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Introduction.

In a celebrated paper [13], Witten asserted the rigidity theorem for the
elliptic genus, which is an extension of the Atiyah-Hirzebruch theorem concern-
ing the $\hat{A}$-genus. The elliptic genus is a formal power series in $q$ whose co-
efficients are the indices of the Dirac operators coupled with certain vector
bundles associated to the tangent bundle. After some partial results of Land-
weber, Stong and Ochanine, Bott and Taubes gave a mathematically rigorous
proof to the rigidity theorem [3].

Recently Ochanine defined the $KO$-version of the elliptic genus [8]. Ben-
dersky and Ochanine proved that the Ochanine genus vanishes for spin mani-
folds admitting $S^{1}$-actions of odd type [2], [9]. In a previous paper [11], we
proved that the a-invariant (which is called the Atiyah invariant in [2]) vanishes
for spin manifolds admitting $S^{1}$ -actions of odd type. The proof in [2], [9] is
based on purely topological argument and we dealt with the analytical index
of the real Dirac operator in [11]. The purpose of this note is to prove the
vanishing result for the Ochanine genus by the method in [11]. Our method
can also be applied to spin manifolds admitting involutions of odd type.

The author is grateful to Professor Mikiya Masuda for pointing out that
the method in [11] does work for $8k+1$-dimensional spin manifolds admitting
involutions of odd type. He also thanks Professor Hirzebruch for his comment
of the Proposition in Appendix.

1. The Ochanine genus.

In this section we review the definition of the Ochanine genus [8] and the
rigidity theorem of Witten [3], [13].

For a real vector bundle $Earrow X$, we set

$\Lambda_{t}(E):=\sum_{i\geqq 0}\Lambda^{i}(E)t^{i}$ , $S_{t}(E):= \sum_{i\geqq 0}S^{i}(E)t^{i}$
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where $\Lambda^{i}(E)$ and $S^{i}(E)$ denote the i-th exterior product bundle and symmetric
power bundle of $E$ respectively. The Witten characteristic class is defined by

$\Theta_{q}(E):=\bigotimes_{n\geq 1}(\Lambda_{-q^{2n-1}}(E)\otimes S_{q^{2n}}(E))$ .

Since $\Theta_{q}(E\oplus F)=\Theta_{q}(E)\cdot\Theta_{q}(F)$ holds, we get

$\Theta_{q}$ : $KO(X)arrow KO(X)[[q]]$ .

From the consideration of the loop space, Witten [13] considered the Dirac
operator twisted by $\Theta_{q}(TM)$ and asserted the following

THE RIGIDITY THEOREM OF WITTEN ([3], [13]). Let $M$ be a ClOSed Spin

manifold admitting an $S^{1}$ -action of even type. Then the $S$ ‘-equivamant index of
the Dirac operator twisted by $\Theta^{i}(TM)$ is constant as virtual character, where
$\Theta^{i}(TM)$ denotes the coefficient of $q^{i}$ in $\Theta_{q}(TM)$ .

For a $m$-dimensional closed spin manifold $M$, Ochanine defined $\beta_{q}[M]=$

$\Theta_{q}(TM-m)[M]\in KO_{m}(point)[[q]]$ , where $[M]\in KO.(M)$ is the fundamental
class of $M$ in $KO$ -theory. We call $\beta_{q}[M]$ the Ochanine genus of $M$ . It is
essentially the elliptic genus in the case that the dimension is divisible by 4
and the $\alpha$-invariant is the O-th order coefficient of the Ochanine genus.

2. Circle actions of odd type and the Ochanine genus.

Bendersky [2] and Ochanine [9] proved the following

THEOREM (2.1). If a closed spin manifold $M$ admits an $S^{1}$ -actionrof odd
type, the Ochanine genus of $M$ vanishes.

In this section we give a different proof using the method of [11]. First
of all we recall the fundamental property of the real Dirac operator (see [1],
[7] $)$ .

Let $Parrow M$ be the principal SPin$(m)$-bundle which defines the spin structure
of $M$, and $Cl_{m}$ the Clifford algebra corresponding to $R^{m}$ with the standard
inner product. Set $V:=P\cross_{Spin(m)}Cl_{m}$ , where SPin$(m)$ acts on $Cl_{m}$ by the
multiplication from the left. $V$ is naturally a $Z/2Z$-graded vector bundle
$V^{+}\oplus V^{-}$ and carries the action of $Cl$. from the right. For a real vector bundle
$F$ over $M$ , the real Dirac operator $D\otimes F$ twisted by $F$ is defined by $\sum e_{i}\cdot\nabla_{e_{i}}$ ,
where $\{e_{i}\}$ is a local orthonormal frame field and $\nabla$ denotes the tensor product
connection on $V\otimes F$, and it commutes with the action of $Cl_{m}$ from the right.
In particular, $KerD\otimes F$ is a $Z/2Z$-graded $Cl_{m}$-module.

From now on, we assume that $m=8k+1$ or $8k+2$ . The value of $F\in$

$KO(M)$ evaluated on the fundamental class $[M]\in KO_{m}(M)$ is given by
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$\langle F, [M]\rangle\equiv 0$ (mod2) if $KerD\otimes F$ can be a $Cl_{m+1}$-module.

$\langle F, [M]\rangle\equiv 1$ $(mod 2)$ otherwise.

By the periodicity of Clifford algebras, $Cl_{8k+l}\cong Cl_{8k}\otimes Cl_{l}$ and $Cl_{8k}$ is a simple
graded algebra. Let $W=W^{+}\oplus W^{-}$ be the irreducible $Z/2Z$-graded left $Cl_{8k^{-}}$

module. Since $Cl_{8k}=W\otimes W^{*}$ as a left and right $Cl_{8k}$ -module, we get $V^{\pm}=$

$E^{\pm}\otimes W^{*}$ , where $E^{\pm}$ denotes the real spinor bundle $P\cross_{Spin(m)}(W^{\pm}\otimes Cl_{l})$ . The
twisted real Dirac operator $D\otimes F$ is $Cl_{8k+l}$ -linear and can be restricted to the
operator acting on sections of $E^{\pm}$ . We also call the restricted operator as the
twisted real Dirac operator. Recalling that $(Cl_{1})^{ev}=R$ and $(Cl_{2})^{ev}=C$ , we ob-
tain the following fact.

FACT (2.2). Let $M$ be a closed $m$-dimensional spin manifold and $F$ a real
vector bundle over $M$ . The evaluation of $F$ with the $KO$ -theoretic fundamental
class $[M]\in KO_{m}(M)$ is given by

$\dim_{R}Ker(D\otimes F:\Gamma(E^{+}\otimes F)arrow\Gamma(E^{-}\otimes F))$ in case that $m=8k+1$

$\dim_{C}Ker(D\otimes F:\Gamma(E^{+}\otimes F)arrow\Gamma(E^{-}\otimes F))$ in case that $m=8k+2$

modulo 2, where $D$ denotes the real Dirac operator on $M$ .

We show the following

LEMMA (2.3). Let $M$ be a closed $m$-dimensional spin manifold admitting an
$S^{1}$ -action of odd type.

(1) In case that $m=8k+1$ , we have

$\dim_{R}KerD\otimes\Theta^{i}(TM)\equiv 0$ $(mod 2)$ .
(2) In case that $m=8k+2$ , we have

$\dim_{C}KerD\otimes\Theta^{i}(TM)\equiv 0$ $(mod 2)$ .

PROOF. By taking the double covering action, the operator $D\otimes\Theta^{i}(TM\rangle$

can be considered as an $S^{1}$ -invariant differential operator.
(1) Decompose the vector space $KerD\otimes\Theta^{i}(TM)$ into the direct sum of $S^{1}-$

modules $\oplus_{l}W_{l}$ , where $l$ is the weight of $W_{l}$ as a real $S^{1}$ -module. $W_{l}$ is even
dimensional for $1\neq 0$ , therefore it is sufficient to show that $W_{0}=0$ . Since the
original $S^{1}$ -action is of odd type, the action of $-1\in S^{1}$ on spinor bundles is the
multiplication by $-1$ and the action of $-1$ on $\Theta^{i}(TM)$ is the identity. Hence
there are no sections of $E^{0}\otimes\Theta^{t}(TM)$ which are invariant by the action of $-1$

and we get $W_{0}=0$ .
(2) Decompose the vector space $KerD\otimes\Theta^{i}(TM)$ into the direct sum of

complex $S^{1}$ -modules $\oplus_{k}N_{k}$ , where $k$ is the weight of $N_{k}$ as a complex
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$S^{1}$-module. By Lemma (2.4) below, $\dim_{C}N_{k}=\dim_{C}N_{-k}$ for $k\neq 0$ . Hence
$\dim_{C}KerD\otimes\Theta^{i}(TM)\equiv\dim_{C}N_{0}$ . The rest of the proof goes as in (1).

LEMMA (2.4). $\dim_{C}N_{k}=\dim_{C}N_{-k}$ for $k\neq 0$ .

PROOF. In case that $m=8k+2$ , the real spinor bundles $E^{+}$ and $E^{-}$ are
nothing but the complex sPinor bundles $S^{+}$ and $s-$ , which are comPlex con-
jugate each other, and the real Dirac operator $D$ is the usual Dirac operator
$D^{+}$ acting on sections of complex spinor bundles. The adjoint of $D^{+}\otimes\Theta^{i}(TM)$

is $D^{-}\otimes\Theta^{i}(TM)$ . Recall that $KerD^{+}\otimes\Theta^{i}(TM)$ is decomposed into $\oplus_{k}N_{k}$ . De-
compose the vector space $KerD^{-}\otimes\Theta^{i}(TM)$ into the direct sum of complex $S^{1}-$

modules $\oplus_{k}M_{k}$ , where $k$ is the weight of $M_{k}$ as a complex $S^{1}$ -module. The
rigidity theorem of Witten implies that $N_{k}$ and $M_{i}$ are equi-dimensional for
$k\neq 0$ . Since $S^{+}$ and $S^{-}$ are complex conjugate, $N_{k}$ and $M_{-k}$ are equi-dimen-
sional. Hence we get the conclusion.

PROOF OF THEOREM (2.1). Note that the coefficient of $q^{t}$ in $\Theta_{q}(TM-m)$ is
a linear combination of $\Theta^{j}(TM)$ for $0\leqq$ ]$i. The assertion follows from Fact
(2.2) and Lemma (2.3).

3. Involutions of odd type and the Ochanine genus.

$8k+1$-dimensional case: Theorem (2.1) is strengthened as follows.

PROPOSITION (3.1). Let $M$ be an $8k+1$-dimensional closed spin manifold
admitting an involution of odd type. For a $Z/2Z$-equivanant real vector bundle
$F$ over $M,$ $\langle F, [M]\rangle$ vanishes. In Particular, the Ochanine genus of $M$ vanishes.

PROOF. The involution $\tau$ on $M$ is lifted to an automorphism 7 of the
principal spin bundle, which defines the spin structure. Since $\tau$ is of odd type,
$\tilde{\tau}$ is a periodic mapping of order 4. Therefore the vector space $KerD\otimes F$ is a
$Z/4Z$-module and the element of order 2 acts as multiplication by $-1$ . The
rest of the proof goes in a similar way as in Theorem (2.1).

$8k+2$-dimensional case: For a torus $T^{2}=S^{1}\cross S^{1}$ and the product spin struc-
ture, $\tau\cross\tau$ is an involution of odd type, where $\tau$ is a reflection of $S^{1},$ $i.e$ . $(x, y)$

$\mapsto(-x, y)$ on the unit circle $S^{1}$ in $R^{2}$ , and the a-invariant does not vanish.
Hence Proposition (3.1) is not true in this dimension. Although we can show
the following

PROPOSITION (3.2). Let $M$ be an $8k+2$-dimensional closed spin manifold
admitting a $Z/2Z\cross Z/2Z$ action. If the number of involutions of odd type is 1
or 3, $\langle F, [M]\rangle$ vanishes for a $Z/2Z\cross Z/2Z$-equivariant real vector bundle $F$

over M. In Particular, the Ochanine genus of $M$ vanishes.
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PROOF. For a group $\Gamma$ acting on a spin manifold $M$, there is a central
extension $\tilde{\Gamma}$ of $\Gamma$ by $Z/2Z$ such that the action of $\tilde{\Gamma}$ on $M$ is lifted to the
principal spin bundle $Parrow M$ . Central extensions of $Z/2Z\cross Z/2Z$ are the fol-
lowing four groups.

1) $Z/2Z\cross Z/2Z\cross Z/2Z$

2) $Z/2Z\cross Z/4Z$

3) $D_{4}$ , the dihedral group of order 8
4) $\{\pm 1, \pm i, \pm], \pm k\}$ where $i,$ $j,$ $k$ are the standard generators of the

quaternion algebra.
If the number of involutions of odd type is 1, the extension is the group

in the case 3). The unique involution $\tau$ of odd type is lifted to an automor-
phism $\tilde{7}$ of $P$ of period 4. The group $\tilde{\Gamma}$ acts on the vector space $KerD\otimes F$.
Restricting to the subgroup generated by $\tilde{7}$ , the character is invariant under
the inner automorphism of $\tilde{\Gamma}$ . We can show that $\tilde{7}^{2}$ acts on sections of spinor
bundles by multiplication by $-1$ , hence the value of the character at $\tilde{7}$ is $0$ .
Thus $\dim_{C}KerD\otimes F$ must be even and we get the result.

If the number of involutions of odd type is 3, the extension is the group
in the case 4). The rest of the proof goes in a similar way as above.

Appendix. Involutions of odd type on $8k$ -dimensional spin manifolds.

For an $8k+4$-dimensional closed spin manifold $M$, the Rochlin-Ochanine
theorem [10] states that the signature of $M$ is divisible by 16. This is not
true in dimension of $8k$ . For example, the signature of the quaternionic pro-
jective plane $HP^{2}$ is 1. We can show the following

PROPOSITION. Let $M$ be an $8k$-dimensional spin maifold admitting an involu-
tion $\tau$ of odd type. Then the equivariant signature Sign $(\tau, M)$ is divisible by
16. In particular, the signature of $M$ is even. Moreover any other coefficient
of the $q$-expansion of the equivariant elliptic genus $\Phi_{q}(\tau, X)$ at the signature cusp
is divisible by $2^{9}$ .

PROOF. Let $F=\cup F_{i}$ be the fixed point set of the involution $\tau$ and $\nu_{i}arrow F_{i}$

the normal bundle of $F_{i}$ . The equivariant signature Sign $(\tau, M)$ equals the sum
of the signatures of the self-intersection $S_{i}$ of $F_{i}$ . The normal bundle of $S_{i}$ is
$\nu_{t}\oplus\nu_{i}|_{S_{i}}$ . Since $\nu_{i}$ is orientable [4], [12], the second Stiefel-Whitney class of
$\nu_{i}\oplus\nu_{i}$ vanishes. Thus $S_{i}$ is spin. Since $\tau$ is of odd type, $co\dim F_{i}$ is con-
gruent to 2 modulo 4 and $co\dim S_{i}$ is congruent to 4 modulo 8. By the Rochlin-
Ochanine theorem, Sign $(S_{i})$ is divisible by 16. Hence Sign $(\tau, M)$ is divisible by
16. The rest of the statement follows from the following results.

THEOREM [5]. Let $X$ be an $8k+4$-dimensional closed spin manifold. Then
any coefficient of the $q$-expansion of the elliptic genus $\Phi_{q}(X)$ at the signature cusp
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is divisible $2^{9}$ except the constant term, $i$ . $e$ . Sign (X).

THEOREM [6]. Let $X$ be a closed onented manifold with an oreentation Pre-
serving involution $\tau$ . Then we have

$\Phi_{q}(\tau, X)=\Phi_{q}(X^{-}\circ X^{\tau})$ ,

where $\Phi_{q}(\tau, X)$ is the q-expansion of the equivariant elliptic genus at the signa-
ture cusp and $\Phi_{q}(X^{\tau}\circ X^{\tau})$ is the q-expansion of the elliPtic genus of the self-
intersection submanifold $X^{\tau}\circ X^{\tau}$ at the signature cusp.

REMARK 1. Under the same assumption in the Proposition above, we can
show that the $\hat{A}$-genus of $M$ is even.

REMARK 2. Hirzebruch [5] also proved that any coefficient of the q-expan-
sion of $\Phi_{q}(X)$ is divisible by $2^{12}$ except the constant term.

Addendum (added on February 4, 1992).

K. Liu obtained the same result in $8k+1$ -dimensional case.
K. Liu, On some vanishing theorems for elliptic genera, Harvard Univ., December
1991, preprint
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