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1. Introduction.

Some vibratory phenomena of beams may be descrlbed by the fourth order
quasilinear evolution equation

(1.1) $(\partial_{t}^{2}+A_{2}(t, u))\cdot(\partial_{t}^{2}+A_{1}(t, u))u+G(t, u, \partial_{t}u, \partial_{t}^{2}u, \partial_{t}^{3}u)=0$ $(t>0)$ ,

where $A_{i}(t, u),$ $i=1,2$ , are (unbounded) self-adjoint positive definite operators in
a Hilbert space $H$, and $G$ is a lower order nonlinear perturbation.

In such a generality, (1.1) is not so easy to be dealt with. One could
imagine that it is possible to reduce it to a first order equation in a 4-ple of
Hilbert space, and then apply known theories (see $e.g$ . $[K]$ ). However in this
case those methods seem to be too hard to be handled.

In [P], [AP] a very special semilinear case was studied by an $ad$ hoc
method, which provided global existence and boundedness of the solutions of
the Cauchy problem.

AS a preparation for the study of (1.1) here we confine ourselves to study
the local well-posedness of the Cauchy problem for the equation

(1.2) $(\partial_{t}^{2}+\gamma_{2}(u)A)\cdot(\partial_{t}^{2}+\gamma_{1}(u)A)u=0$ $(t>0)$ ,

where $A$ is an (unbounded) self-adjoint positive definite operator in $H$, and $\gamma_{t}$

$(i=1,2)$ are real functionals on $D(A)$ , the domain of $A$ .

THEoREM 1.1 (Main result). Let $A$ be an (unbounded) self-adjoint positive
definite operator in a Hilbert sPace $H$ with inner product (., $\cdot$ ).

For $i=1,2$ let $m_{i}$ : [$0,$ $+\infty[arrow[0,$ $+\infty$ [ satisfy:
i) $m_{i}$ is thrice continuously differentiable $(i=1,2)$ ;

ii) $m_{i}(r)\geqq\nu>0$ $(r\geqq 0;i=1,2)$ ;
iii) $|m_{2}(r)-m_{1}(r)|\geqq\delta>0$ $(r\geqq 0)$ .
Then the Cauchy problem for the equation
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(1.3) $(\partial_{t}^{2}+m_{2}((Au, u))A)\cdot(\partial_{t}^{2}+m_{1}((Au, u))A)u=0$ $(t>0)$ ,

is locally well-posed in the phase space

$D(A^{s/2})\cross D(A^{(S-1)/2})\cross D(A^{(S-2)/2})\cross D(A^{(S-3)/2})$ ,

for any $s\geqq 5/2$ .
Moreover the life span of the solution depends only on the norm of the initial

data in the phase space $D(A^{5/4})\cross D(A^{3/4})\cross D(A^{1/4})\cross D(A^{-1/4})$ .
By inspection of the proof, it is easy to extend Theorem 1.1 to cover the

case of (1.2).
(1.3) is the abstract version (of the principal part) of the Timoshenko-

Kirchhoff equation [A], which describes the nonlinear transversal vibrations of
a simply supported beam of length $L$

(1.4) $\{$

$(\partial_{t}^{2}-\gamma_{2}(u(\cdot, t))\partial_{x}^{2})(\partial_{t}^{2}-\gamma_{1}(u(\cdot, t))\partial_{x}^{2})u$

$+\alpha(\partial_{t}^{2}-\gamma_{0}(u(\cdot, t))\partial_{x}^{2})u=0$ $(0<x<L, t>0)$ ,

$u(x, t)=\partial_{x}^{2}u(x, t)=0$ for $x=0,$ $L(t\geqq 0)$ .

In this case $\alpha$ is a positive constant, and

$\gamma_{0}(v):=m(\int_{0}^{L}|\partial_{x}v|^{2}dx)$ ,

$\gamma_{1}(V):=c_{1}+\gamma_{0}(v)$ ,

$\gamma_{2}(V):=c_{2}+\gamma_{0}(v)$ ,

where $m:[0,$ $+\infty[arrow[0,$ $+\infty$ [ is a continuously differentiable function, and the
S.: $c_{i}’ s$ are constants satisfying $0<c_{1}<c_{2}$ . ‘

We note that in this case it is

$\gamma_{2}(v)-\gamma_{1}(v)=constant$ .
By exploiting this condition, a quick proof of the well-posedness of the Cauchy

problem for (1.4) was given in [A]. Tucsnak [Tu] also proved, by a different
2\sim .metbod, that the concrete equation (1.4) may be solved in the particular case

when $\gamma_{2}=const$ . (the Hirschhorn-Reiss model [HR]). However, both methods
seem hard to be extended to the general case of (1.1).

Here we provide two different proofs of Theorem 1.1: the second one leans
upon Kato’s method, and it is our hope that that proof may be extended to the
general equation (1.1).

The paper is organized as follows. In section 2 one linearizes (1.3), thus
obtaining the equation

(1.5) $(\partial_{t}^{2}+a_{2}(t)A)\cdot(\partial_{t}^{2}+a_{1}(t)A)u=f(t)$ $(t>0)$ .
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We apply to (1.5) the estimates in [APP2] (for the convenience of the
reader, the estimates for this simple case are here completely derived in the
Appendix). Then in section 3 we prove the result for (1.3) by a contrac-
tion argument (with two norms), in the spirit of [AG].

2. The linear case.

In this section we will study the linear version of (1.3). This is a pre-
liminary step to the nonlinear case.

Let $A$ be a (unbounded) self adjoint positive definite operator on a Hilbert
space $H$. For any $s\geqq 0$ we consider the Hilbert space

$Y_{s}:=D(A^{s/2})$

endowed with the norm
$||u||_{s}$ $:=|A^{s/2}u|_{H}$ .

For $s<0$ we set
$Y_{s}:=(D(A^{-S/2}))’$ ,

the (anti)dual space of $Y_{-S}$ , and we endow it with the (anti)dual norm. Let
$T>0$ be fixed. We denote $I:[0, T]$ . By analogy with [K] we set for any
$s\in R,$ $k\in N$

$C_{s.k}(I;Y):= \bigcap_{j=0}^{h}C^{j}(I;Y_{s-j})$ .

Let us denote, for $u\in C_{s,k}(I;Y)$

$E_{s.k}(u, t):= \sum_{j=0}^{k}||\partial_{t}^{t}u(t)||_{s-j}^{2}$ $(t\in I)$ .

In the space $C_{s.k}(I;Y)$ we will consider the following norm:

$|||u|||_{s.k.T}^{2}:= \sup_{c\in I}E_{s.k}(u, i)$ .

We will make also the following (strict) hyperbolicity assumptions: let $a_{1}$ ,
$a_{2}$ be two real functions such that

(R) $a_{i}\in C^{1}(I)$ $(i=1,2)$ ;

(H) $a_{i}(t)\geqq\nu>0$ $(i=1,2, \forall t\in I)$ ;

(SH) $|a_{2}(t)-a_{1}(t)|$ Ill $\delta>0$ $(\forall t\in I)$ ;

Finally, for the known term we need the regularity assumption

(2.1) $f\in L^{1}(I;Y_{s-3})$ .

Then we have the following result:
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THEOREM 2.1. Let $a_{1}$ and $a_{2}$ satisfy assumPtions $(R),$ $(H),$ $(SH)$ and let (2.1)

be satisfied. Then, for any $s\in R$ , the Cauchy problem

(2.2) $\{$

$(\partial_{t}^{2}+a_{2}(t)A)(\partial_{t}^{2}+a_{1}(t)A)u=f(t)$ $(t\in I)$ ,

$(\partial_{t}^{j}u)(0)=u_{j}\in Y_{s-j}$ $C^{\cdot}=0,$ $\cdots$ , 3),

has a unique solution $u\in C_{s.3}(I;Y)$ . For $t\in I$ we have the estimate

(2.3) $E_{s.3}(u, t) \leqq C(T;a_{1}, a_{2})(E_{S}^{1}\int^{2}3(u, 0)+\int_{0}^{t}||f(\tau)||_{S-3}d\tau)^{2}$

Moreover there exisis a constant $C_{0}$ dePending only on $a_{i}(0)$ and $\partial_{t}a_{t}(0)(i=$

$1,2)$ such that if $\partial_{t}a_{1}$ and $\partial_{t}a_{2}$ vary in an equicontinuous set of functions, then

(2.4) $C(T;a_{1}, a_{2})=C_{0}+o(1)$ as $Tarrow 0^{+}$ .
1ST PROOF of THEOREM 2.1. (by Fourier series).

For simplicity, we assume that there exists a sequence $(e_{n})$ of eigenvectors
of $A$ , which form an orthogonal base for $H$ (in the general case, proof may be
given by spectral decomposition). Let $(\lambda_{n}^{2})$ denote the sequence of the relative
eigenvalues. We look for the solution in the form of Fourier development:

$u(t)= \sum_{n=1}^{\infty}y_{n}(t)e_{n}$ $(t\in I)$ .

Then $u$ is a solution of the problem (2.2) if and only if, for each $n,$ $y_{n}$

solves the following Cauchy problem for an ordinary differential equation:

(2.5) $\{$

$(\partial_{t}^{2}+a_{2}(t)\lambda_{n}^{2})(\partial_{t}^{2}+a_{1}(t)\lambda_{n}^{2})y_{n}=f_{n}(t)$ $(t\in I)$ ,

$(\partial_{t}^{j}y_{n})(0)=y_{j.n}$ $(_{J}=0, 3)$ .
Here $(y_{j.n})(j=0, \cdots , 3)$ and $(f_{n}(t))$ are the coefficients of the Fourier de-

velopments for $u_{j}$ $(j=0, \cdots , 3)$ and $f(t)$ respectively.
It is easily seen that for every $n$ there exists a unique solution $y_{n}\in C^{3}(I;R)$ .

NOW we want to estimate the energy

(2.6) $e(y_{n}, t):= \sum_{j=0}^{3}\lambda_{n}^{2(3-j)}|\partial_{t}^{f}y_{n}(t)|^{2}$ ,

in terms of the initial data and of the known term $f$ .
We have the following proposition (for its proof, which follows the line of

[APP2], see the Appendix).

PROPOSITION 2.2. For each $n$ let $y_{n}$ be the solution of $(2.5)_{n}$ . Let the as-
sumptions $(R),$ $(H)$ and $(SH)$ be satisfied. Then the following estimale holds:

(2.7) $e(y_{n}, i) \leqq C(T;a_{1}, a_{2})(e^{1/2}(y_{n}, 0)+\int_{0}^{t}|f_{n}(\tau)|d\tau)^{2}$ ,



Fourth order evolution equations of hyperbolic type 623

where $C(T;a_{1}, a_{2})$ verifies the last statement of Theorem 2.1.

NOW we have for $t\in I$

$E_{s.3}(u, t)= \sum_{n\Rightarrow 0}^{\infty}\lambda_{n}^{2(s-3)}e(y_{n}, t)$ ,

and

$\sum_{n=0}^{\infty}\lambda_{n}^{2(S-3)(\int_{0}^{t}|f_{n}(T)|d\tau)^{2}=}(\int_{0}^{t}||f(\tau)||_{s-a}d\tau)^{2}$

Therefore from (2.7) we have

$E_{s.3}(u, t) \leqq C(T;a_{1}, a_{2})\sum_{n=0}^{\infty}\lambda_{n}^{2(S-3)(e^{1/2}(y_{n},0)+\int_{0}^{t}}|f_{n}(\tau)|d\tau)^{2}$

$\leqq C(T ; a_{1}, a_{2})(E_{s.3}^{1/2}(u, 0)+\int_{0}^{t}||f(\tau)||_{S-3}d\tau)^{2}$

(the last inequality follows from Minkowski’s one). $\square$

$2ND$ PROOF of THEOREM 2.1 (via Kato’s theory).

An alternative proof of theorem 2.1 may also be given by means of Kato’s
theory [K], after reduction to a first order problem. For this, we reduce the
problem (2.2) to a first order one. First we set

(2.8) $\{$

$v_{1}(t):=(\partial_{t}^{2}+a_{1}(t)A)u(t)$ ,

$v_{2}(t):=(\partial_{t}^{2}+a_{2}(t)A)u(t)$ .
$lf$ we set $v:=(v_{1}, v_{2})$ , then problem (2.2) is equivalent to find $v\in C^{1}(l;Y_{s-2}$

$xY_{S-2})$ such that

$\{$

$\partial_{t}^{2}v+\mathfrak{A}(t)v+\mathfrak{V}(t)v+\mathfrak{C}(t)\partial_{t}v+\partial_{t}(\mathfrak{C}(t)v)=\mathfrak{F}(t)$ $(t\in I)$ ,

$v(O)=v_{1}$ , $\partial_{t}v(0)=v_{1}$ ,
where

$\mathfrak{U}(t):=(_{0}^{a_{2}(t)}$

$\mathfrak{B}(t):=(\begin{array}{ll}0 0-d^{2}(t) d^{2}(t)\end{array})$ ,

$a_{1}(t)0)A$ ,

$\mathfrak{C}(t):=(\begin{array}{ll}0 0d(t) -d(i)\end{array})$ ,

$d:=\frac{\partial_{t}a_{2}-\partial_{t}a_{1}}{a_{2}-a_{1}}$ .
Also we set

$\mathfrak{F}(t):=(\begin{array}{l}f(t)f(t)\end{array})$ ,

while the initial conditions $v_{0}$ and $v_{1}$ for $v$ and $\partial_{t}v$ are determined in an obvious
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way.
NOW we perform a second transformation. Let

$\{$

$w_{1}:=v$

$w_{2}$
$:=\partial_{t}v+\mathfrak{C}(t)v$ .

If we set $w:=(w_{1}, w_{2})$ , then the problems (2.8) and (2.2) are equivalent to
find $w\in C^{0}(I;Y_{S-2}\cross Y_{S-2}\cross Y_{S-3}\cross Y_{S-3})$ such that

(2.9) $\{$

$\partial_{t}w+\mathcal{A}(t)w+\ovalbox{\tt\small REJECT}(t)w=\mathscr{F}(t)$ $(t\in I)$ ,

$w(0)=w_{0}$ .
Here

$\mathcal{A}(t):=(\begin{array}{ll}0 -I\mathfrak{U}(t) 0\end{array})$ , $\ovalbox{\tt\small REJECT}(t):=(\begin{array}{ll}\mathfrak{C}(t) 00 \mathfrak{C}(t)\end{array})$ , $\mathscr{F}(t):=(\begin{array}{l}0\mathfrak{F}(t)\end{array})$ .

NOW problem (2.9) satisfies the assumptions of Theorem 3.3 of [K], hence
the thesis follows. $\square$

REMARK. The last check is somewhat cumbersome. As far as one is con-
cerned merely with problem (1.4) (or (1.2)) the first proof is clearly more con-
venient. On the other hand, Kato’s approach seems to be the unique one which
might allow to deal with the more general equation (1.1).

3. Proof of the main result.

This section is devoted to prove Theorem 1.1.
The line of the proof follows the one of [AG], and is made in two steps.

The first one consists in linearizing equation (1.3). Then we use the estimates
of section 2 and a contraction argument to complete the proof.

Step 1. In the following, $s$ will be a fixed real number 15/2. If $v\in$

$C_{s,3}(I, Y)$ it is easily seen that $m_{i}(\langle Av, v\rangle)\in C^{3}(I)(i=1,2)$ .
NOW we apply Theorem 2.1 to problem (2.2) with the choice

(3.1) $a_{i}(t):=m_{i}(\langle Av, v\rangle)$ $(i=1,2)$

and $f\equiv 0$ , i.e.

(3.2) $\{$

$(\partial_{t}^{2}+m_{2}(\langle Av, v\rangle)A)\cdot(\partial_{t}^{2}+m_{1}(\langle Av, v\rangle)A)u=0$ $(t\in I)$ ,

$(\partial_{t}^{j}u)(0)=u_{j}$ $C=0,$ $3)$ ,

to get that problem (3.2) has a unique solution $u\in C_{S.3}(I;Y)$ .
Step 2. Let us fix for the moment $s=5/2$ . We introduce the following

subset of $C_{5/2.3}(I;Y)$ :
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$\Xi_{T.R}:=\{v\in C_{5/2.3}(I;Y);|||v|||_{6/2,S,T}\leqq R, (\partial_{t}^{j}v)(0)=u_{j}C^{\cdot}=0, \cdots 3)\}$ .
Here $R$ is any real value such that $R^{2}>C_{0}E_{5/2.3}(0)$ where $C_{0}$ is the constant
provided in (2.4) of Theorem 2.1 for the choice (3.1) ( $C_{0}$ depends only on the
initial data $u_{j}(j=0,1))$ , and $E_{6/2.3}(0):=\Sigma_{j=0}^{3}||u_{j}||_{5/2-j}^{2}$ . Let $S$ be the resolvent
map defined, for each $v\in\Xi_{T,R}$ , by $S(v)=u$ where $u$ is the solution of the prob-
lem (3.2).

We note that for $a_{i}$ given by (3.1), $\partial_{t}a_{i}$ vary in an equicontinuous class as
$v$ varies in $\cup-T.R(i=1,2)$ . Then it is easily seen from (2.4) that we can find
$T>0$ so small that

$C(T ; a_{1}, a_{2})\leqq C$ $:= \frac{R^{2}}{E_{6/2,3}(0)}$ ,

so that from the estimates (2.3) (set there $s=5/2$).

$S$ maps $--T,R$ into itself.

NOW we claim that there exists $T’\in(0, T]$ such that $S$ has a fixed point in
$-T’.R-$ . In order to use Banach’s fixed point theorem, we show that there exists
$T’\in(0, T)$ such that $S$ is a contraction map in $\Xi_{T’.R}$ with respect to the weaker
norm of $C_{3/2,3}(I’ ; Y)$ (see (2.1)), where $I’$ $:=[0, T’]$ .

Let $v_{1},$ $V_{2}\in--T’.R$ . Set
$w:=S(v_{1})-S(v_{2})$ ;

$\mu_{\ell j}:=m_{i}(\langle Av_{j}, v_{j}\rangle)$ $(i=1,2)$ .

Then $w$ solves the problem

$\{$

$(\partial_{t}^{2}+\mu_{21}(t)A)(\partial_{t}^{2}+\mu_{11}(t)A)w=f(t)$ $(t\in I’)$ ,

$(\partial_{t}^{j}w)(0)=0$ $(j=0, \cdots 3)$ .
Here

$f(t):=\partial_{t}^{2}(\mu_{12}-\mu_{11})AS(v_{2})+2\partial_{t}(\mu_{12}-\mu_{11})A\partial_{t}S(v_{2})$

$+(\mu_{12}-\mu_{11}+\mu_{22}-\mu_{21})A\partial_{t}^{2}S(v_{2})+(\mu_{22}\mu_{12}-\mu_{21}\mu_{11})A^{2}S(v_{2})$ .
It is easy to show that $f\in L^{1}(I’ ; Y_{-3/2})$ .
According to estimate (2.3) (set there $s=3/2$ ) we have that for $T’\leqq T$

(3.3) $E_{3/2,3}(w, t)$ $ $C( \int_{0}^{t}||f(\tau)||_{-3/2}d\tau)^{2}$ $(t\in I’)$ .

NOW we evaluate $||\tilde{f}(t)||_{-3/2}$ in terms of the norm of the difference $(v_{1}-v_{2})$ in
$C_{s/2.3}(I’, Y)$ .

We note that $A^{-a}\in B(H)$ , for $\alpha\geqq 0$ . If we set $K:=||A^{-1}||$ , it is

$||A^{-a}||_{B(H)}\leqq K^{a}$ for $0\leqq\alpha\leqq 1$ ,



626 A. AROsIO, R. NATALINI and M. G. PAOLI

and we have the crude inequality:

(3.4) $|\langle Av, w\rangle|$ ;$ $||A^{1-(i+j)/2}||_{B(H)}||v||_{t}||w||_{j}$

$ $K^{(i+j)/2- 1}||v||_{i}||w||_{j}$ ,

valid for each $v\in Y_{t},$ $w\in Y_{j}$ , whenever $2\leqq i+_{J}\leqq 4$ .
From (3.4) we deduce that the following estimates hold for $v_{1},$ $v_{2}\in--T’.R$ :

$|\langle Av_{1}, v_{1}\rangle-\langle Av_{2}, v_{2}\rangle|=|\langle A(v_{1}+v_{2}), v_{1}-v_{2}\rangle|$ i1S 2 $KR|||v_{1}-v_{2}|||_{3/2.3.T’}$ ;

$|\langle Av_{1}, \partial_{t}v_{1}\rangle-\langle Av_{2}, \partial_{t}v_{2}\rangle|$

$=|\langle A\partial_{t}(v_{1}-v_{2}), v_{1}+v_{2}\rangle+\langle A(v_{1}-v_{2}), \partial_{t}(v_{1}+v_{2})\rangle|/2$

$\leqq K^{1/2}R[||\partial_{t}(v_{1}-v_{2})||_{1/2}+||v_{1}-v_{2}||_{3/z}]$

;;$ $\sqrt{2}K^{1/2}R|||v_{1}-v_{2}|||_{3/2.S.T’j}$

$|\langle Av_{1}, \partial_{t}^{2}u_{1}\rangle+\langle A\partial_{t}v_{1}, \partial_{t}v_{1}\rangle-\langle Av_{2}, \partial_{t}^{2}v_{2}\rangle-\langle A\partial_{t}v_{2}, \partial_{t}v_{2}\rangle|$

$=|\langle A\partial_{t}^{2}(v_{1}-v_{2}), v_{1}+v_{2}\rangle+2\langle A\partial_{t}(v_{1}-v_{2}), \partial_{t}(v_{1}+v_{2})\rangle$

$+\langle A(v_{1}-v_{2}), \partial_{t}^{2}(v_{1}+v_{2})\rangle|/2$

$\leqq R||\partial_{t}^{2}(v_{1}-v_{2})||_{-1/2}+2R||\partial_{t}(v_{1}-v_{2})||_{1/2}+R||v_{1}-v_{2}||_{3/2}$

$\leqq\sqrt{6}R|||v_{1}-v_{2}|||_{3/2.3.T’}$ .
NOW we observe that, for any $V\in--T’.R$ the following estimate holds:

$| \langle A\partial\oint v, \partial_{t}^{k}v\rangle|\leqq K^{(3-h-k)/2}R^{2}$ for O$h+k $\leqq 2$ .
Let us set

$M_{k}:= \max_{||\xi^{i=1,2}\leqq KR^{2}}|\frac{d^{k}}{d\xi^{k}}m_{i}(\xi)|$ $(k=0, 3)$ .

TO evaluate the norm of the term $\tilde{f}$, it suffices to apply the following esti-
mates, valid for $t\in I’$ :

$|\mu_{i2}-\mu_{i1}|\leqq 2M_{1}KR|||v_{1}-v_{2}|||_{3/2.3.T’}$ $(i=1,2)$ ;

$|\partial_{t}(\mu_{12}-\mu_{11})|=2|\mu_{12}’\langle Av_{2}, \partial_{t}v_{2}\rangle-\mu_{11}’\langle Av_{1}, \partial_{t}v_{1}\rangle|$

$\leqq 2|\mu_{12}’(\langle Av_{2}, \partial_{t}v_{2}\rangle-\langle Av_{1}, \partial_{t}v_{1}\rangle)+(\mu_{12}’-\mu_{11}’)\langle Av_{1}, \partial_{\iota}v_{1}\rangle|$

;IS $C_{1}|||v_{1}-v_{2}|||_{3/2.s,T’}$ ,

where we have set

$\mu_{tj}’:=\frac{dm_{\ell}}{d\xi}|_{e_{=\langle Av_{j}.v_{j}\rangle}}*$ $(i, j=1,2)$ ,
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$C_{1}$ $:=2\sqrt{2}K^{1/2}M_{1}R+4K^{2}M_{2}R_{3}$ .
$|\partial_{t}^{2}(\mu_{12}-\mu_{11})|=|4[\mu_{12}’’\langle Av_{2}, \partial_{t}v_{2}\rangle^{2}-\mu_{11}’’\langle Av_{1}, \partial_{t}v_{1}\rangle^{2}]+2\mu_{12}’(\langle Av_{2}, \partial_{t}^{2}v_{2}\rangle$

$+\langle A\partial_{t}v_{2}, \partial_{t}v_{2}\rangle)-2\mu_{11}’(\langle Av_{1}, \partial_{t}^{2}v_{1}\rangle+\langle A\partial_{t}v_{1}, \partial_{t}v_{1}\rangle)|$

IS $|4\mu_{12}’’(\langle Av_{2}, \partial_{t}v_{2}\rangle+\langle Av_{1}, \partial_{t}v_{1}\rangle)(\langle Av_{2}, \partial_{t}v_{2}\rangle-\langle Av_{1}, \partial_{t}v_{1}\rangle)$

$+4(\mu_{12}’’-\mu_{11}’’)\langle Av_{1}, \partial_{t}v_{1}\rangle^{2}+2\mu_{12}’(\langle Av_{2}, \partial_{t}^{2}v_{2}\rangle+\langle A\partial_{t}v_{2}, \partial_{t}v_{2}\rangle-\langle Av_{1}, \partial_{t}^{2}v_{1}\rangle$

$-\langle A\partial_{t}v_{1}, \partial_{t}v_{1}\rangle)+2(\mu_{12}’-\mu_{11}’)(\langle Av_{1}, \partial_{t}^{2}v_{1}\rangle+\langle A\partial_{t}v_{1}, \partial_{t}v_{1}\rangle)|$

$\leqq C_{2}|||v_{1}-v_{2}|||_{3/2.3.T’}$

where

$\mu_{\ell j}’’:=d^{2}m_{i}d\xi^{2}|_{\xi=\langle Av_{j}.v_{j}\rangle}$ $(i, j=1,2)$ .

$C_{2}$ $:=2\sqrt{6}M_{1}R+8(\sqrt{2}+1)K^{3/2}M_{2}R^{3}+8K^{3}M_{3}R^{5}$

By performing analogous calculations we have in sum

(3.5) $||f(r)||_{-3/2}\leqq C_{3}|||v_{1}-v_{2}|||_{3/2.s.\tau^{r}}$ $(t\in I’)$ .

Here $C_{3}$ is depending only on constants $K,$ $R$ and $M_{i},$ $i=0$ , , 3. By us-
ing (3.5) in the estimate (3.3) we get

$|||S(v_{1})-S(v_{2})|||_{3/2.3.T’}$ ;$ $CC_{3}T’|||v_{1}-v_{2}|||_{3/2,3,T’}$

for every $v_{1},$ $v_{2}\in\Xi_{T’.R}$ . So we can choose $T’\leqq T$ such that $S$ is a contraction
map from $\Xi_{T’.R}$ into itself with respect to the norm of $C_{3/2,\S}$ . As a matter of
fact, $-T’.R-$ is not a complete metric space under this norm. So we have to
consider the larger set

$\Theta_{T’.R}:=\{u\in\bigcap_{j=0}^{s}C^{j}(I’ ; Y_{5/2- j}-weak)\cap C^{3}(I’ ; Y_{-3/2})$ ;

$|||u|||_{5/2.\theta.T’}\leqq R$ , $(\partial_{t}^{j}u)(O)=u_{j}$ $C^{\cdot}=0,$ $3)\}$ .

Then map $S$ still maps $\Theta_{T.R}$ into $\Xi_{T.R}$ (hence a fortiori into itself). More-
over $S$ is a contraction map in $\Theta_{T,R}$ endowed with the norm of $C_{3/2,3}(I’ ; Y)$ .
NOW, under this norm, $\Theta_{T’.R}$ is a complete metric space, so by the classical
contraction mapping principle, there exists a unique fixed point $u\in\Theta_{T’.R}$ which
solves problem (1.3). Finally a standard boot-strap argument (regularity and
uniqueness arguments for the linear problem (2.2) $)$ provide that $u\in_{-\tau’.R}-$ .

NOW let $s$ any number $>5/2$ and consider initial data in the phase space
$Y_{s}\cross Y_{s-1}\cross Y_{s-2}\cross Y_{s-3}$ . From tbe above case $s=5/2$ , we know that the Cauchy
problem for the equation (1.3) admits a unique solution in the class $-T’,R$ . From
Theorem 2.1 this solution belongs to the class $C_{s.3}(I, Y)$ , hence the conclusion
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follows. $\square$

Appendix.

PROOF OF PROPOSITION 2.2. In spite of the fact that the problem is finite
dimensional, it is convenient to follow the idea of [APP2]. We transform the
problem $(2.5)_{n}$ in an equivalent one (cf. the first step in the second proof of
Theorem 2.1). For simplicity let us eliminate the subscript $n$ everywhere and
use the following notations:

$d:=\frac{\partial_{t}a_{2}-\partial_{t}a_{1}}{a_{2}-a_{1}}$ ;

$M_{0}:= \max_{t\in I,i=1.2}|a_{i}(t)|$
;

$M_{1}:=i=1.2 \max_{\iota\in I}|\partial_{t}a_{i}(t)|$
.

Let us consider the two functions

$\{$

$v_{1}(t):=(\partial_{t}^{2}+a_{1}(t)\lambda^{2})y(t)$ ,

$v_{2}(f):=(\partial_{t}^{2}+a_{2}(t)\lambda^{2})y(t)$ .
We have

(A.1) $y= \frac{v_{1}-v_{2}}{\lambda^{2}(a_{1}-a_{2})}$ .
The vector-valued function

$v:=(v_{1}, v_{2})$

solves the following second order problem:

$\{$

$\partial_{t}^{2}v+A(t)v+B(t)v+C(t)\partial_{t}v+\partial_{t}(C(t)v)=F(t)$ $(t\in I)$ ,

$v(0)=v_{0}$ ; $v’(0)=v_{1}$ ,
where

$A(t):=\lambda^{2}(\begin{array}{ll}a_{2}(t) 00 a_{1}(t)\end{array})$ ,

$B(t):=(\begin{array}{ll}0 0-d^{2}(t) d^{2}(t)\end{array})$ , $C(t):=(\begin{array}{ll}O 0d(t) -d(t)\end{array})$ , $F(t):=(\begin{array}{l}f(t)f(t)\end{array})$ .
Let us define the perturbed energy

\^e(v, $t$) $:=\langle A(t)v(t), v(t)\rangle+|v’(t)+C(t)v(t)|^{2}$

For this quantity it is possible, by standard energy methods, to obtain the
inequality:

$\delta(v, t)\leqq(\delta^{1/2}(v, 0)+\int_{0}^{t}|f(\tau)|d\tau)^{2}e^{\Lambda t}$
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where

$\Lambda:=\frac{4\sqrt{}\overline{2}M_{1}}{\delta}(1+\sqrt{\frac{M_{0}}{\nu}})+\frac{M_{1}}{\nu}$ .
In order to get an estimate for the energy of the unknown $y$ , let us write
again the energy (2.6):

$e(y, t)= \sum_{j=0}^{8}\lambda^{2(3-j)}|\partial_{t}^{j}y(t)|^{2}$

NOW, thanks to the identities (A.1) and

$\partial_{t}^{2}y=\frac{a_{2}v_{1}-a_{1}v_{2}}{a_{2}-a_{1}}$ ,

it is easy to show that there exists a constant $c>0$ which depends only on $M_{0}$ ,
$M_{1},$ $\delta,$

$\nu$ and $\lambda_{1}$ such that

$c^{-1}e(y, 0)$ $ $\delta(v, 0)\leqq ce(y, 0)$ .
We get

$e(y, t) \leqq C(e^{1/2}(y, 0)+\int_{0}^{t}|f(\tau)|d\tau)^{2}e^{\Lambda t}$ ,

where the constant $C$ depends only on $M_{0},$ $M_{1},$ $\nu$ and $\delta$ in a continuous way.
Moreover, let $M_{0.0}= \max\{a_{1}(O), a_{2}(0)\}$ and $M_{0.1}= \max\{\partial_{1}a_{1}(0), \partial_{t}a_{2}(O)\}$ . If $\partial_{t}a_{1}$

$and^{-}\partial_{t}a_{2}$ lie in a equicontinuous subset of $C^{0}(I)$ , then

$M_{1}=M_{0.1}+o(1)$

$M_{0}=M_{0,0}+O(T)$

and (2.4) follows.

Note.

as $Tarrow 0^{+}$

$\square$

1 For simplicity the beam is supposed here to be not precompressed. (1.3)

may be compared with [HR], and with other nonlinear models quoted in [A].
The term $m$ is a nonlinear correction (to the well-known Timoshenko beam
equation [T] $)$ which takes into account the fact that the length of the beam,
and then the axial tension, varies during the evolution. For the elastic string
with fixed ends, such a correction is firstly due to G. KIRCHHOFF [Ki], cf. [Ka]
[N] [NM] and the references quoted there.
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