On Moishezon manifolds homeomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{\boldsymbol{n}}$

Dedicated to Professor Kunihiko Kodaira

By Iku NAKAMURA

(Received Nov. 7, 1991)

§ 0. Introduction.

There are in general many different complex manifolds having the same underlying topological or differentiable structure. However there are a few exceptional cases where we can expect that homeomorphy to a given compact complex manifold implies analytic isomorphism to it, for instance, compact Hermitian symmetric spaces. Among compact Hermitian symmetric spaces, the complex projective space $\boldsymbol{P}_{\boldsymbol{c}}^{n}$ and a smooth hyperquadric $\boldsymbol{Q}_{\boldsymbol{c}}^{n}$ in $\boldsymbol{P}_{\boldsymbol{c}}^{n+1}$ seem to be nice exceptions which we can handle with algebraic methods.

The following conjecture is the problem we study in the present article.
Conjecture MP_{n}. Any Moishezon complex manifold homeomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{n}$ is isomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{\boldsymbol{n}}$.

There are some related conjectures, or rather, more accessible forms of Conjecture MP_{n} which are interesting themselves.

Conjecture LM n $_{n}$. Let X be a Moishezon manifold of dimension n, and L a line bundle on X. Assume that Pic $X=\boldsymbol{Z} L, c_{1}(X)=d c_{1}(L)(d \geqq n+1)$ and $h^{0}\left(X, O_{X}(L)\right) \geqq n+1$. Then X is isomorphic to \boldsymbol{P}_{c}^{n}.

Conjecture LMP_{n}. Let X be a Moishezon manifold homeomorphic to \boldsymbol{P}_{c}^{n}, and L a line bundle on X with $L^{n}=1$. Assume $h^{0}\left(X, O_{X}(L)\right) \geqq n+1$. Then X is isomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{\boldsymbol{n}}$.

Conjecture DP_{n}. Any complex (global) deformation of $\boldsymbol{P}_{\boldsymbol{c}}^{\boldsymbol{n}}$ is isomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{n}$.

In the above conjectures a Moishezon (complex) manifold of dimension n is by definition a compact complex manifold with n algebraically independent meromorphic functions. This is equivalent to saying that it is bimeromorphic to an algebraic variety.

Conjecture MP_{n} (resp. Conjecture LM_{n}) has been settled by HirzebruchKodaira [3], and Yau [21] (resp. by Fujita [1], Kobayashi and Ochiai [6]),
when the manifold under consideration is projective or Kählerian. See Siu [17] [18] and Tsuji [20] for Conjecture DP_{n}. I heard from Mabuchi in the summer of 1990 that Siu seemed to have completed a correction of [17], while I completed the present article in 1991 January. I was unable to look at the article of Siu until very recently it appeared as [18]. I cannot spend enough time for understanding [18] before submitting this article, but I hear from Mabuchi that [18] is correct.

Meanwhile Kollár [8] and the author [10] solved Conjecture MP_{3} without extra assumptions, each supplementing the other. Peternell [15][16] also asserts (MP_{3}). See also [8, 5.3.6].
(0.1) Theorem [8][10]. Any Moishezon threefold homeomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{\mathbf{3}}$ is isomorphic to $\boldsymbol{P}_{\boldsymbol{c}}{ }^{3}$.

The purpose of the present paper is to give some partial solutions to the above conjectures, in particular, a complete solution to $\left(\mathrm{LM}_{4}\right)$ and $\left(\mathrm{LMP}_{4}\right)$, which implies (DP_{4}).

For the proof of $\left(\mathrm{LM}_{4}\right)$ or $\left(\mathrm{LMP}_{4}\right)$, we study dualizing sheaves of reduced curves and surfaces in the present article, although the idea of the proof is essentialy the same as our previous papers [10][11]. Our new ingredient here is a subadjunction formula (2.A) for curves and surfaces.
(0.2) Theorem. Let X be a Moishezon manifold of dimension n with $b_{2}=$ $1, L$ a line bundle on X. Assume that $c_{1}(X)=d c_{1}(L)(d \geqq n+1)$, and $h^{0}\left(X, O_{X}(L)\right)$ $\geqq n$. If a complete intersection of general ($n-1$)-members of the complete linear system $|L|$ is nonempty outside the base locus $\mathrm{Bs}|L|$, then X is isomorphic to \boldsymbol{P}_{c}^{n}.

The following theorems are proved by applying (0.2) or the idea of the proof of (0.2).
(0.3) Theorem. Let X be a Moishezon fourfold, and L a line bundle on X. Assume that Pic $X=\boldsymbol{Z} L, c_{1}(X)=d c_{1}(L)(d \geqq 5)$ and $h^{0}\left(X, O_{X}(L)\right) \geqq 4$. Then X is isomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{4}$.
(0.4) Theorem. Let X be a Moishezon fourfold homeomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{4}$, and L a line bundle on X with $L^{4}=1$. Assume $h^{0}\left(X, O_{X}(L)\right) \geqq 3$. Then X is isomorphic to $\boldsymbol{P}_{\mathbf{c}}^{\mathbf{4}}$.
(0.5) Corollary. Any complex (global) deformation of $\boldsymbol{P}_{\boldsymbol{C}}^{4}$ is isomorphic to $\boldsymbol{P}_{\mathbf{c}}^{\mathbf{4}}$.

See also [17][18][20]. Now we shall explain an outline of our proof of (0.2). By Bertini's theorem, we choose a general ($n-1$)-dimensional subspace V of $H^{0}\left(X, O_{X}(L)\right)$ such that $l_{V}:=\cap_{s \in V}(z e r o e s ~ o f ~ s)$, the scheme-theoretic complete intersection associated to V, is pure one dimensional and nonsingular
outside $\mathrm{Bs}|L|$. Then we show in section one that l_{V} is a union of nonsingular rational curves C with $L C=1$ and $N_{C / X} \cong O_{C}(1)^{\oplus(n-1)}$, of nonsingular elliptic curves E with $L E=0$ and $N_{E / X} \cong O_{E}^{\oplus(n-1)}$ and of the base locus Bs $|L|$, each of the curves being a connected component of l_{V}. This is proved by using the subadjunction formula (1.8) or (2.A) for curves, which generalizes an argument in [10]. The existence of a rational curve among the irreducible components of l outside $\mathrm{Bs}|L|$ follows from the fact that X is Moishezon.

In section 2 we prove an inequality which is a key to the proofs in section one.

Then in section 3, by using the results proved in section one, we show that $\operatorname{dim}|L|=n$ and that X is rationally mapped onto $\boldsymbol{P}_{\boldsymbol{c}}^{n}$ by the rational map $\rho_{|L|}$ associated with $|L|$. Therefore X is finite over $\boldsymbol{P}_{\boldsymbol{c}}^{\boldsymbol{c}}$ outside proper subvarieties B_{X} and $B_{P^{n}}$.

If a line on $\boldsymbol{P}_{\boldsymbol{C}}^{n}$ is not contained in $B_{P^{n}}$, its inverse image by $\rho_{I L \mid}$ is a complete intersection of ($n-1$) members of $|L|$ and it is generically reduced and pure one-dimensional outside B_{X}. Then we can show as before that the inverse image l is a union of a nonsingular rational curve C and $\mathrm{Bs}|L|$ and that C is a connected component of l.

Now $L C=1$ implies that $\rho_{|L|}$ is birational. Moreover those lines which are not contained in $B_{P^{n}}$ sweep out P_{c}^{n}, so that inverse images of the lines sweep out X. This implies that $\mathrm{Bs}|L|$ is empty. We also see that $\rho_{|L|}$ is unramified, so that X is isomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{n}$. See also (1.6).

In section 3, applying (0.2) and the subadjunction formula (2.A) for surfaces, we also prove (0.3) and (3.3), the latter of which strengthens our earlier consequence on $\boldsymbol{P}_{\boldsymbol{c}}^{\boldsymbol{c}}$ [10].

In section 4 (resp. section 5), we apply the results in section one to study $\left(\mathrm{LMP}_{n}\right)$ (resp. to prove (0.4)). In the proof of (0.3) (resp. (0.4)) the complete intersection of two members of $|L|$ is proved to be isomorphic to \boldsymbol{P}_{c}^{2}, from which (0.3) (resp. (0.4)) follows immediately. This also implies $\left(\mathrm{LM}_{4}\right),\left(\mathrm{LMP}_{4}\right)$ and (DP_{4}).

The main consequences of the present article were announced in [13], where the proof of (0.4) is sketched.

Acknowledgement. The author would like to express his hearty gratitude to T . Fujita and F . Hidaka for their advices during the preparation of the article.

§ 1. A complete intersection l_{V}.

(1.1) Let X be a nonsingular complete algebraic variety of dimension n defined over \boldsymbol{C} (or a compact complex manifold of dimension n). We assume that there exists a line bundle L on X such that

$$
\begin{gather*}
c_{1}(X)=d c_{1}(L) \quad \text { for some } \quad d \geqq n+1 \tag{1.1.1}\\
\operatorname{dim} H^{0}(X, L) \geqq n \tag{1.1.2}
\end{gather*}
$$

Let $B=\mathrm{Bs}|L|$ be the base locus of $|L|$. Let V be a linear subspace of $H^{0}(X, L)$ of dimension $n-1, l_{V}$ a scheme-theoretic complete intersection $\cap_{s \in V \backslash(0)} D_{s}$ associated with V, where D_{s} is the divisor defined by $s=0$. More precisely, the ideal sheaf of O_{X} defining l is given by $I_{l}=\sum_{s \in V} I_{D_{s}}=\sum_{s \in V} O_{X}$. Let C_{V} be the sum of all the irreducible components of l which are not totally contained in B. We express it as $l_{V}=C_{V}+B$ for simplicity.

We call an irreducible component C of l (or of C_{V}) of dimension one a毆 reduced curve component if l is reduced generically along C. We assume that (1.1.3) $\quad l_{v}$ has a reduced curve component C for some V.

In the present section, we always assume (1.1.1)-(1.1.3). For the use in $\S 3$, we also define
(1.2) Definition. We say that $D_{s}(s \in V)$ intersect outside $\mathrm{Bs}|L|$ if C_{V} is nonempty. We say that $D_{s}(s \in V)$ intersect rationally outside $\mathrm{Bs}|L|$ if C_{V} is nonempty and moreover if at least one of the irreducible components of C_{V} is a (possibly singular) rational curve.
(1.3) Let $l=l_{V}$, and let C a reduced curve component of l, I_{C} the ideal sheaf of O_{x} defining C with $\sqrt{I_{C}}=I_{C}$. We have nontrivial O_{C}-homomorphisms ϕ_{C}^{0} and ϕ_{C} which are isomorphisms on a Zariski open dense subset of C,

where $[F]=F /\left\{O_{C}\right.$-torsions in $\left.F\right\}$ for an O_{C}-module F.
(1.4) Lemma. Let C be an irreducible reduced curve component of $l:=l_{v}$. Then

$$
\begin{gathered}
\left(I_{\iota} / I_{l}^{2}\right) \otimes O_{C} \cong O_{C}(-L)^{\oplus(n-1)} \\
\quad-(n-1) L C \leqq c_{1}\left(\left[I_{C} / I_{C}^{2}\right]\right)
\end{gathered}
$$

where $c_{1}\left(\left[I_{C} / I_{C}^{2}\right]\right):=c_{1}\left(\left[I_{C} / I_{C}^{2}\right] \otimes O_{\check{c}} / O_{\tilde{C}}\right.$-torsions) for the normalization \tilde{C} of C.
Proof. We have a commutative diagram of natural homomorphisms;

where all the arrows are surjective. Moreover $(n-1)$ generators of I_{l} are regular parameters on $C \backslash B$. Hence β is injective on $C \backslash B$, and it is surjective anywhere on C. Since $O_{C}(-L)$ is O_{C}-torsion free, β is an isomorphism. It follows that the composite homomorphism $\phi_{C} \cdot \beta$ is injective. Hence we have $-(n-1) L C \leqq c_{1}\left(\left[I_{C} / I_{C}^{2}\right]\right)$.
q.e.d.
(1.5) Lemma. The following sequence is exact everywhere on C;

$$
0 \longrightarrow\left[I_{C} / I_{C}^{2}\right] \longrightarrow \Omega_{X}^{1} \otimes O_{C} \longrightarrow \Omega_{C}^{1} \longrightarrow 0 .
$$

where $\Omega_{C}^{1}:=\Omega_{X}^{\frac{1}{X}} / I_{C} \Omega_{X}^{1}+O_{X}\left\{d \varphi ; \varphi \in I_{C}\right\}$.
Proof. We have a natural exact sequence

$$
I_{C} / I_{C}^{2} \xrightarrow{\eta} \Omega_{x}^{1} \otimes O_{C} \longrightarrow \Omega_{C}^{1} \longrightarrow 0
$$

If C is nonsingular at p, then η is injective at p. Since $\Omega_{X}^{\frac{1}{X}}$ is locally free, the sheaf $\Omega_{X}^{1} \otimes O_{C}$ is locally O_{C}-free, in particular, it is O_{C}-torsion free. q.e.d.

In order to illustrate how our arguments in sections 1 and 3 proceed, we first prove the following easy Proposition.
(1.6) Proposition. Assume $K_{X}=-d L(d \geqq n+1), h^{0}(X, L) \geqq n+1$. Let C be a reduced curve component of C_{V} with $L C \geqq 1$ which is not contained in $B:=$ $\mathrm{Bs}|L|$. Assume that l_{V} is connected and that C is nonsingular everywhere. Then $l_{V}=C_{V}=C \cong \boldsymbol{P}^{1}, L^{n}=L C=1, N_{C / X} \cong O_{C}(1)^{\oplus(n-1)}, d=n+1$ and B consists of at most a single point. Moreover if B is empty, then $X \cong \boldsymbol{P}^{n}$.

Proof. Let $l=l_{V}$. Since C is nonsingular, we have $\left[I_{C} / I_{C}^{2}\right]=I_{C} / I_{C}^{2}$. By (1.5) we have

$$
c_{1}\left(I_{C} / I_{C}^{2}\right)=K_{X} C-c_{1}\left(\Omega_{C}^{1}\right)=-d L C-c_{1}\left(\Omega_{C}^{1}\right)
$$

From (1.4) we infer,

$$
\begin{gathered}
-(n-1) L C \leqq c_{1}\left(I_{C} / I_{C}^{2}\right)=-d L C-c_{1}\left(\Omega_{C}^{1}\right) \\
2 \leqq d-n+1 \leqq(d-n+1) L C \leqq-c_{1}\left(\Omega_{C}^{1}\right) \leqq 2
\end{gathered}
$$

This implies that $C \cong \boldsymbol{P}^{1}, c_{1}\left(\Omega_{C}^{1}\right)=-2, d=n+1$ and $L C=1$. The homomorphism $\phi_{C}=\phi_{C}^{0}$ is an isomorphism, $I_{C} / I_{C}^{2} \cong O_{C}(-L)^{\oplus(n-1)} \cong O_{C}(-1)^{\oplus(n-1)}$. Since ϕ_{C} is surjective, we have $I_{\iota}+I_{C}^{2}=I_{C}$ along C. By applying Nakayama's lemma to the O_{X}-module I_{C} / I_{l} we see that $I_{l}=I_{C}$ along C. Consequently C is a connected component of l. By the assumption that l is connected, we see $l=C_{V}=$ $C, N_{C / X}=\left(I_{C} / I_{C}^{2}\right)^{-} \cong O_{C}(1)^{\oplus(n-1)}, L^{n}=L C=1$. Since C is not contained in B, B is empty or a single point in view of $L C=1$. If B is empty, we have a morphism f of X into P^{N} associated with the linear system $|L|$ where $N=$
$h^{0}(X, L)-1$. Since $L^{n}=1, f(X)$ is a linear subspace of \boldsymbol{P}^{N} with $\operatorname{dim} f(X)=n$, whence $N=n$ and f is surjective and birational. Let ω_{P} be a meromorphic n form on \boldsymbol{P}^{n} with poles $(n+1) H, H$ a hyperplane of \boldsymbol{P}^{n}. Then by using local coordinates z_{P} on \boldsymbol{P}^{n} and z on X we write symbolically

$$
\begin{aligned}
& f^{*} \omega_{P}=f^{*} d z_{P} / f^{*} H^{n+1}=f * d z_{P} / D^{n+1} \\
& f^{*} d z_{P}=\operatorname{det}(\text { Jacobian of } f) \cdot d z
\end{aligned}
$$

for a member $D=f^{*} H \in|L|$. Since $f^{*} \omega_{P}$ is a meromorphic n form on X, the divisor $\left(f^{*} \omega_{P}\right)$ is equal to $K_{X}=-(n+1) D$, whence we have $\left(f * d z_{P}\right)=0$. Hence the birational morphism f is unramified so that X is isomorphic to \boldsymbol{P}^{n}.

> q.e.d.

This is a prototype of our subsequent argument. However in general l_{V} may be disconnected, and some component C of C_{V} may be singular at the intersection $C \cap B$.
(1.7) Now we come back to the situation in (1.1). Under the same notation as in (1.1), let $l=l_{V}$, and let C be a reduced curve component of l.

Let $\nu: \tilde{C} \rightarrow C$ be the normalization of C. Then we obtain exact sequences,

$$
\begin{equation*}
0 \longrightarrow \operatorname{Tor}_{1}^{o} c\left(\Omega_{C}^{1}, O_{\tilde{C}}\right) \longrightarrow\left[I_{C} / I_{C}^{2}\right] \otimes O_{\tilde{C}} \longrightarrow \Omega_{X}^{1} \otimes O_{\tilde{c}} \longrightarrow \Omega_{c}^{1} \otimes O_{\tilde{c}} \longrightarrow 0 \tag{1.7.1}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow\left[\left[I_{c} / I_{c}^{2}\right] \otimes O_{\tilde{c}}\right] \longrightarrow \Omega_{\tilde{x}}^{\frac{1}{2}} \otimes O_{\tilde{c}} \longrightarrow \Omega_{c}^{1} \otimes O_{\tilde{c}} \longrightarrow 0 \tag{1.7.2}
\end{equation*}
$$

because $\operatorname{Tor}_{1}^{o} c\left(\Omega_{X}^{\frac{1}{X}} \otimes O_{C}, O_{\tilde{c}}\right)=0$. We recall an injective O_{C}-homomorphism ϕ_{C} in (1.3),

$$
\begin{equation*}
\phi_{C}:\left(I_{l} / I_{l}^{2}\right) \otimes O_{C} \quad\left(\cong O_{C}(-L)^{\oplus(n-1)}\right) \longrightarrow\left[I_{C} / I_{C}^{2}\right] . \tag{1.7.3}
\end{equation*}
$$

Let Q_{c}^{0} be Coker ϕ_{C}. By tensoring (1.7.3) with $O_{\tilde{c}}$, we obtain an exact sequence

$$
\begin{align*}
\cdots \longrightarrow \operatorname{Tor}_{1}^{o} c\left(Q_{c}^{0}, O_{\tilde{c}}\right) & \longrightarrow O_{\tilde{c}\left(-\nu^{*} L\right)^{\oplus(n-1)}} \tag{1.7.4}\\
& \longrightarrow\left[I_{C} / I_{c}^{2}\right] \otimes O_{\tilde{c}} \longrightarrow Q_{C}^{0} \otimes O_{\tilde{c}} \longrightarrow 0 .
\end{align*}
$$

Since supp Q_{C}^{0} is contained in $\operatorname{Sing} C, \operatorname{Tor}_{1}^{\circ} c\left(Q_{C}^{0}, O_{\tilde{C}}\right)$ is also an $O_{\tilde{c}}$-torsion sheaf. Hence we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow O_{\tilde{c}\left(-\nu^{*} L\right)^{\oplus(n-1)} \longrightarrow\left[I_{c} / I_{c}^{2}\right] \otimes O_{\tilde{c}} \longrightarrow Q_{c}^{0} \otimes O_{\tilde{c}} \longrightarrow 0 . . . ~}^{0} \tag{1.7.5}
\end{equation*}
$$

Composed with a natural homomorphism

$$
\left[I_{C} / I_{c}^{2}\right] \otimes O_{\tilde{c}} \longrightarrow\left[\left[I_{C} / I_{c}^{2}\right] \otimes O_{\tilde{c}}\right]:=\left[I_{C} / I_{C}^{2}\right] \otimes O_{\tilde{c}} / O_{\tilde{c}} \text {-torsions },
$$

we infer an exact sequence

$$
\begin{equation*}
0 \longrightarrow O_{\tilde{c}}\left(-\nu^{*} L\right)^{\oplus(n-1)} \longrightarrow\left[\left[I_{c} / I_{c}^{2}\right] \otimes O_{\tilde{c}}\right] \longrightarrow Q_{C} \longrightarrow 0 \tag{1.7.6}
\end{equation*}
$$

with Q_{C} cokernel.
Finally we consider a natural homomorphism

$$
\Omega_{c}^{1} \otimes O_{\check{c}} \xrightarrow{\eta} \Omega_{c}^{1}
$$

Letting $Q_{C}^{\prime}=\operatorname{Coker} \eta$ and $Q_{c}^{\prime \prime}=\operatorname{Ker} \eta$, we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow Q_{c}^{\prime \prime} \longrightarrow \Omega_{c}^{1} \otimes O_{\tilde{c}} \longrightarrow \Omega_{\tilde{c}}^{1} \longrightarrow Q_{c}^{\prime} \longrightarrow 0 \tag{1.7.7}
\end{equation*}
$$

For a torsion sheaf F we define the length $l(F)$ of F to be the rank of F as a \boldsymbol{C}-module.
(1.8) Lemma. Let C be a reduced curve component of l. Assume $c_{1}(X)=$ $d c_{1}(L)$. Then we have,

$$
(d-n+1) L C+c_{1}\left(\Omega_{\tilde{c}}^{1}\right)+l\left(Q_{C}\right)+l\left(Q_{C}^{\prime \prime}\right)-l\left(Q_{C}^{\prime}\right)=0 .
$$

Proof. From the above exact sequences we infer,

$$
\begin{aligned}
\chi\left(\Omega_{\tilde{c}}^{1}\right)+l\left(Q_{C}^{\prime \prime}\right)-l\left(Q_{C}^{\prime}\right) & =\chi\left(\Omega_{c}^{1} \otimes O_{\tilde{c}}\right) \quad \text { by }(1.7 .7) \\
& =\chi\left(\Omega_{x}^{1} \otimes O_{\tilde{c}}\right)-\chi\left(\left[\left[I_{C} / I_{c}^{2}\right] \otimes O_{\tilde{c}}\right]\right) \quad \text { by }(1.7 .2) \\
& =\chi\left(\Omega_{x}^{1} \otimes O_{\tilde{c}}\right)-(n-1) \chi\left(O_{\tilde{c}}\left(-\nu^{*} L\right)\right)-l\left(Q_{C}\right) \\
& =\chi\left(O_{\tilde{c}}\right)+K_{X} C+(n-1) L C-l\left(Q_{C}\right) \\
& =\chi\left(O_{\tilde{c}}\right)-(d-n+1) L C-l\left(Q_{C}\right) \quad \text { by }(1.1 .1) .
\end{aligned}
$$

q.e.d.

Moreover we see
(1.9) Theorem. $l\left(Q_{C}^{\prime \prime}\right) \geqq l\left(Q_{C}^{\prime}\right)$. Equality holds if and only if C is nonsingular.

This is proved in §2. See (2.5).
As a corollary to (1.8) and (1.9), we infer
(1.10) Lemma. Assume $c_{1}(X)=d c_{1}(L)$. Let C be a reduced curve component of $l=l_{V}$. If $d \geqq n+1, L C \geqq 1$, then $d=n+1, L C=1, \tilde{C} \cong C \cong \boldsymbol{P}^{1}, N_{C / X} \cong O_{C}(1)^{\oplus(n-1)}$ and C is a connected component of l_{V}. Moreover if C is not contained in $B=$ $\mathrm{Bs}|L|$, then $C \cap B$ consists of at most one point.

Proof. Note that $c_{1}\left(\Omega_{\tilde{C}}^{1}\right) \geqq-2,(d-n+1) L C \geqq 2 L C \geqq 2, l\left(Q_{C}\right) \geqq 0$. By (1.9), $l\left(Q_{C}^{\prime \prime}\right) \geqq l\left(Q_{C}^{\prime}\right)$. Hence all the above inequalities are equalities by (1.8). Therefore $\tilde{C} \cong \boldsymbol{P}^{1}, L C=1, d=n+1, l\left(Q_{C}\right)=0, l\left(Q_{C}^{\prime \prime}\right)=l\left(Q_{C}^{\prime}\right)$. Moreover C is nonsingular by (1.9). Therefore the sequence (1.7.6) is the same as those in (1.3) and (1.7.3) where $\phi_{C}=\phi_{C}^{0}$ is an isomorphism. It follows that $N_{C / X}=\left(I_{C} / I_{C}^{2}\right)^{2} \cong$
$O_{C}(1)^{\oplus(n-1)}, I_{\iota}+I_{C}^{2}=I_{C}$ along C. Consequently $I_{\iota}=I_{C}$ along C by Nakayama's lemma. This implies that C is a connected component of l. In view of $L C=$ $1, C \cap B$ consists of at most a single point if $C \subset C_{V}$.
q.e.d.
(1.11) Lemma. Assume $c_{1}(X)=d c_{1}(L), d$ arbitrary. Let C be a reduced curve component of C_{V}. If $L C=0$ and if C_{V} is nonsingular outside B, then C is a smooth elliptic curve with $N_{C / X} \cong O_{C}^{\oplus(n-1)}$ and C is a connected component of l_{V} disjoint from B.

Proof. Let $l=l_{V}$. Any member D of $|L|$ contains $B \cap C$. Hence if $B \cap C$ $\neq \varnothing$, then D contains C because $L C=0$. Hence C is contained in B, which contradicts $C \subset C_{V}$. Therefore $B \cap C=\varnothing$. By the assumption, any singular point of C is contained in B. Therefore C is nonsingular, $l\left(Q_{C}^{\prime \prime}\right)=l\left(Q_{C}^{\prime}\right)=0$ and C passes through no singular points of $l_{\text {red }}$. This implies that C is a connected component of l and $I_{C}=I_{l}$ along C. Hence $l\left(Q_{C}\right)=0$ and ϕ_{C} is an isomorphism. In view of (1.8) we have $c_{1}\left(\Omega_{\tilde{c}}^{1}\right)=c_{1}\left(\Omega_{C}^{1}\right)=0$. Consequently C is a smooth elliptic curve disjoint from B. Meanwhile there is a member D of $|L|$ which does not contain C. Since $L C=0, D$ does not intersect C, which shows $L \otimes O_{C} \cong O_{C}$. It follows that $N_{C / X} \cong O_{C}^{\oplus(n-1)}$.
q.e.d.

§ 2. The inequality $l\left(Q_{C}^{\prime \prime}\right) \geqq l\left(Q_{C}^{\prime}\right)$ - Proof of (1.9).

(2.1) Let C be an irreducible curve, $\nu: \tilde{C} \rightarrow C$ the normalization, F a torsion $O_{\tilde{c}}$-module, p (resp. q) a point of C (resp. $\left.\tilde{C}\right)$. Then we define $e(F, q), l(F, p)$ and $l(F)$ as follows,

$$
\begin{gathered}
e(F, q)=l\left(F_{q}\right)=\operatorname{dim}_{C} F_{q}, \\
l(F, p)=\sum_{q \text { above } p} l\left(F_{q}\right), \quad l(F)=\sum_{p \in C} l(F, p) .
\end{gathered}
$$

It is clear that if C is locally irreducible at p, then we have $e(F, q)=l(F, p)$ for the unique point q of \tilde{C} lying above p.

Let $\operatorname{sing} C$ be the set of all singular points of C. Then consider the exact sequence

$$
\begin{equation*}
0 \longrightarrow Q_{c}^{\prime \prime} \longrightarrow \Omega_{c}^{1} \otimes O_{\tilde{c}} \longrightarrow \Omega_{\tilde{c}}^{1} \longrightarrow Q_{c}^{\prime} \longrightarrow 0 \tag{2.1.1}
\end{equation*}
$$

Hence we have

$$
l\left(Q_{c}^{\prime}\right)=\sum_{p \in \operatorname{Sing} c} l\left(Q_{C}^{\prime}, p\right), \quad l\left(Q_{C}^{\prime \prime}\right)=\sum_{p \in \operatorname{Sing} C} l\left(Q_{C}^{\prime \prime}, p\right)
$$

Now we consider the germ of C at $p \in \operatorname{Sing} C$ locally. Let $C=C_{1} \cup \cdots \cup C_{r}$ be locally irreducible components of C at p. Then we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow Q_{\lambda}^{\prime \prime} \longrightarrow \Omega_{C_{\lambda}}^{1} \otimes O_{\tilde{c}_{\lambda}} \longrightarrow \Omega_{\tilde{c}_{\lambda}}^{1} \longrightarrow Q_{\lambda}^{\prime} \longrightarrow 0 \tag{2.1.2}
\end{equation*}
$$

where $Q_{\lambda}^{\prime}:=Q_{C_{\lambda}}^{\prime}$, and $Q_{\lambda}^{\prime \prime}:=Q_{C_{\lambda}}^{\prime \prime}$ for an irreducible component C_{λ} at p. The local curve C_{λ} is irreducible at p, and the normalization \tilde{C}_{λ} of C_{λ} has a unique point q_{λ} above p. Then we have at p

$$
\Omega_{\tilde{c}}^{1} \cong \oplus_{\lambda} \Omega_{\tilde{c}_{\lambda}}^{1} \cong \oplus_{\lambda} \Omega_{\tilde{c}_{2}, q_{\lambda}}^{1}, \quad O_{\tilde{c}} \cong \oplus_{\lambda} O_{\tilde{c}_{\lambda}} \cong \oplus_{\lambda} O_{\tilde{c}_{\lambda}, q_{\lambda}}
$$

Hence

$$
\begin{aligned}
Q_{C}^{\prime} & \cong \oplus_{\lambda} \Omega_{\tilde{C}_{\lambda}}^{1} / \oplus_{\lambda} \Omega_{C_{\lambda}}^{1} \otimes O_{\tilde{C}_{\lambda}} \\
& \cong \oplus_{\lambda}\left(\Omega_{\tilde{C}_{\lambda}}^{1} / \Omega_{C_{\lambda}}^{1} \otimes O_{\tilde{C}_{\lambda}}\right) \\
& \cong \oplus_{\lambda} Q_{\lambda}^{\prime}
\end{aligned}
$$

whence $l\left(Q_{c}^{\prime}, p\right)=\Sigma_{\lambda} l\left(Q_{\lambda}^{\prime}\right)$.
Next we consider $l\left(Q_{C}^{\prime \prime}, p\right)$. We have a commutative diagram

with j surjective. Hence $\operatorname{Ker} \xi$ is mapped onto $\oplus \operatorname{Ker} \xi_{\lambda}$. This shows

$$
l\left(Q_{C}^{\prime \prime}, p\right)=l(\operatorname{Ker} \xi) \geqq \sum_{\lambda \in \Lambda} l\left(\operatorname{Ker} \xi_{\lambda}\right)=\sum_{\lambda \in \Lambda} l\left(Q_{\lambda}^{\prime \prime}\right)
$$

Thus we obtain
(2.2) Lemma. Let $C_{\lambda}(\lambda \in \Lambda)$ be all the locally irreducible components"of C at p. Then

$$
\begin{aligned}
& l\left(Q_{C}^{\prime}, p\right)=\sum_{\lambda \in \Lambda} l\left(Q_{\lambda}^{\prime}\right) \\
& l\left(Q_{C}^{\prime \prime}, p\right) \geqq \sum_{\lambda \in \Lambda} l\left(Q_{\lambda}^{\prime \prime}\right) .
\end{aligned}
$$

Next we prove
(2.3) Lemma. Assume that C is locally irreducible at p. Then $l\left(Q_{C}^{\prime \prime}, p\right) \geqq$ $l\left(Q_{C}^{\prime}, p\right)$. Equality holds if and only if C is nonsingular at p. If C is singular at p, then $l\left(Q_{c}^{\prime \prime}, p\right) \geqq l\left(Q_{c}^{\prime}, p\right)+2$.

Proof. Let x_{1}, \cdots, x_{n} be a local coordinate system of X at p. Then we may assume that the normalization $\nu: \tilde{C} \rightarrow C(\subset X)$ is locally given by

$$
\begin{aligned}
& x_{1}=t^{m} \\
& x_{j}=f_{j}(t)=t^{m}{ }_{j} g_{j}(t), \quad g_{j}(0) \neq 0, \quad(2 \leqq j \leqq s) \\
& x_{j}=0 \quad(s+1 \leqq j \leqq n)
\end{aligned}
$$

where $m<m_{2}<m_{3}<\cdots<m_{s}$, none of m_{j} and $m_{j}-m_{k}$ is an integral multiple of
m, s is the embedding dimension of (C, p). By the choice of m_{2}, there is a positive integer q such that $m \leqq q m<m_{2}<(q+1) m$.

In terms of the parameter t, (by taking completions) we have

$$
\begin{aligned}
\Omega_{\tilde{c}, q}^{1} & \cong \boldsymbol{C}[[t]] d t \\
\operatorname{Image}\left(\Omega_{\tilde{C}, p}^{1} \otimes O_{\tilde{C}, q}\right) & \cong \boldsymbol{C}[[t]] t^{m-1} d t+\cdots+\boldsymbol{C}[[t]] \nu^{*} d x_{s} \\
& \cong \boldsymbol{C}[[t]] t^{m-1} d t+\cdots+\boldsymbol{C}[[t]]\left(m_{s} t^{m_{s-1}} g_{s}+t^{m} g_{s}^{\prime}\right) d t \\
& \cong \boldsymbol{C}[[t]] t^{m-1} d t
\end{aligned}
$$

because $m_{j}>m(j \geqq 2)$. Consequently

$$
\begin{equation*}
l\left(Q_{C}^{\prime}, p\right)=l\left(\Omega_{\dot{C}, q}^{1} / \Omega_{C, q}^{1} \otimes O_{\ddot{C}, q}\right)=m-1 . \tag{2.3.1}
\end{equation*}
$$

Next consider $l\left(Q_{C}^{\prime \prime}, p\right)$. First we see that $J:=I_{C} \cap \boldsymbol{C}\left[\left[x_{1}, \cdots, x_{s}\right]\right]$ is contained in m_{p}^{2}, m_{p} being the maximal ideal of $O_{X, p}$. In fact, if there is an element $F \in J \cap\left(m_{p} \backslash m_{p}^{2}\right)$, then F is part of a local coordinate system. Replacing one of the local parameters x_{1}, \cdots, x_{s}, say x_{s}, by F then C is contained in $x_{s}=x_{s+1}=\cdots=x_{n}=0$ locally. This is absurd because we choose s minimal, s being equal to the embedding dimension of (C, p).

When $m=1, C$ is nonsingular at p and $\Omega_{c}^{1} \otimes O_{\tilde{c}} \cong \Omega_{\tilde{c}}^{1}, l\left(Q_{c}^{\prime \prime}, p\right)=l\left(Q_{c}^{\prime}, p\right)=0$.
So we may assume $m \geqq 2$. Let $e_{j}=d x_{j} \otimes 1 \in \Omega_{x}^{1} \otimes O_{\tilde{c}}, \bar{e}_{j}=d x_{j} \otimes 1 \in \Omega_{c}^{1} \otimes O_{\tilde{c}}$ for $1 \leqq j \leqq s$. Then the element $\sigma_{j}=\left(f_{j}^{\prime}(t) / m t^{m-1}\right) \bar{e}_{1}-\bar{e}_{j}$ is contained in $Q_{c}^{\prime \prime}$. In fact, $\boldsymbol{\xi}\left(\sigma_{j}\right)=\left(f_{j}^{\prime}(t) / m t^{m-1}\right) \nu^{*} d x_{1}-\nu^{*} d x_{j}=0$. Now we choose the minimal integer $N \geqq 0$ such that $t^{N} \sigma_{2}=0$. We note that

$$
\begin{equation*}
l\left(Q_{C}^{\prime \prime}, p\right) \geqq N \tag{2.3.2}
\end{equation*}
$$

Recall that

$$
\Omega_{C}^{1} \otimes O_{c} \cong \sum_{j=1}^{s} \boldsymbol{C}[[t]] e_{j} / \boldsymbol{C}[[t]]\left\{\sum_{j=1}^{s} \nu^{*}\left(\partial \varphi / \partial x_{j}\right) e_{j}, \varphi \in I_{C}\right\} .
$$

Hence $t^{N} \sigma_{2}=0$ means that there exist some $F_{i} \in \boldsymbol{C}[[t]]$ and $\varphi_{i} \in I_{C}(1 \leqq i \leqq l)$ such that

$$
\begin{equation*}
t^{N}\left(\left(f_{2}^{\prime}(t) / m t^{m-1}\right) e_{1}-e_{2}\right)=\sum_{j=1}^{s}\left(\sum_{i=1}^{l} F_{i}(t) \nu^{*}\left(\partial \varphi_{i} / \partial x_{j}\right)\right) e_{j} . \tag{2.3.3}
\end{equation*}
$$

The coefficient of e_{1} in the right hand side is equal to $\sum_{i=1}^{l} F_{i}(t) \nu^{*}\left(\partial \varphi_{i} / \partial x_{1}\right)$. Take any element $\varphi \in I_{c}\left(\subset m_{p}\right)$. We want to estimate a lower bound of $\operatorname{deg} \nu^{*}\left(\partial \varphi / \partial x_{1}\right)$. For this purpose, we may assume $\varphi \in I_{C} \cap \boldsymbol{C}\left[\left[x_{1}, \cdots, x_{s}\right]\right]\left(\subset m_{p}^{2}\right)$. Expand φ as

$$
\varphi=\sum_{i_{1}+\cdots+i_{s} \geq 2} a_{i_{1} \cdots i_{s}} x_{1}^{i_{1}} \cdots x_{s}^{i_{s}} .
$$

Since $\varphi \in I_{C}$ is equivalent to $\nu^{*} \varphi=0$, we have $a_{20 \ldots 0}=0$ because x_{1}^{2} is the unique monomial in x_{j} 's with $\operatorname{deg} \nu^{*} x_{1}^{2}=2 m$. We put $a_{10 \ldots 0}=0$.
(2.3.4) CLAIM. $a_{j 0 \ldots 0}=0(1 \leqq j \leqq 2 q), a_{j 1 \ldots 0}=0(1 \leqq j \leqq q)$.

Proof of (2.3.4). First we prove $a_{j 0 \ldots 0}=0(1 \leqq j \leqq 2 q)$. Assume the contrary. We choose the minimal j_{0} such that $a_{j_{0} 0 \ldots 0} \neq 0$. Since $\nu^{*} \varphi=0$, there is at least another monomial term γ in φ with degree $\leqq j_{0} m$. We choose γ to be the monomial in φ with minimum degree. We note that $\operatorname{deg} \nu^{*}\left(x_{i} x_{j}\right) \geqq 2 m_{2}>2 q m \geqq$ $j_{0} m$ for any $i, j \geqq 2$. Therefore $\gamma=x_{1}^{i} x_{j}$ for some $i \geqq 1, j \geqq 2$. Since $\operatorname{deg} \gamma=$ $\operatorname{deg} \nu^{*}\left(x_{1}^{i} x_{j}\right)=i m+m_{j}$ and m_{j} is not divisible by m, we see that there is another term $\delta=x_{1}^{k} x_{\iota}$ in φ whose degree $k m+m_{l}$ is equal to $i m+m_{j}$. However this is impossible because $m_{j}-m_{\iota}(j \neq l)$ is not divisible by m. Hence $a_{j 0.0}=0(1 \leqq j \leqq 2 q)$. Similarly we can prove $a_{j 10 \ldots 0}=0(1 \leqq j \leqq q)$.
q.e.d.

In view of (2.3.4), the expansion of φ is

$$
\varphi=\sum_{j \geq 2 q+1} a_{j} x_{1}^{j}+\sum_{i \geq q+1} b_{i} x_{1}^{i} x_{2}+\sum_{j \geq 2} c_{j} x_{1} x_{2}^{j}+\sum_{i \geqq 1, j \geq 3} d_{i j} x_{1}^{i} x_{j}+\sum_{i, j \geq 2} e_{i j} x_{i} x_{j}+\cdots
$$

so that

$$
\partial \varphi / \partial x_{1}=(2 q+1) a_{2 q+1} x_{1}^{2 q}+(q+1) b_{q+1} x_{1}^{q} x_{2}+c_{2} x_{2}^{2}+d_{13} x_{3}+\cdots .
$$

Hence we have,

$$
\begin{gathered}
\operatorname{deg} \nu^{*}\left(\partial \varphi / \partial x_{1}\right) \geqq \min \left(2 q m, q m+m_{2}, 2 m_{2}, m_{3}\right)=\min \left(2 q m, m_{3}\right) \\
\operatorname{deg} \nu^{*}\left(\partial \varphi_{i} / \partial x_{1}\right) \geqq \min \left(2 q m, m_{3}\right) \quad \text { for any } i \text { in }(2.3 .3) \\
\operatorname{deg} t^{N-m+1} f_{2}^{\prime}(t) \geqq \min \left(2 q m, m_{3}\right) \quad \text { by } \quad(2.3 .3) .
\end{gathered}
$$

It follows from (2.3.1) and (2.3.2) that
or

$$
l\left(Q_{C}^{\prime \prime}, p\right)-l\left(Q_{C}^{\prime}, p\right) \geqq N-m+1 \geqq m_{3}-m_{2}+1 \geqq 2
$$

In either case $l\left(Q_{C}^{\prime \prime}, p\right) \geqq l\left(Q_{c}^{\prime}, p\right)+2$ as desired, which completes a proof of (2.3).
q.e.d.
(2.4) Lemma. Let $\left(C_{\lambda}, p\right)$ be a germ of a locally irreducible component of $C(\lambda \in \Lambda), C=\cup_{\lambda \in 1} C_{\lambda}$. Let $\Lambda_{\mathrm{ns}}\left(\right.$ resp. $\left.\Lambda_{\mathrm{s}}\right)$ be the subset of Λ consisting of all $\lambda \in \Lambda$ with $\left(C_{\lambda}, p\right)$ nonsingular (resp. singular). Assume $\#(\Lambda) \geqq 2$. Then

$$
\begin{gathered}
l\left(Q_{C}^{\prime \prime}, p\right) \geqq \sum_{\lambda \in A} l\left(Q_{\lambda}^{\prime \prime}\right)+\#\left(\Lambda_{\mathrm{ns}}\right) \\
l\left(Q_{C}^{\prime \prime}, p\right) \geqq l\left(Q_{C}^{\prime}, p\right)+2 \#\left(\Lambda_{\mathrm{s}}\right)+\#\left(\Lambda_{\mathrm{ns}}\right)
\end{gathered}
$$

Proof. By (2.1.1) and (2.1.2), we see

$$
l\left(Q_{C}^{\prime \prime}, p\right)=\sum_{\lambda} l\left(Q_{\lambda}^{\prime \prime}\right)+\sum_{\lambda} l\left(\operatorname{Ker}\left(\Omega_{c}^{1} \otimes O_{\tilde{c}_{\lambda}} \longrightarrow \Omega_{C_{\lambda}}^{1} \otimes O_{\tilde{c}_{\lambda}}\right)\right),
$$

where $\Omega_{c}^{1} \otimes O_{\tilde{c}_{\lambda}} \cong \Omega_{c}^{1} \otimes O_{c_{\lambda}}, \Omega_{c_{2}}^{1} \otimes O_{\tilde{c}_{\lambda}} \cong \Omega_{c_{\lambda}}^{1}$ for (C_{λ}, p) nonsingular. Hence it suffices to prove $l\left(\operatorname{Ker}\left(\Omega_{C}^{1} \otimes O_{c_{\lambda}} \rightarrow \Omega_{C_{\lambda}}^{1}\right)\right) \geqq 1$ for $\lambda \in \Lambda_{\text {ns }}$. Let I_{C} (resp. $I_{C_{\lambda}}$) be the defining ideal of C (resp. C_{λ}) in O_{X}. Then by definition,

$$
\begin{equation*}
\Omega_{c}^{1} \otimes O_{C_{\lambda}} \cong \Omega_{X}^{\frac{1}{x}} / I_{C_{\lambda}} \Omega_{x}^{1}+O_{x}\left\{d \psi ; \psi \in I_{C}\right\} \tag{2.4.1}
\end{equation*}
$$

$$
\begin{equation*}
\Omega_{C_{\lambda}}^{1} \cong \Omega_{X}^{\frac{1}{x}} / I_{C_{\lambda}} \Omega_{X}^{\frac{1}{x}}+O_{X}\left\{d \varphi ; \varphi \in I_{C_{\lambda}}\right\} . \tag{2.4.2}
\end{equation*}
$$

We assume $l\left(\operatorname{Ker}\left(\Omega_{c}^{1} \otimes O_{C_{\lambda}} \rightarrow \Omega_{C_{\lambda}}^{1}\right)\right)=0$ for some $\lambda \in \Lambda_{\text {ns }}$ to derive a contradiction. By (2.4.1) and (2.4.2) we assume that

$$
\begin{equation*}
\left\{d \varphi ; \varphi \in I_{C_{\lambda}}\right\} \subset I_{C_{\lambda}} \Omega_{X}^{1}+O_{X}\left\{d \psi ; \psi \in I_{C}\right\} \tag{2.4.3}
\end{equation*}
$$

Let x_{1}, \cdots, x_{n} be a system of local coordinates of X at p such that $I_{C_{\lambda}}=$ (x_{1}, \cdots, x_{n-1}). Since $I_{C} \subset I_{C_{\lambda}}$ and $I_{C} \neq I_{C_{\lambda}}$, we have

$$
I_{C}=\left(x_{1}, \cdots, x_{m}, \psi_{1}, \cdots, \psi_{l}\right)
$$

for some $\psi_{i} \in I_{C_{\lambda}} \cap m_{p}^{2}=I_{C_{\lambda}} m_{p}$, and $m<n-1$. Since Ω_{X}^{1} is freely generated by $d x_{i}(1 \leqq i \leqq n)$, we have by (2.4.3)

$$
d x_{j} \in I_{C_{\lambda}} d x_{j}+m_{p} d x_{j}(m+1 \leqq j \leqq n-1),
$$

which is a contradiction. Hence $l\left(\operatorname{Ker}\left(\Omega_{C}^{1} \otimes O_{C_{\lambda}} \rightarrow \Omega_{C_{\lambda}}^{1}\right)\right) \geqq 1$ for $\lambda \in \Lambda_{\mathrm{ns}}$. This proves the first inequality of (2.4). The second inequality follows readily from the first inequality and (2.3).
q.e.d.

The following theorem and corollary are clear from (2.2)-(2.4).
(2.5) Theorem. $l\left(Q_{C}^{\prime \prime}\right) \geqq l\left(Q_{C}^{\prime}\right)$ for any irreducible curve C. Equality holds if and only if C is nonsingular. If C is singular, then $l\left(Q_{C}^{\prime \prime}\right) \geqq l\left(Q_{C}^{\prime}\right)+2$.
(2.6) Corollary. (2.6.1) If (C, p) is irreducible, then $\left.e\left(Q_{C}^{\prime \prime}, q\right) \geqq e\left(Q_{C}^{\prime}, q\right)\right]$ for the unique point q above p. Equality holds if and only if (C, p) is nonsingular. If (C, p) is singular, then $e\left(Q_{C}^{\prime \prime}, q\right) \geqq e\left(Q_{C}^{\prime}, q\right)+2$.
(2.6.2) Under the same notation and assumption in (2.4), let q be a point of the normalization \tilde{C}_{λ} of C_{λ} above p. Then

$$
\begin{aligned}
& e\left(Q_{c}^{\prime \prime}, q\right) \geqq e\left(Q_{c}^{\prime}, q\right)+1, e\left(Q_{C}^{\prime}, q\right)=0 \quad \text { for } \quad \lambda \in \Lambda_{\mathrm{ns}}, \\
& e\left(Q_{C}^{\prime \prime}, q\right) \geqq l\left(Q_{\lambda}^{\prime \prime}\right) \geqq e\left(Q_{C}^{\prime}, q\right)+2 \quad \text { for } \quad \lambda \in \Lambda_{\mathrm{s}} .
\end{aligned}
$$

Appendix. Subadjunction formula.
(2.A) Theorem (SUbADJunction formula). Let X be a smooth algebraic variety of dimension n, D_{i} a reduced irreducible divisor of $X(1 \leqq i \leqq m)$. Assume
that the scheme-theoretic complete intersection $\tau=D_{1} \cap \cdots \cap D_{m}$ has an irreducible component $Z=Z_{\text {red }}$ of dimension $n-m$ along which τ is reduced generically. Let $\nu: Y \rightarrow Z$ be the normalization of Z. Then there exists an effective Weil divisor Δ of Y such that

$$
\begin{equation*}
K_{Y}=\nu^{*}\left(K_{X}+D_{1}+\cdots+D_{m}\right)-\Delta \tag{2.A.1}
\end{equation*}
$$

(2.A.2) $\operatorname{supp}\left(\nu_{*} \Delta\right)$ is the union of all the Weil divisors of Z whose supports are contained in either $\operatorname{Sing} Z$ or one of the irreducible components of τ other than Z.

We note that the canonical sheaf K_{Y} is the unique torsion free sheaf on the normal variety Y given by $K_{Y}=i_{*}\left(\Omega_{Y \backslash \operatorname{Sing} Y}^{n}\right)$, where $i: Y \backslash \operatorname{Sing}(Y) \rightarrow Y$ is the inclusion.

The condition (2.A.2) implies that supp $\Delta=\phi$ if and only if Z is smooth in codimension one and moreover Z intersect the irreducible components of τ other than Z along some subvarieties of at most ($n-m-2$) dimension.

Proof of (2.A). The proof is almost the same as those of (1.8) and (1.9). Let $U=Y \backslash \operatorname{Sing} Y, V=\nu(U)$ and $V^{\prime}=V \backslash \operatorname{Sing} V, U^{\prime}=\nu^{-1}\left(V^{\prime}\right)$. Let $I_{D_{i}}$ (resp. I) be the ideal sheaf of O_{X} defining D_{i} (resp. Z) and let $I_{\tau}=I_{D_{1}}+\cdots+I_{D_{m}}$. So we note $\sqrt{I_{D_{i}}}=I_{D_{i}}$ and $\sqrt{I}=I$. Now we consider the exact sequences

$$
\begin{equation*}
I / I^{2} \longrightarrow \Omega_{X}^{1} \otimes O_{z} \longrightarrow \Omega_{Z}^{1} \longrightarrow 0 \tag{2.A.3}
\end{equation*}
$$

$$
\begin{equation*}
\nu^{*}\left(I / I^{2}\right) \otimes O_{U} \longrightarrow \nu^{*}\left(\Omega_{X}^{\frac{1}{x}}\right) \otimes O_{U} \longrightarrow \nu^{*}\left(\Omega_{\frac{1}{Z}}\right) \otimes O_{U} \longrightarrow 0 . \tag{2.A.4}
\end{equation*}
$$

Since $U^{\prime} \cong V^{\prime}$ and V^{\prime} is nonsingular, the first homomorphism in (2.A.4) is injective over U^{\prime}. Hence denoting by [F] the quotient of F by O_{U}-torsions in F, we infer an exact sequence,

$$
\begin{equation*}
0 \longrightarrow\left[\nu^{*}\left(I / I^{2}\right) \otimes O_{U}\right] \longrightarrow \nu^{*}\left(\Omega_{X}^{\frac{1}{X}}\right) \otimes O_{U} \longrightarrow \nu^{*}\left(\Omega_{Z}^{1}\right) \otimes O_{U} \longrightarrow 0 \tag{2.A.5}
\end{equation*}
$$

Since τ is reduced generically along Z, we have a natural injective homomorphism η
where we can prove that ρ is an isomorphism in the same manner as in (1.4). Let Q_{U} be the cokernel of η. Then we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow{\underset{i=1}{m} O_{U}\left(-\nu^{*} D_{i}\right) \xrightarrow{\eta}\left[\nu^{*}\left(I / I^{2}\right) \otimes O_{U}\right] \longrightarrow Q_{U} \longrightarrow 0 ~}_{\text {. }} \tag{2.A.6}
\end{equation*}
$$

On the other hand we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow Q_{U}^{\prime \prime} \longrightarrow \nu^{*} \Omega_{\frac{1}{1}}^{\otimes} O_{U} \xrightarrow{\lambda} \Omega_{U}^{1} \longrightarrow Q_{U}^{\prime} \longrightarrow 0 \tag{2.A.7}
\end{equation*}
$$

where $Q_{U}^{\prime \prime}\left(\right.$ resp. $\left.Q_{U}^{\prime}\right)$ is Ker λ (resp. Coker λ). Now take an arbitrary prime Weil divisor B of Y contained in one of the supports of Q_{U}, Q_{U}^{\prime} and $Q_{U}^{\prime \prime}$. We define $e(F, B)$ to be the length of a torsion sheaf F at a generic point of B as a $k(B)$-module. Then $e\left(Q_{U}, B\right), e\left(Q_{U}^{\prime}, B\right)$ and $e\left(Q_{U}^{\prime \prime}, B\right)$ are essentially the same as the invariants $e\left(Q_{C}, q\right), e\left(Q_{c}^{\prime}, q\right)$ and $e\left(Q_{C}^{\prime \prime}, q\right)$ defined in (1.8) and (2.1). By (2.6) we have

$$
\begin{equation*}
e\left(Q_{U}^{\prime \prime}, B\right) \geqq e\left(Q_{U}^{\prime}, B\right) . \tag{2.A.8}
\end{equation*}
$$

Moreover by (2.A.7), (2.A.5) and (2.A.6), we have

$$
\begin{aligned}
K_{U}=\operatorname{det} \Omega_{U}^{1} & \cong \operatorname{det}\left(\nu^{*} \Omega_{Z}^{1} \otimes O_{U}\right)-\sum_{B}\left(e\left(Q_{U}^{\prime \prime}, B\right)-e\left(Q_{U}^{\prime}, B\right)\right) B \\
& \cong \operatorname{det}\left(\nu^{*} \Omega_{X}^{1} \otimes O_{U}\right)-\operatorname{det}\left[\nu^{*}\left(I / I^{2}\right) \otimes O_{U}\right]-\sum_{B}\left(e\left(Q_{U}^{\prime \prime}, B\right)-e\left(Q_{U}^{\prime}, B\right)\right) B \\
& \cong \nu^{*} K_{X}+\sum_{i=1}^{m} \nu^{*} D_{i}-\sum_{B} e\left(Q_{U}, B\right) B-\sum_{B}\left(e\left(Q_{U}^{\prime \prime}, B\right)-e\left(Q_{U}^{\prime}, B\right)\right) B .
\end{aligned}
$$

Let $\Delta:=\Sigma_{B}\left(e\left(Q_{U}, B\right)+e\left(Q_{U}^{\prime \prime}, B\right)-e\left(Q_{U}^{\prime}, B\right)\right) B$. Then we have (2.A.1). Moreover if Z is singular along a prime Weil divisor C, then in view of (2.6) e($Q_{U}^{\prime \prime}$, $B) \geqq e\left(Q_{U}^{\prime}, B\right)+1$ for any prime Weil divisor B of Y lying over C. (Note that B may not be birational to C.) If Z intersects one of the irreducible components of τ other than Z along a prime Weil divisor C, then by the definition $e\left(Q_{U}, B\right) \geqq 1$ for any prime Weil divisor B lying over C. Thus we have (2.A.2).
q.e.d.

It is easy to see that (2.A) has a counterpart in the complex analytic category.

§ 3. Proofs of (0.2) and (0.3).

(3.1) Theorem. Let X be a complete nonsingular algebraic variety (or a compact complex manifold) of dimension n. Assume that $c_{1}(X)=d c_{1}(L)(d \geqq n+1)$ and $h^{0}(X, L) \geqq n$. If general ($n-1$)-members of $|L|$ intersect rationally outside $\mathrm{Bs}|L|$, then $X \cong \boldsymbol{P}^{n}$.

Proof. Our proof of (3.1) consists of two steps. First we prove (3.1) in (3.1.1)-(3.1.7) under the assumption $h^{0}(X, L) \geqq n+1$. Next we disprove the possibility_of $h^{0}(X, L)=n$ in (3.1.8)-(3.1.10).

First we prove
(3.1.1) Claim. Let $N=h^{0}(X, L)-1 \geqq n$ and $f: X \rightarrow \boldsymbol{P}^{N}$ be the rational map associated with $|L|$. Let $\bar{X}:=\overline{f(X \backslash B)}$. Then $d=n+1, N=n$ and $\bar{X} \cong \boldsymbol{P}^{n}$.

Proof. We use the same notation $l_{V}=C_{V}+B$ as in (1.1). Let $\mathscr{H}=H^{0}(X$, $L), V$ a general ($n-1$)-dimensional subspace of \mathscr{H}.

First we prove $\operatorname{dim} \bar{X}=n$. By the assumption, $\operatorname{dim} \bar{X} \geqq n-1$. Assume $\operatorname{dim} \bar{X}=n-1$. By (1.10) and (1.11), $d=n+1$ and if V is general enough, C_{V} is a disjoint union of nonsingular rational curves $C_{i}(1 \leqq i \leqq r \operatorname{deg} \bar{X})$ with $L C_{i}=1$ and $f\left(C_{i} \backslash B\right)$ a point, where r is the number of irreducible components of a general fiber of f. Let $C=C_{1}$. If Bs $|L|_{C}$ is empty, then $L C=1 \mathrm{implies} \operatorname{dim} \bar{X}$ $=n$, a contradiction. Hence by (1.10), $\mathrm{Bs}|L|_{C}=\{p\}$ for some point p of C. Since p is isolated in B by (1.10), p is contained in any C_{i}. However C is a connected component of l_{V} by (1.10), whence $r=\operatorname{deg} \bar{X}=1$. Therefore $N=n-1$ and $\bar{X} \cong \boldsymbol{P}^{n-1}$, which contradicts $N \geqq n$. It follows that $\operatorname{dim} \bar{X}=n$. Therefore for V general enough, C_{V} is a disjoint union of smooth rational curves C_{i} with $L C_{i}=1$. Since $L C_{i}=\operatorname{deg}\left(f_{1 c_{i}}\right) \operatorname{deg} \bar{X}+\operatorname{deg} \operatorname{Bs}|L|_{c_{i}}$, we have $\operatorname{deg}\left(f_{1 C_{i}}\right)=1, \operatorname{deg} \bar{X}$ $=1$ and $\operatorname{Bs}|L|_{c_{i}}=\varnothing$. Therefore we have $N=n$ and $\bar{X} \cong \boldsymbol{P}^{n}$. q.e.d.
(3.1.2) Let $\mathscr{H}:=H^{0}(X, L)$ and $G=\operatorname{Grass}(n-1, \mathscr{H})$. Then we define

$$
P=\{([V], x) \in G \times X ; s(x)=0 \quad \text { for any } \quad s \in V\}
$$

Then by the assumption there exists an irreducible component P_{0} of P such that $p r_{G}\left(P_{0}\right)=G, p r_{X}\left(P_{0}\right)$ is not contained in B. Let π_{0} (resp. ρ_{0}) be the natural projection from P_{0} onto G (resp. into X). For general $W \in G, C_{W}$ has an irreducible component $C\left(\cong \boldsymbol{P}^{1}\right)$. We may assume by (1.10) that $\rho_{0}\left(\pi_{0}^{-1}[W]\right)$ contains C as a connected component.

Let C^{\prime} be an irreducible component of $\pi_{0}^{-1}([W])$ mapped onto C, z a general point of $C^{\prime}, x=\rho_{0}(z)$. Since C^{\prime} is smooth at z, so is P_{0} at z. Now we recall canonical isomorphisms;

$$
\begin{aligned}
& T_{z}\left(P_{0}\right) \cong T_{[W]} G \oplus T_{x}(C) \cong(\mathscr{H} / W)^{\oplus(n-1)} \oplus T_{x}(C), \\
& T_{x}(X) \cong\left(N_{C / X}\right)_{x} \oplus T_{x}(C) \cong\left(L_{C}\right)_{x}^{(n-1)} \oplus T_{x}(C) .
\end{aligned}
$$

Let p be a point of $C, \mathscr{H}(-p):=\{s \in \mathscr{H} ; s(p)=0\}, G(-p):=\operatorname{Grass}(n-1$, $\mathscr{H}(-p))$. Since $\mathrm{Bs}|L|_{C}=\varnothing$ by (1.10), $G(-p)$ is a smooth proper subvariety of G by the natural morphism induced from the inclusion $\mathscr{H}(-p) \subset \mathscr{H}$. We also see,

$$
T_{z}(G(-p) \times X) \cong T_{[W]} G(-p) \oplus T_{x}(X) \cong(\mathscr{H}(-p) / W)^{\oplus(n-1)} \oplus T_{x}(X)
$$

It follows that $G(-p) \times X$ and P_{0} intersect transversally at z. Therefore the intersection $P_{0} \cap(G(-p) \times X)$ is smooth at z. Let S_{0} be the unique irreducible component of $P_{0} \cap(G(-p) \times X)$ passing through z. Then we see

$$
T_{z}\left(S_{0}\right) \cong T_{[W]} G(-p) \oplus T_{x}(C) \cong(\mathscr{H}(-p) / W)^{\oplus(n-1)} \oplus T_{x}(C)
$$

Since $\mathscr{H}(-p) / W$ is mapped onto L_{x} for $p \in C$ general, $T_{z}\left(S_{0}\right)$ is mapped onto $T_{x}(X)$ in the natural manner. Hence $\rho_{0}\left(S_{0}\right)=X$.
(3.1.3) We choose a general $W_{0} \in G$ and take an irreducible component
$C_{0}\left(\cong \boldsymbol{P}^{1}\right)$ of $C_{W_{0}}$ which is a connected component of $\rho_{0}\left(\pi_{0}^{-1}\left[W_{0}\right]\right)$ as in (3.1.2). We choose and fix a general point p of C_{0} and we define

$$
Y=\{([V], x) \in G(-p) \times X ; s(x)=0 \quad \text { for any } \quad s \in V\}
$$

Let $Y=\cup_{i=0}^{b} Y_{i}$ be the decomposition of Y into irreducible components, $Y_{i}(0 \leqq i \leqq e)$ all the components such that $p r_{G(-p)}\left(Y_{i}\right)=G(-p), p r_{X}\left(Y_{i}\right)$ is not contained in B. By (3.1.2), we have $e \geqq 0$. Let p_{i} (resp. q_{i}) be the natural projection from Y_{i} onto $G(-p)$ (resp. into X). We may assume $S_{0} \subset Y_{0}$ under the notation of (3.1.2). For general $W \in G(-p)$, let $C_{W}=\sum_{i=0}^{a} C_{W}^{i}$ be the decomposition of C_{W} into irreducible components where C_{W}^{i} is a rational curve $(0 \leqq i \leqq a)$ and C_{W}^{0} is by (1.10) the unique component containing the point p. We may assume that $q_{0}\left(p_{0}^{-1}[W]\right)$ contains C_{W}^{0} as a connected component.
(3.1.4) Claim. Any general fibre $p_{0}^{-1}([V])$ is irreducible.

Proof. Consider the Stein factorization of p_{0}

We note that $p_{0}: Y_{0} \rightarrow G(-p)$ has a section σ_{0} defined by $\sigma_{0}([V])=([V], p)$. Hence we have a morphism $\xi \cdot \sigma_{0}: G(-p) \rightarrow \tilde{G}(-p)$ such that $\eta \cdot \xi \cdot \sigma_{0}=\operatorname{id}_{G(-p)}$. As η is finite, we have $\operatorname{dim} \tilde{G}(-p)=\operatorname{dim} G(-p)$. Since $G(-p)$ is complete, we have $\tilde{G}(-p)=\xi \cdot \sigma_{0}(G(-p))$, and η is an isomorphism. Therefore any general fibre of p_{0} is irreducible.
q.e.d.

Next we prove
(3.1.5) CLaim. $q_{i}\left(Y_{i}\right)=X$ for $0 \leqq i \leqq e$.

Proof. Let C^{\prime} be an irreducible component of $p_{i}^{-1}([W]), C^{\prime \prime}=q_{i}\left(C^{\prime}\right)$. Since $\operatorname{pr}_{X}\left(Y_{i}\right)$ is not contained in B by assumption, $C^{\prime \prime}$ is an irreducible component of C_{W} for W general so that $C^{\prime \prime}$ is \boldsymbol{P}^{1} by (1.10) and $\mathrm{Bs}|L|_{C^{n}}=\varnothing$ by the proof of (3.1.1). Hence by (3.1.1) the natural homomorphism of \mathscr{H} into $H^{0}\left(C^{\prime \prime}, L_{C^{\prime \prime}}\right)$ induces an isomorphism $\mathscr{H} / W \cong H^{\circ}\left(C^{\prime \prime}, L_{C^{\prime \prime}}\right)$. Any point $q \in C^{\prime \prime}$ determines a unique n-dimensional subspace $\mathscr{H}(-q)$ of \mathscr{H} containing W. Conversely any n dimensional linear subspace V of \mathscr{H} containing W determines a unique point q^{\prime} of $C^{\prime \prime}$ with $\mathscr{G}\left(-q^{\prime}\right)=V$. This correspondence is bijective.

The curve C^{\prime} is mapped isomorphically onto $C^{\prime \prime}$ by q_{i} because W is general. Let z be a general point of $C^{\prime}, x=q_{i}(z)$. Now we have canonical isomorphisms;

$$
T_{z}\left(Y_{i}\right) \cong T_{[W]} G(-p) \oplus T_{x}\left(C^{\prime \prime}\right) \cong(\mathscr{H}(-p) / W)^{\oplus(n-1)} \oplus T_{x}\left(C^{\prime \prime}\right),
$$

$$
T_{x}(X) \cong\left(N_{C^{\prime \prime} / X}\right)_{x} \oplus T_{x}\left(C^{\prime \prime}\right) \cong\left(L_{C^{\prime \prime}}\right)_{x}^{\oplus(n-1)} \oplus T_{x}\left(C^{\prime \prime}\right)
$$

First we consider the case $i=0, C^{\prime \prime}=C_{W}^{0}$. Since $S_{0} \subset Y_{0}$ and $\rho_{0}\left(S_{0}\right)=X$ under the notation in (3.1.2), we have $\rho_{0}\left(Y_{0}\right)=X$.

Next we consider the case $C^{\prime \prime}=C_{W}^{i}, i>0$. As we observed above, the natural homomorphism $\mathscr{H}(-p) \rightarrow H^{0}\left(C^{\prime \prime}, L_{C^{\prime \prime}}\right)$ has a one-dimensional image. Hence $\mathscr{H}(-p)$ has a unique base point p^{\prime} on $C^{\prime \prime}$, so that the image of $\mathscr{H}(-p) /$ W generates the line bundle $L_{C^{\prime \prime}}$ everywhere except at p^{\prime}. So by choosing $z \in C^{\prime}$ with $x=q_{i}(z) \neq p^{\prime}$, we see that

$$
\left(d q_{i}\right)_{*}: T_{z}\left(Y_{i}\right) \longrightarrow T_{x}(X)
$$

is surjective. This shows that $q_{i}\left(Y_{i}\right)=X$.
q.e.d.
(3.1.6) Claim.
(3.1.6.1) f is birational.
(3.1.6.2) $\quad C_{V}$ is irreducible for general $V \in G(-p)$.

Proof. (3.1.6.1) follows from (3.1.1), (3.1.6.2) and (1.10) easily. So we prove (3.1.6.2). By (3.1.4) it suffices to prove $e=0$ under the notation in (3.1.3). Let $C_{V}=\sum_{i=0}^{a} C_{V}^{i}$ be the decomposition of C_{V} into irreducibe components for $V \in G(-p)$ general, where C_{V}^{0} is the unique irreducible component of C_{V} passing through p. Assume $e>0$. Then $a>0$. Take and fix $j(1 \leqq j \leqq e)$. By (3.1.5) $q_{j}\left(Y_{j}\right)=X$. This implies that for any general $V \in G(-p)$, there exists $V^{\prime} \in G(-p)$ such that $C_{V}^{0} \cap C_{V^{\prime}}^{j} \neq \varnothing$. Let $C^{\prime}=C_{V}^{0}, C^{\prime \prime}=C_{V^{\prime}}^{j}$. We may assume that $C^{\prime} \cap C^{\prime \prime}=$ $\left\{p^{\prime}, \cdots\right\}, p^{\prime} \neq p$ for a sufficiently general V^{\prime} with $C_{V}^{0} \cap C_{V^{\prime}}^{j} \neq \varnothing$. Let $\left|m_{p} L\right|$ be the linear subsystem of $|L|$ consisting of members of $|L|$ passing through the point p. If $D \in\left|m_{p} L\right|$ contains $l_{V^{\prime}}$, then it contains p and p^{\prime}, whence $C^{\prime} \subset D$ because $L C^{\prime}=1$. This shows that $C_{V^{\prime}}$ contains $C^{\prime}=C_{V}^{0}$. Since $C_{V^{\prime}}^{0}$, is the unique irreducible component of $C_{V^{\prime}}$ containing p, we have $C^{\prime}=C_{V}^{0}=C_{V^{\prime}}^{0}$. But C^{\prime} intersects $C^{\prime \prime}=C_{V^{\prime}}^{j}$, which contradicts (1.10). Hence $e=0$ and C_{V} is irreducible for general $V \in G(-p)$ by (3.1.4).
q.e.d.

By (3.1.6) we have a birational morphism $f: X \backslash B \rightarrow \boldsymbol{P}^{n}$. Let \hat{X} be the normalization of the closure in $X \times \boldsymbol{P}^{n}$ of the graph of $f, \hat{f}: \hat{X} \rightarrow \boldsymbol{P}^{n}$ and h : $\hat{X} \rightarrow X$ the natural morphisms. Let $\hat{B}=h^{-1}(B)$ and \hat{B}^{*} be the minimal subvariety of \hat{X} containing \hat{B} such that \hat{f} is unramified on $\hat{X} \backslash \hat{B}^{*}$. Let $B^{*}=h\left(\hat{B}^{*}\right), \quad R=$ $\hat{f}(\hat{B})$, and $R^{*}=\hat{f}\left(\hat{B}^{*}\right)$. We note that $\hat{B}^{*}=h^{-1}\left(B^{*}\right)=\hat{f}^{-1}\left(R^{*}\right), \hat{X} \backslash \hat{B} \cong X \backslash B, X \backslash B^{*} \cong$ $\hat{X} \backslash \hat{B}^{*} \cong \boldsymbol{P}^{n} \backslash R^{*}$.
(3.1.7) CLaim. $B^{*}=B=\varnothing$ and $X \cong \boldsymbol{P}^{n}$.

Proof. Assume the contrary. Hence $R^{*} \neq \varnothing$. Then we can choose a line l which is not contained in R^{*} and meets R^{*}. Hence we can choose (not neces-
sarily general) $W \in \operatorname{Grass}(n-1, \mathscr{F})$ such that l_{W} is pure one dimensional and irreducible nonsingular outside B^{*} and the closure of $f\left(l_{w} \backslash B^{*}\right)$ is l. Let q be a point of $l \cap R^{*}, C$ the unique irreducible component of l_{W} with $\overline{f\left(C \backslash B^{*}\right)}=l$. Let \hat{C} be the proper transform of C by h^{-1}. Then $\hat{C} \cup \hat{f}^{-1}(q)$ is a connected subset of \hat{X} intersecting \hat{B}^{*}, whence $C \cup h\left(\hat{f}^{-1}(q)\right)$ is a connected subset of l_{W} intersecting B^{*}. By (1.10) $C \cong \boldsymbol{P}^{1}$ and it is a connected component of l_{W}. Hence $h\left(\hat{f}^{-1}(q)\right) \subset C$. Since $\hat{f}^{-1}(q)$ is connected, this implies that $h\left(\hat{f}^{-1}(q)\right)$ is a unique point of $C \cap B^{*}$. Let $p:=h\left(\hat{f}^{-1}(q)\right)$. If $p \in B^{*} \backslash B$, then $q=f(p)$ and $\hat{f}^{-1}(q)$ is a single point because $\hat{X} \backslash \hat{B} \cong X \backslash B$. However by the definition of $\hat{B}^{*}, \operatorname{dim} \hat{f}^{-1}(q)$ >0, a contradiction. Therefore $p \in B$. Then $p=h\left(\hat{f}^{-1}(q)\right)=C \cap B$ by (1.10).

Since $L C=1$, this implies that $f(C \backslash B)$ is a point, which contradicts $\overline{f\left(C \backslash B^{*}\right)}$ $=l$. Therefore $R^{*}=\varnothing$. Hence $B=\hat{B}=\varnothing, B^{*}=\hat{B}^{*}=\varnothing$. It follows that f is defined and unramified everywhere on X. Consequently the birational morphism f is an isomorphism. This completes the proof of (3.1) under the assumption $h^{0}(X, L) \geqq n+1$.
q.e.d.

In what follows, we assume that $h^{0}(X, L)=n$. We derive a contradiction in (3.1.10). Let $f: X \rightarrow \boldsymbol{P}^{n-1}$ be the rational map associated with $|L|, Y$ the closure of $f(X \backslash B)$. By the assumption $\operatorname{dim} Y \geqq n-1$, whence $Y \cong \boldsymbol{P}^{n-1}$. Let \hat{X} be the normalization of the closure in $X \times Y$ of the graph of $f, \hat{f}: \hat{X} \rightarrow Y$ and $h: \hat{X} \rightarrow X$ the natural morphisms. Let $\hat{B}=h^{-1}(B)$.
(3.1.8) CLaim. $d=n+1$ and $\hat{f}^{-1}(y) \cong \boldsymbol{P}^{1}$ for any general $y \in Y$.

Proof. Let $V \in \operatorname{Grass}(n-1, \mathscr{G})$ be general. Then by (1.10) and (1.11), $d=$ $n+1$ and C_{V} is a disjoint union of smooth rational curves $C_{i}(0 \leqq i \leqq r)$ with $L C_{i}=1$. Since $f\left(C_{i} \backslash B\right)$ is a point $y \in Y$, we have deg Bs $|L|_{c_{i}}=1$, whence there is a point $p_{i} \in C_{i}$ such that $\mathrm{Bs}|L|_{c_{i}}=\left\{p_{i}\right\}$. By (1.10), p_{i} is an isolated point of B. Therefore $p_{0} \in C_{i}$ for any i if V is general. Since C_{i} is a connected component of l_{V}, this implies that C_{V} is irreducible.

Let $y \in Y$ be general. Then $V_{y} \in \operatorname{Grass}(n-1, \mathscr{H})$ is uniquely determined by the condition that $f\left(l_{V_{y}} \backslash B\right)=y$. Therefore $C_{V_{y}}$ is irreducible for y general. Since $\hat{X} \backslash \hat{B} \cong X \backslash B, \hat{f}^{-1}(y)$ is irreducible outside \hat{B}. Since $\operatorname{dim} \hat{B} \leqq \operatorname{dim} Y=n-1$, no irreducible components of $\hat{f}^{-1}(y)$ are contained in \hat{B} for y general. Hence $\hat{f}^{-1}(y)$ is irreducible for y general. This proves (3.1.8).
q.e.d.
(3.1.9) Claim. Let $R:=\left\{y \in Y ; \hat{f}^{-1}(y)\right.$ is not smooth $\}$. Let l^{*} be a general line of Y not contained in R. Then $\hat{f}^{-1}\left(l^{*}\right) \cong \boldsymbol{F}_{1}$ and $h\left(\hat{f}^{-1}\left(l^{*}\right)\right) \cong \boldsymbol{P}^{2}$.

Proof. Let \hat{Z} be a unique irreducible component of $\hat{f}^{-1}\left(l^{*}\right)$ with $\hat{Z}_{y}:=$ $\hat{Z} \cap \hat{f}^{-1}(y) \cong \boldsymbol{P}^{1}$ for general $y \in l^{*}$. Let $Z=h(\hat{Z})_{\text {red }}$. The line l^{*} corresponds to an ($n-2$)-dimensional subspace U of \mathfrak{G} with $f\left(l_{U} \backslash B\right) \subset l^{*}$, where $l_{U}=\cap_{s \in U} D_{s}$. See $\S 1$. The surface Z is an irreducible component of $l_{U, \text { red }}$.

Let $\nu: T \rightarrow Z$ be the normalization, $\sigma: S \rightarrow T$ the minimal resolution of T. Let $g=\nu \cdot \sigma$. Then there exist by (2.A) or [5, Corollary (18)] an effective Weil divisor Δ on T, effective Cartier divisors E and G on S with no common components such that the canonical sheaves K_{T} and K_{S} are given by

$$
K_{T}=\nu^{*}\left(K_{X}+(n-2) L\right)-\Delta, \quad K_{S}=g^{*}\left(K_{X}+(n-2) L\right)-E-G
$$

with $\sigma_{*}(E)=\Delta, \sigma_{*}(G)=0$. Moreover by (2.A) there exists a finite subset Σ_{0} of S such that g is an isomorphism over $S \backslash \Sigma$ where $\Sigma:=\sigma^{-1}(\Delta) \cup \sigma^{-1}(\operatorname{Sing} T) \cup \Sigma_{0}$. Clearly Σ contains $\operatorname{supp}(E+G)$. Note that if $E=0$, then Z has no singularities along curves and no curve intersection with the irreducible components of l_{U} other than Z. This follows from (2.A) and (2.6).

Since $Z \not \subset \mathrm{Bs}|L|, g^{*} L$ is effective. Since S is projective, we have $P_{m}(S)=$ 0 , whence $S \cong \boldsymbol{P}^{2}$ or S has a pencil of rational curves $F \cong \boldsymbol{P}^{1}$ with ($\left.F^{2}\right)_{S}=0$. (Note that if X is non-Kählerian, then S can be in class VII. See (3.4) below.) Let $H=g^{*} D \in g^{*}|L|$ for a general member $D \in|L|$. By Bertini's theorem, Sing Z is contained in $\mathrm{Bs}|L|$, whence $g(\operatorname{supp}(E+G)) \subset \mathrm{Bs}|L|$. This implies that $E_{\text {red }}+G_{\text {red }} \subset H_{\text {red }}$. Assume that S has a pencil of rational curves $F \cong \boldsymbol{P}^{1}$ with $\left(F^{2}\right)_{s}=0$. Then we have,

$$
-2=K_{S} F+F^{2}=K_{S} F=-(3 H+E+G) F
$$

because $d=n+1$. It follows that $H F=0,(E+G) F=2$. However this contradicts $E_{\text {red }}+G_{\text {red }} \subset H_{\text {red }}$. Therefore $S \cong T \cong \boldsymbol{P}^{2}$ and $G=0$. Since $E_{\text {red }} \subset H_{\text {red }}$ and $K_{S}=$ $-3 H-E$, we see that $O_{S}(H) \cong O_{P 2}(1), E=0$ and that Σ is finite. Since $E=0$, Z has by (2.A) at worst isolated singularities.

Next we prove that Z is a connected component of l_{U}. Let $H:=g^{*}(D) \in$ $g^{*}|L|$ and let $V \in \operatorname{Grass}(n-1, \mathscr{H})$ be a subspace of \mathscr{H} corresponding to $D \cap l_{U}$. Then since $S \backslash \Sigma \cong Z \backslash g(\Sigma), C:=g(H)=D \cap Z$ is a reduced curve component of l_{v}. We have

$$
1=\left(H^{2}\right)_{S}=\left(g^{*}(L) H\right)_{S}=\left(L g_{*}(H)\right)_{X}=(L C)_{X} .
$$

It follows from (1.10) that $C \cong \boldsymbol{P}^{1}$ and $C \cap B=\left\{p_{0}\right\}$ and that C is a connected component of l_{V}. Hence $Z \cap B=Z \cap D \cap B=C \cap B=\left\{p_{0}\right\}$. Since $g(\Sigma) \subset B$, we see $g(\Sigma)=\left\{p_{0}\right\}$. Assume that Z intersects another irreducible component Z^{\prime} of l_{U}. Then $\operatorname{dim} Z^{\prime} \geqq 2, \operatorname{dim} l_{V} \cap Z^{\prime} \geqq 1$ and $Z \cap Z^{\prime} \subset g(\Sigma)=\left\{p_{0}\right\}$. Therefore $p_{0} \in l_{V}$ $\cap Z^{\prime} \subset l_{V}$. This contradicts that C is a connected component of l_{V}. Thus Z is a connected component of l_{U}.

Therefore l_{U} is a proper complete intersection along Z such that $\left(l_{U}\right)_{\text {red }} \cong Z$ along Z. Hence l_{U} is Gorenstein and reduced generically along Z so that it is reduced along Z. Hence $l_{U} \cong Z$ along Z. Since the Gorenstein surface Z has at worst isolated singularities, it is normal, whence $S \cong Z$. In particular, Z is
smooth everywhere.
Meanwhile since p_{0} is isolated in B, there exists a closed subset A of B such that $D_{1} \cap \cdots \cap D_{n}=p_{0}+A$, and $p_{0} \notin A$, where $D_{i} \in|L|$ is chosen general. In fact, this is true scheme-theoretically at p_{0} by (1.10). This implies that n equations defining D_{i} form a local coordinate system at p_{0}. Let $Q_{p_{0}}(X)$ be the blowing-up of X with p_{0} center, $\mathcal{E}:=Q_{p_{0}}\left(p_{0}\right)$ the exceptional divisor. Then we have a rational map \hat{h} from $Q_{p_{0}}(X)$ to Y induced from f, which is a morphism near \mathcal{E}. It follows that $\hat{X} \cong Q_{p_{0}}(X)$ near \mathcal{E}. Therefore \hat{Z} is smooth everywhere. In what follows we view \mathcal{E} as a divisor of \hat{X} by the above isomorphism. Then $\mathcal{E}=h^{-1}\left(p_{0}\right)$. Clearly $\hat{f}_{1 \varepsilon}=\hat{h}_{1 \varepsilon}: \mathcal{E} \rightarrow Y$ is an isomorphism. Since p_{0} is isolated in B, \mathcal{E} is disjoint from the irreducible components of \hat{B} other than \mathcal{E}.

Next we prove that $\hat{Z} \cong \boldsymbol{F}_{1}$. We note $Z \backslash\left\{p_{0}\right\} \cong \hat{Z} \backslash \hat{Z} \cap \mathcal{E}$ and $\hat{f}(\hat{Z})=l^{*}$. Since $\mathcal{E} \cong Y$, we have $\hat{Z} \cap \mathcal{E} \cong \hat{f}(\hat{\boldsymbol{Z}} \cap \mathcal{E}) \cong{ }^{*} \cong \boldsymbol{P}^{1}$. Hence $\hat{Z} \cong \boldsymbol{F}_{1}$.

Finally we prove $\hat{Z}=\hat{f}^{-1}\left(l^{*}\right)$. In view of (3.1.8), $f^{-1}\left(l^{*}\right)$ is connected. Hence it suffices to prove that \hat{Z} is a connected component of $\hat{f}^{-1}\left(l^{*}\right)$. Assume the contrary. Note that \hat{Z} is a unique irreducible component of $\hat{f}^{-1}\left(l^{*}\right)$ outside \hat{B}. Let \hat{B}^{\prime} be an irreducible component of \hat{B} other than \mathcal{E} such that $\hat{Z} \cap \hat{B}^{\prime} \neq \varnothing$. Then $h\left(\hat{Z} \cap \hat{B}^{\prime}\right) \subset Z \cap B=\left\{p_{0}\right\}$, whence $\hat{Z} \cap \hat{B}^{\prime}(\neq \varnothing) \subset \mathcal{E}$. It follows that $\hat{B}^{\prime} \cap \mathcal{E} \neq \varnothing$. However \mathcal{E} is disjoint from \hat{B}^{\prime}, a contradiction. q.e.d.
(3.1.10) Claim. $X \cong \boldsymbol{P}^{n}$ and $\hat{X} \cong \boldsymbol{P}\left(O_{Y}(1) \oplus O_{Y}\right)$.

Proof. First we prove $R=\varnothing$. Assume the contrary. Then we can choose a line l^{*} of Y not contained in R but intersecting R. We can apply the same argument as in (3.1.9) to a general line l^{*} with $l^{*} \cap R \neq \varnothing$. Hence $\hat{f}^{-1}\left(l^{*}\right) \cong \boldsymbol{F}_{1}$ by (3.1.9), whence $\hat{f}^{-1}(y) \cong \boldsymbol{P}^{1}$ for any $y \in l^{*}$. This contradicts $l^{*} \cap R \neq \varnothing$. Hence $R=\varnothing$.

Therefore $\hat{f}^{-1}(y) \cong \boldsymbol{P}^{1}$ for any $y \in Y$. Hence $\hat{X} \cong \boldsymbol{P}\left(O_{Y}(a) \oplus O_{Y}\right)$ for some $a \geqq 0$. By (3.1.9), $\hat{X} \times_{Y} l^{*} \cong \hat{f}^{-1}\left(l^{*}\right) \cong \boldsymbol{F}_{1}$ so that $a=1$. Hence $X \cong \boldsymbol{P}^{n}$. q.e.d.

In (3.1.8)-(3.1.10) we assume $h^{0}(X, L)=n$, which contradicts (3.1.10). This completes the proof of (3.1). q.e.d.
(3.2) Theorem. Let X be a complete nonsingular algebraic variety (or a Moishezon manifold) of dimension n with $b_{2}=1$, and L a line bundle on X. Assume that $c_{1}(X)=d c_{1}(L)(d \geqq n+1)$ and $h^{0}(X, L) \geqq n$. If general $(n-1)$-members of $|L|$ intersect outside $\mathrm{Bs}|L|$, then $X \cong \boldsymbol{P}^{n}$.

Proof. Let $B=\operatorname{Bs}|L|$. Let $l_{W}=\cap_{s \in W} D_{s}$ for general $W \in \operatorname{Grass}(n-1$, $H^{0}(X, L)$), and $C_{W}=l_{W}-B$. See $\S 1$. Let $f: X \backslash B \rightarrow \boldsymbol{P}^{N}$ be the rational map associated with $|L|$ where $N+1=h^{0}(X, L)$, and Y the closure of $f(X \backslash B)$. Then by the assumption, $\operatorname{dim} Y \geqq n-1$. Assume $\operatorname{dim} Y=n-1$. Then the union of
$C_{W}=l_{W}-B_{\mathbf{a}}^{-}$contains an open dense subset of X when [W] ranges over a Zariski open dense subset of $\operatorname{Grass}\left(n-1, H^{0}(X, L)\right)$. If $L C_{W}=0$, then $C_{W} \cap B=\varnothing$ by (1.11). Hence $m L C_{W}=0, \mathrm{Bs}|m L| \cap C_{W}=\varnothing$ for any $m>0$. Consequently the rational map f_{m} associated with $|m L|$ contracts C_{W} to a point, and $\operatorname{dim} f_{m}(X \backslash$ Bs $|m L|)<n$. However since $b_{2}=1$, the Moishezon assumption on X implies that $\operatorname{dim} f_{m}(X \backslash \operatorname{Bs}|m L|)=n$ for suitable m. This is a contradiction. Hence there is an irreducible component C_{W}^{i} of C_{W} such that $L C_{W}^{i}>0$, whence $C_{W}^{i} \cong$ \boldsymbol{P}^{1} by (1.10). Thus general ($n-1$)-members of $|L|$ intersect rationally. Consequently $X \cong \boldsymbol{P}^{n}$ by (3.1).
q.e.d.

REMARK. The above proof of (3.2) shows that the assumption $b_{2}=1$ can be replaced by the condition $\kappa(X, L)=n$.
(3.3) THEOREM. Let X be a complete nonsingular algebraic 3-fold (or a Moishezon 3-fold), L a line bundle on X. Assume that $c_{1}(X)=d c_{1}(L)(d \geqq 4)$ and $h^{0}(X, L) \geqq 2$. Then $X \cong \boldsymbol{P}^{3}$.

Proof. Let M (resp. F) be a moving part (resp. a fixed part) of $|L|$. By Bertini's theorem, we choose a general member $D=Z_{1}+\cdots+Z_{r}$ of $|M|$ where Z_{i} is reduced irreducible and smooth outside $\mathrm{Bs}|M|$. Let $Z=Z_{1}$ and let ν : $Y \rightarrow Z$ be the normalization, $f: S \rightarrow Y$ the minimal resolution of Y. Let $g=\nu \cdot f$. Then there exist by (2.A) or [5, Corollary (18)] an effective Weil divisor Δ on Y, effective Cartier divisors E and G on S with no common components such that the canonical sheaves K_{Y} and K_{S} are given by

$$
K_{Y}=\nu^{*}\left(K_{X}+L\right)-\Delta, \quad K_{S}=g^{*}\left(K_{X}+L\right)-E-G
$$

with $f_{*}(E)=\Delta, f_{*}(G)=0$. By (2.A) there exists a finite subset Σ_{0} of S such that g is an isomorphism over $S \backslash \Sigma$ where $\Sigma:=f^{-1}(\Delta) \cup f^{-1}(\operatorname{Sing} Y) \cup \Sigma_{0}$. Note that Σ contains $\operatorname{supp}(E+G)$.

Then by the same argument as in (3.1.9), we see that $d=4, S \cong Y \cong \boldsymbol{P}^{2}$, $O_{S}\left(g^{*} L\right) \cong O_{P 2}(1), E=G=0$ and that Σ is finite. Since $E=0, Z$ has by (2.A) at worst isolated singularities. Since Z is Gorenstein, Z is normal, whence $S \cong$ $Y \cong Z \cong \boldsymbol{P}^{2}$. Moreover Z is a connected component of $D+F$. In fact, since $\operatorname{dim} X=3, F \cap Z$ and $Z_{i} \cap Z(i \geqq 2)$ are either a curve or empty. $E=0$ shows that $F \cap Z=Z_{i} \cap Z=\varnothing(i \geqq 2)$. Assume $r \geqq 2$. Since Z_{i} and Z are algebraically equivalent and $H^{1}\left(Z, O_{Z}\right)=0$, we have $O_{P^{2}}(1) \cong O_{Z}(Z) \cong O_{Z}\left(Z_{i}\right) \cong O_{Z}$ by $Z_{i} \cap Z=\varnothing$, which is a contradiction. Hence $r=1$ and D is irreducible.

Since $O_{Z}(M) \cong O_{Z}(Z) \cong O_{P^{2}}(1)$, we have $h^{0}(X, L)=h^{0}(X, M)=h^{0}\left(Z, O_{Z}(Z)\right)+1$ $=4$ by $h^{1}\left(X, O_{X}\right)=0$. We also have $\left(M^{3}\right)_{X}=\left(M_{Z}^{2}\right)_{Z}=1$ and $\mathrm{Bs}|M|=\mathrm{Bs}|M|_{Z}=$ $\mathrm{Bs}\left|O_{Z}(M)\right|=\varnothing$ so that we have a surjective birational morphism $f: X \rightarrow \boldsymbol{P}^{3}$. We also have $-4 M-4 F=K_{X}=f^{*}\left(K_{P^{3}}\right)+\mathrm{Jac}_{f}=-4 M+\mathrm{Jac}_{f}$ for the exceptional divisor Jac_{f} of f. It follows that $F=\mathrm{Jac}_{f}=0$ and $X \cong \boldsymbol{P}^{3}$.
q.e.d.
(3.4) Example. For any pair (d, p) with $d \geqq 3$ and $p \geqq 1$, there exist infinitely many non-Kählerian 3 -folds X (Hopf 3 -folds) with $c_{1}(X)=d c_{1}(L), h^{0}(X, L)$ $=p+1$. We define

$$
X=\boldsymbol{C}^{3} \backslash(0,0,0) /\left\{g^{n} ; n \in \boldsymbol{Z}\right\}
$$

where g is a transformation of \boldsymbol{C}^{3} defined by $g:(x, y, z) \rightarrow\left(\alpha^{d p-2} x+y^{d p-2}, \alpha y\right.$, αz) for $\alpha \in \boldsymbol{C}^{*},|\alpha|<1$. Let S be a divisor $\{y=0\}$ of X. Then we see that S is a primary Hopf surface with all plurigenera $P_{m}(S)=0$. We also see that $K_{X}=-d p S, h^{0}(X, p S)=p+1$.
(3.5) Theorem. Let X be a Moishezon 4 -fold, and L a line bundle on X. Assume that $\operatorname{Pic} X=\boldsymbol{Z} L, c_{1}(X)=d c_{1}(L)(d \geqq 5)$ and $h^{0}(X, L) \geqq 4$. Then $X \cong \boldsymbol{P}^{4}$.

Proof. Let $h: X \rightarrow \boldsymbol{P}^{N}$ be a rational map associated with $|L|$, and W the closure of $h(X \backslash \mathrm{Bs}|L|)$, where $N=h^{0}(X, L)-1$. Let $e=\operatorname{deg} W$. Then $e \geqq N+1$ $-\operatorname{dim} W$. If $\operatorname{dim} W=1$, then $e=1, N=1$ by Pic $X=\boldsymbol{Z} L$, which contradicts $N \geqq 3$. Therefore $\operatorname{dim} W \geqq 2$. Hence by choosing general D and $D^{\prime} \in|L|$, we have a reduced component Z of $\tau:=D \cap D^{\prime}$ outside $\mathrm{Bs}|L|$. Then by the proof of (3.1.7) or (3.3), $Z \cong \boldsymbol{P}^{2}, L_{Z} \cong O_{P^{2}}(1)$ and $Z \cap \mathrm{Bs}|L|$ is at most a line in \boldsymbol{P}^{2}.

If $Z \cap \mathrm{Bs}|L|$ is finite, then $\tau \cap D^{\prime \prime}$ has a reduced curve-component $Z \cap D^{\prime \prime} \cong$ \boldsymbol{P}^{1} outside $\mathrm{Bs}|L|$ for $D^{\prime \prime} \in|L|$ general. In this case, $X \cong \boldsymbol{P}^{4}$ by (3.2). Hence we may assume that $C:=Z \cap \mathrm{Bs}|L| \cong \boldsymbol{P}^{1}$. We assume $\operatorname{dim} W=2$. Then $e \geqq$ $N-1 \geqq 2$. By choosing general D and $D^{\prime} \in|L|$, we have or irreducible components $Z_{1}, \cdots, Z_{e r}$ outside Bs $|L|$, where r is the number of irreducible components of a general fiber $h^{-1}(w)(w \in W)$. By the proof of (3.1.7) or (3.3), we see that $Z_{i} \cong \boldsymbol{P}^{2}$ and that $Z_{i} \cap Z_{j}$ is finite for $i \neq j$. (In fact, we see moreover that Z_{i} is a connected component of $\tau:=D \cap D^{\prime}$ because τ is Gorenstein.) However Z_{i} contains C for any i, whence $e=1, r=1$ and $N=2$, which contradicts $N \geqq 3$. Hence $\operatorname{dim} W \geqq 3$. Therefore $D \cap D^{\prime} \cap D^{\prime \prime}$ has a reduced curve component $Z \cap D^{\prime \prime} \cong \boldsymbol{P}^{1}$ outside Bs $|L|$. Hence by (3.2), $X \cong \boldsymbol{P}^{4}$. Therefore it is impossible that $Z \cap \mathrm{Bs}|L| \cong \boldsymbol{P}^{1}$. This completes the proof of (3.5). q.e.d.

§4. Complex manifolds homeomorphic to P_{c}^{n}.

(4.1) Proposition. Let X be a compact complex manifold homeomorphic to \boldsymbol{P}^{n}. If $\chi\left(X, O_{X}\right) \geqq 1$, then there is a holomorphic line bundle L on X whose Chern class $c_{1}(L)$ generates $H^{2}(X, \boldsymbol{Z}) \cong \boldsymbol{Z}$. If $h^{1}\left(X, O_{X}\right)=0, \chi\left(X, O_{X}\right) \geqq 1$ and $h^{0}(X, L) \geqq n$ and if general ($n-1$)-members $|L|$ intersect rationally outside $B s|L|$, then $X \cong \boldsymbol{P}^{n}$.

Proof. Let δ be a generator of $H^{2}(X, \boldsymbol{Z})(\cong \boldsymbol{Z})$ with $\delta^{n}=1$. Since the second Stiefel-Whitney class $w_{2}\left(=c_{1}(X) \bmod 2\right)$ is a topological invariant, we
have $c_{1}(X)=(n+1+2 s) \delta$ for an integer s. Then by [3, p. 208], we have

$$
\chi\left(X, O_{X}\right)=\binom{n+s}{s}=(n+s)(n+s-1) \cdots(n+1) / n!
$$

By $\chi\left(X, O_{X}\right) \geqq 1$, we see $s \geqq 0$ or that n is even and $s \leqq-n-1$. Hence in particular $c_{1}(X) \neq 0$ and $H^{1}\left(X, O_{X}^{*}\right) \neq\{1\}$.

Now we consider an exact sequence

$$
0 \longrightarrow H^{1}\left(X, O_{X}\right) \longrightarrow H^{1}\left(X, O_{\frac{*}{X}}^{*}\right) \xrightarrow{C_{1}} H^{2}(X, \boldsymbol{Z}) \longrightarrow H^{2}\left(X, O_{X}\right) .
$$

Since $c_{1}(X) \neq 0$ and $H^{2}\left(X, O_{X}\right)$ is torsion free, c_{1} is surjective. Hence there exists a line bundle L on X with $c_{1}(L)=\delta$. Assume $s \leqq-n-1$, and $h^{0}(X, L)$ $\geqq n$. By $h^{1}\left(X, O_{X}\right)=0$, we have $K_{X}=-(n+1+2 s) L,-(n+1+2 s) \geqq n+1$. Consequently $h^{0}\left(X, \Omega_{X}^{n}\right) \geqq h^{0}(X, L) \geqq n$, which contradicts $h^{0}\left(X, \Omega_{X}^{n}\right) \leqq b_{n} \leqq 1$. Hence $s \geqq 0$, and (4.1) follows from (3.1).
q.e.d.
(4.2) Theorem. Let X be a Moishezon manifold homeomorphic to \boldsymbol{P}^{n}, and L a line bundle on X with $L^{n}=1$. Assume that $h^{0}(X, L) \geqq n$. If general $(n-1)$ members of $|L|$ intersect outside $\mathrm{Bs}|L|$, then $X \cong \boldsymbol{P}^{n}$.

Proof. Since X is Moishezon, the Hodge spectral sequence $E_{1}^{p q}=H^{p}\left(X, \Omega_{X}^{q}\right)$ with abutment $H^{p+q}(X, \boldsymbol{C})$ degenerates at E_{1} terms [19, p. 99]. Hence we have $H^{q}\left(X, O_{X}\right)=0(q>0), \chi\left(X, O_{X}\right)=1$, Pic $X:=H^{1}\left(X, O_{X}^{*}\right) \cong H^{2}(X, \boldsymbol{Z}) \cong H^{2}\left(\boldsymbol{P}^{n}, \boldsymbol{Z}\right) \cong \boldsymbol{Z}$. Therefore $K_{X}=-(n+1) L$ by the proof of (4.1). Hence $X \cong \boldsymbol{P}^{n}$ by (3.2).
q.e.d.
(4.3) Theorem [10]. Let X be a compact complex 3 -fold homeomorphic to \boldsymbol{P}^{3}, and L a line bundle on X with $L^{3}=1$. Assume that $h^{1}\left(X, O_{X}\right)=0$ and $h^{0}(X, L) \geqq 2$. Then $X \cong \boldsymbol{P}^{3}$.

Proof. This is a corollary to (3.1) or (3.3). The proof is almost the same as $[11,(9.1)]$. It is easy to see that $h^{3}\left(X, O_{X}\right)=0, \chi\left(X, O_{X}\right) \geqq 1$. By the proof of (4.1), $c_{1}(X)=d c_{1}(L)$ for some $d \geqq 4$. By using $h^{1}\left(X, O_{X}\right)=0$ and $h^{0}(X, L) \geqq 2$, we see that $h^{2}(X, p L)=h^{1}(X,-(p+4) L)=0$ for $p>0$. Then we see that $h^{0}(X$, $L) \geqq 4$, and that X is Moishezon by Riemann-Roch theorem. By (3.1) or (3.3), $X \cong P^{3}$.
q.e.d.

Remark. A somewhat stronger theorem has been obtained in [11, (9.1)], which however follows from (4.3) easily.

§ 5. Moishezon fourfolds homeomorphic to $\boldsymbol{P}_{c}{ }_{c}$.

The purpose of this section is to prove:
(5.1) Theorem. Let X be a Moishezon 4-fold homeomorphic to \boldsymbol{P}^{4}, and L
a line bundle on X with $L^{4}=1$. Assume that $h^{0}(X, L) \geqq 3$. Then $X \cong \boldsymbol{P}^{4}$.
Our proof of (5.1) is completed in (5.4).
(5.2) Lemma. Under the assumptions in (5.1), let D and D^{\prime} be distinct members of $|L|, \tau$ the scheme-theoretic complete intersection $D \cap D^{\prime}$. Then we have

$$
\begin{equation*}
\operatorname{Pic} X=\boldsymbol{Z} L, \quad K_{X} \cong-5 L, \tag{5.2.1}
\end{equation*}
$$

$$
\begin{align*}
& H^{p}(X,-q L)=0 \quad(p=0, q>0, \text { or } p>0,0 \leqq q \leqq 4) \tag{5.2.2}\\
& H^{p}\left(D,-q L_{D}\right)=0 \quad(p=0, q>0 \text { or } p>0,0 \leqq q \leqq 3) \tag{5.2.3}
\end{align*}
$$

Proof. The proof of (5.2.1) is similar to [10]. The vanishing (5.2.2) of $H^{p}(X,-q L)$ for $p \neq 2$ is proved in the same way as in [10]. Since X is homeomorphic to P^{4}, we have

$$
\chi(X,-q L)=\chi\left(\boldsymbol{P}^{4}, O_{P^{4}}(-q)\right)=\frac{1}{24} \prod_{i=1}^{4}(q-i)
$$

for any q in view of (5.2.1). This proves the vanishing of $H^{2}(X,-q L)$ for $0 \leqq q \leqq 5$. The remaining assertions are easy to prove.
q.e.d.
(5.3) Lemma. Let D and D^{\prime} be general members of $|L|$, and let $\tau=D \cap D^{\prime}$. Let $Z=Z_{\text {red }}$ be a reduced component of τ, that is, an irreducible component of τ along which τ is reduced generically. If $Z \not \subset \mathrm{Bs}|L|$, then $\tau \cong Z \cong \boldsymbol{P}^{2}$ and $L_{\tau} \cong$ $O_{P 2}(1)$.

Proof. Let $g: S \rightarrow Z$ be the minimal resolution of the normalization of Z. Then there exist by (2.A) or [5, Corollary (18)] effective Cartier divisors E and G on S with no common components such that the canonical sheaf K_{S} is given by

$$
K_{S}=g^{*}\left(K_{X}+2 L\right)-E-G
$$

with $f_{*}(G)=0$, etc. as in the proof of (3.3). There exists a finite subset Σ_{0} of S such that $g_{\mid S \backslash \Sigma}$ is an isomorphism where $\Sigma:=f^{-1}(\Delta) \cup f^{-1}(\operatorname{Sing} Y) \cup \Sigma_{0}$. Then Σ contains $\operatorname{supp}(E+G)$.

We have $c_{1}(S)=3 c_{1}\left(g^{*} L\right)+c_{1}(E+G)$. Since $h^{0}(X, L) \geqq 3$ and $Z \not \subset \mathrm{Bs}|L|, g^{*} L$ is effective. Since S is projective, we have $P_{m}(S)=0$, whence $S \cong \boldsymbol{P}^{2}$ or S is ruled. Let $H \in g^{*}|L|$. Then by the same argument as in (3.3), we see that $S \cong Y \cong \boldsymbol{P}^{2}, E=G=0, O_{S}(H) \cong O_{P 2}(1)$ and that Σ is finite. By $E=0$ and (2.A), Z has at worst isolated singularities. There exists $D^{\prime \prime} \in|L|$ such that
$g^{*}\left(Z \cap D^{\prime \prime}\right)=H$ by the choice of H. Let $l=D \cap D^{\prime} \cap D^{\prime \prime}$ be a scheme-theoretic complete intersection. Since $g^{*} D^{\prime \prime}=H \cong \boldsymbol{P}^{1}$ and g is an isomorphism on $S \backslash \Sigma$, we have $H \backslash \Sigma \cong C \backslash g(\Sigma)$, so that $C:=g(H)_{\text {red }}$ is a reduced curve component of l, that is, l is reduced generically along $C . C$ is isomorphic to $Z \cap D^{\prime \prime}$ on $(Z \backslash g(\Sigma))$ $\cap D^{\prime \prime}$. Namely $I_{C}=\sqrt{I_{C}}=I_{l}$ along $C \cap(Z \backslash g(\Sigma))$. We have

$$
1=\left(H^{2}\right)_{S}=\left(g^{*}(L) H\right)_{S}=\left(L g_{*}(H)\right)_{X}=(L C)_{X}
$$

Therefore we can apply (1.10) to X, C and l to infer that $C \cong \boldsymbol{P}^{1}$ is a connected component of l and that $C \cong l$ along C. If $\operatorname{Sing} \tau_{\text {red }}$ is nonempty, then $\operatorname{Sing} \tau_{\text {red }} \subset \mathrm{Bs}|L|$. Hence $Z \cap \operatorname{Sing} \tau_{\text {red }} \subset Z \cap D^{\prime \prime}\left(=g(H)_{\text {red }}\right)$. Consequently $Z \cap \operatorname{Sing} \tau_{\text {red }} \subset C$. As C is a connected component of l, this shows that Z is a connected component of τ. In fact, if not, there is an irreducible component $Z^{\prime}(\neq Z)$ of τ meeting Z. Then we choose a point $p \in Z \cap Z^{\prime}$. We note that $Z \cap Z^{\prime}$ is finite by $E=0$. Hence since $p \in Z \cap \operatorname{Sing} \tau_{\mathrm{red}} \subset C, Z^{\prime} \cap D^{\prime \prime}$ contains an irreducible component (a curve or a surface) of l meeting C. This contradicts that C is a connected component of l.

However $h^{0}\left(\tau, O_{\tau}\right)=1$ by (5.2). Hence $Z \cong \tau_{\text {red }}$. As τ is Gorenstein and reduced generically along Z, τ is reduced everywhere and $\tau \cong Z$. Since a prime Cartier divisor C of Z is smooth, so is Z along C. As $\operatorname{Sing} Z \subset Z \cap \operatorname{Sing} \tau_{\text {red }} \subset$ C, it follows that Z is smooth everywhere. Thus we see $P^{2} \cong S \cong Y \cong Z \cong \tau$.
q.e.d.
(5.4) Completion of the Proof of (5.1). Now it is easy to prove (5.1). $\mathrm{By}(5.2 .5), \mathrm{Bs}|L|_{\tau}=\mathrm{Bs}\left|L_{\tau}\right|=\mathrm{Bs}\left|O_{P 2}(1)\right|=\varnothing$. We have also $h^{0}(X, L)=h^{0}\left(\tau, L_{\tau}\right)+$ $2=5$ and $L^{4}=\left(H^{2}\right)_{s}=1$. Consequently $X \cong \boldsymbol{P}^{4}$ by an easy argument. q.e.d.

Bibliography

[1] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103-115.
[2] H. Hironaka, An example of non-Kaehlerian complex-analytic deformation of Kaehlerian complex structures, Ann. of Math., 75 (1962), 190-208.
[3] F. Hirzebruch and K. Kodaira, On the complex projective spaces, J. Math. Pures Appl., 36 (1957), 201-216.
[4] F. Hirzebruch, Topological methods in algebraic geometry, 3rd ed., Springer, 1966.
[5] S. Kleiman, Relative duality for quasi-coherent sheaves, Compositio Math., 41 (1980), 39-60.
[6] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., 13 (1973), 31-47.
[7] K. Kodaira and D.C. Spencer, On deformation of complex structures, II, Ann. of Math., 67 (1958), 403-466.
[8] J. Kollár, Flips, flops, minimal models, etc., 1990, preprint.
[9] J. Morrow, A survey of some results on complex Kähler manifolds, Global Analysis,

Univ. Tokyo Press, 1969, pp. 315-324.
[10] I. Nakamura, Moishezon threefolds homeomorphic to \boldsymbol{P}^{3}, J. Math. Soc. Japan, 39 (1987), 521-535.
[11] I. Nakamura, Threefolds homeomorphic to a hyperquadric in \boldsymbol{P}^{4}, Algebraic Geometry and Commutative Algebra in Honor of M. Nagata, Kinokuniya, Tokyo, 1987, pp. 379-404.
[12] I. Nakamura, Characterizations of \boldsymbol{P}^{3} and Hyperquadrics \boldsymbol{Q}^{3} in \boldsymbol{P}^{4}, Proc. Japan Acad., 62A (1986), 230-233.
[13] I. Nakamura, A subadjunction formula and Moishezon fourfolds homeomorphic to \boldsymbol{P}_{C}^{4}, Proc. Japan Acad., 67A (1991), 65-67.
[14] I. Nakamura, Moishezon fourfolds homeomorphic to \boldsymbol{Q}_{C}^{4}, Proc. Japan Acad., 67A (1991), 329-332.
[15] T. Peternell, A rigidity theorem for $\boldsymbol{P}_{3}(\boldsymbol{C})$, Manuscripta Math., 50 (1985), 397-428.
[16] T. Peternell, Algebraic structures on certain 3-folds, Math. Ann., 274 (1986), 133156.
[17] Y.T. Siu, Nondeformability of the complex projective space, J. Reine Angew. Math., 399 (1989), 208-219.
[18] Y.T. Siu, Global nondeformability of the complex projective space, Lectures Notes in Math., 1468, Springer, 1989, pp. 254-280.
[19] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lectures Notes in Math., 439, Springer, 1975.
[20] H. Tsuji, Every deformation of \boldsymbol{P}^{n} is again \boldsymbol{P}^{n}, unpublished.
[21] S.T. Yau, On Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA, 74 (1977), 1798-1799.

Iku Nakamura
Department of Mathematics
Hokkaido University
Sapporo 060
Japan

