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Introduction.

Let g:Y—C be a surjective morphism from a smooth complex projective
3-fold onto a smooth curve. Assume that a generic fibre of g is an irreducible
surface of general type. Then, composing divisorial contractions and flips, we
can birationally modify Y into X, a normal, projective, @-factorial variety with
only terminal singularities, in such a way that g induces a morphism f: X—C,
with Ky being f-nef [Mo2], [Ka3]. Wecall f a (relatively) minimal fibration
of surfaces of general type over C. Since X is a @Q-factorial 3-fold, K} is a
well-defined rational number which is independent of the choice of the relatively
minimal model X. The aims of this article are (1) to estimate K} from below
in terms of other geometric invariants and (2) to describe the structure of X
when K} is small.

MAIN THEOREM 1. Let f:X—C be a minimal fibration of surfaces of
general type over C, a smooth projective curve of genus b. Let F be a general

fibre of f.
1) If p(F)=3 and |Kr| is not composed of a pencil, then

y < 4Do(F)=2) (BKE =210 r))po(F)+41O r)
= pF) |\ 2(po(F)—2)

or equivalently,

(b—D—2Ox}

-y Ape(F)—2)
_ 1. pO{KEE G Eon)

=1+ )
2{BKF—2XOr)po(F)+4XOr)}
) If |Kr| is composed of a pencil and F is not a surface with Ki=1,
p(F)=2, q(F)=0, then

< 4Po(F)=1) (BK 3= 20 ) po(F)+ 2Or)
Y2 2004 (F)—1) (b—l)—X(@X)}

or equivalently,
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_ . o Tt ron)
= BRI 20 s (F)+ 2O

(3) If Kg=1, p,(F)=2 and q(F)=0, then

K% = 3(b—1)—X0Ox)
or equivalently,

$+X0x)

b1+ 3

@ If p(F)=1, then
K3z KF{(6—2Om—1D—X0x)}

or equivalently,

L+ K3KOx)
< X F
b=t 20

(B) If p(F)=0, then
6K 3(b—1)+(2/3)-1(2) when Kj(=2

Kiz|
6(b—1)+(6/13)-1(2) when Ki=1.

When the equality holds in one of the five cases above, f is isotrivial or, equi-
valently, two general fibves are isomorphic. Here, 1(2) denotes the correction
term in the plurigenera formula of Reid-Fletcher for X; for the precise defini-
tion, see [F1,Definition 2.6].

MAIN THEOREM 2. With the same notation as above, assume that
K§<2@BK;F—2X0OFr))b—1)—4X(Ox) .

Then a general fibve F has one of the following properties:
(1) F carries a linear pencil of curves of genus two.
(2) Kp=2p,(F)—1.
(3) Kp=2p,(F), p,(F)=3, ¢(F)X2, and |Kr| is not composed of a pencil.
4) |Kg| is not composed of a pencil and
(da) Ki=8, p,(F)=3, ¢(F)<1, or
(4b) Ki=9, p(F)=4, ¢(F)=1, or
(4e) KE=T7, po(F)=3, q(F)=2.
(5) Kp=4 or 5, p,(F)=2, and the movable part of |Kr| is a linear pencil
of curves of genus three with only one base point.
6) K#=2 or 3 and p,(F)=1.
(7)) pe(F)=0.

REMARK. More precisely, we have p,(F)=3, if ¢(F)=2 in (3). Indeed,
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suppose p,(F)=4. Since we have Kz<3X(©Or), F has a pencil of genus 2 or 3
over a curve of genus 2 by [Ho2, Theorem 3.1] and we have Ki=2X(Oz)+6,
2>(8/3)-(X(©r)+4) respectively, which is absurd.

Our results are three-dimensional analogues of Xiao’s result in the geo-
graphy of surfaces. Let f:S—C be a surjective morphism from a smooth
projective surface onto a curve of genus b. We assume that a general fibre
is a connected curve of genus g=2 and that S is relatively minimal (i.e., all
fibres of f contain no (—1)-curves).

When general fibres of f are hyperelliptic, S is realized as a double cover-
ing of a ruled surface over C from which E. Horikawa and U. Persson
[P] independently derived the inequality :

4(g—1
) K32 X0 105+ g + 16— 1)
For a general minimal fibration, G. Xiao introduced a new idea to show:
4(g—1
2) S0z (gg ) deg fxwsrc

which reduces to (1) for a hyperelliptic fibration.

Our method in this paper essentially follows Xiao’s idea: the analysis of
the sheaf fiwy,c via its Harder-Narasimhan filtration. In §1, we generalize
his technical lemmas (Lemmas and below). With the aid of Miyaoka’s
lemma [Mi], our proof is simpler than the original one [X], and the same idea
yields a higher-dimensional version of a theorem of Arakelov (Theorem 1.4) as
well as an inequality of the Miyaoka-Yau type (Corollary 1.7), when combined
with Y. Kawamata’s two Theorems: the Base Point Free Theorem [KMM,
Theorem 3-1-1] and the semipositivity theorem [Kal, Theorem 1].

In §2, we prove three-dimensional analogues of Xiao’s inequality (2) (Pro-
positions 2.1, 2.6 and 2.7), from which we derive Main Theorem 1. Note that
every minimal fibration that attains the lower bound of K} is isotrivial, while
this is not the case in the surface case.

In §3, we show another inequality (Proposition 3.I) with some exceptions
that are explicitly described. Main Theorem 2 is a direct consequence of this
result.

Finally, we note that our results are related to a work of B. Hunt [Hu].

ACKNOWLEDGEMENT. My hearty thanks are due to: Professors Y. Kawa-
mata and N. Nakayama for being excellent advisors, Dr. K. Oguiso, who in-
formed me of a simplified proof of [Corollary 1.7; and Drs. M. Ebihara, I.
Shimada and M. Kobayashi for helpful discussion and encouragement. The
present paper owes much to the referee, who carefully read through the draft
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and pointed out a lot of gaps, careless mistakes, unsuitable expressions and
typographical errors. Finally I would like to express my gratitude to Professor
M. Reid; my work was inspired by his lectures at University of Tokyo in 1990.

Notation and Convention.

In this paper, we work over the complex number field C and follow the
notation and terminology of [KMM].

Let X be a normal variety and f:X—C a proper surjective morphism onto
a smooth curve C. By Ky, we denote the Weil divisor Ky—f*Kc. For
every integer m, w¥}% denotes the double dual of the m-th tensor product of
the relative dualizing sheaf wy,;. We have o3 =0mKx,c), the reflexive sheaf
attached to mKy,c. Let D be a Cartier divisor on X and F a general fibre of
f. We denote by Dy the restriction of D to F.

For a vector bundle & on C, define (&)= H*(C, @) and pu(€)=Q as follows:

(&)

6(8) = rank &
p(&€) :=deg a(&) .

There is a unique filtration

0:80C81C“'C8n:8,

such that &;/&;-; is a semistable vector bundle and that

/1(81'/81—1) > #(8i+1/8i)

for all / [H-N]. We call this the Harder-Narasimhan filtration of £&. We define
0-(©)e H¥C, Q) and p_(&)=Q as follows:

0(&):=0(8/En-1)
p-(&):=dego-(&).

Let pe: P(€)—C be the projective bundle associated with € and L. the
divisor class on P(€) associated with the tautological line bundle Opcsy(1).

When rank €=1, we identify P(€) with C, and Op»(1) with &.

The following symbols will be used in this article:

~1in ¢ linear equivalence.

~q: Q-linear equivalence.

~ag: algebraic equivalence.

~num . UMerical equivalence.



Some inequalities for minimal fibrations of surfaces 647

§ 1. Preliminaries.

Let X be a normal Q-factorial variety of dimension d and f: X—C a proper
morphism with connected fibres onto a nonsingular complete curve.

For any Weil divisor D, f«0(D) is a vector bundle, since C is a curve.
Assume that f,O0(D)#0 and let & be any non-zero vector subbundle of f+O(D).
The natural homomorphism f*¢—©(D) yields a rational section ¢ : X——P(f+F)
and ¢: X——P(F) such that pge¢p=f.

The indeterminacy of ¢ is described by the following lemma, the proof of
which was suggested by Y. Kawamata.

LEMMA 1.1. In the above situation, there is a desingularization p:Y —X
such that (1) 2:=¢eop:Y—>P(F) is a morphism and that (2) A* Lg~qu*(D—Z)—E,
where Z is an effective divisor on X and E is an effective Q-divisor on Y ex-
ceptional with respect to p.

ProOF. Take a Weil divisor Z on X such that the homomorphism f*%—
O(D—Z) is surjective in codimension 1, and take a positive integer m such that
m(D—Z)eDiv (X). We note here that the induced homomorphism S™(f*%)—
O(m(D—Z)) is surjective in codimension 1 and corresponds to the rational map
¢ei: X——P(S™(F)), where i: P(F)—P(S™(F)) is the relative m-uple embedding.
Take any desingularization p,:Y,—»X and take an effective divisor E; on
Y, which is exceptional with respect to g, such that the homomorphism
pES™(f*F)— pfom(D—Z))Q0(—E,) is surjective in codimension 1. By Hironaka’s
Theorem ([Hi]), there are a projective birational morphism pg,:Y,—Y, from a
nonsingular variety Y, and an effective divisor E, on Y, which is exceptional
with respect to g, such that the induced homomorphism

LEpIS™(f*F) —> piptom(D—2)Q0(— p5 E)QO(—Ey)

is surjective. Define E, M<Div (Y,)®Q as follows:
1
E:= 7‘n‘<E2+ﬂ§E1), M:= ﬂ*<D_Z)_E;

where p:=p o ps.

Corresponding to the surjection p*f*S™(F)—0O(mM), we have a morphism
p:Y,—P(S™(F)) such that Oy ,(mM)=p*Lsmg,. If necessary, we may blow
up Y, and assume that the induced rational map A:Y,——P(%) is a morphism.
We note here p=i-2 and /*Lgmg,=mLgs. Hence

mM = P*Lsmcﬂ') = **Lsmg, = mi*Lq,

so we obtain A*Lg~oM, which is the desired result if we take ¥, as Y. |
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DEFINITION. In the above [situation, put
v My(D, F):= 2*Lg € Div (¥)
Zy(D, ):= p*Z+FE € Div ()RQQ
Ny(D, F):= My(D, F)—g*6_(F) = Div()RQ
where g:=fop.

REMARK.

1. We note that Zy(D, &) is effective and for any nonzero vector subbundle
g’ of F, we have Zy(D, ¥')=Z,(D, F).
2. By Lemma 1.1,

Zy(D, F) ~ opu*D—2*Lsg,
Ne(D, F)~ qu*D—Zy(D, F)—g*5(F).
3. Let W be thelimage of 1. Since we have
g+0(My(D, F)) = (p=|w)x(O(La) |l w@(A|w)xOy) ,
there is an inclusion:
T = (palwO(La)lw —> gx0(My(D, F)),
induced by the natural inclusion Oy—(4|w)«Qy. In particular, we have
h*(Oz,(M(D, F)r)) = rank & ,
where F, is a general fibre of g.

The following Lemmas [.2, are generalizations of [X, Lemma 2,
Lemma 3].

LEMMA 1.2. Let Y and F, be as above, and let D be a Q-divisor on Y. Let
Z, 22,2 2Z2Zp1:=0
be a sequence of effective Q-divisors on Y, and let
M Z e Z - Z pner =0

be a sequence of rational numbers such that Ni:=ﬁ—Zi—‘u,-F1 is nef Q-divisors
for every™i. Then, ﬁz—z}?:l(NiFl-I-NMFI)(;zi——;zm) satisfies

(ﬁz_ é(NiFl+Ni+lFl)(ﬂi_#i+l))A1A2 i Ay =0

for arbitrary d—2 nef divisors A,, A, -+, Aq-s.

PROOF. A similar argument as in [X, proof of Lemma 2] applies. O
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LEMMA 1.3. Ny(D, &) is nef.

PROOF. When rank F>2, Lg— p*5_(F) is nef by [Mi, Corollary 3.5]. Hence
Ne(D, F) = My(D, F)—g*3(F) = 2*(La— p43.()
is nef. When rank $=1, we have My(D, F)=g*c,(F), hence
Ny(D, F) = g*¢\(F)—g*0-(F) ~ num0

which is obviously nef. [

THEOREM 1.4. Let X be a projective, normal, Q-factorial variety of dimen-
sion d with only terminal singularities and f : X—C a proper surjective morphism
with connected fibres onto a nonsingular complete curve C. Assume that Ky is
f-nef, and general fibres of f are of general type. Then there is a positive
integer my, such that for any positive integer m=m,, mKy,c— [*0_(f x0¥%) is nef.
In particular, Ky is nef.

Proor. By the Base Point Free Theorem (cf. [KMM, Theorem 3-1-1]),
there is a positive integer m, such that a natural homomorphism f*f4O(mKx,c)
—O(mKyx,c) is surjective for all m=m, Thus applies with D:=
mKyxic, V=X, F:=fe08s, Zy(D, ):=0 to show that mKy,c— f*0-(fx0¥¢)
is nef. As for the last statement, we only have to show p_(fw0¥2)=0 for all
positive integer m, which is the semipositivity of fi0¥2([Kal, Theorem 17). O

REMARK. When d=2, the last assertion of is known as
Arakelov’s Theorem (see [Be2]).

COROLLARY 1.5. Let things be as in Theorem 1.4. Then
K&=2db—-1)Kg™?,

where b is genus of C, and}F is a general fibre of f. When equality holds, f
1s 1sotrivial.

PrROOF. The inequality is a direct consequence of if one
notes that Kxy=Ky,c+ f*K¢, Kr=Kx|r+F|p. The second statement follows
from:

LEMMA 1.6 ((Ko4]). Let f: X—C as in Theorem 1.4, and assume that f
is.non-isotrivial. Then there is a positive integer m, such that for any positive
integer k, {7 is ample. In particular, we have p_(fw%75)>0.

PROOF. See for example [Kod], [Mol]. O
Combined with [Mi, Theorem 1.1], implies the following:
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COROLLARY 1.7. Assume that d=3, b=1. Let p:Y—X be a desingulari-
zation and g the induced morphism Y —C. Put ¢o(X)Kx:=c,(Y)p*Kx. Then
K3 = 3c(X)Kx—2(b—1)Beo(F)—KF).

PROOF. Let F; be a general fibre of g. Since the singular locus of X is
1solated and the normal bundle of F, is trivial, we have ¢, (Y )Fi=c¢,(F,), and
o induces an isomorphism between F; and F. Hence

0 = Bea(YV)— (Y ))p*Kxic = Bea(Y)— (Y )) p*Kx —Be(Y)—ci(Y ) g*Ke
=3¢, (Y)p*Kx—c\(Y ) p*Kx—3c(Y)Fi(2b—2)+¢,(Y ) Fi(2b—2)
= 3¢, (X)Kx—K3$—2(b—1)Bc(F)—K})
which is the desired inequality. [

From the surface theory, we need the following lemma, which is essentially
a direct consequence of a classical theorem of Clifford.

LeMMA 1.8 ([Hol, Lemma 7.6], [G, Lemma 3.2]). Let S be a smooth com-
plete surface with k(S)=0, and M a nef divisor so that |M| is non-empty and not
composed of a pencil, then we have:

M? = 2h°(O(M))—4.

§2. Proof of the Main Theorem 1.

§2.1. Cases (1), (2), (3).
First we prove the following:

PROPOSITION 2.1. Let the notation be as in the Main Theorem 1.
(1) If p(F)=3 and |Kr| is not composed of a pencil, then

A(p(F)—2
ke z —(%;(?))—)deg fso0xc .

(2) If |Kp| is composed of a pencil and F is not a surface with Ki=1
p:(F)=2, q(F)=0, then

4 H—1
K%ie = %deg fswxic.

s

(3) If Ki=1, p,(F)=2 and q(F)=0, then
K}ic = deg frwxic .
When equality in one of (1), (2) and (3) holds, f is isotrivial.
Let
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0::80C81C"'C8n::f*wX/C

be the Harder-Narasimhan filtration of fiwx,c. For each &, take a resolution
of the indeterminary p,:Y,—X as in Lemma I.I. Let Y be a nonsingular
projective 3-fold which birationally dominates all the Y; and p the induced
morphism from Y to X. Put

r;:=rank&, & N N,:= Ny(Kxyc, €;) € Div(Y)RQ
pi=p (&) e Q Z:=Zy(Kxsc, €;) € Div)QQ

M;:= My(Kx/c, &) € Div(Y).
Then
> p> > u,20, Z,z2Z,z2--=22Z,20.

Applying to the sequences
{tt oy o5 oy =0}, {24, Zy, -+, Zny Zyii =10},
we see that
(K xi0f— 2 (= ) NeFi Niss )

is pseudo-effective. Here F, is a general fibre of the induced morphism g: Y —C.

By there is m, such that mKx,c— f*0-(f+0¥2) is nef for any

m=m, Thus

. p-(f+0¥8) o0 | &, " "
(%) K%ic = — KF‘{‘igl (pti— pis)(@WKx o NiFy+ p* K x 10 Niyii Fr)

= 1_21 (,Ui—#i+1)(T*KFAL‘F1+T*KFMi+1 F1> ’

where 7 is the restriction of g to F..
In the above situation, we have the following two lemmas.

LEMMA 2.2. If |M;p,| is composed of a pencil for some i<n, then we have
MiFIT*KF = 2(ri—1)

except for the case where F is a surface with K;=1, p,(F)=2, q(F)=0. When
equality holds, either F has a linear pencil of genus two free from base points,
or F is a surface with K}=2, p,(F)=2, q(F)=0.

PROOF. By the assumption, there are a smooth irreducible curve B, on Fj,
and positive integer a;, so that M;r ~ag.a;B;. We note here that a;,=r,—1
and if a,=r;—1, then |B,| is a linear pencil. Put Bj:=7+B;. We divide the
proof into the following two cases: (a) Bi?=1, (b) Bi*=0.

First we consider the case (¢). By the Hodge index theorem, we have
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(Bit*Kp)=(BiKp) = B?*K%. If K;=1, then we have ¢(F)=0 and 2=p (F)=
h*(M;r,)=2 ([Bo, Theorem 9, 11]), which was excluded. Hence K3 =2 and
B m*Kz=2, so that

MiFlf*KF = a,;B,-‘L'*KF 2 (r@_l)BlT*KF 2 2(7’1—1) .

If M;pw*Kp=2(r;—1), then B;r*Kp=B{Kr=2 and a,=r,—1. In this case, we
have B?K;<4. From K}=2, we have Bj?<2, but the case Bj*=1 is excluded,
since KrB;+B*=0 (mod 2). Hence we obtain K}=2, Bi?*=2. Applying]the
Hodge index theorem again, we have Kgp~,.mBi, but noting Kz=B;, we de-
duce Kp~;nBi. Hence p,(F)=2, and ¢(F)=0 ([Bo, Theorem 12]).

In the case (b), |Bi|l is free from base points, so we may assume 7=1:d,
F,=F, Bi=B;. Noting F is a surface of general type, we see that KpB,=
2g(B,)—2=2, where g(B,) is genus of B;. Hence M;p t*Kr=2(r,—1).

When the equality holds, we have g(B;)=2 and a,=r;—1. Thus we have
proved Lemma 2.2. [J

LEMMA 2.3. Assume |M;p,| is non-empty and not composed of a pencil for
some i=n.

(L) If i=n,

M,pt*Kp = 2r,—4.
When the equality holds, F is a surface with KF=2p (F)—A4.
2 If i<n,

M;r t*Kpr = 2(r;—1).

When the equality holds, F is a surface either with K}<2p,(F)—1 or with
K}=8, p,(F)=4 and r;=3.

PROOF. Noting t*Kr=M;r, we can immediately get
M;pt*Kr = Mip, = 2h°0F, M5 )—4 = 2r,—4
by I[Le 8.

Suppose the equality holds in the case (1). Then by the Hodge index theo-
rem, we have

@ri—4» = Mip o*Kp) 2 Mip K 2 @ri—HKF = Qp(F)—HKE

which implies K#=2p,(F)—4 by Noether’s inequality.
Suppose that i<n and that M;r t*Kp<2r;,—3. When M,p t*Kp=2r,—4,
we have

@ri—4) = (M,p,o*Kp)* 2 Mir K} = (2r,—HKE.

Since r;,=3, we obtain 2r;—4=K}%, but this contradicts Noether’s inequality
because 7, < p (F) if i<n.
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If Mpv*Kp=2r,—3, put Mip:=t4M;r,. From we have
Mt =2 2h0r(Mir)—4 = 2h°(OF,(M;F,))—4 = 2r,—4.

We claim that M;2=2r,—4. Indeed, suppose M;2=2r;,—3. Applying the Hodge
index theorem to Mir and Kz, we get

(2ri—3)" = (Myp,o*Kr)* = (MirKr)* 2 MifKE 2 (2r,—3)K} .

Hence 2r;—3=K2, which contradicts Kz=2r,—2.

On the other hand, we have M{}+M;zK»=0 (mod 2), which is incompatible
with the hypothesis that Mi}=2r;—4 and MirKz=2r;—3.

Therefore we conclude M,r t*Kp=2(r;—1) if i<n, which is the desired
inequality.

If M;pv*Kp=2(r;—1) and K;=2p,(F), then since (M,p t*Kr)*=M}ip K§,
we have (Qr;—2):=(2r;—4)2r;+2). Hence »,=3, p,(F)=r;+1=4 and Ki=
2p.(F)=8. Thus we have proved Lemma 2.3. [

PROOF OF PROPOSITION 2.1. (1) From (%) and we get

n-2
Ko 2 8 (= )47 =2+ (ptams— ) nos =24 2= )+ @ra =4 Kd)ptn
2 S (e e =D+t — )7 s =)+ Qra—a+ K Bprn

= 41':%1 rz(#t—ﬂtﬂ)'—zﬂl_“2(ﬂn—1—’#n)—ﬂn(4rn—2)+(27’n_4+KF2‘)#n
=4deg f*wX/C'—zﬂl—zﬂn-l_(zrn—KIZ’)ﬂn
= 4deg frwxic—4p—Qp (F)—Ki)pn

2p,(F)— K2
= 4 deg f*wX/c—4(#x+-—p—g(—z)——£ﬂn> )

since 7,=r,-,+1 and p,=p,_,. Apply to the sequence {1, s, 0},
{Z,, K,, O}, to get

{m)]
Ko = B2 oy o en K oM 40K M g 1) K Mo+ K B
= (25 (F)—4)pti— 1)+ 2D o(F)—4+K Byt

K¢
= (2pg<F)“"4)<,u1+ Wﬂn) .

By Noether’s inequality, we have

K3 2p(F)—K}
20, (F)—4 4

v

0,
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so that

K3 2p,(F)—K}
— *F > 2 S F
+2pg(F>_4,un_;z+ 1 Un

Suppose that

_}__KL < __Z_d
HT Db Pyt = Ty Y8 Soxre
Then
4 -2
K%ic=z4deg fewyic—4—F— (F) deg fswx,c = %d eg fxwxc .
If

K d
Zﬁg(F) 4ﬂn__pg(F) egf*wX/C,

then we also obtain

: A(po(F
e 2 @Du(F) sy deg fotogso= LD og 1y,

Thus we have proved (1).

(2) From (x) and Lemma 2.2, we have

n-1
K¢ie = i2=1(ﬂi_ﬂiﬂxzri_2+2ri+1—2)+(27n—2+K127')#n
2 3 (=)~ 2+ Qa2+ Kba,

= 4 3 il o) =24 e =2+ @ra— 2+ K g,

deg f*w;r/c—zﬂr"(Z?’n—Kl%“)ﬂn

2p,(F)—K}% )
2 n 2
since 7y 27:+1 for all 7 and deg fiwx/c=20 7 (pti— ptiny).
On the other hand, applying to the sequences {u, u,, O}
{Z,, Z,, 0}, we find that

= 4deg f*wX/c—2<#1+

b

(,U*KX/C)Z—(ﬂl—ﬂn)(#*KX/CNlFl+#*KX/CN7;F1)
+ﬂn(#*KX/CNnF1’f‘ﬂ*KX/CNnHFl)

is pseudo-effective. Hence for every m=m,, we have
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O TG YRS T Y o G WG V A5 S g
xic 2 o F 1P TR 2 T¥Kp)(pti— ) (M p T*Kp+ KB ptn

2 (ng(F)_z)(ﬂl_#n)+(2pg(F)"2+K}27')#n

= @0uP)=2) (55" g )

655

Since K(=2, we have K3=2p,(F)—2 (see [Bo, proof of Theorem 9]), so that

Ki  2p,(F)—Kj} K3 20 (F)—K}
255 (F)—2 R (oS Tt L B
If
K2
TP S 0y O e
then
4 n-1
Kic=4deg fawxic—2—% ;bg(F) deg fxwxic = (‘D—;(g(—;,)—)—deg fswxc.
If
K}
n = d b
it g Py 3 iy o8 e
then
4(po(F)—1)

Yic Z Qp(F)—2)——c deg fxwxc = T B deg fxwx/c,

Pg(F)

which proves (2).
(3) If fywy,c is semistable, then n=1 and from (x), we have

i =2 Mip 7% Kp+KE)p = 2p, = deg fywxc
since M,p t*Kr=K;=1. If fiwx,c is unstable, then
K%z (MxFIT*KF+M2F]T*KF)(#1_#2)+(M2F17*KF +K1%')ﬂz
= (pts—p2)+2p = py+po = def froxc .

Thus we have proved the desired inequality. The last statement easily follows

from Lemma 1.6. O

To prove the case (1), (2) and (3) of the Main Theorem 1, we need the

following two lemmas.

LEMMA 2.4. Let X be a projective normal 3-fold with only canonical singu-
larities and let f: X—C be a proper morphism with connected fibres onto a com-

plete nonsingular curve C. Then we have
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deg fxwx/c—deg R fxwxc = X(Op)X(Oc)—X(Ox)
where F is a general fibre of f.
Proor. The lemma follows from the spectral sequence:
E%%:= H?(C, Rifywy) = E?*:= H?*YX, wy),
and Grothendieck duality (cf. [Ha2], [Kol, Proposition 7.6]). O

The author was informed by Y. Kawamata that the following lemma fol-
lows from and [N], but we give here an alternate proof.

LEMMA 2.5. Let notation be as in Lemma 2.4. Then, for all i, R'fwwx/c
is semipositive. In particular, we have deg R'fiwx;c=0 for all i.

PrOOF. Let p:Y—X be a proper birational morphism from a nonsingular
projective 3-fold ¥, and put g:=f-pu. Consider the following spectral sequence :

E%%:= R? f (Riuywy) = R?* g0y

which degenerates at E,-term. Since canonical singularities are rational ([E]),
R?gwwy=R? fewy for all p, and we may assume that X is nonsingular. Then
by [Ko2, Corollary 2.24], for each p, there is a smooth projective variety, Z,
which has a proper surjective morphism h: Z—C such that R?f.wy is a direct
summand of Axwz. Since hxwz ¢ is semipositive, it’s direct summand R? fiwx /¢
is also semipositive. [J

Now we prove the cases (1), (2) and (3) of the Main Theorem 1.
In the case (1), we have

%re Z:%EZP%—:@ deg fswx/c

_Ap(F)—2) _
=T (F) OO —X(0x)),
by [Proposition 2.1 (1) and Lemmas 2.4, 2.5. Hence

4(ps(F)—2) 4(p.(F)—2)
p(F) pe(F)

Ap(F)—2) | BK 32O NP (F) 4O
== 5ps(F)—2) (=D}

The second inequality in (1) follows from

K3z 6KEb—1)— 2Or)(b—1)— 20x)

BKF—2XOr)pe(F)+420r) 2 2p(F)—2)2p(F)+q(F)—1) > 0.
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In the case (2), we have

F)—1
K%icz % deg fxwx/c

= é(p;’f:_—%l—)(deg fxwxic—deg R fxox0)

_ 4p(F)—1)
pe(F)

by [Proposition 2.1 (2) and Lemmas 2.4, B.5. Hence we get

(O rX(Oc)—X(0x)),

3 _ 2_4(pg(F)‘”1) _ _4(]73(F)——1)
Ki=6(b—1)K? Mpg(F) XOb-1) —————————pg(F) XOx)

_Au(F)=1) (BKF—200r))po(F)+2KOF) [, |\
I 2ps(F)—1) (b—D—20O0} .

The second inequality in (2) follows from

BKF=200r)p(F)+2X0F) = 200 (F)—1)2p(F)+q(F)—1) > 0.
In the case (3), we have
K3ic =z deg fywxic = deg fxwx,c—deg R fswx;c = X(OrX(Oc)—X(Ox),

by [Proposition 2.1 (3) and Lemmas 2.4, 2.5.
Noting K%c=(Kx—f*Ke)’=Ki—6(b—1)K%, Ki=1and X(©Or)=3, we obtain

K} =2 6Kib0—1)—2(0r)(0—1)—X(0x)
= BKF—XOm)b—1)—20x) = 3(b—1)—X(0x),

Ki4+X(0x)
— g -

Thus we have proved the case (1), (2) and (3) of the Main Theorem 1.

b1+

§2.2. Case (4).
PROPOSITION 2.6. If p (F)=1, then
K%ic = Kgdeg fswxic .
When the equality holds, f is isotrivial.

PROOF. fuwyxc is an invertible sheaf in this case, so that fiwx,c=0c(0)
for some divisor 6 on C. Since the natural homomorphism f*0¢(0)=f*f+wx/c

—wyx/c is non-zero, Ky, c—f*0 is effective. Therefore, by we
have
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(KX/c—f*ﬁ){KX,C._ w}z

m

%

0,
for sufficiently large m. Hence
m)
Ko 2 2O ey 4 jey o756 2 K deg = K deg fuwxio

for sufficiently large m, which is the desired inequality. The last statement
follows from Lemma 1.6, [J

Now, we prove the case (4) of the Main Theorem 1. By [Proposition 2.6
and Lemma 2.4, 2.5, we have

K%ic =z Kideg fywx/c = Ki(deg fswx,c—deg R fxwx/c)

= K#X(Or)X(0c)—X(0x)),
K%z 6Ki(b—1)— KO r)b—1)—KiX(Ox)
= KH{(6—X0n)b—1)—X0x)}.
As for the second inequality in (4), we have 6—X(©@r)=44¢(F)>0, and hence

Ki+KiX(Ox)
F6—X(©Or))

Thus we have proved the case (4) of the Main Theorem 1.

b= +1.

§2.3. Case (5).

PROPOSITION 2.7.
1) If Ki=1, p,(F)=0, ¢(F)=0, then

3
K%z g deg fxw¥ .
2) If Ki=2, p,(F)=0, ¢q(F)=0, then
1
Kie= Pl deg fx0¥%%; .

When the equality in each case holds, f is isotrivial.

PROOF. Let
0=:1,C&C - Cé&,:= fr0f),

be the Harder-Narasimhan filtration of fxw¥%+0 and take Y, p and 7 in the
same way as in the proof of [Proposition 2.1. Put

¥ :=rank & e N Nl = Ny(ZKX/c, 81) < Div (Y)@Q
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i = [1-(81) S Q Zi = ZY(ZKX/C) 81) S DIV (Y)®Q
Mi = My(ZKX/c, 6’1) e Div (Y) .
CLamM. M;p*Kp=r,—1 for all i.

ProOF oF CLAIM. If »,=1, we have nothing to prove. If ;=2 and |[M,p,|
is composed of a pencil, then there is a smooth irreducible curve B; on F, and
a positive integer a;, such that M;p ~aga;B;. Since t*KrB;>0 and a,27r;—1,
we get the result. If ;=3 and [M,r | is not composed of a pencil, then we
have 2t*Kp=M;r, and

Mz'FlT*KF = % %Fl =ri—2

by Lemma 1.8. Suppose M;rt*Kr=r,—2, then
(ri—2) = (MiFlf*KF)2 = M%Fl Pz @ri—HKE

by the Hodge’s index theorem. Hence we get »,—2=2K}%, which contradicts
r <P(F)=K2+1. Thus we have proved the claim. [

PROOF OF PROPOSITION 2.7 continued. Applying to the sequ-
ences :
{lul" M2 5 Uny Pnvi = 0}7 {er ZZ: Tty an Zn+1 = O};

we see that

U Kxiof— 3 (i s )X NeFi - Niga )

is pseudo-effective. Let m, be as in [Theorem 1.4. Then for any positive
integer m=m,,

4p_ {m] n
4K 30 = ‘%K%‘}‘ §1 (ﬂi_#iﬂ)(MiFlT*KP +Mi+1F17*KF)

v

n-—1
ZE ripi— o) My p ¥ Kp +2K B) 1

I

Zé ri(#i_#i+1)"27’nﬂn+(MnF1‘[*KF +2K}2:~)‘un

2deg fs0¥c—2r s pta+(rn—1+2K ),
2deg fx0¥e—(Po(F)+1-2K %), .

Il

In the case (5), we have P(F)+1—-2K;=2—K;=1 and p(f+0¥,)=p,, so
that

4K 30 = 2deg f1o¥—ptn = 2deg fs0¥o— p(f+0¥%) = i;— deg fxw¥% .
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In the case (6), noting that P,(F)+4-1—2K%=0, we have
4K 30 = 2deg fx0¥%,

since P,(F)+1—2K2<0. The last statement follows from [Lemma 1.6. This
completes the proof of Proposition 2.7. O

In order to prove the case (5) of the Main Theorem 1, we need the fol-
lowing :

LEMMA 2.8. Let notation be as in the Main Theorem 1. Then we have

1
deg fyo¥e = 7 K &io—302) 30— 1O ) +1(2).

PRrRoOF. Since R'fiw¥%=0 for all ; (cf. [KMM, Theorem 1-2-5]), we have
X 0¥F)=X(fxw¥?). From Reid-Fletcher’s plurigenera formula (see [F1, Theorem
2.57), we obtain

L) = 5 K3—3HO0+12)
1 TR

= 5 K kic+3K Hb—1)—3X(0x)+1(2).

On the other hand, by Riemann-Roch on C, we have
X f sw¥?) = deg f4w§ —Py(F)(b—1)
(= deg fx0¥%p+Pu(F)(4b—4)—Py(F)(b—1)

= deg f0¥c+3P(F)(b—1).
Hence

1.
deg fw¥e = 5 K 1o +3KH(b—1)—3U0x)—3(K p+20O m))b—1)+U2)
1

= 5 K3ie—=3(b— 10 r)—3X0x)+12),
which is the desired inequality. O

The inequalities in the case Main Theorem 1 follow immediately from
Proposition 2.7, [Lemma 2.8, and thus we have completed the proof of the Main
Theorem 1. O

§3. Proof of the Main Theorem 2.
To prove the Main Theorem 2, we only have to show the following:

PROPOSITION 3.1. Let notation be as in the Main Theorem 1. Assume that
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F is not any of the surfaces (1), (2), (3), (4), (5), 6) and (7) of the Main Theorem
2. Then

%ic = 4deg froxic .

When the equality holds, f is isotrivial.

PROOF. We may assume p,(F)=2. We use the same notation as in the
proof of the cases (1), (2) and (3) of the Main Theorem 1.

CLAIM. For every i, the inequality
(A9 MiFlT*KF +Mi+1FIT*KF = 4r,
holds, unless r,=1 and i=1.

Assume the claim. Then if »,>1 and m is very large, we have:

m] n
Koz B0 00 4 30 (0, o %K gt Mo e K o) i pra42)
m i=1

Z 43— pren) = 4 deg froxrc,

which is the desired equality.

ProoF OF CLAIM. We divide the proof into the following two cases:

(@) K;z2p,(F)+1.

(b) KE=2py(F).

CASE (a). We have two subcases:

SUBCASE (a-1). |Kr| is composed of a pencil.

By if (A;) does not hold for some ; with »;>1, then we are in
the case (1) or (2), which was excluded.'

SUBCASE (a-2). |Mp| is not composed of a pencil.

In view of [Lemma 2.3, we only have to prove:

ManT*KF _Z_ 27’77,—'1 .

Note that M, t*Kr=2r,—3, by Lemma 2.3. Suppose that M,r t*Kr=2r,—3.
Then by the Hodge index theorem,

2r,—3)* 2 @r,—4)@r.+1),
so that »,<2, which is absurd. Suppose that M,r t*Kr=2r,—2. Then
@r,—20 =z M%K§ =2 2r,—4)@2r.+1),
and hence »,<4. If r,=4, then we have:

M,rKr =6, Mz =4, K:=9.
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Since

M rKr+
2
(see [Bo, proof of Theorem 97), we deduce ¢(F)<1. Thus we are in the ex-
cluded case (4b).

If r,=3, then from M, t*Kr=4 and 16ZM;5Kiz=MM;p, we derive
M'%.<2. On the other hand, we have M%=2r,—4=2, so we get MF=2,
K2%=7 or 8. Since

4 y 12
MarketMiir — 3 2 2p,(F)—kq(F) = 2-+4(F),
we have ¢(F)<1. Thus we are in the excluded case (4a) or (4c). Thus we
have proved the case (a).

CASE (b).

SUBCASE (b-1). |Kpg| is composed of a pencil.

By our assumption, there is a smooth irreducible curve B, on F; and a
positive integer a, such that M,p ~aga.B,. By Lemma 2.2, M,rt*Kr=
2r,—1. We claim M,p t*Kp=2r,. Indeed, if M,p t*Kr=2r,—1, then

12
M > 2po(F)—4+q(F)

2r,—1=a,BtKy = (r,—1)B,Kr,
and
2rp,—1 1
ra—1 2+rn—1
where B :=t4«B,. If B,Kr=3, then r,=p,(F)=2, K}=4 and a,=r,—1=1,
which implies that |B7| is a linear pencil. By the Hodge index theorem, we
have 9= B;2K2=4B}2, hence Bi?=1. So we may assume that t is the blowing

up of the unique base point of |B7|. Let E be the exceptional divisor of r.
Then

BrKr < =3

== b

t*B, = B,+E Kp, =t*Kp+FE,
so that
B.Kp, = (t*B,—E)Yt*Kr+E)=KpB,—E*=4.

This implies that g(B,)=3. Thus we are in the case (4a), which was excluded.
Since B,Kr-+B7Z=0 (mod 2), we have B?=1. But in this case, we have 1>
B7ZK% and K =1. So we arrive at the case (2).

SUBCASE (b-2). |Kr| is not composed of a pencil.

We claim M,r t*Kpr=2r,. Indeed, if M, p o*Kp<2r,—3, then

(2;’”—3)2 z (zrn'—4>27n )

hence »,<2, which is absurd. If M,p t*Kr=2r,—2, then
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@r,—2 = M7%K§ = 2r,M3p,
and M2%»<2r,—3. Noting that M, Kr+M;%=0 (mod 2), we get M %=2r,—4.
Thus

’ ’2
MarKrtMie _ g3 2 2p,(F)—t-q(F),

which implies ¢(F)<1. So we are in the excluded case (3).
If M,pt*Kp=2r,—1, then

@ra—1)* = Mifp2r, .

Hence M %<2r,—2, yielding M;%=2r,—3. So we obtain
’ y 72
M"FK;’JrM"F = 2r,—2 = 2p (F)—4-+q(F),
which implies ¢g(F)<2. So we are again in the case (3). Thus we get M, 7 t*Kr
=2r,, and from Lemma 2.3, we deduce that (A4,) holds for all ; except for the
case ;=1 and /;=1. Thus we have proved the claim. [

PROOF OF PROPOSITION 3.1 CONTINUED. In what follows, we may suppose
r1=1. And we may also assume M,r t*Kr=3 and »,=2, since M,r t*Kr=
2r,—1. Let B, be a smooth irreducible curve on F, and a, a positive integer
such that M,y ~aga.B,, and put B;:=74B,. Since a,B;v*Kr=0,B;Kr=3, we
have a,=1 or 3. If a,=3, then B;Kr=1 and K%=1, which is absurd. If ]
a,=1, then |B;| is a linear pencil. Since K}>=2p,(F)=4 and 9=B;*K}=4B:?,
we have B;j*=1 or 2. But the case Bj*=2 is excluded since B;Kp-+B3?=0 |
(mod 2). Hence B;*=1 and g(B,)=3.

Suppose that p,(F)=2. Then we have K}>6; otherwise we have K7=4
or 5 and we are in the excluded case (4a). Let m be a sufficiently large integer.
If po—p.<p,, then

Lm]
K%iecz 'L'tif—;a‘)giC—)K%‘i‘:g(#l—#z)‘*‘gﬂz = 3(#1—#2)+9ﬂ2
= 4(p— pa) +8p, = 4 deg frwxic -
On the other hand, if p,—p,=py,, then
(m]
Kic= 'ﬁi}fr’;—a){@f(%"{‘[{%‘(#1—0) = 6/11

= 6(pt1— pa) +6t0 = 41— pt2) +8pt = 4 deg frwxic -

Suppose that p,(F)=3. In this case we have Myp t*Kr22rs—125. If Myp t*Kp
=6, then we can deduce the desired inequality in the same way as in [X, p.
456]. So we may assume M;r *Kr=>5 and r,=3. When |M;r | is composed
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of a pencil, there are a smooth irreducible curve B, on F; and a positive
integer a; such that Msp,~agasB: and a,=r;—1=2. Put B;:=r4«B,. Since
a;B;Kr=5, we have a;=5 and B;Kp=1. Hence we get K?=1, which is
absurd. So we may assume |M;p | is not composed of a pencil. Then

25 = M:pKp = 2roa Mg = 6M ik,

$0 that Mi%<4. Noting Mi{yKr+Mi3=0 (mod 2) and M} =2r,—4=2, we get
M3%=3 and K2=6,7,8. And since F has a genus 3 linear bencil, we have
g(F)=2. Therefore, if K(=6, 7, then we are in the case (3), (4c) respectively.
If K3=8 and p,(F)=4, then we are in the case (3), which is absurd. So we
may assume Kz=8 and p,(F)=3. Then, if p,—p,<ps, we get

tm]
Ko 2 B0 (30— p) 80— )+ 131

= 4ot — p2) +8(pto— o) +12p; = 4 deg frwx/c .
If ﬂx_ﬂzzﬂsy

m]
K%z &%ﬁ”ﬁ/_@[@_{.g(m_o) = 8(#1—ﬂ2)+8<#2_ﬁ3>+8ﬂ3

= A(p— p2)+8(pta— p13)+12p; = 4 deg frwx/c -
Thus we have proved the proposition and the Main Theorem 2. [J

ExAMPLE. Let C be a smooth complete curve and ¢ a divisor on C with
degree d>0, such that |d! is free from base points. Put S:=Pc(0sB0(0))
and P:=Ps(0sPOs(—e)) for some integer ¢e=2. Let x,: S—C and =,: P—S be
the natural projections. Put p:=mem,. Let Y=|0p(1)] and Ty |0p(1)+ 70 s(e))
be the sections of 7, which correspond to the natural surjections OsBECOs(—e)
—0s(—e) and OsPOs(—e)—0Os respectively. Let L=|0s(1)] and L,=|0s(1)—x¥0]
be the sections of =z, which correspond to the natural surjections ©cPHOc(0)—
0c(0) and OcPO:(0)—0O¢ respectively. Since L,+xa*|d|C|L|, |L| is free from
base points. And since Y-+rn¥leL|C|2Y,], |2, and hence |62,] are also free
from base points. Let R<|6%,| be a smooth general member, and put £ :=
0p(32,). Since Op(R)=.L%, we have a irreducible smooth double covering
g : X—P branched along R. Put f:=p.g. Noting wyx,c=0c*(wp,cQ.L), We have

¢)) Kxic = o*{p*d+Q2e—2)af L+2} = o*{p*0+(e—2)aFL42}.

Since L and X, is nef, Kx,c is also nef. From (1), we get K}=Kx,c|f=
2(3¢—4), where F is a general fibre of f. Noting ¢x@x,c=wp/cPB(@p/cX.L), We
have

2) fxwxic = pxlwpcQL) = 2:@100(1'5)@ 500(55) .
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From (2), we get p,(F)=rank f«wy,c=3¢—2 and hence K}=2p,(F)—4. Thus
f is a minimal fibration of surfaces of general type in the Noether line. From
1), we get K}/c=2(Kpic+-L)Y=2¢(Te—9)d. And from (2), we get deg fw«wx/c
=(1/2)-e(5¢—3)d. Thus

4(7e—9)

5¢—3

and when e=2, i.e., (K}, p,(F), g(F)=4, 4,0), f gives an example which
satisfies the inequality in the Main Theorem 2.

K%ic/deg frwxic = <4d=e=2,
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