$H = \{e : (\exists \langle x, k \rangle \in W_e) [x \in A \& \sigma_k = B \upharpoonright h(\sigma_k)]\},$$
$$\hat{H} = \{e : (\exists \langle x, k \rangle \in W_e) [x \notin A \& \sigma_k = B \upharpoonright h(\sigma_k)]\}.$$

Since A and B are low, these sets are both Δ_2^0 . Let h(e, s) and $\hat{h}(e, s)$ be recursive functions with h(x, s), $\hat{h}(x, s) \leq 1$ such that

$$\lim h(e, s) = H(e), \qquad \lim \hat{h}(e, s) = \hat{H}(e).$$

We will build recursive sequences $\{V_{i,s}\}_{i,s\in N}$ and $\{\hat{V}_{i,s}\}_{i,s\in N}$ during the construction. Let $V_i = \bigcup_s V_{i,s}$ and $\hat{V}_i = \bigcup_s \hat{V}_{i,s}$. Then, V_i and \hat{V}_i are recursively enumerable. By the Recursion Theorem we may assume that we have in advance an index $\theta(i)$ of V_i and $\hat{\theta}(i)$ of \hat{V}_i with some recursive functions θ and $\hat{\theta}$.

DEFINITION 3.2. Suppose *i* and *s* are given. (1) R_i is *h*-certified at *s* if $h(\theta(i), s)=1$ and there is a $\langle x, k \rangle \in V_{i,s}$ such that $A_s(x) = 1$ and $B_s \upharpoonright \ln(\sigma_k) = \sigma_k$,

(2) R_i is \hat{h} -certified at s if $\hat{h}(\hat{\theta}(i), s)=1$ and there is a $\langle x, k \rangle \in \hat{V}_{i,s}$ such that $A_s(x)=0$ and $B_s \upharpoonright h(\sigma_k) = \sigma_k$,

(3) R_i is certified at s if R_i is either h-certified or \hat{h} -certified at s.

We now give the construction of $\{l_n\}_n$. We use s as a variable that counts the steps of the construction. $V_{i,s}$ represents the finite set of elements enumerated into V_i up to step s during the construction. Similar for $\hat{V}_{i,s}$.

Stage 0. Let $l_0=0$ and $V_{i,0}=\hat{V}_{i,0}=\emptyset$ for all *i*.

Stage 6e+i+1 (i=1, 2, 4, 5). We let n=6e+i. Let $l_{n+1}=l_n+2^{l_n}$. No new elements are enumerated into V_i and \hat{V}_i for all *i* at this stage: $V_{i,s+1}=V_{i,s}$; $\hat{V}_{i,s+1}=\hat{V}_{i,s}$ for all *i* and *s* with $l_n \leq s < l_{n+1}$.

Stage 6e+1. Take the least $i \leq e$ such that R_{2i} is not certified at l_{6e} . We say that R_{2i} is attacked at this stage. Our construction in this stage consists of one main routine and 5 subroutines. No new elements are enumerated into V_j and \hat{V}_j for all j with $j \neq 2i$. We enumerate some new elements into V_{2i} or into \hat{V}_{2i} only when the construction enters Subroutine 1 below.

MAIN ROUTINE. We set $s := l_{6e}$. Go to Subroutine 1.

CLAIM 1. For every s, there exist t > s, $x \in \Sigma^*$ and k with $l_{6e} \leq |x| \leq |\langle x, k \rangle|$ $\leq t$ such that $\sigma_k = B_t \upharpoonright p_i(|x|)$ and such that one of the following holds:

- (1.1) $A_t(x) = 1 \& M_i(B_t, x) = 0,$
- (1.2) $A_t(x) = 0 \& M_i(B_t, x) = 1.$

PROOF OF CLAIM 1. Since $B < {}^{h}_{T}A$, there is an x with $l_{6e} \leq |x|$ such that $A(x) \neq M_{i}(B, x)$. Take a sufficiently large $s_{0} > s$ such that $|x| \leq s_{0}$ and

$$(\forall t)[s_0 \leq t \Longrightarrow A_t(x) = A(x) \& B_t \upharpoonright p_i(|x|) = B \upharpoonright p_i(|x|)].$$

Let k be an integer such that $B \upharpoonright p(|x|) = \sigma_k$, and take a $t \ge s_0$ so that $|\langle x, k \rangle| \le t$. If A(x)=1 then (1.1) holds, and if A(x)=0 then (1.2) holds. \Box

SUBROUTINE 1. Suppose that the construction enters this subroutine with s. We take the least t that satisfies Claim 1. Let $\langle x, k \rangle$ be the least pair which satisfies the conditions of the claim. If (1.1) holds, then enumerate $\langle x, k \rangle$ into V_{2i} , set s := t, and go to Subroutine 2. If (1.2) holds, then enumerate $\langle x, k \rangle$ into \hat{V}_{2i} , set s := t, and go to Subroutine 3.

CLAIM 2. Given s, suppose that $V_{2i,t}=V_{2i,s}$ for all $t \ge s$. Then there is a t > s such that one of the following holds:

- (2.1) R_{2i} is h-certified at t,
- $(2.2) \quad h(\theta(2i), t) = 0 \& (\forall \langle x, k \rangle \in V_{2i, t})[A_i(x) = 0 \lor B_t \upharpoonright h(\sigma_k) \neq \sigma_k].$

510

PROOF OF CLAIM 2. Note that $V_{2i,t} = V_{2i}$ for all $t \ge s$, and therefore V_{2i} is finite. Take a sufficiently large t > s so that $h(\theta(2i), t) = H(\theta(2i))$ and

$$(\forall \langle x, k \rangle \in V_{2i})[A_i(x) = A(x) \& B_i \restriction h(\sigma_k) = B \restriction h(\sigma_k)].$$

Suppose $H(\theta(2i))=1$. By the definition of H, we have

$$(\exists \langle x, k \rangle \in V_{2i})[A(x) = 1 \& B \upharpoonright h(\sigma_k) = \sigma_k].$$

Then, we have $h(\theta(2i), t)=1$ and

$$(\exists \langle x, k \rangle \in V_{2i,t})[A_t(x) = 1 \& B_t \upharpoonright h(\sigma_k) = \sigma_k].$$

Thus, R_{2i} is h-certified at t. Similarly, if $H(\theta(2i))=0$, then (2.2) holds at t. \Box

Similarly, we have the following.

CLAIM 3. Suppose that $\hat{V}_{2i,t} = \hat{V}_{2i,s}$ for all t with $t \ge s$. Then there is a t > s such that one of the following holds:

- (3.1) R_{2i} is \hat{h} -certified at t,
- (3.2) $\hat{h}(\hat{\theta}(2i), t) = 0 \& (\forall \langle x, k \rangle \in \hat{V}_{2i, t})[A_t(x) = 1 \lor B_t \upharpoonright h(\sigma_k) \neq \sigma_k].$

SUBROUTINE 2. Suppose we enter this subroutine with s. Set t:=s, and repeat t:=t+1 until either (2.1) or (2.2) of Claim 2 holds. Set s:=t. If (2.1) holds at t then go to Subroutine 5, and if (2.2) holds then go to Subroutine 4.

SUBROUTINE 3. Similar to Subroutine 2.

CLAIM 4. Given s, suppose that $V_{2i,t}=V_{2i,s}$ and $\hat{V}_{2i,t}=\hat{V}_{2i,s}$ for all t>s. Then there is a $t \ge s$ such that one of the following holds:

- (4.1) R_{2i} is h-certified at t,
- (4.2) R_{2i} is \hat{h} -certified at t,
- (4.3) $h(\theta(2i), t) = 0 \& (\forall \langle x, k \rangle \in V_{2i, t})[A_t(x) = 0 \lor B_t \restriction h(\sigma_k) \neq \sigma_k] and$ $\hat{h}(\hat{\theta}(2i), t) = 0 \& (\forall \langle x, k \rangle \in \hat{V}_{2i, t})[A_t(x) = 1 \lor B_t \restriction h(\sigma_k) \neq \sigma_k].$

PROOF OF CLAIM 4. By the assumption, for all sufficiently large t, $V_{2i,t} = V_{2i}$ and $\hat{V}_{2i,t} = \hat{V}_{2i}$. Take a sufficiently large t with t > s which satisfies the following:

(a) $h(\theta(2i), t) = H(\theta(2i))$ and $\hat{h}(\hat{\theta}(2i), t) = \hat{H}(\hat{\theta}(2i))$,

(b) $(\forall \langle x, k \rangle \in V_{2i})[A_t(x) = A(x) \& B_t \restriction h(\sigma_k) = B \restriction h(\sigma_k)],$

(c) $(\forall \langle x, k \rangle \in \hat{V}_{2i})[A_i(x) = A(x) \& B_i \restriction \ln(\sigma_k) = B \restriction \ln(\sigma_k)].$

As in the proof of Claim 2, we see that if $H(\theta(2i))=1$ then R_{2i} is *h*-certified at t, and if $\hat{H}(\hat{\theta}(2i))=1$ then R_{2i} is \hat{h} -certified. Similarly, if $H(\theta(2i))=0$ and $\hat{H}(\hat{\theta}(2i))=0$, then (4.3) holds. \Box

SUBROUTINE 4. Similar to Subroutine 2. Suppose that the construction enters this subroutine with s. We wait for the least t>s that satisfies one of the conditions of Claim 4. Set s:=t. If (4.1) or (4.2) holds, then go to Subroutine 5. Otherwise, go to Subroutine 1.

SUBROUTINE 5. Suppose we reach this subroutine with s. Let $l_{6e+1} = l_{6e} + 2^{l_{6e}} + m$, where *m* is the number of steps in which the construction up to this point is performed. Set $s := l_{6e+1}$ and exist from the main routine.

Stage 6e+4. Similar to Stage 6e+1. Take the least $i \leq e$ such that R_{2i+1} is not certified at l_{6e+3} . The requirement R_{2i+1} is attacked in this stage. We leave the details to the reader.

Thus, we complete the construction of $\{l_n\}_{n \in \mathbb{N}}$.

LEMMA 3.3. l_{6e+1} and l_{6e+4} are defined.

PROOF. We prove that l_{6e+1} is defined. It is sufficient to show that we reach Subroutine 5 while executing the main routine. Suppose not. Then, we always exit from Subroutine 2 with (2.2), Subroutine 3 with (3.2) and Subroutine 4 with (4.3). Since $B < \frac{h}{T}A$, there is an x such that $A(x) \neq M_i(B, x)$. Take the least such x with $|x| \ge l_{6e}$ and let k be the least integer with $B \upharpoonright p_i(|x|) = \sigma_k$. Suppose, say, A(x) = 1 and $M_i(B, x) = 0$. Take s_0 large enough to satisfy

$$(\forall s)[s_0 \leq s \Longrightarrow A_s(x) = 1 \& B_s \upharpoonright p_i(|x|) = B \upharpoonright p_i(|x|)].$$

We may assume that $|x| \leq s_0$. If $\langle x, k \rangle$ is not enumerated into V_{2i} up to s_0 , then $\langle x, k \rangle$ is witnessed each time Subroutine 1 is executed after s_0 . By the assumption, we enter Subroutine 1 infinitely often. Thus, eventually, $\langle x, k \rangle$ must be enumerated into V_{2i} . Then, we have $H(\theta(2i))=1$ by the definition of H. Take sufficiently large $s_1 > s_0$ so that $\langle x, k \rangle \in V_{2i,s_1}$ and $h(\theta(2i), s)=1$ for all $s \geq s_1$. Then, R_{2i} is *h*-certified at all points after s_1 . Thus, we reach Subroutine 5 whenever we exit from one of Subroutine 2-4 after s_1 , which is a contradiction. \Box

LEMMA 3.4. For all i, the requirement R_{2i} is attacked only finitely often.

PROOF. We prove the lemma by induction on *i*. Suppose that no requirement R_{2j} with j < i is attacked at any stage after n_0 , which means that every requirement R_{2j} (j < i) is certified at l_{6e} for all *e* with $n_0 < 6e$. Let $s_0 \ge n_0$ be large enough to satisfy

$$(\forall s)[s_0 \leq s \Longrightarrow h(\theta(2i), s) = H(\theta(2i)) \& \hat{h}(\hat{\theta}(2i), s) = \hat{H}(\hat{\theta}(2i))].$$

Suppose $H(\theta(2i))=1$. Then, by the definition of H, there is a $\langle x, k \rangle \in V_{2i}$ such that A(x)=1 and $B \upharpoonright h(\sigma_k) = \sigma_k$. Take a sufficiently large $s_1 \ge s_0$ so that

 $(\forall s)[s_1 \leq s \Longrightarrow \langle x, k \rangle \in V_{2i,s} \& A_s(x) = 1 \& B_s \restriction \ln(\sigma_k) = B \restriction \ln(\sigma_k)].$

Then, R_{2i} is *h*-certified at every point *s* with $s \ge s_1$. It follows that R_{2i} is not attacked at any stage *n* with $s_1 \le l_n$. Similarly, if $\hat{H}(\hat{\theta}(2i))=1$, then R_{2i} is not attacked infinitely often. Finally, suppose that $H(\theta(2i))=\hat{H}(\hat{\theta}(2i))=0$. We take a sufficiently large $s_2 \ge s_0$ so that

$$(\forall s)[s_2 \leq s \Longrightarrow h(\theta(2i), s) = \hat{h}(\hat{\theta}(2i), s) = 0].$$

It follows that R_{2i} is never certified after s_2 . Thus, for every $e \ge i$ with $n_0 < 6e$, if $s_2 \le l_{6e}$ and R_{2i} is attacked at stage 6e+1, then we can not enter Subroutine 5 during stage 6e+1, which contradicts Lemma 3.3. \Box

Similarly, we can prove the following.

LEMMA 3.5. For all *i*, the requirement R_{2i+1} is attacked only finitely often. LEMMA 3.6. For every *i* the requirements R_{2i} and R_{2i+1} are met.

PROOF. We prove that the requirement R_{2i} is met. Take an n_0 so that R_{2i} is not attacked after n_0 . Then, for all e with $n_0 < 6e$, R_{2i} is certified at l_{6e} . It follows that either $H(\theta(2i))=1$ or $\hat{H}(\hat{\theta}(2i))=1$. Suppose, say, $H(\theta(2i))=1$. Then, by the definition, there is a $\langle x, k \rangle \in V_{2i}$ such that A(x)=1 and $B \upharpoonright h(\sigma_k) = \sigma_k$. Suppose $\langle x, k \rangle$ is enumerated into V_{2i} during stage 6e+1. Then, there is a t with $l_{6e} < t < l_{6e+1}$ such that $B_t \upharpoonright p_i(|x|) = \sigma_k$ and $M_i(B_t, x) = 0$. Since $B_t \upharpoonright p_i(|x|)$ and $B \upharpoonright p_i(|x|)$ are both equal to σ_k , we see that $M_i(B, x) = 0$. Thus we have the inequality $A(x) \neq M_i(B, x)$. A and C agree on the interval $\{z : l_{6e} \le |z| < l_{6e+1}\}$. Consequently, we obtain the desired inequality $C(x) \neq M_i(B, x)$.

This completes the proof of Theorem 3.1. The method presented here can be applied to other problems on the theory of the hp-T degrees of Δ_2^0 low sets. For example, we can extend the result of Shore-Slaman [7] on the decidability of the Π_2 theory of the p-T degrees of recursive sets to the hp-T degrees of Δ_2^0 low sets.

References

- K. Ambos-Spies, Honest polynomial time reducibilities and P=?NP problem, J. Comput. and System Sci., 39 (1989), 250-289.
- [2] R. Downey, On computational complexity and honest polynomial degrees, Theoret. Comput. Sci., 78 (1991), 305-317.
- [3] S. Homer, Minimal polynomial degrees for nonrecursive sets, Lecture Notes in Math., 1141, Springer-Verlag, 1985, pp. 193-202.
- [4] R.E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mech., 22 (1975), 155-171.
- [5] L.H. Landweber, R.J. Lipton and E.L. Robertson, On the structure of sets in NP

and other complexity classes, Theoret. Comput. Sci., 15 (1981), 181-200.

- [6] R.W. Robinson, Interpolation and embedding in the recursively enumerable degrees, Ann. of Math., 93 (1971), 285-314.
- [7] R.A. Shore and T.A. Slaman, The p-T degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two quantifier theory, in Proc. Structures in Complexity Theory, 4th Annual Conf., 1989, to appear.
- [8] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.

Kunimasa AOKI

Department of Mathematics School of Science Nagoya University Chikusa-ku, Nagoya 464-01 Japan

Juichi Shinoda

Department of mathematics College of General Education Nagoya University Chikusa-ku, Nagoya 464-01 Japan

Teruko TSUDA

Division of Intelligence Science Graduate School of Science and Technology Kobe University Nada-ku, Kobe 657 Japan