On the Gauss curvature of minimal surfaces

By Hirotaka Fujimoto

(Received July 19, 1991)

§ 1. Introduction.

In 1952, E. Heinz showed that, for a minimal surface M in \boldsymbol{R}^{3} which is the graph of a function $z=z(x, y)$ of class C^{2} defined on a disk $\Delta_{R}:=\left\{(x, y) ; x^{2}+\right.$ $\left.y^{2}<R^{2}\right\}$, there is a positive constant C not depending on each surface M such that $|K| \leqq C / R^{2}$ holds for the curvature K of M at the origin ([8]). This is an improvement of the classical Bernstein's theorem that a minimal surface in \boldsymbol{R}^{3} which is the graph of a function of class C^{2} defined on the total plane is necessarily a plane. Later, R. Osserman gave some generalizations of these results to surfaces which need not be of the form $z=z(x, y)$ ([10], [11]). To state one of his results, we consider a connected, oriented minimal surface M immersed in \boldsymbol{R}^{3} and, for a point $p \in M$, we denote by $K(p)$ and $d(p)$ the Gauss curvature of M at p and the distance from p to the boundary of M respectively. He gave the following estimate of the Gauss curvature of M.

Theorem A. Let M be a simply-connected minimal surface immersed in \boldsymbol{R}^{3} and assume that there is some fixed nonzero vector n_{0} and a number $\theta_{0}>0$ such that all normals to M make angles of at least θ_{0} with n_{0}. Then,

$$
|K(p)|^{1 / 2} \leqq \frac{1}{d(p)} \frac{2 \cos \left(\theta_{0} / 2\right)}{\sin ^{3}\left(\theta_{0} / 2\right)} \quad(p \in M)
$$

He obtained also some generalization of Theorem A to minimal surfaces immersed in $\boldsymbol{R}^{m}(m \geqq 3)$ ([12]).

Relating to these results, the author proved the following theorem in his paper [4].

Theorem B. Let M be a minimal surface immersed in \boldsymbol{R}^{3} and let $G: M \rightarrow S^{2}$ be the Gauss map of M. If G omits mutually distinct five points n_{1}, \cdots, n_{5} in S^{2}, then it holds that

$$
\begin{equation*}
|K(p)|^{1 / 2} \leqq \frac{C}{d(p)} \quad(p \in M) \tag{1}
\end{equation*}
$$

for some positive constant C depending only on n_{j} 's.

Since $d(p)=\infty$ for any $p \in M$ in case that M is complete, Theorem B implies that the Gauss map of a complete non-flat minimal surface immersed in \boldsymbol{R}^{3} can omit at most four points of the sphere. He obtained also a generalization of Theorem B to the case of minimal surfaces whose Gauss maps take several fixed values with high multiplicities ([5, Theorem II]). Recently, A. Ros added a new insight to the study of minimal surfaces satisfying the condition (1) ([14]).

The purpose of this paper is to give more precise estimate like the result of Theorem A for a constant C satisfying the inequality (1). We shall give an improvement of Theorem II of [5], which implies the following:

Theorem C. Let $x=\left(x_{1}, x_{2}, x_{3}\right): M \rightarrow \boldsymbol{R}^{3}$ be a minimal surface immersed in \boldsymbol{R}^{3} and let $G: M \rightarrow S^{2}$ be the Gauss map of M. Assume that G omits five distinct unit vectors $n_{1}, \cdots, n_{5} \in S^{2}$. Let $\theta_{i j}$ be the angle between n_{i} and n_{j} and set

$$
L:=\min \left\{\sin \left(\frac{\theta_{i j}}{2}\right) ; 1 \leqq i<j \leqq 5\right\} .
$$

Then, there exists some positive constant C not depending on each minimal surface such that

$$
\begin{equation*}
|K(p)|^{1 / 2} \leqq \frac{C}{d(p)} \frac{\log ^{2}(1 / L)}{L^{3}} \quad(p \in M) \tag{2}
\end{equation*}
$$

It is an interesting open problem to know whether the factor $\log ^{2}(1 / L) / L^{3}$ in (2) can be replaced by $1 / L^{3}$ or not. Relating to this, in $\S 4$ we shall give an example of a family of minimal surfaces which shows that it cannot be replaced by $1 / L^{3-\varepsilon}$ for any positive number ε.

§2. Sum to product estimate.

Consider the stereographic projection π of the unit sphere S^{2} onto the extended complex plane $\overline{\boldsymbol{C}}:=\boldsymbol{C} \cup\{\infty\}$. For α and $\beta \in \overline{\boldsymbol{C}}$ take the unit vectors n_{1} and n_{2} in S^{2} with $\alpha=\pi\left(n_{1}\right)$ and $\beta=\pi\left(n_{2}\right)$. Let $\theta(0 \leqq \theta \leqq \pi)$ be the angle between n_{1} and n_{2}. Define

$$
|\alpha, \beta|:=\sin \frac{\theta}{2} .
$$

We can easily show that, if $\alpha \neq \infty$ and $\beta \neq \infty$, then

$$
|\alpha, \beta|=\frac{|\alpha-\beta|}{\sqrt{1+|\alpha|^{2}} \sqrt{1+|\beta|^{2}}}
$$

and, if either α or β, say β, is equal to ∞, then $|\alpha, \beta|=1 / \sqrt{1+|\alpha|^{2}}$.
Take $q(\geqq 2)$ mutually distinct numbers $\alpha_{1}, \cdots, \alpha_{q} \in \overline{\boldsymbol{C}}$. Set

$$
\begin{equation*}
L:=\min _{i<j}\left|\alpha_{i}, \alpha_{j}\right| . \tag{3}
\end{equation*}
$$

Then, we have the following:
Lemma 1. For all $w \in \overline{\boldsymbol{C}}$ it holds that

$$
\left|w, \alpha_{i}\right| \geqq \frac{L}{2}
$$

for all α_{i} except at most one.
In fact, if $\left|w, \alpha_{i}\right|<L / 2$ for two distinct indices $i=i_{1}$ and $i=i_{2}$, then we have an absurd conclusion

$$
L \leqq\left|\alpha_{i_{1}}, \alpha_{i_{2}}\right| \leqq\left|\alpha_{i_{1}}, w\right|+\left|w, \alpha_{i_{2}}\right|<L
$$

Let g be a nonconstant meromorphic function on a disc $\Delta_{R}:=\{z ;|z|<R\}$ and $\eta_{1}, \cdots, \eta_{q}$ be real numbers with $0<\eta_{j} \leqq 1$. Here, we assume that

$$
\gamma:=\eta_{1}+\cdots+\eta_{q}>1
$$

The purpose of this section is to prove the following:
Proposition 2. For each ρ with $\rho>0$ and η with $\gamma-1>\gamma \eta \geqq 0$, take a constant $a_{0}\left(\geqq e^{2}\right)$ satisfying the condition

$$
\begin{equation*}
\frac{1}{\log ^{2} a_{0}}+\frac{1}{\log a_{0}} \leqq \rho^{\prime} \tag{4}
\end{equation*}
$$

for $\rho^{\prime}:=\rho / \gamma$. Then, it holds that

$$
\Delta \log \frac{\left(1+|g|^{2}\right)^{\rho}}{\left.\Pi_{j=1}^{q} \log ^{\eta_{j}(} a_{0} /\left|g, \alpha_{j}\right|^{2}\right)} \geqq C_{1}^{2} \frac{\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}} \prod_{j=1}^{q}\left(\frac{1}{\left|g, \alpha_{j}\right|^{2} \log ^{2}\left(a_{0} /\left|g, \alpha_{j}\right|^{2}\right)}\right)^{\eta_{j}(1-\eta)},
$$

where

$$
\begin{equation*}
C_{1}:=2\left(\frac{L}{2} \log \frac{4 a_{0}}{L^{2}}\right)^{\gamma-1-\gamma \eta} \tag{5}
\end{equation*}
$$

To prove this, we need the following two lemmas.
Lemma 3. For an arbitrarily given $\rho^{\prime}>0$ take a number $a_{0}(\geqq e)$ satisfying the condition (4). Then, it holds that

$$
\Delta \log \frac{1}{\log \left(a_{0} /\left|g, \alpha_{j}\right|^{2}\right)} \geqq \frac{4\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}}\left(\frac{1}{\left|g, \alpha_{j}\right|^{2} \log ^{2}\left(a_{0} /\left|g, \alpha_{j}\right|^{2}\right)}-\rho^{\prime}\right)
$$

To see this, we represent each α_{j} as $\alpha_{j}=a_{j 0} / a_{j 1}$ with a nonzero vector $\left(a_{j 0}, a_{j 1}\right)(1 \leqq j \leqq q)$ and the meromorphic function g as $g=g_{0} / g_{1}$ with holomorphic functions g_{0}, g_{1} which have no common zero. Then, we have

$$
\left|g, \alpha_{j}\right|^{2}=\frac{\left|a_{j_{1}} g_{0}-a_{j 0} g_{1}\right|^{2}}{\left|g_{0}\right|^{2}+\left|g_{1}\right|^{2}}
$$

and

$$
\frac{\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}}=\frac{\left|g_{0} g_{1}^{\prime}-g_{1} g_{0}^{\prime}\right|^{2}}{\left(\left|g_{0}\right|^{2}+\left|g_{1}\right|^{2}\right)^{2}}
$$

Therefore, Lemma 3 is a restatement of Lemma 2.2 of [5]. We omit the proof.
LEMmA 4. Take nonnegative numbers A_{1}, \cdots, A_{q} and a positive constant M such that $M \geqq A_{j}$ for all j except at most one. Then, for every η with $\gamma-1>$ $\gamma \eta \geqq 0$,

$$
\eta_{1} A_{1}+\eta_{2} A_{2}+\cdots+\eta_{q} A_{q} \geqq \frac{1}{M^{\gamma-1-\gamma \eta}}\left(A_{1}^{\eta_{1}} A_{2}^{\eta_{2}} \cdots A_{q}^{\left.\eta_{q}\right)^{1-\eta}}\right.
$$

Proof. Without loss of generality, we may assume that

$$
A_{1} \geqq A_{2} \geqq \cdots \geqq A_{q}
$$

We then have $M \geqq A_{j}$ for all $j=2,3, \cdots, q$. Set

$$
\lambda_{1}:=\eta_{1}(1-\eta), \quad \lambda_{j}:=\frac{\eta_{j}}{\eta_{2}+\cdots+\eta_{q}}\left(1-\lambda_{1}\right) \quad(j=2, \cdots, q)
$$

Then, we obtain the desired inequality

$$
\begin{aligned}
\eta_{1} A_{1} & +\eta_{2} A_{2}+\cdots+\eta_{q} A_{q} \\
& \geqq \lambda_{1} A_{1}+\lambda_{2} A_{2}+\cdots+\lambda_{q} A_{q} \\
& \geqq A_{1}^{\lambda_{1}} A_{2}^{\lambda_{2}} \cdots A_{q}^{\lambda_{q}^{q}} \\
& =\left(A_{1}^{\eta_{1}} A_{2}^{\eta_{2}} \cdots A_{q}^{\eta_{q}}\right)^{1-\eta} \frac{A_{2}^{\lambda_{2}} \cdots A_{q}^{\lambda_{q}}}{\left(A_{2}^{\eta_{2}} \cdots A_{q}^{\eta_{q}}\right)^{1-\eta}} \\
& \geqq\left(A_{1}^{\eta_{1}} A_{2}^{\eta_{2}} \cdots A_{q}^{\eta_{q}}\right)^{1-\eta} \frac{1}{M^{\gamma-1-\gamma \eta}}
\end{aligned}
$$

Proof of Proposition 2. For brevity, we set

$$
h_{j}:=\frac{1}{\left|g, \alpha_{j}\right|} \quad(1 \leqq j \leqq q)
$$

Take $a_{0}\left(\geqq e^{2}\right)$ satisfying the condition (4) for $\rho^{\prime}:=\rho / \gamma$. By Lemma 3 we see

$$
\Delta \log \frac{\left(1+|g|^{2}\right)^{\rho}}{\prod_{j=1}^{q} \log ^{\eta_{j}\left(a_{0} h_{j}^{2}\right)}}
$$

$$
\begin{align*}
& \geqq \frac{4\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}}\left(\rho+\sum_{j=1}^{q} \eta_{j}\left(\frac{h_{j}^{2}}{\log ^{2}\left(a_{0} h_{j}^{2}\right)}-\frac{\rho}{\gamma}\right)\right) \tag{6}\\
& =\frac{4\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}} \sum_{j=1}^{q} \frac{\eta_{j} h_{j}^{2}}{\log ^{2}\left(a_{0} h_{j}^{2}\right)}
\end{align*}
$$

On the other hand, for each $z \in \Delta_{R}$ it follows from Lemma 1 that $\left|g(z), \alpha_{j}\right| \geqq$ $L / 2$ for all α_{j} except at most one. Therefore, since $x^{2} / \log ^{2}\left(a_{0} x^{2}\right)$ is monotone increasing for $x \geqq 1$, we have

$$
\frac{h_{j}^{2}}{\log ^{2}\left(a_{0} h_{j}^{2}\right)} \leqq \frac{4}{L^{2} \log ^{2}\left(4 a_{0} / L^{2}\right)}
$$

for such α_{j} 's. Setting $A_{j}:=h_{j}^{2} / \log ^{2}\left(a_{0} h_{j}^{2}\right)$ and $M:=4 /\left(L^{2} \log ^{2}\left(4 a_{0} / L^{2}\right)\right)$, we apply Lemma 4 to show that

$$
\sum_{j=1}^{q} \frac{\eta_{j} h_{j}^{2}}{\log ^{2}\left(a_{0} h_{j}^{2}\right)} \geqq\left(\frac{L}{2} \log \frac{4 a_{0}}{L^{2}}\right)^{2(\gamma-1-\gamma \eta)} \prod_{j=1}^{q}\left(\frac{h_{j}^{2}}{\log ^{2}\left(a_{0} h_{j}^{2}\right)}\right)^{\eta_{j}(1-\eta)} .
$$

In view of (6) this concludes Proposition 2.

§ 3. An application of Ahlfors-Schwarz lemma.

We shall next prove the following:
Proposition 5. Let g be a nonconstant meromorphic function Δ_{R}. Assume that, for some fixed distinct points $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{q}$ in $\overline{\boldsymbol{C}}$ and integers m_{1}, m_{2}, \cdots, m_{q} not less than two, g does not take the values α_{j} with multiplicities less than m_{j} for each j and that

$$
\gamma:=\sum_{j=1}^{q}\left(1-\frac{1}{m_{j}}\right)>2 .
$$

Then, for η_{0} with $\gamma-2>\gamma \eta_{0}>0$ there is a constant $a_{0} \geqq e^{2}$ depending only on γ and η_{0} such that, for an arbitrary positive constant $\eta \leqq \eta_{0}$, it holds that

$$
\frac{\left|g^{\prime}\right|}{1+|g|^{2}} \prod_{j=1}^{q}\left(\frac{1}{\left|g, \alpha_{j}\right| \log \left(4 a_{0} /\left|g, \alpha_{j}\right|^{2}\right)}\right)^{\left(1-1 / m_{j}\right)(1-\eta)} \leqq \frac{1}{C_{1}(1-\eta)^{1 / 2}} \frac{2 R}{R^{2}-|z|^{2}}
$$

where L and C_{1} are given by (3) and (5) respectively.
This will be proved by the use of the following Ahlfors-Schwarz lemma.
Lemma 6 (cf. [1], [2]). If a continuous nonnegative function v on Δ_{R} is of class C^{2} on the set $\left\{z \in \Delta_{R} ; v(z)>0\right\}$ and satisfies the condition

$$
\Delta \log v \geqq v^{2}
$$

there, then

$$
v(z) \leqq \frac{2 R}{R^{2}-|z|^{2}} \quad\left(z \in \Delta_{R}\right) .
$$

Proof of Proposition 5. For brevity, after a change of g by a suitable Möbius transformation, we assume $\alpha_{q}=\infty$. Set

$$
\eta_{j}:=1-\frac{1}{m_{j}}, \quad h_{j}:=\frac{1}{\left|g, \alpha_{j}\right|}(1 \leqq j \leqq q), \quad \rho:=\frac{\gamma-2-\gamma \eta}{2(1-\eta)} .
$$

Consider the function

$$
v:=C_{1}(1-\eta)^{1 / 2} \frac{\left|g^{\prime}\right|}{1+|g|^{2}} \prod_{j=1}^{q}\left(\frac{h_{j}}{\log \left(a_{0} h_{j}^{2}\right)}\right)^{\eta_{j}(1-\eta)},
$$

where C_{1} and a_{0} are the constants as in Proposition 2 for the above $\gamma, \eta\left(\leqq \eta_{0}\right)$ and $\rho^{\prime}:=\left(\gamma-2-\gamma \eta_{0}\right) /\left(2 \gamma\left(1-\eta_{0}\right)\right)(\leqq \rho / \gamma)$. Setting

$$
w:= \begin{cases}0 & \text { if } g(z)=\alpha_{j} \text { for some } j \\ \left|g^{\prime}\right| \Pi_{j=1}^{q-1}\left(\frac{\left(1+\left|\alpha_{j}\right|^{2}\right)^{1 / 2}}{\left|g-\alpha_{j}\right|}\right)^{\eta_{j}(1-\eta)} & \text { otherwise },\end{cases}
$$

we rewrite v as

$$
v=C_{1}(1-\eta)^{1 / 2} w\left(\frac{\left(1+|g|^{2}\right)^{\rho}}{\Pi_{j=1}^{q} \log ^{\eta_{j}\left(a_{0} h_{j}^{2}\right)}}\right)^{1-\eta} .
$$

Then, v is continuous on Δ_{R} and $\log w$ is harmonic on $\left\{z \in \Delta_{R} ; w(z)>0\right\}$. In fact, for a point $z_{0} \in \Delta_{R}$, we can write v as $v=\left|z-z_{0}\right|^{a} \tilde{v}$ with a nonnegative function \tilde{v} in some neighborhood of z_{0}, where

$$
a=m-1-m\left(1-\frac{1}{m_{j}}\right)(1-\eta)>0
$$

when $g-\alpha_{j}$ has a zero of order m at z_{0}, and

$$
\begin{aligned}
a & =\left(\gamma-\eta_{q}\right) m(1-\eta)-m-1-2 m \rho(1-\eta) \\
& =m-1-m \eta_{q}(1-\eta)>0
\end{aligned}
$$

when g has a pole of order m at z_{0}. Therefore, the function v is continuous and, by Proposition 2, it satisfies the condition

$$
\begin{aligned}
\Delta \log v & =(1-\eta) \Delta \log \left(\frac{\left(1+|g|^{2}\right)^{\rho}}{\Pi_{j=1}^{q} \log ^{j_{j}\left(a_{0} h_{j}^{2}\right)}}\right) \\
& \geqq(1-\eta) C_{1}^{2} \frac{\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}} \prod_{j=1}^{q}\left(\frac{h_{j}^{2}}{\log ^{2}\left(a_{0} h_{j}^{2}\right)}\right)^{\eta_{j}(1-\eta)}=v^{2} .
\end{aligned}
$$

Proposition 5 is a consequence of Lemma 6.
Corollary 7. Let g be a nonconstant meromorphic function on Δ_{R} satisfying the same assumption as in Proposition 5. Then, for arbitrary positive constants η and δ with $\gamma-2>\gamma \eta+\gamma \delta$, it holds that

$$
\frac{\left|g^{\prime}\right|}{1+|g|^{2}} \frac{1}{\left(\Pi_{j=1}^{q}\left|g, \alpha_{j}\right|^{1-1 / m_{j}}\right)^{1-\eta-\bar{\delta}}} \leqq C_{2} \frac{2 R}{R^{2}-|z|^{2}},
$$

where C_{2} is given by

$$
C_{2}:=\frac{a_{0}^{\gamma \delta / 2} C_{3}}{\delta^{\gamma(1-\eta)}\left((L / 2) \log \left(4 a_{0} / L^{2}\right)\right)^{\gamma-1-\gamma \eta}}
$$

for some constant C_{3} depending only on γ.
Proof. The function

$$
\varphi(x):=\frac{\log ^{1-\eta}\left(a_{0} x^{2}\right)}{x^{\delta}} \quad(1 \leqq x<+\infty)
$$

takes the maximum at a point $x_{0}:=\max \left(\left(e^{2(1-\eta) / \delta} / a_{0}\right)^{1 / 2}, 1\right)$. Therefore, we have

$$
\begin{aligned}
& \frac{\left|g^{\prime}\right|}{1+|g|^{2}} \frac{1}{\prod_{j=1}^{q}\left|g, \alpha_{j}\right|^{\eta_{j}(1-\eta-\delta)}} \\
& \quad=\frac{\left|g^{\prime}\right|}{1+|g|^{2}} \prod_{j=1}^{q}\left(\frac{h_{j}}{\log \left(a_{0} h_{j}^{2}\right)}\right)^{\eta_{j}(1-\eta)} \prod_{j=1}^{q}\left(\frac{\log ^{1-\eta}\left(a_{0} h_{j}^{2}\right)}{h_{j}^{\delta}}\right)^{\eta_{j}} \\
& \quad \leqq \frac{\varphi\left(x_{0}\right)^{\gamma}}{C_{1}(1-\eta)^{1 / 2}} \frac{2 R}{R^{2}-|z|^{2}}
\end{aligned}
$$

by the use of Proposition 5. Since $0 \leqq \eta<(\gamma-2) / \gamma$, we can find a positive constant C_{3} depending only on γ such that

$$
\frac{\varphi\left(x_{0}\right)^{r}}{C_{1}(1-\eta)^{1 / 2}} \leqq \frac{2 a_{0}^{\delta / 2} C_{3}}{C_{1} \delta^{\gamma^{(1-\eta)}}} .
$$

This concludes Corollary 7.

§ 4. Main results.

Consider a (connected, oriented) minimal surface $x:=\left(x_{1}, x_{2}, x_{3}\right): M \rightarrow \boldsymbol{R}^{3}$ immersed in \boldsymbol{R}^{3} and the Gauss map $G: M \rightarrow S^{2}$ of M. By associating a holomorphic local coordinate $z=u+\sqrt{-1} v$ with each positive isothermal coordinate system (u, v), M is considered as a Riemann surface. Then, for the stereographic projection $\pi: S^{2} \rightarrow \bar{C}$, the function $g:=\pi \cdot G: M \rightarrow \overline{\boldsymbol{C}}$ is meromorphic on M. We call the map g the Gauss map of M instead of G.

Main Theorem. Let $x: M \rightarrow \boldsymbol{R}^{3}$ be a minimal surface immersed in \boldsymbol{R}^{3}. Suppose that, for some fixed distinct values $\alpha_{1}, \cdots, \alpha_{q}$ and some positive integers m_{1}, \cdots, m_{q}, the Gauss map g of M does not take the value α_{j} with multiplicity less than m_{j} for each j and that

$$
\gamma:=\sum_{j=1}^{q}\left(1-\frac{1}{m_{j}}\right)>4 .
$$

Set

$$
L:=\min \left\{\left|\alpha_{i}, \alpha_{j}\right| ; 1 \leqq i<j \leqq q\right\}
$$

Then, there exists some positive constant C_{4} not depending on any data M, α_{j} 's, m_{j} 's such that

$$
\begin{equation*}
|K(p)|^{1 / 2} \leqq \frac{C_{4}}{d(p)} \frac{\log ^{2}(1 / L)}{L^{3}} \quad(p \in M) \tag{7}
\end{equation*}
$$

The proof of Main Theorem will be given in the next section. Here, we note that, for the proof of Main Theorem it suffices to show the existence of a constant satisfying (7) which may depend on the given data m_{1}, \cdots, m_{q}. For, if

$$
\begin{equation*}
\sum_{j \in I}\left(1-\frac{1}{m_{j}}\right)>4 \tag{8}
\end{equation*}
$$

for some proper subset I of $\{1,2, \cdots, q\}$, then the assumption for $\left\{\alpha_{j} ; 1 \leqq j \leqq q\right\}$ can be replaced by the assumption for $\left\{\alpha_{j} ; j \in I\right\}$. Moreover, we may replace each m_{j} by m_{j}^{*} such that

$$
\begin{equation*}
m_{j}^{*} \leqq m_{j}, \quad \sum_{j}\left(1-\frac{1}{m_{j}^{*}}\right)>4 . \tag{9}
\end{equation*}
$$

Therefore, after suitable changes of indices and m_{j} 's, we may assume that (8) and (9) do not hold for any proper subset I of $\{1,2, \cdots, q\}$ and any m_{j}^{*} 's which are different from m_{j} 's. Then, we have $\gamma \leqq 4+1 / 2$. Because, otherwise, the maximum $m_{j_{0}}$ of m_{j} 's is not less than 3 and (9) holds for $m_{j_{0}}^{*}:=m_{j_{0}}-1$ and $m_{j}^{*}:=m_{j}\left(j \neq j_{0}\right)$. On the other hand, since $m_{j} \geqq 2$ for all j, we have $9 / 2 \geqq \gamma=$ $\Sigma_{j}\left(1-1 / m_{j}\right) \geqq q / 2$ and so $q \leqq 9$. For each q with $4<q \leqq 9$ there are only finitely many possible cases of m_{j}^{\prime} 's which satisfy the inequality $\gamma=q-\sum_{j=1}^{q} 1 / m_{j} \leqq 9 / 2$ by virtue of the above assumption. As the desired constant C_{4} satisfying the inequality (7), we can take the maximum of constants C_{4} 's which are chosen for these finitely many cases of m_{j} 's.

Theorem C stated in $\S 1$ is an immediate consequence of Main Theorem. In fact, under the assumption of Theorem C, if we take $m_{1}=\cdots=m_{\overline{5}}=6$, then the Gauss map $g:=\pi \cdot G$ satisfies all conditions in Main Theorem for the values $\alpha_{j}:=\pi\left(n_{j}\right)$ and these m_{j} 's.

Now, for an arbitrarily given $\varepsilon>0$ we give an example of a family of minimal surfaces which shows that there is no positive constant C not depending on each minimal surface which satisfies the condition

$$
\begin{equation*}
|K(p)|^{1 / 2} \leqq \frac{C}{d(p)} \frac{1}{L^{3-\varepsilon}} \tag{10}
\end{equation*}
$$

To this end, for each positive number $R(\geqq 1)$ we take five points

$$
\alpha_{1}:=R, \quad \alpha_{2}:=\sqrt{-1} R, \quad \alpha_{3}:=-R, \quad \alpha_{4}:=-\sqrt{-1} R, \quad \alpha_{5}:=\infty
$$

in $\overline{\boldsymbol{C}}$. Consider Enneper surface M whose domain of definiton is restricted to
the disc of radius R. Namely, for the functions $f(z) \equiv 1$ and $g(z)=z$ on the disc $\Delta_{R}:=\{z ;|z|<R\}$ setting

$$
x_{1}:=\operatorname{Re} \int_{0}^{z} f\left(1-g^{2}\right) d z, \quad x_{2}:=\operatorname{Re} \int_{0}^{z} \sqrt{-1} f\left(1+g^{2}\right) d z, \quad x_{3}:=2 \operatorname{Re} \int_{0}^{z} f g d z,
$$

we define the surface $x=\left(x_{1}, x_{2}, x_{3}\right): \Delta_{R} \rightarrow \boldsymbol{R}^{3}$ in \boldsymbol{R}^{3}. Then, this is a minimal surface immersed in \boldsymbol{R}^{3} whose Gauss map is the function g and whose metric is given by $d s^{2}=\left(1+|z|^{2}\right)^{2}|d z|^{2}$ (cf. [13]). Consider the quantities $K(p)$ and $d(p)$ as in Main Theorem at the point $p=0$. We have

$$
d(0)=\int_{0}^{R}\left(1+x^{2}\right) d x=R+\frac{1}{3} R^{3}
$$

and

$$
|K(0)|^{1 / 2}=\frac{2\left|g^{\prime}(0)\right|}{|f(0)|\left(1+|g(0)|^{2}\right)^{2}}=2 .
$$

On the other hand, the quantity L for the points in S^{2} corresponding to α_{j} 's is given by $L=1 / \sqrt{1+R^{2}}$ and so

$$
|K(0)|^{1 / 2} d(0) L^{3-\varepsilon}=\frac{2\left(R+(1 / 3) R^{3}\right)}{\left(1+R^{2}\right)^{(3-\varepsilon) / 2}}
$$

which converges to $+\infty$ as R tends to $+\infty$. Therefore, there is no positive constant satisfying the condition (10) which does not depend on each minimal surface.

§ 5. The proof of Main Theorem.

We consider a minimal surface $x:=\left(x_{1}, x_{2}, x_{3}\right): M \rightarrow \boldsymbol{R}^{3}$ immersed in R^{3} whose Gauss map $g: M \rightarrow \overline{\boldsymbol{C}}$ satisfies the assumption of Main Theorem for $\alpha_{1}, \cdots, \alpha_{q}$ and integers m_{1}, \cdots, m_{q} with $m_{j} \geqq 2$. We may assume that M is nonflat, or g is not a constant. For, otherwise, Main Theorem is trivial. Moreover, we may assume $\alpha_{q}=\infty$.

Taking a holomorphic local coordinate z, we set $\phi_{i}:=(\hat{\partial} / \partial z) x_{i}(i=1,2,3)$. Then we have $g=\phi_{3} /\left(\phi_{1}-\sqrt{-1} \phi_{2}\right)$ and the induced metric on M is given by $d s^{2}=\left|f_{z}\right|^{2}\left(1+|g|^{2}\right)^{2}|d z|^{2}$ for the holomorphic function $f_{z}:=\phi_{1}-\sqrt{-1} \phi_{2}$, where f_{z} has a zero of order $2 m$ at each point where g has a pole of order m (cf. e.g., [13]).

Now, we choose some δ such that

$$
\begin{equation*}
\gamma-4>2 \gamma \delta>0 \tag{11}
\end{equation*}
$$

and set

$$
\eta:=\frac{\gamma-4-2 \gamma \delta}{\gamma}, \quad \tau:=\frac{2}{2+\gamma \delta} .
$$

Then, if we choose a sufficiently small positive δ depending only on γ, for the constant $\varepsilon_{0}:=(\gamma-4) / 2 \gamma$ we have

$$
\begin{equation*}
0<\tau<1, \quad \frac{\varepsilon_{0} \tau}{1-\tau}>1 \tag{12}
\end{equation*}
$$

We consider a new metric

$$
\begin{equation*}
d \sigma^{2}=\left|f_{z}\right|^{2 /(1-\tau)}\left(\frac{1}{\left|g_{z}^{\prime}\right|} \prod_{j=1}^{q-1}\left(\frac{\left|g-\alpha_{j}\right|}{\left(1+\left|\alpha_{j}\right|^{2}\right)^{1 / 2}}\right)^{\eta_{j}(1-\eta-\delta)}\right)^{2 \tau /(1-\tau)}|d z|^{2}, \tag{13}
\end{equation*}
$$

where $\eta_{j}:=1-1 / m_{j}$ and g_{z}^{\prime} denotes the derivative of g with respect to the holomorphic local coordinate z. This is a well-defined metric on the set

$$
M^{\prime}:=\left\{p \in M ; g_{2}^{\prime}(p) \neq 0 \text { and } g(p) \neq \alpha_{j} \text { for all } j\right\}
$$

In fact, if we choose another holomorphic local coordinate ζ, we have $f_{z}=$ $f_{\zeta} d \zeta / d z$ and $g_{z}^{\prime}=g_{\zeta}^{\prime} d \zeta / d z$ and therefore $d \sigma^{2}$ remains unchanged.

Our purpose is to show the inequality (7) for each point $p \in M$. We may assume that $p \in M^{\prime}$. Since $d \sigma^{2}$ is flat on M^{\prime}, there is a map Φ of Δ_{R} onto a neighborhood U of p which is an isometry with respect to the metrics $|d z|^{2}$ on Δ_{R} and $d \sigma^{2}$ on U. We take the largest $R(\leqq+\infty)$ such that there is a local isometry Φ of Δ_{R} onto an open set in M^{\prime} with $\Phi(0)=p$. For brevity, we denote here the function $g \cdot \Phi$ on Δ_{R} by g. According to Corollary 7, we have

$$
\begin{equation*}
R \leqq 2 C_{2} \frac{1+|g(0)|^{2}}{\left|g_{z}^{\prime}(0)\right|} \prod_{j=1}^{q}\left|g(0), \alpha_{\jmath}\right|^{\eta_{j}(1-\eta-\delta)}<+\infty \tag{14}
\end{equation*}
$$

for the constant C_{2} given in Corollary 7. Then, there is some point w_{0} with $\left|w_{0}\right|=R$ such that, for the line segment

$$
\Gamma: w=t w_{0} \quad(0 \leqq t<1)
$$

the image $\gamma:=\Phi(\Gamma)$ tends to the boundary of M^{\prime} as t tends to 1 . In this situation, suppose that γ tends to a point p_{0} where $g^{\prime}\left(p_{0}\right)=0$ or $g\left(p_{0}\right)=\alpha_{j}$ for some j. Taking a holomorphic local coordinate ζ with $\zeta\left(p_{0}\right)=0$ in a neighborhood of p_{0}, we write the metric $d \sigma^{2}$ as $d \sigma^{2}=|\zeta|^{2 a \tau /(1-\tau)} w|d \zeta|^{2}$ with some positive C^{∞} function w and some real number a. If $g-\alpha_{j}$ has a zero of order $m\left(\geqq m_{j}\right)$ at p_{0} for some $j \leqq q-1$, then g_{z}^{\prime} has a zero of order $m-1$ at p_{0} and $f_{z}\left(p_{0}\right) \neq 0$. In this case,

$$
a=m\left(1-\frac{1}{m_{j}}\right)(1-\eta-\delta)-(m-1) \leqq-(\eta+\delta) \leqq-\varepsilon_{0} .
$$

For the case where g has a pole of order $m\left(\geqq m_{q}\right)$ at p_{0}, g_{z}^{\prime} has a pole of order $m+1$ and f_{z} has a zero of order $2 m$ at p_{0}. Then, we have also

$$
a=\frac{2 m}{\tau}+m+1-m\left(\gamma-\eta_{q}\right)(1-\eta-\delta) \leqq-\varepsilon_{0} .
$$

Moreover, for the case where $g_{2}^{\prime}\left(p_{0}\right)=0$ and $g\left(p_{0}\right) \neq \alpha_{j}$ for any j, then $a \leqq-1$. Therefore, $d \sigma \geqq C_{4}|\zeta|^{-\varepsilon_{0} \tau /(1-\tau)}|d \zeta|$ for a positive constant C_{4} in ${ }^{\text {andighborhood }}$ of p_{0}. By (12) we have

$$
R=\int_{\Gamma} d \sigma \geqq C_{4} \int_{\Gamma} \frac{1}{|\zeta|^{\delta_{0} \tau /(1-\tau)}}|d \zeta|=+\infty,
$$

which contradicts (14), So, γ tends to the boundary of M as t tends to 1 .
To estimate the length of γ, we shall study the metric $\Phi^{*} d s^{2}$ on Δ_{R}. For local considerations, the coordinate z on Δ_{R} may be considered as a holomorphic local coordinate on M^{\prime} and so we may write $d \sigma^{2}=|d z|^{2}$. By (13) we obtain

$$
1=\left|f_{z}\right|^{2 /(1-\tau)}\left(\frac{1}{\left|g_{z}^{\prime}\right|} \prod_{j=1}^{q-1}\left(\frac{\left|g-\alpha_{j}\right|}{\left(1+\left|\alpha_{j}\right|^{2}\right)^{1 / 2}}\right)^{\eta_{j}(1-\eta-\delta)}\right)^{2 \tau /(1-\tau)}
$$

and hence

$$
\begin{equation*}
\left|f_{z}\right|=\left(\left|g_{z}^{\prime}\right| \prod_{j=1}^{q-1}\left(\frac{\left(1+\left|\alpha_{j}\right|^{2}\right)^{1 / 2}}{\left|g-\alpha_{j}\right|}\right)^{\eta_{j}(1-\eta-\delta)}\right)^{\tau} . \tag{15}
\end{equation*}
$$

By the use of Corollary 7 we have

$$
\begin{aligned}
\Phi^{*} d s & =\left|f_{z}\right|\left(1+|g|^{2}\right)|d z| \\
& =\left(\left|g_{z}^{\prime}\right|\left(1+|g|^{2}\right)^{1 / \tau} \prod_{j=1}^{q-1}\left(\frac{\left(1+\left|\alpha_{j}\right|^{2}\right)^{1 / 2}}{\left|g-\alpha_{j}\right|}\right)^{\eta_{j}(1-\eta-\delta)}\right)^{\tau}|d z| \\
& =\left(\frac{\left|g_{z}^{\prime}\right|}{1+|g|^{2}} \frac{1}{\Pi_{j=1}^{q}\left|g, \alpha_{j}\right|^{\eta_{j}(1-\eta-\delta)}}\right)^{\tau}|d z| \\
& \leqq C_{2}^{\tau}\left(\frac{2 R}{R^{2}-|z|^{2}}\right)^{\tau}|d z| .
\end{aligned}
$$

This yields that

$$
\begin{aligned}
d(p) \leqq \int_{r} d s & =\int_{\Gamma} \Phi^{*} d s \leqq C_{2}^{\tau} \int_{\Gamma}\left(\frac{2 R}{R^{2}-|z|^{2}}\right)^{\tau}|d z| \\
& =C_{2}^{\tau} \int_{0}^{R}\left(\frac{2 R}{R^{2}-x^{2}}\right)^{\tau} d x \leqq \frac{\left(2 C_{2}\right)^{\tau} R^{1-\tau}}{1-\tau}
\end{aligned}
$$

By (14) we obtain

$$
d(p) \leqq \frac{2 C_{2}}{1-\tau}\left(\frac{\left(1+|g(0)|^{2}\right) \Pi_{j=1}^{q}\left|g(0), \alpha_{j}\right|^{\eta_{j}(1-\eta-\delta)}}{\left|g_{z}^{\prime}(0)\right|}\right)^{1-\tau} .
$$

On the other hand, in view of (15) the curvature at p is given by

$$
\begin{aligned}
|K(p)|^{1 / 2} & =\frac{2\left|g_{z}^{\prime}(0)\right|}{\left|f_{z}\right|\left(1+|g(0)|^{2}\right)^{2}} \\
& =\frac{2\left|g_{2}^{\prime}(0)\right|}{\left(1+|g(0)|^{2}\right)^{2}}\left(\frac{\left(1+|g(0)|^{2}\right)^{r(1-\eta-\delta) / 2} \Pi_{j=1}^{q}\left|g(0), \alpha_{j}\right|^{\eta j(1-\eta-\delta)}}{\left|g_{2}^{\prime}(0)\right|}\right)^{\tau} .
\end{aligned}
$$

Since $\left|g, \alpha_{j}\right| \leqq 1$, we can easily conclude that

$$
|K(p)|^{1 / 2} d(p) \leqq C_{5}:=\frac{4 C_{2}}{1-\tau} .
$$

By the definition of C_{2} and τ, we see

$$
C_{5}=\frac{4 a_{0}^{\gamma \delta / 2} C_{3}(2+\gamma \delta)}{\delta^{\gamma(1-\eta)} \gamma \delta\left((L / 2) \log \left(4 a_{0} / L^{2}\right)\right)^{\gamma-1-\gamma \eta}} .
$$

Now, take a sufficiently small L_{0} such that (11) and (12) hold for the constant $\delta=1 / \log \left(4 a_{0} / L_{0}^{2}\right)$. For each positive $L(\leqq 1)$ we set $\delta:=1 / \log \left(4 a_{0} / L^{2}\right)$ if $L \leqq L_{0}$ and $\delta:=\delta_{0}$ for some δ_{0} satisfying the conditions (11) and (12) if $L_{0}<$ $L \leqq 1$. We can apply the above-mentioned arguments to these δ 's. Then, we can estimate the constant C_{5} as

$$
C_{5} \leqq 2^{\gamma-\gamma \eta} C_{3} a_{0}^{\gamma \delta / 2} \max \left(1, A_{0}\right) \frac{\log ^{2}\left(4 a_{0} / L^{2}\right)}{L^{\gamma-1-\gamma \eta}}
$$

where

$$
A_{0}:=\sup _{L_{0} \leq x \leq 1}\left(\frac{1}{\delta_{0} \log \left(4 a_{0} / x^{2}\right)}\right)^{\gamma+1-\gamma \eta}
$$

Since a_{0} can be chosen so as to be between two positive constants depending only on γ, we can conclude

$$
C_{5} \leqq \frac{C_{6} \log ^{2}\left(4 a_{0} / L_{2}\right)}{L^{\gamma-1-\gamma \eta}} \leqq C_{7} \frac{\log ^{2}(1 / L)}{L^{3} L^{2 r \delta}}
$$

for positive constants C_{6} and C_{7} depending only on γ_{1}. On the other hand, the factor $L^{2 \gamma \delta}$ is bounded from below by a positive constant not depending on each L because $\log L^{2 \gamma \delta}=2 \gamma \log L / \log \left(4 a_{0} / L^{2}\right)$ has a limit as L tends to zero. This shows that C_{7} can be replaced by a positive constant depending only on m_{j} 's. The proof of Main Theorem is complete.

References

[1] L.V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
[2] L.V. Ahlfors, Conformal invariants, Topics in Geometric Function Theory, McGraw Hill, New York, 1973.
[3] S. Bernstein, Über ein geometriches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z., 26 (1927), 551-558.
[4] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan, 40 (1988), 235-247.
[5] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, J. Differential Geom., 29 (1989), 245-262.
[6] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, II, J. Differential Geom., 31 (1990), 365-385.
[7] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, III, Nagoya Math. J., 124 (1991), 13-40.
[8] E. Heinz, Über die Lösungen der Minimalfächengleichung, Nachr. Akad. Wiss. Göttingen, (1952), 51-56.
[9] X. Mo and R. Osserman, On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto's theorem, J. Differential Geom., 31 (1990), 343-355.
[10] R. Osserman, An analogue of the Heinz-Hopf inequality, J. Math. Mech., 8 (1959), 383-385.
[11] R. Osserman, On the Gauss curvature of minimal surfaces, Trans. Amer. Math. Soc., 96 (1960), 115-128.
[12] R. Osserman, Global properties of minimal surfaces in \boldsymbol{E}^{3} and \boldsymbol{E}^{n}, Ann. of Math., 80 (1964), 340-364.
[13] R. Osserman, A survey of minimal surfaces, 2nd edition, Dover Publ. Inc., New York, 1986.
[14] A. Ros, The Gauss map of minimal surfaces, preprint.
Hirotaka Fujimoto
Department of Mathematics
Faculty of Science
Kanazawa University
920-11 Kanazawa
Japan

