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   § 0. Introduction. 

   There are in general many different complex manifolds having the same 

underlying topological or differentiable structure. However there are a few 

exceptional cases where we can expect that homeomorphy to a given compact 

complex manifold implies analytic isomorphism to it, for instance, compact 
Hermitian symmetric spaces. Among compact Hermitian symmetric spaces, the 

complex projective space Pc and a smooth hyperquadric Q~ in Pc+1 seem to 

be nice exceptions which we can handle with algebraic methods. 

   The following conjecture is the problem we study in the present article. 

   CONJECTURE MP. Any Moishezon complex manifold homeomorphic to Pc 

is isomorphic to P~. 

   There are some related conjectures, or rather, more accessible forms of 

Conjecture MP n which are interesting themselves. 

   CONJECTURE LM. Let X be a Moishezon manifold o f dimension n, and L 

a line bundle on X. Assume that Pic X= ZL, c1(X) = dc1(L) (d >_ n+1) and 
h°(X, OX(L))>_n+1. Then X is isomorphic to Pc. 

   CONJECTURE LMPn. Let X be a Moishezon manifold homeomorphic to P, 

and L a line bundle on X with Ln=1. Assume h°(X, OX(L))>_n+1. Then X 

is isomorphic to P3. 

   CONJECTURE DP. Any complex (global) deformation of Pc is isomorphic 

to P Th. 

   In the above conjectures a Moishezon (complex) manifold of dimension n is 

by definition a compact complex manifold with n algebraically independent 

meromorphic functions. This is equivalent to saying that it is bimeromorphic 

to an algebraic variety. 

   Conjecture MP n (resp. Conjecture LM) has been settled by Hirzebruch-

Kodaira [3], and Yau [21] (resp. by Fujita [1], Kobayashi and Ochiai [6]),
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when the manifold under consideration is projective or Kahlerian. See Siu [17] 

[18] and Tsuji [20] for Conjecture DP. I heard from Mabuchi in the summer 
of 1990 that Siu seemed to have completed a correction of [17], while I com-

pleted the present article in 1991 January. I was unable to look at the article 
of Siu until very recently it appeared as [18]. I cannot spend enough time for 
understanding [18] before submitting this article, but I hear from Mabuchi that 

[18] is correct. 
   Meanwhile Kollar [8] and the author [10] solved Conjecture MP3 without 

extra assumptions, each supplementing the other. Peternell [15] [16] also asserts 

(MP3). See also [8, 5.3.6]. 

   (0.1) THEOREM [8] [10]. Any Moishezon threefold homeomorphic to P1 is 
isomorphic to P~. 

   The purpose of the present paper is to give some partial solutions to the 

above conjectures, in particular, a complete solution to (LM4) and (LMP4), which 
implies (DP4). 

   For the proof of (LM4) or (LMP4), we study dualizing sheaves of reduced 

curves and surfaces in the present article, although the idea of the proof is 

essentialy the same as our previous papers [10] [11]. Our new ingredient here 

is a subadjunction formula (2.A) for curves and surfaces. 

   (0.2) THEOREM. Let X be a Moishezon manifold of dimension n with b2= 
1, L a line bundle on X. Assume that c1(X)=dc1(L) (d>_n+1), and h°(X, 01(L)) 
>_n. If a complete intersection of general (n-1)-members of the complete linear 

system I L I is nonempty outside the base locus Bs L I, then X is isomorphic to Pc. 

   The following theorems are proved by applying (0.2) or the idea of the 

proof of (0.2). 

   (0.3) THEOREM. Let X be a Moishezon fourfold, and L a line bundle on 
X. Assume that Pic X=ZL, c1(X)=dc1(L) (d>_5) and h°(X, OX(L))>_4. Then 

X is isomorphic to Pc. 

   (0.4) THEOREM. Let X be a Moishezon fourfold homeomorphic to Pc, and 
L a line bundle on X with L4=1. Assume h°(X, OX(L))>_3. Then X is iso-

morphic to P~. 

   (0.5) COROLLARY. Any complex (global) deformation of P~ is isomorphic 
to Pc. 

   See also [17] [18] [20]. Now we shall explain an outline of our proof of 

(0.2). By Bertini's theorem, we choose a general (n-1)-dimensional subspace ; 
V of H°(X, 01(L)) such that lY:=fl (zeroes of s), the scheme-theoretic com-

plete intersection associated to V, is pure one dimensional and nonsingular
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outside Bs I L . Then we show in section one that lv is a union of nonsingular 

rational curves C with LC=1 and Nc,X^'Oc(1)®(n-1', of nonsingular elliptic 

curves E with LE=O and NE,X OE(n-1' and of the base locus Bs I L I , each of 
the curves being a connected component of lV. This is proved by using the 

subadjunction formula (1.8) or (2.A) for curves, which generalizes an argument 
in [10] . The existence of a rational curve among the irreducible components 

of l outside Bs ILI follows from the fact that X is Moishezon. 

   In section 2 we prove an inequality which is a key to the proofs in section 

one. 

   Then in section 3, by using the results proved in section one, we show 

that dim I L I =n and that X is rationally mapped onto Pc by the rational map 

pIL , associated with I L I . Therefore X is finite over P c outside proper sub-
varieties BX and BPn. 

   If a line on P~ is not contained in Bpn, its inverse image by p,L, is a 

complete intersection of (n--1) members of I L I and it is generically reduced 

and pure one-dimensional outside B1. Then we can show as before that the 

inverse image l is a union of a nonsingular rational curve C and Bs I L I and 

that C is a connected component of I. 
   Now L C =1 implies that p, L, is birational. Moreover those lines which 

are not contained in BPn sweep out P~, so that inverse images of the lines 

sweep out X. This implies that Bs 1 L I is empty. We also see that p,L, is 

unramified, so that X is isomorphic to P~. See also (1.6). 
   In section 3, applying (0.2) and the subadjunction formula (2.A) for surfaces, 

we also prove (0.3) and (3.3), the latter of which strengthens our earlier con-

sequence on Pc [10]. 
   In section 4 (resp. section 5), we apply the results in section one to study 

(LMPn) (resp. to prove (0.4)). In the proof of (0.3) (resp. (0.4)) the complete 
intersection of two members of I L I is proved to be isomorphic to P~, from 

which (0.3) (resp. (0.4)) follows immediately. This also implies (LM4), (LMP4) 

and (DP4). 

   The main consequences of the present article were announced in [13], 

where the proof of (0.4) is sketched. 

   ACKNOWLEDGEMENT. The author would like to express his hearty gratitude 

to T. Fujita and F. Hidaka for their advices during the preparation of the article. 

     1. A complete intersection IV. 

   (1.1) Let X be a nonsingular complete algebraic variety of dimension n 
defined over C (or a compact complex manifold of dimension n). We assume 

that there exists a line bundle L on X such that
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 (1.1.1) c1(X) = dc1(L) for some d >_ n+1 

 (1.1.2) dim H°(X, L) >_ n. 

    Let B=Bs I L I be the base locus of I L I. Let V be a linear subspace of 
 H°(X, L) of dimension n-1, Iv a scheme-theoretic complete intersection 

 fsEv\,°,DS associated with V, where DS is the divisor defined by s=0. More 

 precisely, the ideal sheaf of Ox defining l is given by It=~sEVIDs =~SEVSOz. 
 Let CV be the sum of all the irreducible components of l which are not totally 

 contained in B. We express it as IV=CV+B for simplicity. 
    We call an irreducible component C of l (or of CV) of dimension one a 

 reduced curve component if l is reduced generically along C. We assume that 

 (1.1.3) Iv has a reduced curve component C for some V. 

     In the present section, we always assume (1.1.1)-(1.1.3). For the use in 

 § 3, we also define 

    (1.2) DEFINITION. We say that D$ (s E V) intersect outside Bs L if Cy is 
 nonempty. We say that D$ (s ~V) intersect rationally outside Bs I L I if Cv is 
 nonempty and moreover if at least one of the irreducible components of CV is 
 a (possibly singular) rational curve. 

     (1.3) Let I=I, and let C a reduced curve component of 1, Ic the ideal 
 sheaf of OX defining C with ~Ic=lc. We have nontrivial Oc-homomorphisms 

  58 and cc which are isomorphisms on a Zariski open dense subset of C, 

                      bc : (I t/l)®Oc ---~ Ic/I s 

                  qSc : (I t/I i)®Oc - > [I c/I c] 

 where [F]=F/{Oc-torsions in F} for an Oc-module F. 

     (1.4) LEMMA. Let C be an irreducible reduced curve component of I:=IV. 
 Then 

                      (I t/I c)®Oc = Oc(-` L)®cn-1> 

                      -(n-1)LC <_ c1([Ic/I c]) 

N 

 where c1([Ic/Ic]):-c1([Ic/Ic]®Oc/Oc-torsions) for the normalization C of C. 

     PROOF. We have a commutative diagram of natural homomorphisms; 

                          OX(-L)®(n-1) ~~ It/I i 

                      1 'If 
                        Ocl-L1®(n-1) _~ (It/I ~)®Oc
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where all the arrows are surjective. Moreover (n-1) generators of IL are 
regular parameters on C\B. Hence S is injective on C\B, and it is surjective 
anywhere on C. Since Oc(-L) is Oc-torsion free, j9 is an isomorphism. It 
follows that the composite homomorphism cc p is injective. Hence we have 
-(n-1)LC<cl([Ic/Ic]) . q.e.d. 

   (1.5) LEMMA. The following sequence is exact everywhere on C ; 

               0 > [Ic/I c] - * ~X~Oc - > ~c --~ 0. 

where Qc:=QX/IcQX+Ox{dcp; coElc}. 

   PROOF. We have a natural exact sequence 

                   c 12 -> Oc --> ->0.               I/ 

If C is nonsingular at p, then i is injective at p. Since SAX is locally free, the 
sheaf QX®Oc is locally Oc-free, in particular, it is Oc-torsion free. q. e. d. 

   In order to illustrate how our arguments in sections 1 and 3 proceed, we 
first prove the following easy Proposition. 

   (1.6) PROPOSITION. Assume Kx=-dL(d>_n+l), h°(X, L)>_n+l. Let C 
be a reduced curve component of CY with LC>_1 which is not contained in B:= 
Bs I L I. Assume that lv is connected and that C is nonsingular everywhere. Then 
1 =CV=C=P1, L' =LC=1, Nc,x^'Oc(1)®~n-1~, d = n+l and B consists of at 
most a single point. Moreover if B is empty, then XNPT 

   PROOF. Let 1=1V. Since C is nonsingular, we have [Ic/I c] =Ic/I c. By 

(1.5) we have 

              c1(Ic/I c) = K1C--c1(Qc) = -dLC-c1(Qc) 

   From (1.4) we infer, 

               -(n-1)LC <_ c1(Ic/I c) = -dLC-c1(Qc) 

             2 <_ d-n+1 <_ (d-n+1)LC -c1(Q) <_ 2. 

   This implies that C=P1, c1(Qb)=-2, d=n+l and LC=1. The homomor-

phism ~5c=~S8 is an isomorphism, Ic/1~=Oc(-L)®cn-1)_Oc(-1)®cn-1'. Since ~bc 
is surjective, we have I + I c = I c along C. By applying Nakayama's lemma to 
the Ox-module IC/I~ we see that I=Ic along C. Consequently C is a con-
nected component of 1. By the assumption that 1 is connected, we see I=CY= 
C, Nc1x=(Ic/Ic)v=Oc(1)®(n-1), L' =LC=1. Since C is not contained in B, B 
is empty or a single point in view of L C =1. If B is empty, we have a mor-

phism f of X into PN associated with the linear system I L I where N=
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h°(X, L)-1. Since Ln=1, f (X) is a linear subspace of PN with dim f (X)=n, 

whence N=n and f is surjective and birational. Let wP be a meromorphic n 

form on Pn with poles (n+1)H, H a hyperplane of Pn. Then by using local 
coordinates zP on Pn and z on X we write symbolically 

                  f *wp = f *dzPlf *Hn+1= f *dzP/Dn+1 

                f *dzP = det(Jacobian of f). dz 

for a member D= f *H E I L I. Since f *wp is a meromorphic n form on X, the 

divisor (f *wp) is equal to KX=-(n+1)D, whence we have (f *dzP)=0. Hence 
the birational morphism f is unramified so that X is isomorphic to Pn. 

                                                                           q. e.d. 

   This is a prototype of our subsequent argument. However in general lV may 

be disconnected, and some component C of Cv may be singular at the intersec-

tion CnB. 

   (1.7) Now we come back to the situation in (1.1). Under the same notation 
as in (1.1), let 1-lV, and let C be a reduced curve component of 1. 

N 

   Let v: C-~C be the normalization of C. Then we obtain exact sequences, 

(1.7.1) 0 --~ Tor°c(Qb, Oc) --~ [I c/I c] ®Oc --~ Qx®Oc --~ Qc®Oc --~ 0 

(1.7.2) 0 --~ [[IcII c]®Oc] -~ ~x®Oc --~ ~c®Oc ---~ 0 

because Tor°C(QX®Oc, 0a)=0. We recall an injective Oc-homomorphism ~Sc 
in (1.3), 

(1.7.3) cc: (Ic/I ~)®Oc ("' O(L)n') [Ic/I c] 

Let Q? be Coker Oc. By Censoring (1.7.3) with O, we obtain an exact sequence 

(1 7.4) ... -> Tor°C(Qc, Oc) --~ Oc(-v*L)®cn-~~ 

                          ---> [IcII c]®Oc --~ Qc®Oc - 0 . 

Since supp Q~ is contained in SingC, Tor°c(Q~, Oc) is also an 0s-torsion sheaf. 
Hence we have an exact sequence 

(1.7.5) 0 -a. Oc(-v*L)®cn-1) -~ [Ic/I c]®Oc - * Qc®Oc --* 0. 

Composed with a natural homomorphism 

      [IcII c]®Oc - [[Ic/I c]®Oc] := [IcII c]®Oc/Oc-torsions, 

we infer an exact sequence 

(1.7.6) 0 --* Oc(_v*L)®(n-1) ~.~, [[Icllcl®Oc] ---~ Qc ---~ 0
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with Qc cokernel. 
   Finally we consider a natural homomorphism 

Letting Qc=Coker i and Q~=Ker ri, we have an exact sequence 

(1.7.7) 0-> Q'-> Qc®Oc --> ~c -> Qc ->0. 

   For a torsion sheaf F we define the length 1(F) of F to be the rank of F 
as a C-module. 

   (1.8) LEMMA. Let C be a reduced curve component of 1. Assume c1(X )= 
dc1(L). Then we have, 

          (d-n+1)LC+c1(Q~)+1(Qc)+l(Qc)-1(Q) = 0. 
   PROOF. From the above exact sequences we infer, 

      X(Q)+1(Q')-l(Q) = X(Qc®Oc) by (1.7.7) 

                   = X(Q1®Oc)-X(C[Ic/I cl®Oe]) by (1.7.2) 

                     = X(~1~Oc)-(n-1)X(Oc(-y*L)) -1(Qc) 

                    = X(O~)+KxC+(n-1)LC-1(Qc) 

                      = X(O )-(d--n+1)LC-l(Qc) by (1.1.1). 

                                                                          q.e.d. 

   Moreover we see 

  (1.9) THEOREM. l(Q~)l(Q,). Equality holds i f and only i f C is non-
singular. 

   This is proved in § 2. See (2.5). 

   As a corollary to (1.8) and (1.9), we infer 

   (1.10) LEMMA. Assume c1(X)=dc1(L). Let C be a reduced curve component 
N of l=lv. If d>n+1, LC>-_1, then d=n+1, LC=1, C=CNP1, Nc,x;Oc(1)e~n-1) 

and C is a connected component of Ii,. Moreover if C is not contained in B= 
Bs I L(, then CnB consists of at most one point. 

   PROOF. Note that c1(Q) >-2, (d-n+1)LC z 2LC>_2, 1(Qc)>_0. By (1.9), 
1(Qc)?l(Qc). Hence all the above inequalities are equalities by (1.8). There-
fore t P', LC=1, d=n+1, l(Qc)=0, 1(Q')=l(Qc). Moreover C is nonsingular 

by (1.9). Therefore the sequence (1.7.6) is the same as those in (1.3) and 

(1.7.3) where ~Sc=c~ is an isomorphism. It follows that Nc,1= (Ic/I c)v
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Oc(1)1', It+I c=lc along C. Consequently I~ = Ic along C by Nakayama's 

lemma. This implies that C is a connected component of 1. In view of LC= 

1, CnB consists of at most a single point if CCCv. q. e. d. 

   (1.11) LEMMA. Assume c1(X)=dc1(L), d arbitrary. Let C be a reduced 
curve component o f Cv. I f LC=O and i f CV is nonsingular outside B, then C 

is a smooth elliptic curve with Nc,x ^' 0®cn-1' and C is a connected component of 

ly disjoint from B. 

   PROOF. Let l=l. Any member D of I L contains BnC. Hence if BnC 

*0, then D contains C because LC=O. Hence C is contained in B, which 

contradicts C C CV. Therefore B n C = O . By the assumption, any singular 

point of C is contained in B. Therefore C is nonsingular, 1(Qc)=l(Qc)=0 and 
C passes through no singular points of lred• This implies that C is a connected 

component of l and Ic=I~ along C. Hence l(Qc)=0 and ~!'c is an isomorphism. 

In view of (1.8) we have c1(Q)=c1(Q)=O. Consequently C is a smooth elliptic 

curve disjoint from B. Meanwhile there is a member D of L I which does 
not contain C. Since L C=O, D does not intersect C, which shows L®Oc Oc. 

It follows that Nc,X N 0®cn~l>. q• e, d. 

   § 2. The inequality l(Q)>_ 1(Qc) - Proof of (1.9). 

N 

   (2.1) Let C be an irreducible curve, v : C-->C the normalization, F a torsion 
N Oc-module, p (resp. q) a point of C (resp. C). Then we define e(F, q), 1(F, p) 

and 1(F) as follows, 

                     e(F, q) =1(Fq) = dims Fq, 

            1(F, p) _ l(Fq), 1(F) _ E 1(F, p)• 
                                  q above p pEC 

   It is clear that if C is locally irreducible at p, then we have e(F, q)=1(F, p) 
N for the unique point q of C lying above p. 

   Let Sing C be the set of all singular points of C. Then consider the exact 

sequence 

(2.1.1) 0 ---~ Qc - ~c~Oc --> ~c - Qc -*0. 

   Hence we have 

         l(Q,) = l(Qc, p), 1(Qc) = 1(Qc, p) 
                          pESing C pESing C 

   Now we consider the germ of C at p Sing C locally. Let C = C 1 U U C r 

be locally irreducible components of C at p. Then we have an exact sequence 

(2.1.2) 0 ---> QI --> ---~ ,~~~ ---> Q~ --~ 0
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where Q~:=QC2, and Q7 :=Q2 for an irreducible component C2 at p. The 

N local curve C 2 is irreducible at p, and the normalization C of C 2 has a unique 

point q2 above p. Then we have at p 

           5GC rv ®2 OC 

   Hence 

             QC 

whence l(Qc, p)=T1(Q~). 

   Next we consider l(Qc, p). We have a commutative diagram 

             o) -~' Qc ~c~Oc -> l21 c 

              o ~' ®2Q' - CD2QC2®OC2 -* 

with j surjective. Hence Ker e is mapped onto 3Ker E2 . This shows 

            l(Qc, p) = l(Ker e) >_ J l(Ker 2) = l(Q7 ) 
                                        2EA 2EA 

   Thus we obtain 

   (2.2) LEMMA. Let C2(2A) be all the locally irreducible components~'of C 
at p. Then 

                    l(Q~~, p) = l(Q) 
                                            2EA 

                  l(Qc, p) > l(Qf) 
                                             2 EA 

   Next we prove 

   (2.3) LEMMA. Assume that C is locally irreducible at p. Then l(Q', p)>_ 
l(Qc, p). Equality holds i f and only i f C is nonsingular at p. I f C is singular 

at p, then l(Qc, p)?l(Qc, p)+2. 

   PROOF. Let x1, , xn be a local coordinate system of X at p. Then we 

N may assume that the normalization v: C-+C (CX) is locally given by 

                    x1= tm 

             x; = f(t) tmig~(t), g,(O)~O, (2~j~s) 

                x; = o (s+1<-_ j <n) 

where m <m2 <m3 < ..• <m3, none of m; and m;--m k is an integral multiple of
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m, s is the embedding dimension of (C, p). By the choice of m2, there is a 
positive integer q such that m<qm<m2<(q+1)m. 

   In terms of the parameter t, (by taking completions) we have 

            Qc,q N C[[t]]dt 
    Image(Qc,pOOc,q) N C[[t]]tm-1dt+ ... +C[[t]]v*dxs 

                   ti C[[t]]tm-idt+ ... +C[[t]](mstms-lgs+tmsgs)dt 

                  N C[[t]]tm-ldt 

because m; > m (j >_ 2). Consequently 

(2.3.1) 1(Qc, p)=t(Q~,q/Qc,q®Oc,q)=m-1. 
   Next consider l(Qc, p). First we see that J:=IcnC[[x1, , x8]] is con-

tained in mp, mp being the maximal ideal of OX, p. In fact, if there is an 
element FE Jf(mp\mp), then F is part of a local coordinate system. Replacing 
one of the local parameters x1, ••• , xs, say xs, by F then C is contained in 
xs=xs+1= =x=0 locally. This is absurd because we choose s minimal, s 
being equal to the embedding dimension of (C, p). 

   When m=1, C is nonsingular at p and Qc®Oo Qb, 1(Q', p)=1(Qc, p)=0• 
   So we may assume m>_2. Let e;=dx;®1EQX®O~, e;=dx;®1EQc®Oc 

for 1 < j <_ s. Then the element Q;=(f;(t)/mtm-1)el-e; is contained in Qc. In 
fact, (a;)_(f;(t)/mtm-1)v*dxl-v*dx;=0. Now we choose the minimal integer 
N>_0 such that tNa2=0. We note that 

(2.3.2) 1(Q', p)>_N. 
   Recall that 

                                  s s         ~c~Oc C[[t]]e;/C[[t]] ± v*(aco/ax;)e;, cP C i4. 
                                       J-1 3=1 

   Hence tNQ2=0 means that there exist some Fe C[[t]] and cpiElc (1i1) 

such that 
                                                       s c 

(2.3.3) tN((f 2(t)/mtm-1)el-e2) _ Fi(t)v*(acPi/ax;) e; 
                                                          J=1 ti=1 

   The coefficient of e1 in the right hand side is equal to ~i=1 Fi(t)v*(acpi/axl). 
Take any element ~DEIc (Cmp). We want to estimate a lower bound of 
deg v*(acp/ax1). For this purpose, we may assume cpE Ic,nC [[x1, , xs]] (Cmp). 
Expand ( as 

                                           til+.,.+tis>2 

    Since cpEIc is equivalent to v*cp=o, we have x20...0=0 because xi is the 

unique monomial in x;'s with deg v*xi=2m. We put a10...0=0.
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   (2.3.4) CLAIM. a0...0=0 (1 <_ j <_ 2q), a 10...0=O (1 < j <_ q). 

  PROOF OF (2.3.4). First we prove a0...0=0 (1 <_ j <_2q). Assume the contrary. 

We choose the minimal j 0 such that x;00...0 * 0. Since v*cp=0, there is at least 

another monomial term r in cc with degree < J 0m. We choose r to be the 
monomial in cc with minimum degree. We note that degv*(xix;)>_2m2>2qm>_ 

jam for any i, j>_ 2. Therefore i= 4 x; for some i >_ 1, j >_ 2. Since deg r= 
deg v*(xix;)=im+m; and m; is not divisible by m, we see that there is another 

term 8=xix1 in cc whose degree km+m~ is equal to im+m;. However this is 

impossible because m;-m~(j * l) is not divisible by m. Hence a j0.. 0=0 (1 < j <_2q). 

Similarly we can prove aj10...0=0 (1< j<q). q. e. d. 

   In view of (2.3.4), the expansion of cc is 

    cc = aj4+ bixix2+ cjx14+ dijxixj+ e,3xixj+ ... 
            j~2q+1 j>_2 i>_1,jZ3 i,j~2 

so that 

       3(p/ax, = (2q+1)a2q+ixlq+(q+1)bq+1xgl,x2+c2x2+di3x3+... 

   Hence we have, 

        deg v*(acc/3x1) >_ min(2gm, qm+m2, 2m2i m3) = min(2gm, m3) 

          degv*(3cc /dx1) ? min(2gm, m3) for any i in (2.3.3) 

             deg t` _m+1 f2(t) > min(2gm, m3) by (2.3.3). 

   It follows from (2.3.1) and (2.3.2) that 

              N-m+1+m2-1= N-m+m2 > min(2gm, m3), 

       l(Qc, p)-l(Qc, p) ? N-m+1 >_ 2qm-m2+1 (q-1)m+2 >_ 2 
or 

             l(Q', p)-l(Qc, p) N-m+1 >_ m3-m2+1 >_ 2. 

   In either case l(Qc, p)> 1(Q, p)+2 as desired, which completes a proof of 

(2.3). q. e. d. 

   (2.4) LEMMA. Let (CA, p) be a germ of a locally irreducible component of 
C (SEA), C=UAEACA. Let Ans (rasp. A5) be the subset of A consisting of all 

AAA with (CA, p) nonsingular (rasp. singular). Assume #(A)>_2. Then 

                 l(QC, p) ? l(Q~)+#C`!ns)                                    - 
AEA 

               l(Q', p) l(QC, p)+2#(A5)+#(Ans) 

   PROOF. By (2.1.1) and (2.1.2), we see
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         l(Qc, p) _ ~l(Q7)+~l(Ker(Qc®Oc2 --~ 

where Sic®0~2Q~~®Oc~=Q for (C2, p) nonsingular. Hence it 
suffices to prove l(Ker(Q~®Oc2-~Q2))1 for 2E A. Let IC (resp. Ice) be the 
defining ideal of C (resp. C2) in Ox. Then by definition, 

(2.4.1) Q1/Ic2Q1+Ox{dcb; c E Ic} 

(2.4.2) Q1/Ic2Q1+Ox{dcp; cp E Ic2}. 

   We assume l(Ker(Qc®Oc2-*Q~2))=0 for some AE A 5 to derive a contradic-
tion. By (2.4.1) and (2.4.2) we assume that 

(2.4.3) {d~o; cp 1c2} C Ic2Q1+Ox{dcb; ci' E Ic}. 

   Let x1, , x, be a system of local coordinates of X at p such that Ice = 

(x1i , xn_1). Since IcClcz and Ic~Ic2, we have 

                                Ic=(x1, ... , xm, ~b1, ..., cc) 

for some cb I c 2 f m p = l c 2 m p, and m < n -1. Since QX is freely generated by 
dx1 (1<_i<_n), we have by (2.4.3) 

                 dx3E Ic2dx;+mpdx; (m+1j<_n-1), 

which is a contradiction. Hence l(Ker(Qc®Oc2-+Q,2))>-1 for 2E A. This 

proves the first inequality of (2.4). The second inequality follows readily from 
the first inequality and (2.3). q, e. d. 

   The following theorem and corollary are clear from (2.2)-(2.4). 

   (2.5) THEOREM. l(Qc)>_l(Qc) for any irreducible curve C. Equality holds 
i f and only i f C is nonsingular. I f C is singular, then l(Qc)?l(Qc)+2. 

   (2.6) COROLLARY. (2.6.1) If (C, p) is irreducible, then e(Qc, q)>e(Qc, q) 
for the unique point q above p. Equality holds if and only if (C, p) is nonsing-
ular. If (C, p) is singular, then e(Q, q)>_e(Qc, q)+2. 

   (2.6.2) Under the same notation and assumption in (2.4), let q be a pointiof 
N the normalization C 2 o f C 2 above p. Then 

           e(Qc, q) ? e(Q, q)-F1, e(Q, q)=0 for 2 11ns, 

         e(Qc, q) ? l(Qq) ? e(Qc, q)+2 for 2 As . 

   Appendix. Subadjunction formula. 

   (2.A) THEOREM (SUBADJUNCTION FORMULA). Let X be a smooth algebraic 
variety of dimension n, Dti a reduced irreducible divisor of X (1<_ism). Assume
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that the scheme-theoretic complete intersection z=DinnDm has an irreducible 
component Z=Zred of dimension n-m along which r is reduced generically. Let 
v: Y-*Z be the normalization of Z. Then there exists an effective Weil divisor 
4 of Y such that 

(2.A.1) KIT = v*(Kx+D1+...+Dm)-4 

(2.A.2) supp (v*4) is the union o f all the Weil divisors o f Z whose supports 
      are contained in either SingZ or one of the irreducible components 

      o f z other than Z. 

   We note that the canonical sheaf KY is the unique torsion free sheaf on 
the normal variety Y given by Ky=i*(QY\singi-), where i : Y\Sing(Y)-~Y is the 
inclusion. 
   The condition (2.A.2) implies that supp 4=c if and only if Z is smooth in 
codimension one and moreover Z intersect the irreducible components of z other 
than Z along some subvarieties of at most (n-m-2) dimension. 

   PROOF OF (2.A). The proof is almost the same as those of (1.8) and (1.9). 
Let U=Y\SingY, V=i(U) and V'=V \Sing V, U'=v-1(V'). Let IDS (resp. I) be 
the ideal sheaf of Ox defining Di (resp. Z) and let Ir=ID1+ +IDm. So we 
note '/I=ID1 and ~/T- I. Now we consider the exact sequences 

(2.A.3) I/I2 -* Qx®Oz --> ~Z --~ 0 

(2.A.4) v*(I/I2)~Ov --~ v*(Qk)®Ov --~ v*(Qz)®Ov --~ 0. 

   Since U' ~V' and V' is nonsingular, the first homomorphism in (2.A.4) is 
injective over U'. Hence denoting by [F] the quotient of F by Ov-torsions in 
F, we infer an exact sequence, 

(2.A.5) 0 --~ [v*(I/I2)®Ov] ---~. v*(QX)®Ou ---~ v*(Q)®Qv --~ 0. 

   Since z is reduced generically along Z, we have a natural injective homo-
morphism i 

         v*(Iz/12)®Ov p Ou(-v*Dz) _L [v*(I/12)®Ov] 
                                               2=1 

where we can prove that p is an isomorphism in the same manner as in (1.4). 

Let Qv be the cokernel of ri . Then we have an exact sequence 

(2.A.6) 0 ---~. ® Ov(-v*D1) ~-~ [v*(I/12)®Ov] --~ Qv --~ 0. 
                               i=1 

   On the other hand we have an exact sequence 

2 
(2.A.7) 0
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where QU (resp. QU) is Ker A (resp. Coker A). Now take an arbitrary prime 

Weil divisor B of Y contained in one of the supports of QU, QU and QU. We 
define e(F, B) to be the length of a torsion sheaf F at a generic point of B as 

a k(B)-module. Then e(QU, B), e(QU, B) and e(Q(, B) are essentially the same 

as the invariants e(Qc, q), e(Q~, q) and e(Qg, q) defined in (1.8) and (2.1). By 

(2.6) we have 

(2.A.8) e(Qv, B) >_ e(Qa, B) 

   Moreover by (2.A.7), (2.A.5) and (2.A.6), we have 

   KU = det QU N det(v*Qz Ou)-~(e(QU, B)-e(QU, B))B 

B 

            N det(fiQj®Ov)-det[v*(I/IZ)®w]-~(e(Q(, B)--e(Qv, B))B 

B m 

            N v*Kx+ v*Dz-~e(Qu, B)B-~(e(Qv, B)-e(Qv, B))B. 

   Let d :=~B(e(QU, B)+e(Qb, B)-e(QU, B))B. Then we have (2.A.1). Moreo-
ver if Z is singular along a prime Weil divisor C, then in view of (2.6) e(QU, 
B)>-e(QU, B)+1 for any prime Weil divisor B of Y lying over C. (Note that 
B may not be birational to C.) If Z intersects one of the irreducible com-

ponents of r other than Z along a prime Weil divisor C, then by the definition 
e(QU, B)>_1 for any prime Weil divisor B lying over C. Thus we have (2.A.2). 

                                                                                q.e.d. 

   It is easy to see that (2.A) has a counterpart in the complex analytic category. 

   § 3. Proofs of (0.2) and (0.3). 

   (3.1) THEOREM. Let X be a complete nonsingular algebraic variety (or a 
compact complex manifold) of dimension n. Assume that c1(X)=dc1(L) (d>_n+1) 
and h°(X, L)>_n. If general (n-1)-members of I L I intersect rationally outside 
BsIL1, then X^'Pn 

   PROOF. Our proof of (3.1) consists of two steps. First we prove (3.1) in 

(3.1.1)-(3.1.7) under the assumption h°(X, L)>_n-F1. Next we disprove the pos-
sibility~of h°(X, L)=n in (3.1.8)-(3.1.10). 

    First we prove 

    (3.1.1) CLAIM. Let N=h°(X, L)-1>_n and f : X-~P' be the rational map 
associated with I L I . Let X := f (X\B). Then d=n+1, N=n and X~Pn. 

    PROOF. We use the same notation tv=Cy+B as in (1.1). Let ~C=H°(X, 
 L), V a general (n-1)-dimensional subspace of ~C.
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   First we prove dim X = n . By the assumption, dim X >_ n -i. Assume 

dim X= n -1. By (1.10) and (1.11), d = n + 1 and if V is general enough, CV is 
a disjoint union of nonsingular rational curves Ci (1 <_ i <_ r deg X) with LCi=1 

and f (Ci\B) a point, where r is the number of irreducible components of a 

general fiber of f. Let C = C1. If Bs L c is empty, then L C =1 implies dim X 
= n, a contradiction. Hence by (1.10), Bs L c= { p } for some point p of C. 

Since p is isolated in B by (1.10), p is contained in any Ci. However C is a 

connected component of lV by (1.10), whence r=deg X =1. Therefore N=n-1 

and X NPn-1, which contradicts N>_ n. It follows that dim X=n. Therefore 

for V general enough, CV is a disjoint union of smooth rational curves Ci with 
LCi=1. Since LCi=deg(f , ci) deg X+deg Bs L I ci, we have deg (f , ci)=1, deg X 
=1 and Bs I L ci=0. Therefore we have N=n and X_'Pn. q. e. d. 

   (3.1.2) Let 1C :=H°(X, L) and G=Grass(n-1, sic). Then we define 

         P={([V], x) GXX; s(x) = 0 for any s V}. 

   Then by the assumption there exists an irreducible component P° of P such 

that prG(P°)=G, prx(P°) is not contained in B. Let ?r° (resp. p°) be the natural 

projection from P° onto G (resp. into X). For general W e G, Cw has an ir-
reducible component C (N P 1). We may assume by (1.10) that p°(r O 1 [W ]) con-

tains C as a connected component. 
  Let C' be an irreducible component of 71([W]) mapped onto C, z a general 

point of C', x= p°(z). Since C' is smooth at z, so is P° at z. Now we recall 
canonical isomorphisms; 

           T 0(P0) ~ T [WJG3T x(C) (ic/W)®cn-1'~T x(C) 

         T (X) (Nctx)xeT (C) (Lc)1>~T x(C) 

   Let p be a point of C, ~C(-p):--{sit'; ~ s(p)=0}, G(- p) :=Grass(n-1, 

<4C(-p)). Since Bs I L I c= 0 by (1.10), G(- p) is a smooth proper subvariety of 

G by the natural morphism induced from the inclusion JC(- p)c C. We also 

see, 

     T z(G(-- p) X X) T [wJG(-p)~T x(X) N (c(-- p)/W)®cn-1'~T x(X ) 

   It follows that G(- p) X X and P° intersect transversally at z. Therefore 

the intersection P°n(G(- p)>< X) is smooth at z. Let S° be the unique irredu-
cible component of P°n(G(- p) X X) passing through z. Then we see 

        T 0(S0) N T ~wjG(-p)EEBT x(C)= (~(-p)lW)®cn-1'~T x(C) 

   Since ic(- p)/W is mapped onto L x for p E C general, T 0(S0) is mapped 

onto T(X) in the natural manner. Hence p0(S0)=X. 

   (3.1.3) We choose a general W°E G and take an irreducible component
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C o (^' P 1) of Cyy0 which is a connected component of p 0(r o 1 [W 0]) as in (3.1.2). 

We choose and fix a general point p of C 0 and we define 

       Y = {([V], x) G(-p)XX; s(x) = 0 for any s V}. 

   Let Y = J 0 Y i be the decomposition of Y into irreducible components, 
Y1 (0<_i<_e) all the components such that prG(_p)(YI)=G(-p), prx(Y1) is not 

contained in B. By (3.1.2), we have e>_0. Let pi (resp. qi) be the natural 

projection from Yi onto G(-p) (resp. into X). We may assume S0CY0 under 
the notation of (3.1.2). For general W~ G(- p), let Cw=~a 0 Cjy be the de-

composition of Cw into irreducible components where Cw is a rational curve 

(0<i <_a) and Cw is by (1.10) the unique component containing the point p. 
We may assume that q0(p o 1 [W]) contains C° as a connected component. 

   (3.1.4) CLAIM. Any general fibre po1([V]) is irreducible. 

   PROOF. Consider the Stein factorization of p0 

                        Y Po G(-p) 

                e\ / r~ 
                           G(-p) 

   We note that p° : Y0->G(- p) has a section i defined by c0([V ])=([V ], p). 
N Hence we have a morphism E• QO : G(- p)-~G(- p) such that •• Qo=idG(_p). 

N As ri is finite, we have dim G(-p)=dim G(-p). Since G(-p) is complete, we 

N have G(- p)=e• i0(G(- p)), and is an isomorphism. Therefore any general 
fibre of po is irreducible. q. e. d. 

   Next we prove 

   (3.1.5) CLAIM. q1(Y)=X for 0<_i <_ e . 

   PROOF. Let C' be an irreducible component of p i 1([W]), C"=q1(C'). Since 

prx(Yi) is not contained in B by assumption, C" is an irreducible component 
of Cw for W general so that C" is P1 by (1.10) and Bs I L Cn= 0 by the proof 
of (3.1.1). Hence by (3.1.1) the natural homomorphism of X into H°(C", LCN) 

induces an isomorphism JC/W . H°(C", LC„). Any point qE C" determines a 
unique n-dimensional subspace JC(-q) of iC containing W. Conversely any n-

dimensional linear subspace V of LC containing W determines a unique point 

q' of C" with 1C(-q')=V. This correspondence is bijective. 
   The curve C' is mapped isomorphically onto C" by qi because W is general. 

Let z be a general point of C', x=qi(z). Now we have canonical isomorphisms; 

        T ,(Y) T [wJG(-p)3T x(C") ,.' (~(-p)~W)®cn-1>®Tx(Cii),
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        T (X) ~' (NC„IX)x~T x(C") ti (Lc„)®cn-1>~T x(C") . 

   First we consider the case i=0, C"-C,. Since S°CY° and p0(S0)=X under 
the notation in (3.1.2), we have p0(Y0)=X. 

   Next we consider the case C"= CW, 1>0. As we observed above, the 
natural homomorphism 1C(- p) -- H°(C", LC„) has a one-dimensional image. 
Hence C(- p) has a unique base point p' on C", so that the image of 9C(- p)/ 
W generates the line bundle Lc, everywhere except at p'. So by choosing 
z E C' with x =q1(z) *p', we see that 

         (dg): T (Y1) -> T(X)                                         x

is surjective. This shows that q1(Y1)=X. q, e, d. 

   (3.1.6) CLAIM. 
   (3.1.6.1) f is birational. 

   (3.1.6.2) CV is irreducible for general VG(-p). 

   PROOF. (3.1.6.1) follows from (3.1.1), (3.1.6.2) and (1.10) easily. So we 
prove (3.1.6.2). By (3.1.4) it suffices to prove e=0 under the notation in (3.1.3). 
Let CV=~a ° CV be the decomposition of CV into irreducibe components for 
V E G(- p) general, where Cv is the unique irreducible component of CV passing 
through p. Assume e >0. Then a >0. Take and fix j (1 <_ j <_ e). By (3.1.5) 
q;(Y;)= X. This implies that for any general V E G(- p), there exists V' G(- p) 
such that CVnCV. *0. Let C'=Cti~, C"=Cj. We may assume that C'nC"= 
{p', • • • }, p' ~ p for a sufficiently general V' with CVn CV. *0. Let mp L I be 
the linear subsystem of I L ( consisting of members of L passing through the 
point p. If D E I m p L I contains l , , then it contains p and p', whence C'C D 
because LC'=1. This shows that Cv, contains C'=CV. Since CVC is the unique 
irreducible component of Cv, containing p, we have C'= CV= CV. But C' 
intersects C"=Cv,, which contradicts (1.10). Hence e=0 and CV is irreducible 
for general V E G(- p) by (3.1.4). q, e. d. 

   By (3.1.6) we have a birational morphism f : X\B-~Pn. Let X be the 
normalization of the closure in X X P n of the graph of f, f : X-~Pn and h : 
X-~X the natural morphisms. Let B=h1(B) and B* be the minimal subvariety 
of X containing B such that f is unramified on 2\E*. Let B*=h(E*), R= 
f(E), and R*= f (B*). We note that B*= h-1(B*)= f -1(R*), X \B. X \B, X \B* 
X\B*~Pn\R*. 

   (3.1.7) CLAIM. B*=B=O and X a Pn 

    PROOF. Assume the contrary. Hence R* ~ 0. Then we can choose a line l 
which is not contained in R* and meets R*. Hence we can choose (not neces-
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sarily general) W Grass (n-1, iC) such that lw is pure one dimensional and 
irreducible nonsingular outside B* and the closure of f (1\B*) is 1. Let q be 
a point of lfR*, C the unique irreducible component of lw with f (C\B*)=1. 
Let C be the proper transform of C by h-1. Then CUf -1(q) is a connected 
subset of g intersecting B*, whence CUh(f -1(q)) is a connected subset of lw 
intersecting B*. By (1.10) C r P1 and it is a connected component of lw. Hence 
h(f -1(q))CC. Since f_1(q) is connected, this implies that h(f -1(q)) is a unique 
point of CnB*. Let p:=h(f -1(q)). If p~B*\B, then q= f(p) and f1(q) -is a 
single point because X \B X \B. However by the definition of B*, dim f -1(q) 
>0, a contradiction. Therefore pEB. Then p=h(f -1(q))=CnB by (1.10). 

   Since LC=1, this implies that f (C\B) is a point, which contradicts f (C\B*) 
=1. Therefore R*= Q . Hence B=B= ~, B*=B*= O . It follows that f is defined 
and unramified everywhere on X. Consequently the birational morphism f is 
an isomorphism. This completes the proof of (3.1) under the assumption 
h°(X, L)>_ n -F 1. q. e. d. 

   In what follows, we assume that h°(X, L)=n. We derive a contradiction 
in (3.1.10). Let f : X- PT' be the rational map associated with ( L I, Y the 
closure of f (X \B). By the assumption dim Y >_ n -1, whence Y P n-1 Let X 
be the normalization of the closure in XxY of the graph of f, f: X-~Y and 
h : X-~X the natural morphisms. Let B=h-1(B). 

   (3.1.8) CLAIM. d=n+1 and [1(y)P1 ~for any general y~Y. 

   PROOF. Let V CGrass(n-1, ~C) be general. Then by (1.10) and (1.11), d= 
n+1 and CV is a disjoint union of smooth rational curves C i (0 <_ i <_ r) with 
LC1=1. Since f (C1\B) is a point yEY, we have deg Bs L ci=1, whence there 
is a point p~~C2 such that BsILIci={pi}. By (1.10), pi is an isolated point 
of B. Therefore p°C C1 for any i if V is general. Since C1 is a connected 
component of lV, this implies that CV is irreducible. 

   Let y~Y be general. Then Vy~Grass(n-1, 4C) is uniquely determined by 
the condition that f (lvy\B)= y. Therefore Cv, is irreducible for y general. 
Since X \B N X \B, f'(y) -is irreducible outside B. Since dim B <_ dim Y = n -1, 
no irreducible components of f1(y) -are contained in B for y general. Hence 
f_1(y) is irreducible for y general. This proves (3.1.8). q. e. d. 

   (3.1.9) CLAIM. Let R : _ { y Y ; f1(y) -is not smooth}. Let l* be a general 
line of Y not contained in R. Then f1(l*)F1 -~ and h(f -1(l*)) P2 

   PROOF. Let Z be a unique irreducible component of f1(t*) -with 2, : _ 
Zn f -1(y) ̂' P1 for general y c l*. Let Z=h(Z)red• The line 1* corresponds to 
an (n-2)-dimensional subspace U of ~cc with f (lU\B)Cl*, where IU=fSEUDS. 
See § 1. The surface Z is an irreducible component of 1U, red•
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   Let v : T -*Z be the normalization, Q : S-- T the minimal resolution of T. 

Let g=v•Q. Then there exist by (2.A) or [5, Corollary (18)] an effective Weil 

divisor 4 on T, effective Cartier divisors E and G on S with no common 

components such that the canonical sheaves K~ and Ks are given by 

        KT = v*(Kx+(n-2)L)-4, Ks = g*(Kx-f-(n-2)L)-E-G 

with o (E)=4, Q*(G)=0. Moreover by (2.A) there exists a finite subset Eo of 

S such that g is an isomorphism over S\E where I := i '(4)UU-1(Sing T)UE0. 
Clearly E contains supp (E+G). Note that if E=0, then Z has no singularities 

along curves and no curve intersection with the irreducible components of lU 

other than Z. This follows from (2.A) and (2.6). 

   Since ZStBsl L I, g*L is effective. Since S is projective, we have Pm(S)= 

0, whence S P2 or S has a pencil of rational curves F N P1 with (F2)s=0. 

(Note that if X is non-Kahlerian, then S can be in class VII. See (3.4) below.) 
Let H=g*D E g* L I for a general member D C I L I. By Bertini's theorem, 

Sing Z is contained in Bs I L , whence g(supp (E+G))CBS I L I. This implies 

that Ered+GredCHred. Assume that S has a pencil of rational curves FNP1 

with (F2)8 =0. Then we have, 

               -2=KSF+F2=K5F=-(3H+E+G)F 

because d=n+1. It follows that HF=O, (E+G)F=2. However this contradicts 

Ered+GredCHred• Therefore S=T,.,P2 and G=0. Since EredCHred and Ks= 
--3H-E , we see that O8(H) N OP2(1), E=0 and that E is finite. Since E=0, 
Z has by (2.A) at worst isolated singularities. 

   Next we prove that Z is a connected component of 1. . Let H: =g*(D) E 

g* L I and let V E Grass (n -1, iC) be a subspace of JC corresponding to Dn 1U. 
Then since S\ ' Z\g('), C :=g(H)-DfZ is a reduced curve component of 
ltir. We have 

           1= (H2)s = (g*(L)H)s = (LgX(H))x = (LC).x 

   It follows from (1.10) that C N P 1 and C n B = { po } and that C is a connected 

component of lV. Hence ZnB=ZnDnB=CnB={ pa}. Since g(E)CB, we 
see g(E)= {p0}. Assume that Z intersects another irreducible component Z' of 

tU. Then dim Z'>_2, dim l r Z'>_1 and ZnZ'Cg(E)={po}. Therefore poE1V 

nZ'Cly. This contradicts that C is a connected component of 1v. Thus Z is 

a connected component of 1. 

. 

   Therefore lU is a proper complete intersection along Z such that (tU)red N Z 

along Z. Hence lU is Gorenstein and reduced generically along Z so that it is 

reduced along Z. Hence lU~Z along Z. Since the Gorenstein surface Z has 

at worst isolated singularities, it is normal, whence S ^' Z. In particular, Z is



686 I. NAKAMURA 

smooth everywhere. 

   Meanwhile since p0 is isolated in B, there exists a closed subset A of B 

such that D1n••fDn=p0+A, and p0 A, where Dig{LI is chosen general. 
In fact, this is true scheme-theoretically at p0 by (1.10). This implies that n 

equations defining D~ form a local coordinate system at Po. Let Q0(X) be 

the blowing-up of X with p0 center, e:=Qp0(p0) the exceptional divisor. Then 

we have a rational map h from Q0(X) to Y induced from f, which is a mor-

phism near ~. It follows that X ~ Q 0(X) near e. Therefore Z is smooth 
everywhere. In what follows we view e as a divisor of X by the above iso-

morphism. Then e=h-1(p0). Clearly f=i: ,~e->Y is an isomorphism. Since 
p0 is isolated in B, e is disjoint from the irreducible components of B other 
than 8. 

   Next we prove that ZNF1. We note Z\{p0}TZ\Zne and f(2)=l*. Since 
eNY, we have Zne~ f(Zne)=l*~P1. Hence Z~F1. 

   Finally we prove Z= f -1(l*). In view of (3.1.8), f1(1*) is connected. Hence 
it suffices to prove that Z is a connected component of f_1(1*). Assume the 
contrary. Note that Z is a unique irreducible component of f_1(1*) outside B. 
Let B' be an irreducible component of B other than 8 such that ZnB' ~ 0. 
Then h(ZnB')CZnB={ p0}, whence ZnB'(* O)Ce. It follows that B'ne* 0. 
However 8 is disjoint from B', a contradiction. q. e. d. 

   (3.1.10) CLAIM. X r Pn and X ̂ 'P(OY(1)EOY). 

   PROOF. First we prove R= 0. Assume the contrary. Then we can choose 
a line l* of Y not contained in R but intersecting R. We can apply the same 
argument as in (3.1.9) to a general line l* with l*nR=/= 0. Hence f-1(l*)F1                                                             ~
by (3.1.9), whence f1(y)P1 -N for any y EE l*. This contradicts l*nR ~ 0. Hence 
R=~. 
   Therefore f1(y)P1 -.for any y Y. Hence X=P(Oy(a)EBOy) for some 
a>_0. By (3.1.9), X XYl*N f -1(l*)~F1 so that a=1. Hence X NPn. q. e. d. 

   In (3.1.8)-(3.1.10) we assume h°(X, L)=n, which contradicts (3.1.10). This 
completes the proof of (3.1). q. e. d. 

   (3.2) THEOREM. Let X be a complete nonsingular algebraic variety (or a 
Moishezon manifold) of dimension n with b2=1, and L a line bundle on X. 
Assume that c1(X)=dc1(L) (d>_n+1) and h°(X, L)>_n. If general (n-1)-members 
o f L intersect outside Bs I L I, then X N P'. 

   PROOF. Let B = Bs i L i . Let lW = nSEWDS for general W T Grass (n-1, 
H°(X, L)), and CW=l -B. See § 1. Let f : X \B-~PN be the rational map 
associated with 1 L i where N+1=h°(X, L), and Y the closure of f (X \B). Then 
by the assumption, dim Y>_ n-1. Assume dim Y = n -1. Then the union of
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C=1w-Bcontains an open dense subset of X when [W] ranges over a Zariski 
open dense subset of Grass (n-1, H°(X, L)). If LCw=O, then CwnB= 0 by 

(1.11). Hence mLCw = 0, Bs I mL ~ f Cw = 0 for any m>O. Consequently the 
rational map f m associated with mL contracts Cw to a point, and dim f m(X\ 
Bs ! m L () < n . However since b2=1, the Moishezon assumption on X implies 
that dim f m(X\Bs mL~)=n for suitable m. This is a contradiction. Hence 
there is an irreducible component Cw of Cw such that LCw>O, whence CwN 
P1 by (1.10). Thus general (n-1)-members of L intersect rationally. Con-
sequently X N P' by (3.1). q, e, d. 

   REMARK. The above proof of (3.2) shows that the assumption b2=1 can 
be replaced by the condition K(X, L)=n. 

   (3.3) THEOREM. Let X be a complete nonsingular algebraic 3-fold (or a 
Moishezon 3-fold), L a line bundle on X. Assume that c1(X)=dc1(L) (d>_4) and 
h°(X, L)>_2. Then X NP3 

   PROOF. Let 1V1(resp. F) be a moving part (resp. a fixed part) of I L I. By 
Bertini's theorem, we choose a general member D=Z1+ • +Z r of MI where 
Zi is reduced irreducible and smooth outside Bs I MI. Let Z=Z1 and let v : 
Y-*Z be the normalization, f : S-*Y the minimal resolution of Y. Let g=v• f . 
Then there exist by (2.A) or [5, Corollary (18)] an effective Weil divisor d on 
Y, effective Cartier divisors E and G on S with no common components such 
that the canonical sheaves KY and KS are given by 

             KY = v*(Kx+L)-A, Ks = g*(Kx~L)-E-G 

with f(E)=A, f *(G)=0. By (2.A) there exists a finite subset E° of S such 
that g is an isomorphism over S\ E where E := f -1(4)U f -'(Sing Y)UE°. Note 
that X contains supp(E+G). 

   Then by the same argument as in (3.1.9), we see that d=4, SNY~P2, 
Os(g*L)NOp2(1), E=G=O and that X is finite. Since E=0, Z has by (2.A) at 
worst isolated singularities. Since Z is Gorenstein, Z is normal, whence S ̂ ' 
Y r Z r P2. Moreover Z is a connected component of D+F. In fact, since 
dim X=3, FnZ and ZinZ (i>-2) are either a curve or empty. E=0 shows 
that FnZ=ZinZ=0 (i>_2). Assume r>_2. Since Zi and Z are algebraically 
equivalent and H1(Z, O)=0, we have Op2(1)NOZ(Z)NOZ(Zi)NOZ by ZinZ=0, 
which is a contradiction. Hence r=1 and D is irreducible. 

   Since OZ(M)~OZ(Z)=OPZ(1), we have h°(X, L)=h°(X, M)=h°(Z, OZ(Z))+1 
=4 by h1(X, O)=0. We also have (M3)=(M)=1 and BsIMI=BslMl= 

Bs 102(M) I _ 0 so that we have a surjective birational morphism f : X--P3. 
We also have -4M-4F=Kx= f *(Kp3)+Jac f=-4M+Jacf for the exceptional 
divisor Jac f of f. It follows that F= Jac f=0 and X N P3. q. e. d.
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   (3.4) EXAMPLE. For any pair (d, p) with d>_3 and p>_1, there exist in-
finitely many non-Kdhlerian 3-folds X (Hopf 3-folds) with c1(X)=dc1(L), h°(X, L) 
=p+1. We define 

                  x= C31(0, 0, O)/ {g; , n E Z} 

where g is a transformation of C3 defined by g: (x, y, z)--~(adp-2x+yd~-2, ay, 

az) for a~C*, dal <1. Let S be a divisor {y=0} of X. Then we see that S 
is a primary Hopf surface with all plurigenera Pm(S)=0. We also see that 

K=-dpS, h°(X, pS)= p+1. 

   (3.5) THEOREM. Let X be a Moishezon 4-fold, and L a line bundle on X. 
Assume that PicX=ZL, c1(X)=dc1(L) (d>-5) and h°(X, L)>_4. Then X~P4 

   PROOF. Let h : X-~PN be a rational map associated with L , and W the 

closure of h(X\Bs I L I ), where N=h°(X, L)-1. Let e=degW. Then e>_N+1 
-dimW . If dimW=1, then e=1, N=1 by Pic X=ZL, which contradicts N3. 

Therefore dim W >_ 2. Hence by choosing general D and D' e I L , we have a 

reduced component Z of r :=DnD' outside Bs I L I . Then by the proof of (3.1.7) 

or (3.3), Z N P2, LZ OP2(1) and ZnBs I L I is at most a line in P2. 
   If ZnBs L I is finite, then rfD" has a reduced curve-component ZnD" 

P 1 outside Bs I L I for D" e L I general. In this case, X N P 4 by (3.2). Hence 

we may assume that C :=ZnBs L I ~P1 We assume dimW=2. Then e>_ 

N-1 >_ 2. By choosing general D and D' c I L I , we have er irreducible com-

ponents Z1, , Zer outside Bs I L I , where r is the number of irreducible com-

ponents of a general fiber h-1(w) (w e W ). By the proof of (3.1.7) or (3.3), we 
see that Z~ ~ P2 and that ZinZ; is finite for i ~ . (In fact, we see moreover 

that Zi is a connected component of r :=DnD' because r is Gorenstein.) 
However Z~ contains C for any i, whence e=1, r=1 and N=2, which con-

tradicts N>_3. Hence dimW>_3. Therefore DnD' fD" has a reduced curve 

component ZnD"NP1 outside Bs L I . Hence by (3.2), X P4. Therefore it is 

impossible that ZnBs I L I ~P1 This completes the proof of (3.5). q. e, d. 

   § 4. Complex manifolds homeomorphic to Pc. 

   (4.1) PROPOSITION. Let X be a compact complex manifold homeomorphic to 
P'. If x(X, OX)>_l, then there is a holomorphic line bundle L on X whose 

Chern class c1(L) generates H2(X, Z).Z. If h1(X, O)=0, X(X, O)>-1 and 
h°(X, L)> n and i f general (n-1)-members I L I intersect rationally outside B5 I L I, 

then X r P' . 

   PROOF. Let o be a generator of H2(X, Z) (N Z) with on =1. Since the 

second Stiefel-Whitney class w2(=c1(X) mod 2) is a topological invariant, we
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have cl(X)=(n+l+2s)o for an integer s. Then by [3, p. 208], we have 

                fn+s            X(X
, Ox) ; = (n+s)(n+s_1) ... (n+1)/n ! 

s By X (X, O)1, x>_ we see s >_ 0 or that n is even and s _< - n -1. Hence in par-

ticular c1(X) * 0 and H1(X, O-)* {1 }. 

   Now we consider an exact sequence 
c 

       0 ---> H1(X, Ox) ---~ H1(X, OX) -~ H2(X, Z) --~ H2(X, Ox). 

Since c1(X)*0 and H2(X, Ox) is torsion free, c1 is surjective. Hence there 

exists a line bundle L on X with c1(L)=o. Assume s<_-n-1, and h°(X, L) 

>n. By h1(X, Ox)=0, we have Kx=-(n+1+2s)L, -(n+l+2s)>_n+1. Con-
sequently h°(X, SAX)>_ h°(X, L)>_ n, which contradicts h°(X, Hence 
s>0, and (4.1) follows from (3.1), q. e. d. 

   (4.2) THEOREM. Let X be a Moishezon manifold homeomorphic to Pn, and 
L a line bundle on X with L=l. Assume that h°(X, L)>_n. If general (n-1)-

members of L I intersect outside BsI L I, then X NPn 

   PROOF. Since X is Moishezon, the Hodge spectral sequence E2 =Hp(X, QX) 

with abutment Hp+~(X, C) degenerates at E1 terms [19, p. 99]. Hence we have 

H~(X, O)=0(9>0), X(X, O)=1, Pic X : =H1(X, O*x) N H2(X, Z) N H2(Pn, Z) n Z. 

Therefore Kx=--(n+l)L by the proof of (4.1). Hence X ~Pn by (3.2). 

                                                                               q.e.d. 

   (4.3) THEOREM [10]. Let X be a compact complex 3-fold homeomorphic to 
P3, and L a line bundle on X with L3=1. Assume that h'(X, O)=0 and 

h°(X, L)>_2. Then X P3 

   PROOF. This is a corollary to (3.1) or (3.3). The proof is almost the same 

as [11, (9.1)]. It is easy to see that h3(X, Ox)=0, X(X, 0x)>_1. By the proof 

of (4.1), c1(X)=dc1(L) for some d>_4. By using hl(X, Ox)=0 and h°(X, L)>_2, 

we see that h2(X, pL)=h1(X, -(p+4)L)=0 for p>0. Then we see that h°(X, 

L)>_4, and that X is Moishezon by Riemann-Rock theorem. By (3.1) or (3.3), 

X=P3. q. e. d. 

   REMARK. A somewhat stronger theorem has been obtained in [11, (9.1)], 

which however follows from (4.3) easily.

§ 5. Moishezon f ourf olds 

The purpose of this section 

(5.1) THEOREM. Let X be

homeomorphic to P~. 

is to prove : 

a Moishezon 4-fold homeomorphic to P4, and L
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a line bundle on X with L4=1. Assume that h°(X, L)3. Then X n P4 

   Our proof of (5.1) is completed in (5.4). 

   (5.2) LEMMA. Under the assumptions in (5.1), let D and D' be distinct 
members of L I , r the scheme-theoretic complete intersection DnD'. Then we 

have 

(5.2.1) Pic X = ZL, K=-5L, 

(5.2.2) Hp(X,-qL)=0 (p=0,q>0, or p>0,0_<q<4) 

(5.2.3) HP(D,-qLD)=0 (p=0,q>0 or p>0,0<q<_3) 

(5.2.4) H°(X, Ox) ti H°(D, OD) N H°(r, Oz) N C, 

(5.2.5) L D= I LD and l L z= l Lz 1. 

   PROOF. The proof of (5.2.1) is similar to [10]. The vanishing (5.2.2) of 

Hp(X, -qL) for p*2 is proved in the same way as in [10]. Since X is ho-
meomorphic to P4, we have 

               X(X, -qL) = X(P4, 0p4(--q)) = 1 Il (q-i) 
                                              24 i=1 

for any q in view of (5.2.1). This proves the vanishing of H2(X, -qL) for 

0<q<5. The remaining assertions are easy to prove. q. e, d. 

   (5.3) LEMMA. Let D and D' be general members of i L I, and let r=D~1D'. 
Let Z=Zred be a reduced component of r, that is, an irreducible component of 

r along which r is reduced generically. If Z¢BsILI, then r^'ZNP2 and LtN 

0p2(1). 

   PROOF. Let g : S-~Z be the minimal resolution of the normalization of Z. 

Then there exist by (2.A) or [5, Corollary (18)] effective Cartier divisors E 

and G on S with no common components such that the canonical sheaf KS is 

given by 
                      KS = g*(Kx+2L)-E-G 

with f (G)=0, etc. as in the proof of (3.3). There exists a finite subset X° of 

S such that g,is an isomorphism where E : = f -1(d)v f -'(Sing Y)uE°. Then 

 
' contains supp (E+G) . 

   We have c1(S)=3c1(g*L)+c1(E+G). Since h°(X, L)>_3 and ZcztBsl L I , g*L 

is effective. Since S is projective, we have Pm(S)=0, whence S~P2 or S is 

ruled, Let H E g* I L I , Then by the same argument as in (3.3), we see that 

S=YNP2, E=G=O, O8(H)O2(1) and that E is finite. By E=0 and (2.A), 
Z has at worst isolated singularities. There exists D" I L I such that
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g*(ZnD")=H by the choice of H. Let 1=DnD'nD" be a scheme-theoretic 
complete intersection. Since g*D"=H.P' and g is an isomorphism on S\E, 

we have H\E N C\g(E), so that C : =g(H)red is a reduced curve component of 1, 

that is, 1 is reduced generically along C. C is isomorphic to ZnD" on (Z\g(X)) 

nD". Namely i='.,/T=i C~ along Cn(Z\g(E)). We have 

           1= (H2)s = (g*(L)H)s = (Lg*(H))x = (LC).x 

   Therefore we can apply (1.10) to X, C and l to infer that CNP1 is a 

connected component of 1 and that C N l along C. If Sing Zred is nonempty, 
then Singrred C B5 I L I . Hence ZnSingrredCZnD"(=g(H)red). Consequently 

ZnSingrredcC. As C is a connected component of 1, this shows that Z is a 

connected component o f r. In fact, if not, there is an irreducible component 
Z'(~Z) of r meeting Z. Then we choose a point pEZnZ'. We note that 

ZnZ' is finite by E=0. Hence since pEZnSingrredcC, Z'nD" contains an 

irreducible component (a curve or a surface) of 1 meeting C. This contradicts 

that C is a connected component of 1. 

   However h°(z, Oz)=1 by (5.2). Hence Z ~Tred. As r is Gorenstein and 

reduced generically along Z, r is reduced everywhere and r;Z. Since a prime 

Cartier divisor C of Z is smooth, so is Z along C. As SingZCZnSingrredc 

C, it follows that Z is smooth everywhere. Thus we see P2 S NY ~ Z ~z 

                                                                          q. e. d. 

   (5.4) COMPLETION OF THE PROOF OF (5.1). Now it is easy to prove (5.1). 
By (5.2.5), Bs I L I t=Bs I Lz I =Bs I 0p2(1) I =0. We have also h°(X, L)=h°(z, Lz)+ 

2=5 and L4=(H2)5=1. Consequently X ~P4 by an easy argument. q. e. d.
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