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\S 1. Introduction.

In 1952, E. Heinz showed that, for a minimal surface $M$ in $R^{3}$ which is the
graph of a function $z=z(x, y)$ of class $C^{2}$ defined on a disk $\Delta_{R}$ $:=\{(x, y);x^{2}+$

$y^{2}<R^{2}\}$ , there is a positive constant $C$ not depending on each surface $M$ such
that $|K|\leqq C/R^{2}$ holds for the curvature $K$ of $M$ at the origin ([8]). This is
an improvement of the classical Bernstein’s theorem that a minimal surface in
$R^{3}$ which is the graph of a function of class $C^{2}$ defined on the total plane is
necessarily a plane. Later, R. Osserman gave some generalizations of these
results to surfaces which need not be of the form $z=z(x, y)([10], [11])$ . To
state one of his results, we consider a connected, oriented minimal surface $M$

immersed in $R^{3}$ and, for a point $p\in M$, we denote by $K(p)$ and $d(p)$ the Gauss
curvature of $M$ at $P$ and the distance from $P$ to the boundary of $\Lambda f$ respectively.
He gave the following estimate of the Gauss curvature of $M$.

THEOREM A. Let $M$ be a simply-connected minimal surface immersed in $R^{3}$

and assume that there is some fixed nonzero vector $n_{0}$ and a number $\theta_{0}>0$ such
that all normals to $M$ make angles of at least $\theta_{0}$ with no. Then,

$|K(p)|^{1/2} \leqq\frac{1}{d(p)}\frac{2\cos(\theta_{0}/2)}{\sin^{3}(\theta_{0}/2)}$ $(p\in M)$ .

He obtained also some generalization of Theorem A to minimal surfaces
immersed in $R^{m}(m\geqq 3)([12])$ .

Relating to these results, the author proved the following theorem in his
paper [4].

THEOREM B. Let $M$ be a minimal surface immersed in $R^{3}$ and let $G:Marrow S^{2}$

be the Gauss map of M. If $G$ omits mutually distinct five points $n_{1},$ $n_{5}$ in $S^{2}$ ,
then it holds that

(1) $|K(p)|^{1/2} \leqq\frac{C}{d(p)}$ $(p\in M)$

for some positive constant $C$ depending only on $n_{j}’ s$ .
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Since $d(p)=\infty$ for any $p\in M$ in case that $M$ is complete, Theorem $B$ implies
that the Gauss map of a complete non-flat minimal surface immersed in $R^{3}$ can
omit at most four points of the sphere. He obtained also a generalization of
Theorem $B$ to the case of minimal surfaces whose Gauss maps take several
fixed values with high multiplicities ([5, Theorem II]). Recently, A. Ros added
a new insight to the study of minimal surfaces satisfying the condition (1)
([14]).

The purpose of this paper is to give more precise estimate like the result
of Theorem A for a constant $C$ satisfying the inequality (1). We shall give an
improvement of Theorem II of [5], which implies the following:

THEOREM C. Let $x=(x_{1}, x_{2}, x_{3}):Marrow R^{3}$ be a minimal surface immersed in
$R^{3}$ and let $G:Marrow S^{2}$ be the Gauss map of M. Assume that $G$ omits five distinct
unit vectors $n_{1},$ $\cdots,$

$n_{5}\in S^{2}$ . Let $\theta_{ij}$ be the angle between $n_{i}$ and $n_{j}$ and set

$L:= \min\{\sin(\frac{\theta_{ij}}{2});1\leqq i<]\leqq 5\}$ .

Then, there exists some posifive constant $C$ not depending on each minimal surface
such that

(2) $|K(p)|^{1/2} \leqq\frac{C\log^{2}(1/L)}{d(p)L^{3}}$ $(P\in M)$ .

It is an interesting open problem to know whether the factor $\log^{2}(1/L)/L^{3}$

in (2) can be replaced by $1/L^{3}$ or not. Relating to this, in \S 4 we shall give an
example of a family of minimal surfaces which shows that it cannot be replaced
by $1/L^{3-\text{\’{e}}}$ for any positive number $\epsilon$ .

\S 2. Sum to product estimate.

Consider the stereographic projection $\pi$ of the unit sphere $S^{2}$ onto the
extended complex plane $\overline{C}:=C\cup\{\infty\}$ . For $\alpha$ and $\beta\in\overline{C}$ take the unit vectors
$n_{1}$ and $n_{2}$ in $S^{2}$ with $\alpha=\pi(n_{1})$ and $\beta=\pi(n_{2})$ . Let $\theta(0\leqq\theta\leqq\pi)$ be the angle be-
tween $n_{1}$ and $n_{2}$ . Define

$|\alpha,$ $\beta|$ $:= \sin\frac{\theta}{2}$ .

We can easily show that, if $\alpha\neq\infty$ and $\beta\neq\infty$ , then

$|\alpha,$ $\beta|=\frac{|\alpha-\beta|}{\sqrt{1+|\alpha|^{2}}\sqrt{1+|\beta|^{2}}}$

and, if either $\alpha$ or $\beta$ , say $\beta$ , is equal to $\infty$ , then a, $\beta|=1/\sqrt{1+|\alpha|^{2}}$ .
Take $q(\geqq 2)$ mutually distinct numbers $\alpha_{1},$

$\cdots$ , $\alpha_{q}\in\overline{C}$ . Set
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(3) $L:= \min_{i<j}|a_{i},$
$\alpha_{J}|$ .

Then, we have the following:

LEMMA 1. For all $w\in\overline{C}$ it holds that

$|w,$ $\alpha_{t}|\geqq\frac{L}{2}$

for all $\alpha_{i}$ excePt at most one.

In fact, if $|w,$ $\alpha_{t}|<L/2$ for two distinct indices $i=i_{1}$ and $i=i_{2}$ , then we
have an absurd conclusion

$L\leqq$ a $i_{1},$
$\alpha_{i_{2}}|\leqq$ a $i_{1},$ $w|+|w$ , a $i_{2}|<L$ .

Let $g$ be a nonconstant meromorphic function on a disc $\Delta_{R}$ $:=\{z;|z|<R\}$

and $\eta_{1},$
$\cdots$ , $\eta_{q}$ be real numbers with $0<\eta_{j}\leqq 1$ . Here, we assume that

$\gamma:=\eta_{1}+\cdots+\eta_{q}>1$ .

The purpose of this section is to prove the following:

PROPOSITION 2. For each $\rho$ with $\rho>0$ and $\eta$ with $\gamma-1>\gamma\eta\geqq 0$ , take a
constant a $0(\geqq e^{2})$ satisfying the condition

(4) $\frac{1}{\log^{2}a_{0}}+\frac{1}{\log a_{0}}\leqq\rho’$

for $\rho’$ $:=\rho/\gamma$ . Then, it holds that

$\Delta\log\frac{(l+|g|^{2})^{\rho}}{\Pi_{j=1}^{q}\log^{\eta_{j}}(a_{0}/|g,\alpha_{j}|^{2})}\geqq C_{1}^{2}\frac{|g’|^{2}}{(1+|g|^{2})^{2}}\prod_{j=1}^{q}(\frac{1}{|g,a_{j}|^{2}\log^{2}(a_{0}/|g,\alpha_{j}|^{2})})^{\eta_{j^{(1-\eta)}}}$ ,

where

(5) $C_{1}$ $:=2( \frac{L}{2}\log\frac{4a_{0}}{L^{2}})^{\gamma- 1-\gamma\eta}$

TO prove this, we need the following two lemmas.

LEMMA 3. For an arbitrarily given $\rho’>0$ take a number a $0(\geqq e)$ satisfying
the condition (4). Then, it holds that

$\Delta\log\frac{1}{\log(a_{0}/|g,a_{j}|^{2})}\geqq\frac{4|g’|^{2}}{(1+|g|^{2})^{2}}(\frac{1}{|g,\alpha_{j}|^{2}\log^{2}(a_{0}/|g,a_{j}|^{2})}-\rho’)$ .

TO see this, we represent each $\alpha_{f}$ as $\alpha_{j}=a_{j0}/a_{j1}$ with a nonzero vector
$(a_{J^{0}}, a_{j1})(1\leqq j\leqq q)$ and the meromorphic function $g$ as $g=g_{0}/g_{1}$ with holomorphic
functions $g_{0},$ $g_{1}$ which have no common zero. Then, we have
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$|g,$ $\alpha_{f}|^{2}=\frac{|a_{j1}g_{0}-a_{j0}g_{1}|^{2}}{|g_{0}|^{2}+|g_{1}|^{2}}$

and

$\frac{|g’|^{2}}{(1+|g|^{2})^{2}}=\frac{|g_{0}g_{1}’-g_{1}g_{0}’|^{2}}{(|g_{0}|^{2}+|g_{1}|^{2})^{2}}$ .

Therefore, Lemma 3 is a restatement of Lemma 2.2 of [5]. We omit the proof.

LEMMA 4. Take nonnegative numbers $A_{1},$ $\cdots$ , $A_{q}$ and a positive constant $M$

such that $M\geqq A_{j}$ for all $j$ except at most one. Then, for every $\eta$ with $\gamma-1>$

$\gamma\eta\geqq 0$ ,

$\eta_{1}A_{1}+\eta_{2}A_{2}+$
$+ \eta_{q}A_{q}\geqq\frac{1}{M^{\gamma- 1-\gamma\eta}}(A_{1}^{\eta_{1}}A_{2}^{\eta 2}\cdots A_{q}^{\eta_{q}})^{1-\eta}$ .

PROOF. Without loss of generality, we may assume that

$A_{1}\geqq A_{2}\geqq\cdots$ lill $A_{q}$ .

We then have $M\geqq A_{j}$ for all $j=2,3,$ $\cdots$ , $q$ . Set

$\lambda_{1}$ $:=\eta_{1}(1-\eta)$ , $\lambda_{j}:=\frac{\eta_{J}}{\eta_{2}+\cdots+\eta_{q}}(1-\lambda_{1})$ $(_{J}=2, \cdots q)$ .

Then, we obtain the desired inequality

$\eta_{1}A_{1}+\eta_{2}A_{2}+\cdots+\eta_{q}A_{q}$

11; $\lambda_{1}A_{1}+\lambda_{2}A_{2}+\cdots+\lambda_{q}A_{q}$

$\geqq A^{\lambda_{1}}A_{2}^{\lambda_{2}}\cdots A_{q}^{\lambda_{q}}$

$=(A7^{1}A3^{2} \cdots A_{q}^{\eta_{q}})^{1-\eta}\frac{A_{2}^{\lambda_{2}}\ldots\cdot\cdot A_{q}^{\lambda_{q}}}{(A_{2}^{\eta_{2}}A_{q}^{\eta_{q}})^{1-\eta}}$

$\geqq(A?^{1}A2^{2}\cdots A_{q}^{\eta_{q}})^{1-\eta}\frac{1}{M^{\gamma- 1-\gamma\eta}}$ .

PROOF OF PROPOSITION 2. FOr brevity, We Set

$h_{j}:= \frac{1}{|g,a_{j}|}$ $(1\leqq j\leqq q)$ .

Take $a_{0}(\geqq e^{2})$ satisfying the condition (4) for $\rho’$ $:=\rho/\gamma$ . By Lemma 3 we see

$\Delta\log\frac{(1+|g|^{2})^{\rho}}{\Pi_{j=1}^{q}\log^{\eta_{j}}(a_{0}h_{j}^{2})}$

(6) $\geqq\frac{4|g’|^{2}}{(1+|g|^{2})^{2}}(\rho+\sum_{f\Leftarrow 1}^{q}\eta_{j}(\frac{h_{j}^{2}}{\log^{2}(a_{0}h_{j}^{2})}-\frac{p}{\gamma}))$

$= \frac{4|g’|^{2}}{(1+|g|^{2})^{2}}\sum_{f=1}^{q}\frac{\eta_{J}h_{f}^{2}}{\log^{2}(a_{0}h_{j}^{2})}$ .
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On the other hand, for each $z\in\Delta_{R}$ it follows from Lemma 1 that $|g(z),$ $\alpha_{j}|\geqq$

$L/2$ for all $a_{j}$ except at most one. Therefore, since $x^{2}/\log^{2}(a_{0}x^{2})$ is monotone
increasing for $x\geqq 1$ , we have

$\frac{h_{j}^{2}}{\log^{2}(a_{0}h_{j}^{2})}\leqq\frac{4}{L^{2}\log^{2}(4a_{0}/L^{2})}$

for such $\alpha_{j}’ s$ . Setting $A_{j}$ $:=h_{j}^{2}/\log^{2}(a_{0}h_{j}^{2})$ and $M:=4/(L^{2}\log^{2}(4a_{0}/L^{2}))$ , we apply
Lemma 4 to show that

$\sum_{j=1}^{q}\frac{\eta_{j}h_{j}^{2}}{\log^{2}(a_{0}h_{j}^{2})}\geqq(\frac{L}{2}\log\frac{4a_{0}}{L^{2}})^{2(\gamma- 1-\gamma\eta)}\prod_{j=1}^{q}(\frac{h_{j}^{2}}{\log^{2}(a_{0}h_{j}^{2})})^{\eta_{j^{(1-\eta)}}}$

In view of (6) this concludes Proposition 2.

\S 3. An application of Ahlfors-Schwarz lemma.

We shall next prove the following:

PROPOSITION 5. Let $g$ be a nonconstant meromorphic function $\Delta_{R}$ . Assume
that, for some fixed distinct points $\alpha_{1},$ $a_{2},$

$\cdots$ , $\alpha_{q}$ in $\overline{C}$ and integers $m_{1},$ $m_{2},$ $\cdots$ ,
$m_{q}$ not less than two, $g$ does not take the values $\alpha_{j}$ with multiplicities less than
$m_{j}$ for each $j$ and that

$\gamma:=\sum_{j=1}^{q}(1-\frac{1}{m_{f}})>2$ .

Then, for $\eta_{0}$ with $\gamma-2>\gamma\eta_{0}>0$ there is a constant a $0\geqq e^{2}$ depending only on $\gamma$

and $\eta_{0}$ such that, for an arbitrary positive cons tant $\eta\leqq\eta_{0}$ , it holds that

$\frac{|g’|}{1+|g|^{2}}\prod_{j=1}^{q}(\frac{1}{|g,\alpha_{j}|\log(4a_{0}/|g,\alpha_{f}|^{2})})^{(1- 1/m_{j})(1-\eta)}\leqq\frac{1}{C_{1}(1-\eta)^{1/2}}\frac{2R}{R^{2}-|z|^{2}}$

where $L$ and $C_{1}$ are given by (3) and (5) respectively.

This will be proved by the use of the following Ablfors-Schwarz lemma.

LEMMA 6 (cf. [1], [2]). If a continuous nonnegative function $v$ on $\Delta_{R}$ is of
class $C^{2}$ on the set $\{z\in\Delta_{R} ; v(z)>0\}$ and satisfies the condition

$\Delta\log v\geqq v^{2}$

there, then

$v(z) \leqq\frac{2R}{R^{2}-|z|^{2}}$ $(z\in\Delta_{R})$ .

PROOF OF PROPOSITION 5. For brevity, after a change of $g$ by a suitable
M\"obius transformation, we assume $\alpha_{q}=\infty$ . Set
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$\eta_{j}:=1-\frac{1}{m_{j}}$ , $h_{j}:= \frac{1}{|g,\alpha_{j}|}(1\leqq j\leqq q)$ , $p:= \frac{\gamma-2-\gamma\eta}{2(1-\eta)}$ .

Consider the function

$v:=C_{1}(1- \eta)^{1/2}\frac{|g’|}{1+|g|^{2}}\prod_{j=1}^{q}(\frac{h_{j}}{\log(a_{0}h_{j}^{2})})^{\eta_{j^{(1-\eta)}}}$ ,

where $C_{1}$ and $a_{0}$ are the constants as in Proposition 2 for the above $\gamma,$ $\eta(\leqq\eta_{0})$

and $p’:=(\gamma-2-\gamma\eta_{0})/(2\gamma(1-\eta_{0}))(\leqq\rho/\gamma)$ . Setting

$w:=\{$

$0$ if $g(z)=\alpha_{j}$ for some $j$

$|g’| \Pi_{j=1}^{q-1}(\frac{(1+|\alpha_{j}|^{2})^{1/2}}{|g-\alpha_{j}|})^{\eta_{j^{(}}1-\eta)}$ otherwise,

we rewrite $v$ as

$v=C_{1}(1- \eta)^{1/2}w(\frac{(1+|g|^{2})^{\rho}}{\Pi_{j=1}^{q}\log^{\eta_{j}}(a_{0}h_{j}^{2})})^{1-\eta}$

Then, $v$ is continuous on $\Delta_{R}$ and $\log w$ is harmonic on $\{z\in\Delta_{R} ; w(z)>0\}$ . In
fact, for a point $z_{0}\in\Delta_{R}$ , we can write $v$ as $v=|z-z_{0}|^{a}i$} with a nonnegative
function $V$ in some neighborhood of $z_{0}$ , where

$a=m-1-m(1- \frac{1}{m_{j}})(1-\eta)>0$

when $g-\alpha_{j}$ has a zero of order $m$ at $z_{0}$ , and

$a=(\gamma-\eta_{q})m(1-\eta)-m-1-2m\rho(1-\eta)$

$=m-1-m\eta_{q}(1-\eta)>0$

when $g$ has a pole of order $m$ at $z_{0}$ . Therefore, the function $v$ is continuous
and, by Proposition2, it satisfies the condition

$\Delta\log v=(1-\eta)\Delta\log(\frac{(1+|g|^{2})^{\rho}}{\Pi_{j=1}^{q}\log^{\eta_{j}}(a_{0}h_{j}^{2})})$

$\geqq(1-\eta)C_{1}^{2}\frac{|g’|^{2}}{(1+|g|^{2})^{2}}\prod_{j=1}^{q}(\frac{h_{j}^{2}}{\log^{2}(a_{0}h_{j}^{2})})^{\eta_{j^{(1-\eta)}}}=v^{2}$ .

Proposition 5 is a consequence of Lemma 6.

COROLLARY 7. Let $g$ be a nonconstant meromorphic function on $\Delta_{R}$ satisfying
the same assumPtion as in Proposition5. Then, for arbitrary Positive cons tants
$\eta$ and $\delta$ with $\gamma-2>\gamma\eta+\gamma\delta$ , it holds that

$\frac{|g’|1}{1+|g|^{2}(\Pi_{j=1}^{q}|g,\alpha_{j}|^{1- 1/m_{j)^{1-\eta-\delta}}}}\leqq C_{2}\frac{2R}{R^{2}-|z|^{2}}$ ,
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where $C_{2}$ is given by

$C_{2}$ $:= \frac{a_{0}^{\gamma\delta/2}C_{3}}{\delta^{\gamma(1-\eta)}((L/2)\log(4a_{0}/L^{2}))^{\gamma-1-\gamma\eta}}$

for some constant $C_{3}$ depending only on $\gamma$ .
PROOF. The function

$\varphi(x):=\frac{\log^{1-\eta}(a_{0}x^{2})}{x^{\delta}}$ $(1\leqq x<+\infty)$

takes the maximum at a point $x_{0}$ $:= \max((e^{2(1-\eta)/^{\delta}}/a_{0})^{1/2},1)$ . Therefore, we have

$\frac{|g’|1}{1+|g|^{2}\Pi_{j=1}^{q}|g,\alpha_{j}|^{\eta_{J^{(1-\eta-\delta)}}}}$

$= \frac{|g’|}{1+|g|^{2}}\prod_{j=1}^{q}(\frac{h_{j}}{\log(a_{0}h_{j}^{2})})^{\eta_{j^{(1-\eta)}}}\prod_{j=1}^{q}(\frac{\log^{1-\eta}(a_{0}h_{j}^{2})}{h_{j}^{\delta}})^{\eta_{j}}$

$\leqq\frac{\varphi(x_{0})^{\gamma}2R}{C_{1}(1-\eta)^{1/2}R^{2}-|z|^{2}}$

by the use of Proposition 5. Since $0\leqq\eta<(\gamma-2)/\gamma$ , we can find a positive con-
stant $C_{3}$ depending only on $\gamma$ such that

$\frac{\varphi(x_{0})^{\gamma}}{C_{1}(1-\eta)^{1/2}}\leqq\frac{2a\S^{\gamma/2}C_{3}}{C_{1}\delta^{\gamma(1-\eta)}}$ .

This concludes Corollary 7.

\S 4. Main results.

Consider a (connected, oriented) minimal surface $x:=(x_{1}, x_{2}, x_{3}):Marrow R^{3}$

immersed in $R^{3}$ and the Gauss map $G:Marrow S^{2}$ of $M$. By associating a holo-
morphic local coordinate $z=u+\sqrt{-1}v$ with each positive isothermal coordinate
system $(u, v),$ $M$ is considered as a Riemann surface. Then, for the stereo-
graphic projection $\pi:S^{2}arrow\overline{C}$ , the function $g:=\pi\cdot G:M->\overline{C}$ is meromorphic on
$M$. We call the map $g$ the Gauss map of $M$ instead of $G$ .

MAIN THEOREM. Let $x:Marrow R^{3}$ be a minimal surface immers $ed$ in $R^{3}$ .
Suppose that, for some fixed distinct values $\alpha_{1},$

$\cdots$ , $\alpha_{q}$ and some positive integers
$m_{1},$ $\cdots$ , $m_{q}$ , the Gauss map $g$ of $M$ does not take the value $\alpha_{j}$ with multiplicity
less than $m_{j}$ for each $j$ and that

$\gamma:=\sum_{j=1}^{q}(1-\frac{1}{m_{j}})>4$ .
Set

$L$ $:= \min\{|a_{i}, a_{j}| ; 1\leqq i<j\leqq q\}$ .
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Then, there exists some Positive constant $C_{4}$ not depending on any data $M,$ $\alpha_{j}’ s$ ,
$m_{j}’ s$ such that

(7) $|K.(p)|^{1/2} \leqq\frac{C_{4}\log^{2}(1/L)}{d(p)L^{3}}$ $(P\in M)$ .

The proof of Main Theorem will be given in the next section. Here, we
note that, for the proof of Main Theorem it suffices to show the existence of
a constant satisfying (7) which may depend on the given data $m_{1},$ $\cdots$ , $m_{q}$ . For, if

(8) $\sum_{j\in I}(1-\frac{1}{m_{j}})>4$

for some proper subset $I$ of $\{$ 1, 2, $\cdot$ .. , $q\}$ , then the assumption for { $a_{j}$ ; l$j$q}
can be replaced by the assumption for $\{\alpha_{j} ; j\in I\}$ . Moreover, we may replace

each $m_{j}$ by $m_{j}^{*}$ such that

(9) m*$ $m_{j}$ , $\sum_{j}(1-\frac{1}{m_{j}^{*}})>4$ .

Therefore, after suitable changes of indices and $m_{j}’ s$ , we may assume that (8)

and (9) do not hold for any proper subset $I$ of $\{$ 1, 2, $\cdot$ .. , $q\}$ and any $m_{j}^{*}’ s$ which
are different from $m_{j}’ s$ . Then, we have $\gamma\leqq 4+1/2$ . Because, otherwise, the
maximum $m_{j_{0}}$ of $m_{j}’ s$ is not less than 3 and (9) holds for $m_{Jo}^{*}:=m_{j_{0}}-1$ and
$m_{j}^{*}$ $:=m_{j}(j\neq j_{0})$ . On the other hand, since $m_{j}\geqq 2$ for all $j$ , we have $9/2\geqq\gamma=$

$\sum_{J}(1-1/m_{j})\geqq q/2$ and so $q\leqq 9$ . For each $q$ with $4<q\leqq 9$ there are only finitely
many possible cases of $m_{j}’ s$ which satisfy the inequality $\gamma=q-\Sigma_{J-1}^{q}1/m_{j}\leqq 9/2$

by virtue of the above assumption. As the desired constant $C_{4}$ satisfying the
inequality (7), we can take the maximum of constants $C_{4}’ s$ which are chosen
for these finitely many cases of $m_{j}’ s$ .

Theorem $C$ stated in \S 1 is an immediate consequence of Main Theorem.
In fact, under the assumption of Theorem $C$ , if we take $m_{1}=\ldots=m_{\overline{o}}=6$ , then
the Gauss map $g:=\pi\cdot G$ satisfies all conditions in Main Theorem for the values
$a_{j}$ $:=\pi(n_{j})$ and these $m_{j}’ s$ .

NOW, for an arbitrarily given $\epsilon>0$ we give an example of a family of
minimal surfaces which shows that there is no positive constant $C$ not depend-
ing on each minimal surface which satisfies the condition

(10) $|K(p)|^{1/2} \leqq\frac{C}{d(p)}\frac{1}{L^{3-\epsilon}}$ .

TO thls end, for each positive number $R(\geqq 1)$ we take five points

$\alpha_{1}:=R$ , $\alpha_{2}:=\sqrt{-1}R$ , $\alpha_{3}:=-R$ , $a_{4}:=-\^{/}\overline{-1}R$ , $\alpha_{5}:=\infty$

in $\overline{C}$ . Consider Enneper surface $M$ whose domain of definiton is restricted to
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the disc of radius $R$ . Namely, for the functions $f(z)\equiv 1$ and $g(z)=z$ on the
disc $\Delta_{R}:=\{z; z|<R\}$ setting

$x_{1}$ $:={\rm Re} \int_{0}^{z}f(1-g^{2})dz$ , $x_{2}$ $:={\rm Re} \int_{0}^{z}\sqrt{-1}f(1+g^{2})dz$ , $x_{3}$ $:=2{\rm Re} \int_{0}^{z}$fgdz,

we define the surface $x=(x_{1}, x_{2}, x_{3}):\Delta_{R}arrow R^{3}$ in $R^{3}$ . Then, this is a minimal
surface immersed in $R^{3}$ whose Gauss map is the function $g$ and whose metric
is given by $ds^{2}=(1+|z|^{2})^{2}|dz|^{2}$ (cf. [13]). Consider the quantities $K(p)$ and
$d(p)$ as in Main Theorem at the point $p=0$ . We have

$d( O)=\int_{0}^{R}(1+x^{2})dx=R+\frac{1}{3}R^{3}$

and

$|K(0)|^{1/2}= \frac{2|g’(0)|}{|f(0)|(1+|g(0)|^{2})^{2}}=2$ .

On the other hand, the quantity $L$ for the points in $S^{2}$ corresponding to $a_{j}’ s$ is
given by $L=1/\sqrt{1+R^{2}}$ and so

$|K(0)|^{1/2}d(0)L^{3-8}= \frac{2(R+(1/3)R^{3})}{(1+R^{2})^{(3-\epsilon)/2}}$ ,

which converges to $+\infty$ as $R$ tends to $+\infty$ . Therefore, there is no positive
constant satisfying the condition (10) which does not depend on each minimal
surface.

\S 5. The proof of Main Theorem.

We consider a minimal surface $x:=(x_{1}, x_{2}, x_{3}):Marrow R^{3}$ immersed in $R^{3}$

whose Gauss map $g:Marrow\overline{C}$ satisfies the assumption of Main Theorem for
$\alpha_{1}$ , , $a_{q}$ and integers $m_{1}$ , , $m_{q}$ with $m_{j}\geqq 2$ . We may assume tbat $M$ is non-
flat, or $g$ is not a constant. For, otherwise, Main Theorem is trivial. Moreover,
we may assume $\alpha_{Q}=\infty$ .

Taking a holomorphic local coordinate $z$ , we set $\phi_{i}$ $:=(\partial/\partial z)x_{t}(i=1,2,3)$ .
Then we have $g=\phi_{3}/(\phi_{1}-\sqrt{-1}\phi_{2})$ and the induced metric on $M$ is given by
$ds^{2}=|f_{z}|^{2}(1+|g|^{2})^{2}|dz|^{2}$ for the holomorphic function $f_{z}$ $:=\phi_{1}-\sqrt{-1}\phi_{2}$ , where
$f_{z}$ has a zero of order $2m$ at each point where $g$ has a pole of order $m$ (cf.
e.g., [13] $)$ .

NOW, we choose some $\delta$ such that

(11) $\gamma-4>2\gamma\delta>0$

and set

$\eta:=\frac{\gamma-4-2\gamma\delta}{\gamma}$ , $\tau:=\frac{2}{2+\gamma\delta}$ .
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Then, if we choose a sufficiently small positive $\delta$ depending only on $\gamma$ , for the
constant $\epsilon_{0}:=(\gamma-4)/2\gamma$ we have

(12) $0<\tau<1$ , $\frac{\epsilon_{0}\tau}{1-\tau}>1$ .

We consider a new metric

(13) $d\sigma^{2}=|f_{z}|^{2/(1-\tau)(\frac{1}{|g_{z}’|}\prod_{j=1}^{q-1}(\frac{|g-\alpha_{j}|}{(1+|\alpha_{j}|^{2})^{1/2}})^{\eta_{1^{(1-\eta-\delta)}}})^{2\tau/(1-\tau)}|dz|^{2}}$ ,

where $\eta_{j}$ $:=1-1/m_{j}$ and $g_{z}’$ denotes the derivative of $g$ with respect to the
holomorphic local coordinate $z$ . This is a well-defined metric on the set

$M’$ $:=\dagger p\in M;g_{z}’(p)\neq 0$ and $g(p)\neq\alpha_{j}$ for all ]}.

In fact, if we choose another holomorphic local coordinate $\zeta$ , we have $f_{z}=$

$f_{\zeta}d\zeta/dz$ and $g_{z}’=g_{\acute{C}}d\zeta/dz$ and therefore $d\sigma^{2}$ remains unchanged.
Our purpose is to show the inequality (7) for each point $p\in M$. We may

assume that $p\in M’$ . Since $d\sigma^{2}$ is flat on $M’$ , there is a map $\Phi$ of $\Delta_{R}$ onto a
neighborhood $U$ of $P$ which is an isometry with respect to the metrics $|dz|^{2}$ on
$\Delta_{R}$ and $d\sigma^{2}$ on $U$ . We take the largest $R(\leqq+\infty)$ such that there is a local
isometry $\Phi$ of $\Delta_{R}$ onto an open set in $M’$ with $\Phi(0)=p$ . For brevity, we denote
here the function $g\cdot\Phi$ on $\Delta_{R}$ by $g$ . According to Corollary 7, we have

(14) $R \leqq 2C_{2}\frac{1+|g(0)|^{2}}{|g_{z}’(0)|}\prod_{j=1}^{q}|g(0),$ $\alpha_{f}|^{\eta_{j^{(1-\eta-\delta)}}}<+\infty$

for the constant $C_{2}$ given in Corollary 7. Then, there is some point $w_{0}$ with
$|w_{0}|=R$ such that, for the line segment

$\Gamma:W=tw_{0}$ $(0\leqq t<1)$ ,

the image $\gamma:=\Phi(\Gamma)$ tends to the boundary of $M’$ as $t$ tends to 1. In this
situation, suppose that $\gamma$ tends to a point $p_{0}$ where $g’(p_{0})=0$ or $g(p_{0})=\alpha_{j}$ for
some $j$ . Taking a holomorphic local coordinate $\zeta$ with $\zeta(p_{0})=0$ in a neighbor-
hood of $p_{0}$ , we write the metric $d\sigma^{2}$ as $d\sigma^{2}=|\zeta|^{2a\tau/(1-\tau)}w|d\zeta|^{2}$ with some
positive $C^{\infty}$ function $w$ and some real number $a$ . If $g-\alpha_{j}$ has a zero of order
$m(\geqq m_{j})$ at $p_{0}$ for some $j\leqq q-1$ , then $g_{z}’$ has a zero of order $m-1$ at $p_{0}$ and
$f_{z}(p_{0})\neq 0$ . In this case,

$a=m(1- \frac{1}{m_{j}})(1-\eta-\delta)-(m-1)\leqq-(\eta+\delta)\leqq-\epsilon_{0}$ .

For the case where $g$ has a pole of order $m(\geqq m_{q})$ at $p_{0},$ $g_{z}’$ has a pole of order
$m+1$ and $f_{z}$ has a zero of order $2m$ at $p_{0}$ . Then, we have also

$a= \frac{2m}{\tau}+m+1-m(\gamma-\eta_{q})(1-\eta-\delta)\leqq-\epsilon_{0}$ .
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Moreover, for the case where $g_{z}’(p_{0})=0$ and $g(p_{0})\neq\alpha_{j}$ for any $j$ , then $a\leqq-1$ .
Therefore, $d\sigma\geqq C_{4}|\zeta|^{-\epsilon_{0}\tau/(1-\tau)}|d\zeta|$ for a positive constant $C_{4}in^{v}a_{-}^{\tau}neighborhood$

of $p_{0}$ . By (12) we have

$R= \int_{\Gamma}d\sigma\geqq C_{4}\int_{\Gamma}\frac{1}{|\zeta|^{\epsilon_{0}\tau/(1-\tau)}}|d\zeta|=+\infty$ ,

which contradicts (14). So, $\gamma$ tends to the boundary of $M$ as $t$ tends to 1.
TO estimate the length of $\gamma$ , we shall study the metric $\Phi^{*}ds^{2}$ on $\Delta_{R}$ . For

local considerations, the coordinate $z$ on $\Delta_{R}$ may be considered as a holomorphic
local coordinate on $M’$ and so we may write $d\sigma^{2}=|dz|^{2}$ . By (13) we obtain

$1=|f_{z}|^{2/(1-\tau)(\frac{1}{|g_{z}’|}\prod_{j=1}^{q- 1}(\frac{|g-\alpha_{j}|}{(1+|\alpha_{j}|^{2})^{1/2}})^{\eta_{J^{(1-\eta-\delta)}}})^{2\tau/(1-\tau)}}$

and hence

(15) $|f_{z}|=(|g_{z}’| \prod_{j=1}^{q- 1}(\frac{(1+|a_{j}|^{2})^{1/2}}{|g-\alpha_{j}|})^{\eta_{j^{(1-\eta-\delta)}}})^{\tau}$ .

By the use of Corollary 7 we have

$\Phi^{*}ds=|f_{z}|(1+|g|^{2})|dz|$

$=(|g_{z}’|(1+|g|^{2})^{1/\tau} \prod_{j=1}^{q- 1}(\frac{(1+|\alpha_{j}|^{2})^{1/2}}{|g-\alpha_{j}|})^{\eta_{j}(1-\eta-\delta)})^{\tau}|dz|$

$=( \frac{|g_{z}’|}{1+|g|^{2}}\frac{1}{\Pi_{f=1}^{q}|g,\alpha_{j}|^{\eta_{J^{(1-\eta-\delta)}}}})^{\tau}|dz|$

$\leqq C’$ $( \frac{2R}{R^{2}-|z|^{2}})^{r}|dz|$ .

This yields that

$d(p) \leqq\int_{\gamma}ds=\int_{\Gamma}\Phi^{*}ds\leqq C_{2}^{\tau}\int_{\Gamma}(\frac{2R}{R^{2}-|z|^{2}})^{r}|dz|$

$=C_{2}^{\tau} \int_{0}^{R}(\frac{2R}{R^{2}-x^{2}})^{\tau}dx\leqq\frac{(2C_{2})^{\tau}R^{1-\tau}}{1-\tau}$

By (14) we obtain

$d(p) \leqq\frac{2C_{2}}{1-\tau}(\frac{(1+|g(0)|^{2})\Pi_{j=1}^{q}|g(0),\alpha_{j}|^{\eta_{J^{(1-\eta-\delta)}}}}{|g_{z}’(0)|})^{1-\tau}$

On the other hand, in view of (15) the curvature at $P$ is given by

$|K(p)|^{1/2}= \frac{2|g_{z}’(0)|}{|f_{z}|(1+|g(0)|^{2})^{2}}$

$= \frac{2|g_{z}’(0)|}{(1+|g(0)|^{2})^{2}}(\frac{(1+|g(0)|^{2})^{\gamma(1-\eta-\delta)/2}\Pi_{j=1}^{q}|g(0),\alpha_{j}|^{\eta_{J^{(1-\eta-\delta)}}}}{|g_{z}’(0)|})^{\tau}$ .
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Since $|g,$ $\alpha_{j}|$ Sl, we can easily conclude that

$|K(p)|^{1/2}d(p)\leqq C_{5}$ $:= \frac{4C_{2}}{1-\tau}$ .

By the definition of $C_{2}$ and $\tau$ , we see

$C_{5}= \frac{4a_{0}^{\gamma\delta/2}C_{3}(2+\gamma\delta)}{\delta^{\gamma(1-\eta)}\gamma\delta((L/2)\log(4a_{0}/L^{2}))^{\gamma-1-\gamma\eta}}$ .

NOW, take a sufficiently small $L_{0}$ such that (11) and (12) hold for the con-
stant $\delta=1/\log(4a_{0}/L_{0}^{2})$ . For each positive $L(\leqq 1)$ we set $\delta:=1/\log(4a_{0}/L^{2})$ if
$L\leqq L_{0}$ and $\delta:=\delta_{0}$ for some $\delta_{0}$ satisfying the conditions (11) and (12) if $L_{0}<$

L$l. We can apply the above-mentioned arguments to these $\delta’ s$ . Then, we
can estimate the constant $C_{5}$ as

$C_{5} \leqq 2^{\gamma-\gamma\eta}C_{3}a_{0}^{\gamma\delta/2}\max(1, A_{0})\frac{\log^{2}(4a_{0}/L^{2})}{L^{\gamma-1-\gamma\eta}}$ ,

where

$A_{0}$ $:= \sup_{L_{0}\leqq x\leqq 1}(\frac{1}{\delta_{0}\log(4a_{0}/x^{2})})^{\gamma+1-\gamma\eta}$

Since $a_{0}$ can be chosen so as to be between two positive constants depending
only on $\gamma$ , we can conclude

$C_{6} \leqq\frac{C_{6}\log^{2}(4a_{0}/L_{2})}{L^{\gamma-1-\gamma\eta}}\leqq C_{7}\frac{\log^{2}(1/L)}{L^{3}L^{2\gamma\delta}}$

for positive constants $C_{6}$ and $C_{7}$ depending only on $\gamma_{1}$ . On the other hand, the
factor $L^{2\gamma\delta}$ is bounded from below by a positive constant not depending on each
$L$ because $\log L^{2\gamma\delta}=2\gamma\log L/\log(4a_{0}/L^{2})$ has a limit as $L$ tends to zero. This
shows that $C_{7}$ can be replaced by a positive constant depending only on $m_{j}’ s$ .
The proof of Main Theorem is complete.
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