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It is a classical problem to investigate the behavior of a geodesic on a
surface of revolution, or more generally on a surface of Liouville. A pioneer-
ing and beautiful work in this field was done by von Mangoldt in 1881; He
investigated the behavior of a geodesic on a hyperboloid of two sheets (or an
elliptic paraboloid), which both are surfaces of Liouville. He proved in [7]

that the two umbilic points on any hyperboloid of two sheets (or any elliptic
paraboloid) are poles and that for any revolutionary hyperboloid of two sheets,
the set of poles on the surface is a nontrivial closed ball centered at the unique
umbilic point. Note that the set of poles on any surface of revolution with
vertex $P$ is a closed ball centered at $p$ . This fact will be Proved in Lemma
1.1. Here a surface of revolution $M$ with vertex $p$ means that $M$ is a complete
Riemannian manifold homeomorphic to $R^{2}$ such that the Gaussian curvature $G$

is constant on each metric circle $S_{p}(t):=\{q\in M;d(p, q)=t\},$ $t\in[0, \infty)$ , where
$d$ denotes the Riemannian distance function on $M$ . Furthermore, by calculating
the elliptic integrals defining geodesics on a revolutionary hyperboloid of two
sheets, von Mangoldt explicitly determined the radius of the ball of poles.
His results were extended by Elerath almost one hundred years after. By de-
fining the class of flattening surfaces of revolution generalizing revolutionary
hyperboloids of two sheets and revolutionary Paraboloids, Elerath ([3]) exPlicitly
determined the cut locus of each point on a flattening surface of revolution.
Recently another extension was made by Maeda; Let $M$ be a non-negatively
curved, complete noncompact Riemannian manifold and let $D_{t}$ be the diameter
of the metric sphere centered at a point $P$ with radius $t$ . In [6] Maeda proved
that the number $\lim\sup_{carrow\infty}D_{t}^{2}/t(=:d_{0})$ does not depend on the choice of the
point $P$ and that the diameter of the set of poles on $M$ is bounded above by $d_{0}$ .

This work was partially supported by The Ministry of Education, Science and Culture
(Grant-in-Aid for General Scientific Research 01540075).
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Note that von Mangoldt did not find any geometrical upper bound for the dia-
meter of the set of Poles on a revolutionary hyperboloid of two sheets. Very
recently I knew that Maeda’s result was improved by Sugahara. He proved
that the diameter is bounded above by the optimal constant $d_{0}/8$ . In this article
and the forthcoming one [9] we study the behaviors of geodesics on a surface
of revolution with vertex. The main aim of this article is to determine the
cut loci for a wider class of surfaces than the one of flattening surfaces of
revolution, which will be defined soon later as a von Mangoldt’s surface of
revolution. We need some notations in order to state our Main Theorem.
Throughout thes article, $(M, g)$ always denotes a surface of revolution with vertex
$p$ and any geodesic is assumed to be Parametnzed by arclength. For each $q\in$

$M\backslash \{p\}$ , let $\mu_{q}$ : $[0, \infty)arrow M$ be the geodesic emanating from $P$ with $\mu_{q}(d(p, q))=q$ .
The $\mu_{q}$ is called the mendian through $q$ . The meridian $\beta_{q}$ opposite $q$ is defined
by

$\hat{\mu}_{q}(t)=\exp_{p}(-t\mu_{q}’(0))$

for $t\in[0, \infty)$ . Here $\exp_{p}$ denotes the exponential map on the tangent space $M_{p}$

to $M$ at $p$ . A surface of revolution $M$ with vertex $p$ will be called a von
Mangoldt’s surface of revolution if $G(x)$ is not greater than $G(y)$ for any points
$x,$ $y$ of $M$ with $d(p, x)\geqq d(p, y)$ . For each point $q$ on $M,$ $C_{q}$ denotes the cut
locus of $q$ and $\tau_{q}$ : $[0, \infty)arrow M$ denotes a geodesic emanating from $q$ through $p$ .
If $q$ is distinct from $p,$ $\tau_{q}$ is uniquely determined, because the vertex is a pole.
This fact will be proved in Lemma 1.1. In this article we shall prove

MAIN THEOREM. If $M$ denotes a von Mangoldt’s surface of revolution with
vertex $p$ , then for any $p\alpha ntx$ on $M$, either $C_{x}$ is emPty or $C_{x}=\beta_{x}[d(p,\hat{x}),$ $\infty)$ .
Here 2 denotes the first conjugate $p\alpha nt$ of $x$ along $\tau_{x}$ .

AS a corollary the cut locus of each point on a von Mangoldt’s surface of
revolution is connected. In [3] Elerath constructed a surface of revolution on
which the cut locus of a point is connected, but not contained in the meridian
opposite the point. Note that even in the case of a surface of revolution, the
cut locus is not generally known. Since a surface of revolution has a big iso-
metry group, one might conjecture that each cut locus on any surface of revolu-
tion with vertex would be connected. But this is not true. I shall give a
surface of revolution with a disconnected cut locus in [9]. Furthermore in [9],

I shall give a characterization of a surface of revolution with many poles, and
shall prove that the radius of the closed ball of poles on a von Mangoldt’s
surface of revolution is explicitly determined by a geometrical equation de-
pending only on the function $L(t)$ , the length of $S_{p}(t)$ .

Refer to [1], [2] for classical Riemannian geometry and basic tools in Rie-
mannian geometry.
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I would like to express my thanks to professors Otsuki, Innami and Suga-
hara for several helpful remarks.

1. A von Mangoldt’s surface of revolution.

For each point $q$ on $M,$ $S_{q}M$ denotes the set of unit tangent vectors at $q$ .
A point $q$ on $M$ is called a pole if the differential $d\exp_{q}$ of the exponential
map $\exp_{q}$ at each tangent vector of $M_{q}$ is injective or equivalently if $\exp_{q}$ is
injective. Let $f:[0, \infty)arrow[0, \infty)$ be a smooth function with $f(O)=0$ such that
$f(\sqrt{x^{2}+y^{2}})$ is smooth at $(x, y)=(O, O)\in R^{2}$ . $M(f)$ denotes the surface of revolu-
tion defined by $z=f(\sqrt{x^{2}+y^{2}})$ . Then $M(f)$ is a flattening surface of revolution
in [3] if it is a von Mangoldt’s surface of revolution. A flattening surface
$M(f)$ is a surface of revolution with vertex $p==(O, 0,0)$ such that for each
positive $t$ , the closed ball $\overline{B}(p, t)$ centered at $P$ with radius $t$ is totally convex.
In the section 2, I shall give a von Mangoldt’s surface of revolution which is
not a flattening surface. Revolutionary hyperboloids of two sheets and revolu-
tionary paraboloids are typical examples of a flattening surfaces of revolution.
For each $v\in S_{q}M,$ $r_{v}$ : $[0, \infty)arrow M$ denotes the geodesic defined by

$r_{v}(t)=\exp_{q}(tv)$ .
In the following Iemma it will be proved a fundamental and crucial property
on the set of poles on a surface of revolution.

LEMMA 1.1. If $M$ is a surface of revolution with vertex $p$ , then $p$ is a pole.
Furthermore if a point $q$ on $M$ is a pole, then any point $x$ with $d(p, x)\leqq d(p, q)$

is also a Pole.

PROOF. Suppose that $P$ is not a pole. Then we can take a cut point $x$ of
$p$ which is conjugate to $P$ along a minimizing geodesic ([8]). Hence $P$ is con-
jugate to $x$ along a minimizing geodesic $\tau:[0, d(p, x)]arrow M$ joining $P$ to $x$ .
Since $M$ is noncompact and complete, there exists a ray $\gamma:[0, \infty)arrow M$ emanat-
ing from $p$ . By definition $\gamma$ is a ray if and only if $d(\gamma(t), p)=t$ for any posi-
tive $t$ . Hence we have

$G(\gamma(t))=G(\tau(i))$

for any $t\in[0, d(p, x)]$ , since $d(p, \tau(t))=d(p, \gamma(t))=t$ on $[0, d(p, x)]$ . Since the
Jacobi fields along $\gamma|[0, d(p, x)]$ and the ones along $\tau|[0, d(p, x)]$ satisfy the
same differential equation, $r(d(Px))$ is conjugate to $p$ along $\gamma$ , which contra-
dicts the fact that $\gamma$ is a ray. Hence $P$ is a pole, and for each positive $t$ and
for any two points $x,$ $y$ on $S_{p}(t),$ $M$ has an isometry $A$ with $Ax=y$ . To prove
the latter claim we may assume $0<d(p, x)<d(p, q)$ . Let $A_{x}$ be the set of all
$v\in S_{x}M$ such that $\gamma_{v}$ is a ray. Since $A_{x}$ is closed and nonempty, it is sufficient
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to show that $A_{x}$ is open in $S_{x}M$ . Fix any $v\in A_{x}$ . Since $\gamma_{v}$ intersects $S_{p}(t_{0})$ ,

where $t_{0}=d(p, q)$ , at a pole $y$ on $S_{p}(t_{0}),$ $\gamma_{-v}$ is a subray of the ray emanating
from $y$ through $x$ . Hence there exists an open subarc $I$ containing $-v$ of $S_{x}M$

such that for any $w$ in $I,$ $\gamma_{w}$ intersects $S_{p}(t_{0})$ . This implies that for any $w$

with $-w\in I,$ $\gamma_{w}$ is a subray of a ray emanating from a point on $S_{p}(t_{0})$ . Hence
$A_{x}$ is open in $S_{x}M$. This means $A_{x}=S_{x}M$ .

It follows from Lemma 1.1 that for each surface of revolution $M$ with
vertex $p$ , there exists a number $r(M)\in[0, \infty]$ such that the set of poles on $M$

is the closed ball $B(p, r(M))$ . Note that $M$ has a unique vertex unless the
Gaussian curvature of $M$ is constant.

LEMMA 1.2. Let $M$ be a von Mangoldt’s surface of revolution with vertex
$P$ . If a Point $q$ of $M$ satisfies that the geodesic $\tau_{q}$ : $[0, \infty)arrow M$ emanating from
$q$ through $p$ has no conjugate Point of $q$ along itself, then $q$ is a pole.

REMARK. The above lemma was proved by von Mangoldt [7] in the case
where 11 $I$ is a revolutionary hyperboloid of two sheets.

PROOF. Suppose that $q$ is not a pole. Then there exists a cut point $x$ of
$q$ which is conjugate to $q$ along a minimizing geodesic $\tau$ joining $q$ to $x$ . Since
$P$ is a pole, $d(p, \tau_{q}(t))=|d(p, q)-d(q, \tau(t))|$ for any $r\in[0, d(q, x)]$ . Thus it
follows from the triangle inequality that

$d(p, \tau_{q}(t))\leqq d(p, \tau(t))$

on $[0, d(q, x)]$ . This inequality imPlies that

$G(\tau_{q}(t))$ 11111 $G(\tau(t))$

on $[0, d(q, x)]$ , since $M$ is a von Mangoldt’s surface of revolution. By the
Rauch comparison theorem, there exists a conjugate point of $q$ along $\tau_{q}$ . This
contradicts the assumption on $\tau_{q}$ .

Let $(N, g)$ be a complete Riemannian manifold homeomorphic to $R^{2}$ and
$\gamma:Rarrow N$ denotes a geodesic such that 7(0) is a pole. Then $N$ is divided into
two open half planes by $\gamma$ , and let $N_{+}$ be a closed half plane with boundary
$\gamma(R)$ and $d_{+}$ denotes the Riemannian distance function induced from $(N_{+}, g|N_{+})$ .
For each $\theta\in[0, \pi]$ , let $\gamma_{\theta}$ : $[0, \infty)arrow N_{+}$ be the geodesic emanating from $\gamma(0)$

such tbat the angle $<\Sigma(\gamma’(O), \gamma_{\theta}’(0))$ made by $\gamma’(0)$ and $\gamma_{\theta}’(0)$ is $\theta$ . The following
lemma will play an important role to prove Theorem 1.4.

LEMMA 1.3. Let $N_{+},$ $d_{+},$ $\gamma_{\theta},$ $\gamma$ be as above. If a, $b$ denote arbitranly given
positive real numbers, then the function $f:[0, \pi]arrow R$ defined by

$f(\theta)=d_{+}(\gamma(b), \gamma_{\theta}(a))$
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is strictly monotone increasing on $[0, \pi]$ .
PROOF. Let $\theta_{1},$ $\theta_{2}$ be arbitrarily given numbers satisfying $0<\theta_{1}<\theta_{2}<\pi$ .

Let $c:[0, f(\theta_{2})]arrow N_{+}$ be a $d_{+}$-minimizing geodesic joining $\gamma(b)$ to $\gamma_{\theta_{2}}(a)$ . Since
$c$ is minimizing, $c(O, f(\theta_{2}))$ has no selfintersection with $\gamma$ nor with $\gamma_{\theta_{2}}$ . Then
the geodesic $c$ intersects the geodesic $\gamma_{\theta_{1}}$ at a unique point $x=c(t_{0})=\gamma_{\theta_{1}}(s_{0})$ ,

where $0<t_{0}<f(\theta_{2})$ and $s_{0}>0$ . Since $\gamma(0)$ is a pole, $|s_{0}-a|=d_{+}(x, \gamma_{\theta_{1}}(a))$ is less
than $d_{+}(x, \gamma_{\theta_{2}}(a))=f(\theta_{2})-t_{0}$ . Hence we have

$f(\theta_{1})=d_{+}(\gamma(b), \gamma_{\theta_{1}}(a))<t_{0}+|s_{0}-a|<f(0_{2})$

by the triangle inequality. This inequality implies that $f$ is strictly monotone
increasing on $[0, \pi]$ .

THEOREM 1.4. If $M$ is a von Mangoldt’s surface of revolution with vertex
$p$ , then for any $x\in M\backslash \{p\}$ the cut locus $C_{x}$ of $x$ is contained in $\beta_{x}[0, \infty)$ .

PROOF. Let $\gamma:Rarrow M$ denote the geodesic such that $\gamma(t)=\mu_{x}(t)$ for non-
negative $i,$ $\gamma(t)=\beta_{x}(-t)$ for negative $t$ . Supposing the existence of a point
$q_{1}\in C_{x}$ with $q_{1}\not\in\beta_{x}[0, \infty)$ , we shall get a contradiction. The existence of such
a point implies that there exists a cut point $y\in M\backslash \gamma(R)$ of $x$ which is conjugate
to $x$ along a minimizing geodesic $c:[0, d(x, y)]arrow M$ joining $x$ to $y$ . Let $M_{+}$

denote the closed half plane with boundary $\gamma(R)$ containing $y$ . Define the curve
$C_{2}$ in $M_{+}$ by

$c_{2}(\theta)=\gamma_{\theta}(d(p, y))$

for $\theta\in[0, \pi]$ , which parametrizes the semicircle in $M_{+}$ of radius $d(Py)$ cen-
tered at $p$ . Let $\theta$ : $M_{+}\backslash \{p\}arrow[0, \pi]$ be the continuous function defined by

$\theta(q)=<X(\gamma’(0), \mu_{q}’(0))$ .
For each $\theta\in(\theta(y), \pi)$ , let $e_{\theta}$ : $[0, d(y, c_{2}(\theta))]arrow M_{+}$ denote a minimizing geodesic
joining $y$ to $c_{2}(\theta)$ . Fix $\theta_{1}\in(\theta(y), \pi)$ in such a way that $9i(c’(d(x, y)),$ $c_{1}’(0))$ is
less than $\pi/2$ , where $c_{1}=e_{\theta 1}$ . It is possible to choose such a number $\theta_{1}$ , since
$\not\in(c’(d(x, y)),$ $c_{2}’(\theta(y)))$ is less than $\pi/2$ . Let $D$ denote the relatively compact
domain bounded by $c,$ $c_{1},$ $\gamma_{\theta_{1}}|[0, d(p, y)]$ and $\gamma|[0, d(p, x)]$ . Let $d_{D}$ denote the
Riemannian distance function on $\overline{D}$ defined by

$d_{D}(x_{1}, x_{2})= \inf$ { $L(c);c$ is a Piecewise smooth curve in $\overline{D}$ joining $x_{1}$ to $x_{2}$ },

where $L(c)$ denotes the length of $c$ . If a curve $e$ in $\overline{D}$ realizes the $d_{D}$-distance
between its endpoints, then $e$ will be called $d_{D}$-minimizing. We shall prove
that there exists a $d_{D}$-minimizing geodesic emanating from $x$ which is longer
than $c$ . If the inner angle of $D$ at $y$ is not greater than $\pi$ , then there exists
a $d_{D}$-minimizing geodesic $\beta$ in $\overline{D}$ joining $x$ to $c_{2}(\theta_{1})$ which does not intersect
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the boundary of $D$ except for its endpoints. Note that $\beta$ is a geodesic seg-
ment in $M$ which is longer than $c$ by Lemma 1.3. Suppose that the inner angle
of $D$ at $y$ is greater than $\pi$ and that $d_{D}(x, y)=L(c)$ is less than $d_{D}(x, c\sim(L(c)+\epsilon_{0}))$

for a sufficiently small positive $\epsilon_{0}$ . Here $c\sim$ denotes the geodesic extension of
$c$ . Note that $c\sim(L(c), L(c)+\epsilon)$ lies in $D$ for all sufficiently small positive $\epsilon$ , since
the inner angle of $D$ at $y$ is greater than $\pi$ . If $\beta$ denotes a $d_{D}$-minimizing
geodesic joining $x$ to $\delta(L(c)+\epsilon_{0})$ , then $\beta$ , which is longer than $c$ , lies in $D$

except for $x=\beta(O)$ . Suppose that the inner angle of $D$ at $y$ is greater than $\pi$

and that $d_{D}(x, y)=L(c)$ is not less than $d_{D}(x,\tilde{c}(L(c)+\epsilon))$ for any sufficiently
small positive $\epsilon$ . It follows from the first variation formula that $L(c_{1})=$

$d(y, c_{2}(\theta_{1}))$ is greater than $d(c_{2}(\theta_{1}),\tilde{c}(L(c)+\epsilon_{0}))$ for a sufficiently small positive
$\epsilon_{0}$ . By connecting a $d_{D}$-minimizing geodesic joining $x$ to $c\sim(L(c)+\epsilon_{0})$ and the
$d_{D}$-minimizing geodesic joining $c\sim(L(c)+\epsilon_{0})$ to $c_{2}(\theta_{1})$ , we get a piecewise smooth
curve joining $x$ to $c_{2}(\theta_{1})$ in $\overline{D}$ which is shorter than $cVc_{1}$ , where $c\vee c_{1}(t)=c(t)$

for $0\leqq t\leqq L(c)$ and $c\vee c_{1}(t)=c_{1}(t-L(c))$ for $L(c)\leqq t\leqq L(c)+\epsilon_{0}$ . This implies that
there exists a $d_{D}$-minimizing geodesic $\beta$ joining $x$ to $c_{2}(\theta_{1})$ , which is longer

than $c$ by Lemma 1.3. Therefore there exists a $d_{D}$-minimizing geodesic $\beta$ em-
anating from $x$ such that $\beta$ is longer than $c$ and $\theta(\beta(L(\beta)))>\theta(y)$ , whether or
not the inner angle of $D$ at $y$ is greater than $\pi$ . For each $s\in(O, L(c))$ , let
$t(s)\in(O, L(\beta))$ be the unique parameter of $\beta$ satisfying

$\theta(\beta(t(s)))=\theta(c(s))$ .
Note that both functions $\theta\circ\beta$ and $\theta\circ c$ are monotone increasing, since $P$ is a
pole. Fix $s\in(O, L(c))$ and let $(a, b)$ be the maximal open subinterval containing
$t(s)$ of $[0, L(\beta)]$ such that

$d(p, \beta(t))<d(p, c(s))$

for any $t\in(a, b)$ . If $a=0$ (resp. $b\geqq L(c)$), then it is trivial that $s>a$ (resp.

$s<b)$ . Hence we may assume $a>0$ (resp. $b<L(c)$ ) in order to show $s>a$ (resp.
$s<b)$ . From the maximality of $(a, b)$ we get

$d(p, c(s))=d(p, \beta(a))=d(p, \beta(b))$ .

Since $\theta(\beta(a))<\theta(c(s))=\theta(\beta(t(s)))<\theta(\beta(b))$ , it follows from Lemma 1.3 tbat

$a=d_{D}(x, \beta(a))=d(x, \beta(a))<s=d(x, c(s))<d(x, \beta(b))=d_{D}(x, \beta(b))=b$ .

Note that $\beta|[0, s_{1}]$ , where $\theta(\beta(s_{1}))=\theta(y)$ , is minimizing in $M$, since $p$ is a
pole. The above inequality implies

$d(p, \beta(s))<d(p, c(s))$

for any $s\in(O, L(c))$ . Since $M$ is a von Mangoldt’s surface of revolution,

$G(c(s))\leqq G(\beta(s))$
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for any $s\in[0, L(c)]$ . By the Rauch comparison theorem $x$ is conjugate to $\beta(s_{1})$

along $\beta$ for some $s_{1}\in(0, L(c)]\subset(0, L(\beta))$ . Therefore there exists a shorter
curve joining the endpoints of $\beta$ in $\overline{D}$ than $\beta$ . This contradicts the fact that
$\beta$ is $d_{D}$-minimizing.

REMARK. The above theorem was proved for a flattening surface of re-
volution by Elerath [3]. Since any geodesic balls centered at the vertex on a
flattening surface of revolution is totally convex, the proof is easier.

PROOF of MAIN THEOREM. If $C_{x}$ is non-empty, then $\tau_{x}$ is not a ray by
Lemma 1.2 or Theorem 1.4. Hence there exists a cut point $\tau_{x}(t_{0})(t_{0}>d(p, x))$

of $x$ along $\tau_{x}$ . Since $\tau_{x}|[0, t]$ is not minimal for any $t>t_{0}$ , there exist at least
two minimizing geodesics joining $x$ to $\tau_{x}(t)$ , each of which is distinct from $\tau_{x}$ .
Note that $M$ has the reflection fixing $\tau_{x}$ . Hence $\tau_{x}(t)$ is a cut point of $x$ for
any $t>t_{0}$ . This implies $C_{x}\supset\hat{\mu}_{x}[t_{0}-d(p, x),$ $\infty)$ . Therefore by Theorem 1.4
$C_{x}=\beta_{x}[t_{1}, \infty)$ , where $t_{1}=t_{0}-d(p, x)$ . If $\beta_{x}(t_{1})$ is not conjugate to $x$ along $\tau_{x}$ ,
then there exists a minimizing geodesic $c:[0, t_{0}]arrow M$, which is distinct from
$\tau_{x}$ , joining $x$ to $\tau_{x}(t_{1})$ . By Theorem 1.4, $\beta_{x}(t_{1})$ is conjugate to $x$ along $c$ . Since
$d(p, c(t))\geqq d(p, \tau_{x}(t))$ for any $t\in[0, t_{0}]$ by the triangle inequality, $G(c(t))\leqq$

$G(\tau_{x}(t))$ on $[0, t_{0}]$ . By the Rauch comparison theorem $\tau_{x}|[0, t_{0}]$ has a conjugate
point to $x$ along $\tau_{x}$ . But this is a contradiction.

A part of the above proof leads us to the following proposition.

PROPOSITION 1.5. Let $x$ be a point on a von Mangoldt’s surface $M$ of
revolution with vertex $P$ . If $x$ is not a pole and if there exists a minimizing
geodesic $cj\alpha ning$ $x$ to 2 which is distinct from $\tau_{x}$ , then the Gausstan curvature
$G$ of the surface $M$ is constant on $\overline{B}(p, r_{0})$ , where $r_{0}={\rm Max}\{d(p, c(t));0\leqq t\leqq$

$d(x,\hat{x})\}$ .
PROOF. If $D$ denotes the domain bounded by $c$ and $\tau_{x}$ , then any geodesic

emanating from $x$ in $\overline{D}$ must pass through $\hat{x}$ by Theorem 1.4. Furthermore
those geodesic segments joining $x$ to $\hat{x}$ have the same length. This implies
that $x$ is conjugate to $\hat{x}$ along any geodesic segment joining $x$ to $\hat{x}$ . Since
$G(c(t))\leqq G(\tau_{x}(t))$ on $[0, d(x,\hat{x})]$ , it follows from the Rauch comparison theorem
that

$G(c(t))=G(\tau_{x}(t))$

on $[0, d(x,\hat{x})]$ . In particular

$G(c(d(p, x)))=G(\tau_{x}(d(p, x)))=G(p)$ .
Hence $G=G(p)$ on $B(p, d(p, c(d(p, x))))$ . Suppose that $r_{0}$ is greater than $r_{1}$ ,
where $r_{1}:={\rm Max}$ {$r>0;G=G(p)$ on $\overline{B}(p,$ $r)$ }. There exist a $t_{1}\in(0, d(x, B))$ and
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$\epsilon>0$ such that $d(p, c(t_{1}))=r_{1},$ $d(p, c(t))>r_{1}$ on $(t_{1}, t_{1}+\epsilon)$ or $(t_{1}-\epsilon, t_{1})$ . Note that
$r_{1}$ is not less than $d(p, c(d(p, x)))$ . Since $r_{1}=d(p, c(t_{1}))$ is greater than
$d(p, \tau_{x}(t_{1}))$ by the triangle inequality, there exists a positive $b$ such that for
any $t$ with $|t-f_{1}|<b$ ,

$d(p, \tau_{x}(t))<r_{1}$

and hence $G(p)=G(\tau_{x}(t))$ . Since $G(c(t))=G(\tau_{x}(t))$ for any $r\in[0, d(x,\hat{x})]$ , tbere
exists a $t_{0}\in(t_{1}-b, t_{1}+b)$ such that $d(Pc(t_{0}))>r_{1}$ and $G(p)=G(c(t_{0}))$ . This con-
tradicts the definition of $r_{1}$ . Hence we have $r_{0}\leqq r_{1}$ and in particular $G$ is con-
stant on $\overline{B}(p, r_{0})$ .

2. Examples.

We shall give some examples of von Mangoldt’s surface of revolution. Let
$f:[0, \infty)arrow R$ be a smooth function such that $f(\sqrt{x^{2}+y^{2}})$ is smooth at $(x, y)=$

$\langle$ $0,0)\in R^{2}$ , and $f(O)=0,$ $f’$ 1110, $f’\geqq 0$ on $[0, \infty)$ . The Gaussian curvature $G$ of
the surface $M(f)$ is constant on the parallel with radius $r$ and equals

$f’f’/r(1+f^{\prime 2})^{2}$ if $r>0$

or
$f^{M}(0)^{2}$ if $r=0$ .

Let $(r, \theta)$ be the canonical local coordinates for $M(f)$ satisfying

$x=(r(x) \cos \theta(x), r(x)\sin\theta(x)$ , $f(r(x)))$

for $x\in M(f)\backslash \dagger P\}$ , where $p=(0,0,0)$ . By the integral formula (6) in [1], $p$ .
258, we can show that

$\lim_{sarrow\infty}\{\theta(s)-\theta(0)\}\leqq\pi$

for any geodesic $(r(s), \theta(s))$ emanating from $q$ if $\int_{1}^{\infty}x^{-2}f’dx$ is finite and if $q$ is

sufficiently close to $p$ . In particular $\tau_{q}$ is a ray. By Lemma 1.2 we obtain,

LEMMA 2.1. Let $f:[0, \infty)arrow R$ be a smooth function satisfying
1) $f(O)=0,$ $f’\geqq 0,$ $f’\geqq 0$ on $[0, \infty)$ ,
2) the function $z=f(\sqrt x^{2}\neg+y^{2}$ is smooth at $(x, y)=(O, 0)$ ,

3) the function $f’\cdot f’\cdot x^{-1}(1+f^{\prime 2})^{-z}$ is monotone nonincreaszng on $(0, \infty)$ .
Then $M(f)$ is a positively curved von Mangoldt’s surface of revolution with

vertex $(0,0,0)$ . Furthermore if $\int_{1}^{\infty}x^{-2}f’dx$ is finite, then $r(M(f))$ is positive.

Here $r(M(f))$ is the number defined above Lemma 1.2.

EXAMPLE 1. Let $f_{1}$ : $[0, \infty)arrow R$ be the function defined by
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$f_{1}(x)=a\sqrt{x^{2}+b}-a\sqrt{b}$

where $a,$
$b$ are positive constants. The function $f_{1}$ satisfies 1), 2), 3) in Lemma

2.1. Hence $M_{1}=M(f_{1})$ , a revolutionary hyperboloid of two sheets, is a von
Mangoldt’s surface of revolution with $r(M_{1})>0$ . The total curvature $C(M_{1})$ of
$M_{1}$ , the integral of the Gaussian curvature by its area element, equals

$C(M_{1})=2\pi-2\pi/\sqrt{1+a^{2}}$

EXAMPLE 2. Let $M_{g}$ be the surface defined by $z=x^{2}+y^{2}$ . It is known that
the vertex is the unique pole. Since $f_{2}(x)=x^{2}$ satisfies 1), 2), 3) in Lemma 2.1,
$M_{2}=M(f_{2})$ is a von Mangoldt’s surface of revolution with total curvature $2\pi$ .

EXAMPLE 3. Let $\phi$ : $[0, \infty)arrow[0,1]$ be a smooth monotone nondecreasing
function such that

$\dot{\varphi}(0)=0$ on $[0,2]$ , $\phi(x)=1$ on $[4, \infty)$ .
Then a function $f_{3}$ : $[0, \infty)arrow R$ is defined by

$f_{3}’’(x)=2(1-\phi(x))+\phi(x)/x$ , $f_{3}=f_{3}’=0$ at $x=0$ .
$In_{-}^{-}order$ to check that $f_{3}$ satisfies 3) in Lemma 2.1, we introduce a function $g$

defined by
$g(t)=t(1+t^{2})^{-2}$

Since the function $g$ is monotone decreasing on $[1/\sqrt{3}, \infty)$ . $g(f_{3}’(x))$ is mono-
tone nonincreasing on $[1/2\sqrt{3}, \infty)$ . Thus on this interval the function $f_{3}’\cdot f_{3}’’$ .
$x^{-1}(1+f_{3^{2}}’)^{-2}=f_{3}’’\cdot x^{-1}g(f_{3}’(x))$ is also monotone non-increasing. Since $f_{3}(x)=x^{2}$

on $[0,2]$ ,
$f_{3}’\cdot f_{3}’’\cdot x^{-1}(1+f_{3}^{\prime\prime 2})^{-2}=4(1+4x^{2})^{-2}$

is monotone decreasing on $[0,2]$ . Therefore $M_{3}=M(f_{3})$ is a von Mangoldt’s
surface of revolution witb $r(M_{3})>0$ . The total curvature of $M$ equals $2\pi$ .

REMARK. By Maeda’s result in [5], if a surface of revolution $M$ admits a
a point $q$ such that $A_{q}$ is of Lebesgue measure zero, then $C(M)$ equals $2\pi$ if it

exists. Here $A_{q}$ is the set defined in the proof of Lemma 1.1. But the con-
verse is false by Example 3. In fact for any point $q$ on $M_{3},$ $A_{q}$ contains an
open arc in $S_{q}M_{3}$ since $r(M_{3})$ is positive, while $C(M_{3})$ equals $2\pi$ .

All surfaces $M_{i},$ $i=1,2,3$ are flattening surfaces of revolution. In ExamPle
4, we shall give a von Mangoldt’s surface of revolution, but not a flattening
surface. In order to construct and abstract surface of revolution, we remark
the following lemma.
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LEMMA 2.2. Let $m:(0, \infty)arrow(0, \infty)$ be a smooth function whuch has an ex-
tension of a smooth odd function around $0$ with $m’(O)=1$ . Then the Riemannian
metnc $g=dr^{2}+m(r)^{2}d\theta^{2}$ on $R^{2}$ defines a surface of revolution with vertex the
origin. Here $(\gamma, \theta)$ denotes geodesic polar coordinates for the Euclidean plane
$(R^{2}, g_{0})$ .

PROOF. Let $(x, y)$ be the canonical coordinates for $(R^{2}, g_{0}),$ $i.e.,$ $x=r\cos\theta$ ,
$y=r\sin\theta$ . Then it follows from a direct computation that

$g(\partial/\partial x, \partial/\partial x)=1+y^{2}(m^{2}-r^{2})/r^{4}$

$g(\partial/\partial_{X}, \partial/\partial y)=-xy(m^{2}-r^{2})/r^{4}$

$g(\partial/\partial y, \partial/\partial y)=1+x^{2}(m^{2}-r^{2})/r^{4}$ , where $r=\sqrt{x^{2}+y^{2}}$ .
From Proposition 2.7 in [4], there exists a smooth function $f(x, y)$ such that
$f(r\cos\theta, r\sin\theta)=(m^{2}-r^{2})/r^{4}$ . Hence $g$ is smooth at the origin. Moreover
each geodesic $\theta=constant$ emanating from the origin can be defined on OS $r<\infty$ .
By the Hopf-Rinow theorem, $g$ defines a complete Riemannian metric. There-
fore $(R^{2}, g)$ is a surface of revolution with vertex the origin.

EXAMPLE 4. Let $m_{0}$ : $(0, \infty)arrow(0, \infty)$ be a smooth function such that $m_{0}(r)=$

$\sin r$ on $(0,3\pi/4]$ . Let $G$ be a smooth monotone non-increasing function on
$[0, \infty)$ such that

$G=1$ on $[0,2\pi/3]$ , $G\leqq-m_{0}’’/m_{0}$ on $(0, \infty)$ .

If $m$ denotes the solution of the differential equation

$m’+Gm=0$ on $[0, \infty)$

with the initial condition $m(O)=0,$ $m’(O)=1$ , then $(R^{2}, dr^{2}+m(r)^{2}d\theta^{2})$ is a von
Mangoldt’s surface of revolution with vertex the origin $0$ . Since $m(r)=\sin r$

on $[0,2\pi/3],$ $B(0,2\pi/3)$ is isometric to an open ball with radius $2\pi/3$ in the
unit sphere. Hence $B(0, t)(\pi/2\leqq t\leqq 2\pi/3)$ is not totally convex. This implies
the surface is not a flattening surface as we noted in the section 1.
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