On the Gauss curvature of minimal surfaces

By Hirotaka FUJIMOTO

(Received July 19, 1991)

§1. Introduction.

In 1952, E. Heinz showed that, for a minimal surface M in \mathbb{R}^3 which is the graph of a function z=z(x, y) of class C^2 defined on a disk $\Delta_R := \{(x, y); x^2 + y^2 < \mathbb{R}^2\}$, there is a positive constant C not depending on each surface M such that $|K| \leq C/\mathbb{R}^2$ holds for the curvature K of M at the origin ([8]). This is an improvement of the classical Bernstein's theorem that a minimal surface in \mathbb{R}^3 which is the graph of a function of class C^2 defined on the total plane is necessarily a plane. Later, R. Osserman gave some generalizations of these results to surfaces which need not be of the form z=z(x, y) ([10], [11]). To state one of his results, we consider a connected, oriented minimal surface M immersed in \mathbb{R}^3 and, for a point $p \in M$, we denote by K(p) and d(p) the Gauss curvature of M at p and the distance from p to the boundary of M respectively. He gave the following estimate of the Gauss curvature of M.

THEOREM A. Let M be a simply-connected minimal surface immersed in \mathbb{R}^3 and assume that there is some fixed nonzero vector n_0 and a number $\theta_0 > 0$ such that all normals to M make angles of at least θ_0 with n_0 . Then,

$$|K(p)|^{1/2} \leq \frac{1}{d(p)} \frac{2\cos(\theta_0/2)}{\sin^3(\theta_0/2)} \qquad (p \in M).$$

He obtained also some generalization of Theorem A to minimal surfaces immersed in $\mathbb{R}^m (m \ge 3)$ ([12]).

Relating to these results, the author proved the following theorem in his paper [4].

THEOREM B. Let M be a minimal surface immersed in \mathbb{R}^3 and let $G: M \to S^2$ be the Gauss map of M. If G omits mutually distinct five points n_1, \dots, n_5 in S^2 , then it holds that

(1)
$$|K(p)|^{1/2} \leq \frac{C}{d(p)} \qquad (p \in M)$$

for some positive constant C depending only on n_j 's.

Η. Γυμιμοτο

Since $d(p) = \infty$ for any $p \in M$ in case that M is complete, Theorem B implies that the Gauss map of a complete non-flat minimal surface immersed in \mathbb{R}^3 can omit at most four points of the sphere. He obtained also a generalization of Theorem B to the case of minimal surfaces whose Gauss maps take several fixed values with high multiplicities ([5, Theorem II]). Recently, A. Ros added a new insight to the study of minimal surfaces satisfying the condition (1) ([14]).

The purpose of this paper is to give more precise estimate like the result of Theorem A for a constant C satisfying the inequality (1). We shall give an improvement of Theorem II of [5], which implies the following:

THEOREM C. Let $x=(x_1, x_2, x_3)$: $M \to \mathbb{R}^3$ be a minimal surface immersed in \mathbb{R}^3 and let $G: M \to S^2$ be the Gauss map of M. Assume that G omits five distinct unit vectors $n_1, \dots, n_5 \in S^2$. Let θ_{ij} be the angle between n_i and n_j and set

$$L:=\min\left\{\sin\left(\frac{\theta_{ij}}{2}\right);\ 1\leq i< j\leq 5\right\}.$$

Then, there exists some positive constant C not depending on each minimal surface such that

(2)
$$|K(p)|^{1/2} \leq \frac{C}{d(p)} \frac{\log^2(1/L)}{L^3} \quad (p \in M).$$

It is an interesting open problem to know whether the factor $\log^2(1/L)/L^3$ in (2) can be replaced by $1/L^3$ or not. Relating to this, in §4 we shall give an example of a family of minimal surfaces which shows that it cannot be replaced by $1/L^{3-\varepsilon}$ for any positive number ε .

§2. Sum to product estimate.

Consider the stereographic projection π of the unit sphere S^2 onto the extended complex plane $\overline{C} := C \cup \{\infty\}$. For α and $\beta \in \overline{C}$ take the unit vectors n_1 and n_2 in S^2 with $\alpha = \pi(n_1)$ and $\beta = \pi(n_2)$. Let $\theta(0 \le \theta \le \pi)$ be the angle between n_1 and n_2 . Define

$$|\alpha,\beta|:=\sin\frac{\theta}{2}.$$

We can easily show that, if $\alpha \neq \infty$ and $\beta \neq \infty$, then

$$|\alpha, \beta| = \frac{|\alpha - \beta|}{\sqrt{1 + |\alpha|^2}\sqrt{1 + |\beta|^2}}$$

and, if either α or β , say β , is equal to ∞ , then $|\alpha, \beta| = 1/\sqrt{1+|\alpha|^2}$.

Take $q (\geq 2)$ mutually distinct numbers $\alpha_1, \dots, \alpha_q \in \overline{C}$. Set

$$L:=\min_{i\in I}|\alpha_i,\alpha_j|$$

Then, we have the following:

LEMMA 1. For all $w \in \overline{C}$ it holds that

$$|w, \alpha_i| \geq \frac{L}{2}$$

for all α_i except at most one.

In fact, if $|w, \alpha_i| < L/2$ for two distinct indices $i=i_1$ and $i=i_2$, then we have an absurd conclusion

$$L \leq |lpha_{i_1}, lpha_{i_2}| \leq |lpha_{i_1}, w| + |w, lpha_{i_2}| < L$$
.

Let g be a nonconstant meromorphic function on a disc $\Delta_R := \{z; |z| < R\}$ and η_1, \dots, η_q be real numbers with $0 < \eta_j \leq 1$. Here, we assume that

$$\gamma:=\eta_1+\cdots+\eta_q>1.$$

The purpose of this section is to prove the following:

PROPOSITION 2. For each ρ with $\rho > 0$ and η with $\gamma - 1 > \gamma \eta \ge 0$, take a constant $a_0(\ge e^2)$ satisfying the condition

$$(4) \qquad \qquad \frac{1}{\log^2 a_0} + \frac{1}{\log a_0} \leq \rho'$$

for $\rho' := \rho/\gamma$. Then, it holds that

$$\Delta \log \frac{(1+|g|^2)^{\rho}}{\prod_{j=1}^q \log^{\eta_j}(a_0/|g, \alpha_j|^2)} \ge C_1^2 \frac{|g'|^2}{(1+|g|^2)^2} \prod_{j=1}^q \left(\frac{1}{|g, \alpha_j|^2 \log^2(a_0/|g, \alpha_j|^2)}\right)^{\eta_j(1-\eta)},$$

where

(5)
$$C_1 := 2 \left(\frac{L}{2} \log \frac{4a_0}{L^2} \right)^{r-1-r_\eta}.$$

To prove this, we need the following two lemmas.

LEMMA 3. For an arbitrarily given $\rho' > 0$ take a number $a_0 (\geq e)$ satisfying the condition (4). Then, it holds that

$$\Delta \log \frac{1}{\log(a_0/|g, \alpha_j|^2)} \geq \frac{4|g'|^2}{(1+|g|^2)^2} \Big(\frac{1}{|g, \alpha_j|^2 \log^2(a_0/|g, \alpha_j|^2)} - \rho' \Big).$$

To see this, we represent each α_j as $\alpha_j = a_{j0}/a_{j1}$ with a nonzero vector $(a_{j0}, a_{j1})(1 \le j \le q)$ and the meromorphic function g as $g = g_0/g_1$ with holomorphic functions g_0, g_1 which have no common zero. Then, we have

$$|g, \alpha_j|^2 = \frac{|a_{j1}g_0 - a_{j0}g_1|^2}{|g_0|^2 + |g_1|^2}$$

and

$$\frac{|g'|^2}{(1+|g|^2)^2} = \frac{|g_0g'_1 - g_1g'_0|^2}{(|g_0|^2 + |g_1|^2)^2}.$$

Therefore, Lemma 3 is a restatement of Lemma 2.2 of [5]. We omit the proof.

LEMMA 4. Take nonnegative numbers A_1, \dots, A_q and a positive constant M such that $M \ge A_j$ for all j except at most one. Then, for every η with $\gamma - 1 > \gamma \eta \ge 0$,

$$\eta_1 A_1 + \eta_2 A_2 + \dots + \eta_q A_q \ge \frac{1}{M^{\gamma_{-1-\gamma_{\eta}}}} (A_1^{\eta_1} A_2^{\eta_2} \cdots A_q^{\eta_q})^{1-\eta}.$$

PROOF. Without loss of generality, we may assume that

$$A_1 \geqq A_2 \geqq \cdots \geqq A_q.$$

We then have $M \ge A_j$ for all $j=2, 3, \dots, q$. Set

$$\lambda_1 := \eta_1(1-\eta), \qquad \lambda_j := \frac{\eta_j}{\eta_2 + \cdots + \eta_q} (1-\lambda_1) \qquad (j=2, \cdots, q).$$

Then, we obtain the desired inequality

$$\begin{split} \eta_{1}A_{1} + \eta_{2}A_{2} + \cdots + \eta_{q}A_{q} \\ & \geqq \lambda_{1}A_{1} + \lambda_{2}A_{2} + \cdots + \lambda_{q}A_{q} \\ & \geqq A_{1}^{\lambda_{1}}A_{2}^{\lambda_{2}} \cdots A_{q}^{\lambda_{q}} \\ & = (A_{1}^{\eta_{1}}A_{2}^{\eta_{2}} \cdots A_{q}^{\eta_{q}})^{1 - \eta} \frac{A_{2}^{\lambda_{2}} \cdots A_{q}^{\lambda_{q}}}{(A_{2}^{\eta_{2}} \cdots A_{q}^{\eta_{q}})^{1 - \eta}} \\ & \geqq (A_{1}^{\eta_{1}}A_{2}^{\eta_{2}} \cdots A_{q}^{\eta_{q}})^{1 - \eta} \frac{1}{M^{\gamma - 1 - \gamma \eta}}. \end{split}$$

PROOF OF PROPOSITION 2. For brevity, we set

$$h_j := \frac{1}{|g, \alpha_j|} \quad (1 \leq j \leq q).$$

Take $a_0(\geq e^2)$ satisfying the condition (4) for $\rho' := \rho/\gamma$. By Lemma 3 we see

$$(6) \qquad \Delta \log \frac{(1+|g|^2)^{\rho}}{\prod_{j=1}^{q} \log^{\eta_{j}}(a_{0}h_{j}^{2})} \\ \geq \frac{4|g'|^{2}}{(1+|g|^{2})^{2}} \left(\rho + \sum_{j=1}^{q} \eta_{j} \left(\frac{h_{j}^{2}}{\log^{2}(a_{0}h_{j}^{2})} - \frac{\rho}{\gamma}\right)\right) \\ = \frac{4|g'|^{2}}{(1+|g|^{2})^{2}} \sum_{j=1}^{q} \frac{\eta_{j}h_{j}^{2}}{\log^{2}(a_{0}h_{j}^{2})}.$$

On the other hand, for each $z \in \mathcal{A}_R$ it follows from Lemma 1 that $|g(z), \alpha_j| \ge L/2$ for all α_j except at most one. Therefore, since $x^2/\log^2(a_0x^2)$ is monotone increasing for $x \ge 1$, we have

$$\frac{h_j^2}{\log^2(a_{\mathfrak{d}}h_j^2)} \leq \frac{4}{L^2 \log^2(4a_{\mathfrak{d}}/L^2)}$$

for such α_j 's. Setting $A_j := h_j^2/\log^2(a_0h_j^2)$ and $M := 4/(L^2\log^2(4a_0/L^2))$, we apply Lemma 4 to show that

$$\sum_{j=1}^{q} \frac{\eta_{j} h_{j}^{2}}{\log^{2}(a_{0} h_{j}^{2})} \geq \left(\frac{L}{2} \log \frac{4a_{0}}{L^{2}}\right)^{2(\gamma-1-\gamma\gamma)} \prod_{j=1}^{q} \left(\frac{h_{j}^{2}}{\log^{2}(a_{0} h_{j}^{2})}\right)^{\eta_{j}(1-\gamma)}.$$

In view of (6) this concludes Proposition 2.

§3. An application of Ahlfors-Schwarz lemma.

We shall next prove the following:

PROPOSITION 5. Let g be a nonconstant meromorphic function Δ_R . Assume that, for some fixed distinct points $\alpha_1, \alpha_2, \dots, \alpha_q$ in \overline{C} and integers m_1, m_2, \dots, m_q not less than two, g does not take the values α_j with multiplicities less than m_j for each j and that

$$\gamma := \sum_{j=1}^{q} \left(1 - \frac{1}{m_j} \right) > 2.$$

Then, for η_0 with $\gamma - 2 > \gamma \eta_0 > 0$ there is a constant $a_0 \ge e^2$ depending only on γ and η_0 such that, for an arbitrary positive constant $\eta \le \eta_0$, it holds that

$$\frac{|g'|}{1+|g|^2} \prod_{j=1}^{q} \left(\frac{1}{|g,\alpha_j|\log(4a_0/|g,\alpha_j|^2)} \right)^{(1-1/m_j)(1-\eta)} \leq \frac{1}{C_1(1-\eta)^{1/2}} \frac{2R}{R^2 - |z|^2},$$

where L and C_1 are given by (3) and (5) respectively.

This will be proved by the use of the following Ahlfors-Schwarz lemma.

LEMMA 6 (cf. [1], [2]). If a continuous nonnegative function v on Δ_R is of class C^2 on the set $\{z \in \Delta_R; v(z) > 0\}$ and satisfies the condition

$$\Delta \log v \ge v^2$$

there, then

$$v(z) \leq \frac{2R}{R^2 - |z|^2} \qquad (z \in \mathcal{A}_R).$$

PROOF OF PROPOSITION 5. For brevity, after a change of g by a suitable Möbius transformation, we assume $\alpha_q = \infty$. Set

Н. Fujimoto

$$\eta_j := 1 - \frac{1}{m_j}, \quad h_j := \frac{1}{|g, \alpha_j|} (1 \le j \le q), \quad \rho := \frac{\gamma - 2 - \gamma \eta}{2(1 - \eta)}.$$

Consider the function

$$v := C_1 (1-\eta)^{1/2} \frac{|g'|}{1+|g|^2} \prod_{j=1}^q \left(\frac{h_j}{\log(a_0 h_j^2)}\right)^{\eta_j (1-\eta)} g_j^{\eta_j (1-\eta)} g_j^{\eta_$$

where C_1 and a_0 are the constants as in Proposition 2 for the above γ , $\eta(\leq \eta_0)$ and $\rho' := (\gamma - 2 - \gamma \eta_0)/(2\gamma(1 - \eta_0))(\leq \rho/\gamma)$. Setting

$$w := \begin{cases} 0 & \text{if } g(z) = \alpha_j \text{ for some } j \\ |g'| \prod_{j=1}^{q-1} \left(\frac{(1+|\alpha_j|^2)^{1/2}}{|g-\alpha_j|} \right)^{\eta_j(1-\eta)} & \text{otherwise,} \end{cases}$$

we rewrite v as

$$v = C_1 (1-\eta)^{1/2} w \left(\frac{(1+|g|^2)^{\rho}}{\prod_{j=1}^q \log^{\eta_j}(a_0 h_j^2)} \right)^{1-\eta}.$$

Then, v is continuous on Δ_R and $\log w$ is harmonic on $\{z \in \Delta_R; w(z) > 0\}$. In fact, for a point $z_0 \in \Delta_R$, we can write v as $v = |z - z_0|^a \tilde{v}$ with a nonnegative function \tilde{v} in some neighborhood of z_0 , where

$$a = m - 1 - m \left(1 - \frac{1}{m_j} \right) (1 - \eta) > 0$$

when $g-\alpha_j$ has a zero of order m at z_0 , and

$$a = (\gamma - \eta_q)m(1 - \eta) - m - 1 - 2m\rho(1 - \eta)$$

= m - 1 - m \eta_q(1 - \eta) > 0

when g has a pole of order m at z_0 . Therefore, the function v is continuous and, by Proposition 2, it satisfies the condition

$$\begin{split} \Delta \log v &= (1-\eta) \Delta \log \Big(\frac{(1+|g|^2)^{\rho}}{\prod_{j=1}^{q} \log^{\eta_j}(a_0 h_j^2)} \Big) \\ &\geq (1-\eta) C_1^2 \frac{|g'|^2}{(1+|g|^2)^2} \prod_{j=1}^{q} \Big(\frac{h_j^2}{\log^2(a_0 h_j^2)} \Big)^{\eta_j(1-\eta)} = v^2 \,. \end{split}$$

Proposition 5 is a consequence of Lemma 6.

COROLLARY 7. Let g be a nonconstant meromorphic function on Δ_R satisfying the same assumption as in Proposition 5. Then, for arbitrary positive constants η and δ with $\gamma - 2 > \gamma \eta + \gamma \delta$, it holds that

$$\frac{|g'|}{1+|g|^2}\frac{1}{(\prod_{j=1}^q|g,\,\alpha_j|^{1-1/m_j})^{1-\eta-\delta}} \leq C_2\frac{2R}{R^2-|z|^2},$$

where C_2 is given by

$$C_{2} := \frac{a_{0}^{\gamma_{0}^{\gamma/2}}C_{3}}{\delta^{\gamma(1-\gamma)}((L/2)\log(4a_{0}/L^{2}))^{\gamma-1-\gamma\gamma}}$$

for some constant C_3 depending only on γ .

PROOF. The function

$$\varphi(x):=\frac{\log^{1-\eta}(a_0x^2)}{x^\delta} \qquad (1 \le x < +\infty)$$

takes the maximum at a point $x_0 := \max((e^{2(1-\eta)/\delta}/a_0)^{1/2}, 1)$. Therefore, we have

$$\frac{|g'|}{1+|g|^2} \frac{1}{\prod_{j=1}^{q} |g, \alpha_j|^{\eta_j(1-\eta-\delta)}} \\
= \frac{|g'|}{1+|g|^2} \prod_{j=1}^{q} \left(\frac{h_j}{\log(a_0h_j^2)}\right)^{\eta_j(1-\eta)} \prod_{j=1}^{q} \left(\frac{\log^{1-\eta}(a_0h_j^2)}{h_j^2}\right)^{\eta_j} \\
\leq \frac{\varphi(x_0)^{\gamma}}{C_1(1-\eta)^{1/2}} \frac{2R}{R^2 - |z|^2}$$

by the use of Proposition 5. Since $0 \le \eta < (\gamma - 2)/\gamma$, we can find a positive constant C_3 depending only on γ such that

$$\frac{\varphi(x_0)^{\gamma}}{C_1(1-\eta)^{1/2}} \leq \frac{2a_0^{\delta^{\gamma/2}}C_3}{C_1\delta^{\gamma(1-\eta)}}.$$

This concludes Corollary 7.

§4. Main results.

Consider a (connected, oriented) minimal surface $x := (x_1, x_2, x_3): M \to \mathbb{R}^3$ immersed in \mathbb{R}^3 and the Gauss map $G: M \to S^2$ of M. By associating a holomorphic local coordinate $z = u + \sqrt{-1}v$ with each positive isothermal coordinate system (u, v), M is considered as a Riemann surface. Then, for the stereographic projection $\pi: S^2 \to \overline{C}$, the function $g := \pi \cdot G: M \to \overline{C}$ is meromorphic on M. We call the map g the Gauss map of M instead of G.

MAIN THEOREM. Let $x: M \to \mathbb{R}^3$ be a minimal surface immersed in \mathbb{R}^3 . Suppose that, for some fixed distinct values $\alpha_1, \dots, \alpha_q$ and some positive integers m_1, \dots, m_q , the Gauss map g of M does not take the value α_j with multiplicity less than m_j for each j and that

$$\gamma := \sum_{j=1}^{q} \left(1 - \frac{1}{m_j} \right) > 4.$$

Set

$$L := \min\{ |\alpha_i, \alpha_j| ; 1 \leq i < j \leq q \}.$$

Н. Fujimoto

Then, there exists some positive constant C_4 not depending on any data M, α_j 's, m_j 's such that

(7)
$$|K(p)|^{1/2} \leq \frac{C_4}{d(p)} \frac{\log^2(1/L)}{L^3} \quad (p \in M).$$

The proof of Main Theorem will be given in the next section. Here, we note that, for the proof of Main Theorem it suffices to show the existence of a constant satisfying (7) which may depend on the given data m_1, \dots, m_q . For, if

$$(8) \qquad \qquad \sum_{j \in I} \left(1 - \frac{1}{m_j}\right) > 4$$

for some proper subset I of $\{1, 2, \dots, q\}$, then the assumption for $\{\alpha_j; 1 \leq j \leq q\}$ can be replaced by the assumption for $\{\alpha_j; j \in I\}$. Moreover, we may replace each m_j by m_j^* such that

(9)
$$m_j^* \leq m_j, \qquad \sum_j \left(1 - \frac{1}{m_j^*}\right) > 4.$$

Therefore, after suitable changes of indices and m_j 's, we may assume that (8) and (9) do not hold for any proper subset I of $\{1, 2, \dots, q\}$ and any m_j^* 's which are different from m_j 's. Then, we have $\gamma \leq 4+1/2$. Because, otherwise, the maximum m_{j_0} of m_j 's is not less than 3 and (9) holds for $m_{j_0}^* := m_{j_0} - 1$ and $m_j^* := m_j(j \neq j_0)$. On the other hand, since $m_j \geq 2$ for all j, we have $9/2 \geq \gamma = \sum_j (1-1/m_j) \geq q/2$ and so $q \leq 9$. For each q with $4 < q \leq 9$ there are only finitely many possible cases of m_j 's which satisfy the inequality $\gamma = q - \sum_{j=1}^q 1/m_j \leq 9/2$ by virtue of the above assumption. As the desired constant C_4 satisfying the inequality (7), we can take the maximum of constants C_4 's which are chosen for these finitely many cases of m_j 's.

Theorem C stated in §1 is an immediate consequence of Main Theorem. In fact, under the assumption of Theorem C, if we take $m_1 = \cdots = m_5 = 6$, then the Gauss map $g := \pi \cdot G$ satisfies all conditions in Main Theorem for the values $\alpha_j := \pi(n_j)$ and these m_j 's.

Now, for an arbitrarily given $\varepsilon > 0$ we give an example of a family of minimal surfaces which shows that there is no positive constant C not depending on each minimal surface which satisfies the condition

(10)
$$|K(p)|^{1/2} \leq \frac{C}{d(p)} \frac{1}{L^{3-\varepsilon}}.$$

To this end, for each positive number $R(\geq 1)$ we take five points

$$\alpha_1 := R, \quad \alpha_2 := \sqrt{-1}R, \quad \alpha_3 := -R, \quad \alpha_4 := -\sqrt{-1}R, \quad \alpha_5 := \infty$$

in \overline{C} . Consider Enneper surface M whose domain of definiton is restricted to

the disc of radius R. Namely, for the functions $f(z)\equiv 1$ and g(z)=z on the disc $\mathcal{A}_R:=\{z; |z|< R\}$ setting

$$x_1 := \operatorname{Re} \int_0^z f(1-g^2) dz, \quad x_2 := \operatorname{Re} \int_0^z \sqrt{-1} f(1+g^2) dz, \quad x_3 := 2\operatorname{Re} \int_0^z fg dz,$$

we define the surface $x=(x_1, x_2, x_3)$: $\Delta_R \to \mathbb{R}^3$ in \mathbb{R}^3 . Then, this is a minimal surface immersed in \mathbb{R}^3 whose Gauss map is the function g and whose metric is given by $ds^2=(1+|z|^2)^2|dz|^2$ (cf. [13]). Consider the quantities K(p) and d(p) as in Main Theorem at the point p=0. We have

$$d(0) = \int_{0}^{R} (1+x^{2}) dx = R + \frac{1}{3} R^{3}$$

and

$$|K(0)|^{1/2} = \frac{2|g'(0)|}{|f(0)|(1+|g(0)|^2)^2} = 2.$$

On the other hand, the quantity L for the points in S² corresponding to α_j 's is given by $L=1/\sqrt{1+R^2}$ and so

$$|K(0)|^{1/2}d(0)L^{3-\varepsilon} = \frac{2(R+(1/3)R^3)}{(1+R^2)^{(3-\varepsilon)/2}},$$

which converges to $+\infty$ as R tends to $+\infty$. Therefore, there is no positive constant satisfying the condition (10) which does not depend on each minimal surface.

§5. The proof of Main Theorem.

We consider a minimal surface $x := (x_1, x_2, x_3): M \to \mathbb{R}^3$ immersed in \mathbb{R}^3 whose Gauss map $g: M \to \overline{\mathbb{C}}$ satisfies the assumption of Main Theorem for $\alpha_1, \dots, \alpha_q$ and integers m_1, \dots, m_q with $m_j \ge 2$. We may assume that M is nonflat, or g is not a constant. For, otherwise, Main Theorem is trivial. Moreover, we may assume $\alpha_q = \infty$.

Taking a holomorphic local coordinate z, we set $\phi_i := (\partial/\partial z) x_i (i=1, 2, 3)$. Then we have $g = \phi_3/(\phi_1 - \sqrt{-1}\phi_2)$ and the induced metric on M is given by $ds^2 = |f_z|^2 (1+|g|^2)^2 |dz|^2$ for the holomorphic function $f_z := \phi_1 - \sqrt{-1}\phi_2$, where f_z has a zero of order 2m at each point where g has a pole of order m (cf. e.g., [13]).

Now, we choose some δ such that

(11)
$$\gamma - 4 > 2\gamma \delta > 0$$

and set

$$\eta:=rac{\gamma-4-2\gamma\delta}{\gamma}, \qquad au:=rac{2}{2+\gamma\delta}.$$

Н. Fujimoto

Then, if we choose a sufficiently small positive δ depending only on γ , for the constant $\varepsilon_0 := (\gamma - 4)/2\gamma$ we have

(12)
$$0 < \tau < 1, \qquad \frac{\varepsilon_0 \tau}{1 - \tau} > 1.$$

We consider a new metric

(13)
$$d\sigma^{2} = |f_{z}|^{2/(1-\tau)} \left(\frac{1}{|g_{z}'|} \prod_{j=1}^{q-1} \left(\frac{|g-\alpha_{j}|}{(1+|\alpha_{j}|^{2})^{1/2}} \right)^{\gamma_{j}(1-\gamma-\delta)} \right)^{2\tau/(1-\tau)} |dz|^{2},$$

where $\eta_j := 1 - 1/m_j$ and g'_z denotes the derivative of g with respect to the holomorphic local coordinate z. This is a well-defined metric on the set

$$M' := \{ p \in M; g'_{z}(p) \neq 0 \text{ and } g(p) \neq \alpha_{j} \text{ for all } j \}.$$

In fact, if we choose another holomorphic local coordinate ζ , we have $f_z = f_\zeta d\zeta/dz$ and $g'_z = g'_\zeta d\zeta/dz$ and therefore $d\sigma^2$ remains unchanged.

Our purpose is to show the inequality (7) for each point $p \in M$. We may assume that $p \in M'$. Since $d\sigma^2$ is flat on M', there is a map Φ of Δ_R onto a neighborhood U of p which is an isometry with respect to the metrics $|dz|^2$ on Δ_R and $d\sigma^2$ on U. We take the largest $R(\leq +\infty)$ such that there is a local isometry Φ of Δ_R onto an open set in M' with $\Phi(0)=p$. For brevity, we denote here the function $g \cdot \Phi$ on Δ_R by g. According to Corollary 7, we have

(14)
$$R \leq 2C_2 \frac{1+|g(0)|^2}{|g'_{\flat}(0)|} \prod_{j=1}^q |g(0), \alpha_j|^{\eta_j(1-\eta-\delta)} < +\infty$$

for the constant C_2 given in Corollary 7. Then, there is some point w_0 with $|w_0|=R$ such that, for the line segment

$$\Gamma: w = tw_0 \qquad (0 \le t < 1),$$

the image $\gamma := \Phi(\Gamma)$ tends to the boundary of M' as t tends to 1. In this situation, suppose that γ tends to a point p_0 where $g'(p_0)=0$ or $g(p_0)=\alpha_j$ for some j. Taking a holomorphic local coordinate ζ with $\zeta(p_0)=0$ in a neighborhood of p_0 , we write the metric $d\sigma^2$ as $d\sigma^2 = |\zeta|^{2a\tau/(1-\tau)}w|d\zeta|^2$ with some positive C^{∞} function w and some real number a. If $g-\alpha_j$ has a zero of order $m(\geq m_j)$ at p_0 for some $j \leq q-1$, then g'_z has a zero of order m-1 at p_0 and $f_z(p_0)\neq 0$. In this case,

$$a = m \left(1 - \frac{1}{m_j} \right) (1 - \eta - \delta) - (m - 1) \leq -(\eta + \delta) \leq -\varepsilon_0.$$

For the case where g has a pole of order $m(\geq m_q)$ at p_0 , g'_z has a pole of order m+1 and f_z has a zero of order 2m at p_0 . Then, we have also

$$a = \frac{2m}{\tau} + m + 1 - m(\gamma - \eta_q)(1 - \eta - \delta) \leq -\varepsilon_0.$$

Moreover, for the case where $g'_{2}(p_{0})=0$ and $g(p_{0})\neq\alpha_{j}$ for any j, then $a\leq-1$. Therefore, $d\sigma\geq C_{4}|\zeta|^{-\epsilon_{0}\tau/(1-\tau)}|d\zeta|$ for a positive constant C_{4} in a neighborhood of p_{0} . By (12) we have

$$R = \int_{\Gamma} d\sigma \geq C_4 \int_{\Gamma} \frac{1}{|\zeta|^{\varepsilon_0 \tau/(1-\tau)}} |d\zeta| = +\infty,$$

which contradicts (14). So, γ tends to the boundary of M as t tends to 1.

To estimate the length of γ , we shall study the metric $\Phi^* ds^2$ on Δ_R . For local considerations, the coordinate z on Δ_R may be considered as a holomorphic local coordinate on M' and so we may write $d\sigma^2 = |dz|^2$. By (13) we obtain

$$1 = |f_z|^{2/(1-\tau)} \left(\frac{1}{|g_z'|} \prod_{j=1}^{q-1} \left(\frac{|g-\alpha_j|}{(1+|\alpha_j|^2)^{1/2}} \right)^{\eta_j(1-\eta-\delta)} \right)^{2\tau/(1-\tau)}$$

and hence

(15)
$$|f_{z}| = \left(|g_{z}'|\prod_{j=1}^{q-1} \left(\frac{(1+|\alpha_{j}|^{2})^{1/2}}{|g-\alpha_{j}|}\right)^{\eta_{j}(1-\eta-\delta)}\right)^{\tau}.$$

By the use of Corollary 7 we have

$$\begin{split} \Phi^* ds &= |f_z|(1+|g|^2)|dz| \\ &= \left(|g_z'|(1+|g|^2)^{1/\tau} \prod_{j=1}^{q-1} \left(\frac{(1+|\alpha_j|^2)^{1/2}}{|g-\alpha_j|} \right)^{\eta_j(1-\eta-\delta)} \right)^{\tau} |dz| \\ &= \left(\frac{|g_z'|}{1+|g|^2} \frac{1}{\prod_{j=1}^{q} |g, \alpha_j|^{\eta_j(1-\eta-\delta)}} \right)^{\tau} |dz| \\ &\leq C_2^{\tau} \left(\frac{2R}{R^2 - |z|^2} \right)^{\tau} |dz|. \end{split}$$

This yields that

$$d(p) \leq \int_{r} ds = \int_{\Gamma} \Phi^{*} ds \leq C_{2}^{\tau} \int_{\Gamma} \left(\frac{2R}{R^{2} - |z|^{2}} \right)^{\tau} |dz|$$
$$= C_{2}^{\tau} \int_{0}^{R} \left(\frac{2R}{R^{2} - x^{2}} \right)^{\tau} dx \leq \frac{(2C_{2})^{\tau} R^{1 - \tau}}{1 - \tau}.$$

By (14) we obtain

$$d(p) \leq \frac{2C_2}{1-\tau} \Big(\frac{(1+|g(0)|^2) \prod_{j=1}^{q} |g(0), \alpha_j|^{\eta_j(1-\eta-\delta)}}{|g'_{z}(0)|} \Big)^{1-\tau}.$$

On the other hand, in view of (15) the curvature at p is given by

$$|K(p)|^{1/2} = \frac{2|g'_{z}(0)|}{|f_{z}|(1+|g(0)|^{2})^{2}} = \frac{2|g'_{z}(0)|}{(1+|g(0)|^{2})^{2}} \Big(\frac{(1+|g(0)|^{2})^{\gamma(1-\eta-\delta)/2}\Pi_{j=1}^{q}|g(0), \alpha_{j}|^{\eta_{j}(1-\eta-\delta)}}{|g'_{z}(0)|}\Big)^{\tau}.$$

Since $|g, \alpha_j| \leq 1$, we can easily conclude that

$$|K(p)|^{1/2} d(p) \leq C_5 := \frac{4C_2}{1-\tau}.$$

By the definition of C_2 and τ , we see

$$C_{5} = \frac{4a_{0}^{\gamma\delta/2}C_{3}(2+\gamma\delta)}{\delta^{\gamma(1-\eta)}\gamma\delta((L/2)\log(4a_{0}/L^{2}))^{\gamma-1-\gamma\eta}}.$$

Now, take a sufficiently small L_0 such that (11) and (12) hold for the constant $\delta = 1/\log(4a_0/L_0^2)$. For each positive $L(\leq 1)$ we set $\delta := 1/\log(4a_0/L^2)$ if $L \leq L_0$ and $\delta := \delta_0$ for some δ_0 satisfying the conditions (11) and (12) if $L_0 < L \leq 1$. We can apply the above-mentioned arguments to these δ 's. Then, we can estimate the constant C_5 as

$$C_{5} \leq 2^{\gamma - \gamma \eta} C_{3} a_{0}^{\gamma \delta/2} \max(1, A_{0}) \frac{\log^{2}(4a_{0}/L^{2})}{L^{\gamma - 1 - \gamma \eta}},$$

where

$$A_{\mathfrak{o}} := \sup_{L_{\mathfrak{o}} \leq x \leq 1} \left(\frac{1}{\delta_{\mathfrak{o}} \log \left(4a_{\mathfrak{o}}/x^2 \right)} \right)^{r+1-r\eta}.$$

Since a_0 can be chosen so as to be between two positive constants depending only on γ , we can conclude

$$C_{\mathfrak{z}} \leq \frac{C_{\mathfrak{s}} \log^2 \left(4a_{\mathfrak{g}}/L_2\right)}{L^{\mathfrak{r}-\mathfrak{r}-\mathfrak{r}}\eta} \leq C_{\mathfrak{r}} \frac{\log^2(1/L)}{L^{\mathfrak{s}}L^{2\mathfrak{r}\mathfrak{d}}}$$

for positive constants C_6 and C_7 depending only on γ_1 . On the other hand, the factor $L^{2\gamma\delta}$ is bounded from below by a positive constant not depending on each L because $\log L^{2\gamma\delta} = 2\gamma \log L/\log(4a_0/L^2)$ has a limit as L tends to zero. This shows that C_7 can be replaced by a positive constant depending only on m_j 's. The proof of Main Theorem is complete.

References

- [1] L.V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
- [2] L.V. Ahlfors, Conformal invariants, Topics in Geometric Function Theory, McGraw Hill, New York, 1973.
- [3] S. Bernstein, Über ein geometriches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z., **26** (1927), 551-558.
- [4] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan, 40 (1988), 235-247.
- [5] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, J. Differential Geom., 29 (1989), 245-262.
- [6] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, II, J. Differential Geom., 31 (1990), 365-385.

- [7] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, III, Nagoya Math. J., 124 (1991), 13-40.
- [8] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen, (1952), 51-56.
- [9] X. Mo and R. Osserman, On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto's theorem, J. Differential Geom., 31 (1990), 343-355.
- [10] R. Osserman, An analogue of the Heinz-Hopf inequality, J. Math. Mech., 8 (1959), 383-385.
- [11] R. Osserman, On the Gauss curvature of minimal surfaces, Trans. Amer. Math. Soc., 96 (1960), 115-128.
- [12] R. Osserman, Global properties of minimal surfaces in E^3 and E^n , Ann. of Math., 80 (1964), 340-364.
- [13] R. Osserman, A survey of minimal surfaces, 2nd edition, Dover Publ. Inc., New York, 1986.
- [14] A. Ros, The Gauss map of minimal surfaces, preprint.

Hirotaka FUJIMOTO Department of Mathematics Faculty of Science Kanazawa University 920-11 Kanazawa Japan