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\S 0. Introduction.

Applications of Brunel-Sucheston’s spreading model are presented. One ap-
plication is to show an alternative theorem concerning weakly null sequences
of Banach spaces, another application is to show an alternative theorem of
summabilities of bounded sequences in Banach spaces and the other one is to
estimate, from above or below, the growth rate of Ces\‘aro means.

1. One application of Brunel-Sucheston’s spreading model is to show that
each weakly null sequence of Banach spaces has a subsequence which is either
“uniformly completely Ces\‘aro summable” or “uniformly completely non Ces\‘aro
summable”.

THEOREM I. For every weakly null sequence $\{x_{n}\}_{n}$ of a Banach sPace $X$,
one can extract a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ such that erther

(1) $\lim_{karrow\infty}(\sup_{n_{1}<\cdot\cdot\prec n_{k}.|a_{i^{|\leqq 1}}}||\frac{1}{k}\sum_{i=1}^{k}a_{i}x_{n_{i}}’||)=0$

$or$

(2) $\inf_{k}(\inf_{n_{1}<\cdot\cdot\prec n_{k}.|\theta_{i^{|=1}}}||\frac{1}{k}\sum_{i=1}^{k}\theta_{i}x_{n_{i}}’||)>0$ .

2. A real or complex infinite matrix $(a_{n.m})_{n.m}$ defines a regular method of
summability, if (and only if) the following conditions hold:

(1) $\sup_{n}(\sum_{m=1}^{\infty}|a_{n.m}|)<\infty$ ,

(2) $\lim_{narrow\infty}(\sum_{7n=1}^{\infty}a_{n.m})=1$

and

(3) $\lim^{a_{n},.=0}$ $(m\in N)$ .

Let $\Lambda$ denote the set of all regular methods of summability and put
$*)$ This author was partially supported by Grant-in-Aid for Scientific Research (No.

03640188), Ministry of Education, Science and Culture.
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$\Lambda_{0}$ $:= \{(a_{n.m})_{n.m}\in\Lambda:\lim_{narrow\infty}(\sup_{m}|a_{n.m}|)=0\}$ ,

$\Lambda_{+}:=\{(a_{n.m})_{n.m}\in\Lambda:\varlimsup_{narrow\infty}(\sup_{m}|a_{n,m}|)>0\}$ .

A “typical” element of $\Lambda_{0}$ is that of Ces\‘aro’s:

$C:=(c_{n.m})_{n.m}$ with $c_{n.m}$
$:= \frac{1}{n}(1\leqq m\leqq n)$ and $c_{n.m}$ $:=0(1\leqq n<m)$ .

On the other hand, “the most trivial” element of $\Lambda_{+}$ is the identity summability:

$I:=(\delta_{n,m})_{n,m}$ with $\delta_{n.m}$ $:=1(n=m)$ and $\delta_{n.m}$ $:=0(n\neq m)$ .

For a regular method of summability $R=(a_{n.m})_{n.m}$ , a bounded sequence $\{x_{n}\}_{n}$

in a Banach space $X$ is called $R$-summable to an element $x_{0}\in X$ if

$\lim_{narrow\infty}||\sum_{m=1}^{\infty}a_{n.m}x_{m}-x_{0}||=0$ .

NOW we introduce stronger notions of summability and non summability as
follows. A bounded sequence $\{x_{n}\}_{n}$ in a Banach space $X$ is said to be com-
pletely $R$-summable to an element $x_{0}\in X$ if each subsequence of $\{x_{n}\}_{n}$ is R-
summable to $x_{0}$ . For example, the canonical basis $\{e_{n}\}_{n}$ of $\ell_{2}$ is not norm
convergent, but it is completely $C$ -summable to zero. On the other hand, a
bounded sequence $\{x_{n}\}_{n}$ in a Banach space $X$ is said to be completely non R-
summable if each subsequence of $\{x_{n}\}_{n}$ is non $R$-summable. For example, the
canonical basis $\{e_{n}\}_{n}$ of $\ell_{1}$ is completely non C-summable.

With respect to this definition, we have the following:

THEOREM II. Let $\{x_{n}\}_{n}$ be a bounded sequence with no norm convergent
subsequence in a Banach space X. Then $\{x_{n}\}$ . has a subsequence $\{x_{n}’\}_{n}$ which
satisfies one of the following conditions:

(1) $\{x_{n}’\}_{n}$ is completely $R$-summable for every $R\in\Lambda_{0}$ and completely non
$R$-summable for every $R\in\Lambda_{+}$ .

(2) $\{x_{n}’\}_{n}$ is comPletely non $R$-summable for every $R\in\Lambda_{+}$ , and for each
$R\in\Lambda_{0}$ there is a subsequence $\{x_{n}’’\}_{n}$ of $\{x_{n}’\}_{n}$ which is comPletely non R-summable.

This theorem will be proved in a more precise formulation in \S 2 (see Theo-
rem 4).

3. In [2], Banacb and Saks proved that $L_{p}[0,1](1<p<\infty)$ has the so-
called Banach-Saks property by actually showing the following:

Each weakly null sequence $\{x_{n}\}_{n}$ in $L_{p}[0,1]$ has a subsequence $\{x_{n}’\}_{n}$ whch
satisfies
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$|| \sum_{i=1}^{k}x_{i}’||_{p}=\{$

$O(k^{1/p})$ $(1<p\leqq 2)$ ,

$O(k^{1/2})$ $(2<p<\infty)$ .
We shall show a natural generalization of this result. Recall that a Banach

space $X$ is said to be of type $P$ for some $1<p\leqq 2$ , of cotypeq for some $2\leqq q<\infty$ ,
if there exists a constant $M\geqq 1$ so that for every finite set of vectors $\{x_{i}\}_{i=1}^{k}$

$\subset X$, we have

$\int_{0}^{1}||\sum_{\ell=1}^{k}r_{i}(t)x_{i}||dt\leqq M(\sum_{i\Rightarrow 1}^{k}||x_{i}||^{p})^{1/p}$ ,

respectively,

$\frac{1}{M}(\sum_{i=1}^{k}||x_{i}||^{q})^{1/q}\leqq\int_{0}^{1}||\sum_{i\approx 1}^{k}r_{i}(t)x_{i}||dt$ ,

where $\{r_{n}\}_{n}$ denotes the sequence of the Rademacher functions, $i.e.,$ $r_{n}(t)=$

sign $(\sin 2^{n-1}\pi t)(n\in N)$ .
Then we have the following:

THEOREM $m$ .
(1) Let $X$ be a Banach space of type $P$ for some $1<p\leqq 2$ . Then from each

weakly null sequence $\{x_{n}\}_{n}$ in $X$ one can extract a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$

such that

$\sup_{k}(\sup_{n_{1}<\cdot\cdot<n_{k}.|a_{i^{|\leq 1}}}||\frac{1}{k^{1/p}}\sum_{i=1}^{k}a_{i}x_{n_{i}}’||)<\infty$ .

(2) Let $X$ be a Banach space of cotype $q$ for some $2\leqq q<\infty$ . Then from
each weakly null sequence $\{x_{n}\}_{n}$ with $\inf_{n}||x_{n}||>0$ in $X$ one can extract a sub-
sequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ such that

$\inf_{k}(_{n_{1}<\cdot\cdot\prec n_{k\cdot I}}\inf_{\theta_{i^{|=1}}}||\frac{1}{k^{1/q}}\sum_{i=1}^{k}\theta_{i}x_{n_{l}}’||)>0$ .

This theorem will be proved in a slightly more precise formulation in \S 3
(see Theorems 5 and 6).

Throughout this paper, $X$ denotes a (real or complex) Banach space with
the dual space $x*,$ $N$ denotes the set of all positive integers and $S_{0}$ denotes
the vector space of all (real or complex) finite scalar sequences with the canonical
unit basis $\{e_{n}\}_{n}$ . Let us agree to write an element in $S_{0}$ in the form $(a_{i})_{i=1}^{k}$

or $\Sigma_{\ell=1}^{k}a_{i}e_{i}$ for the sake of convenience. We may also use $\{e_{n}\}_{n}$ to denote
spreading models, since there seems to be no difficulty to understand what $\{e_{n}\}_{n}$

means. Recall that a Banach space $X$ has the Banach-Saks property if every
bounded sequence $\{x_{n}\}_{n}$ of $X$ has a subsequence whose Ces\‘aro means converge
strongly, and a Banach space $X$ has the weak Banach-Saks property if every
weakly null sequence $\{x_{n}\}_{n}(i.e., w-\lim_{narrow\infty}x_{n}=0)$ of $X$ has a subsequence whose
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Ces\‘aro means converge strongly.

\S 1. Spreading models and an alternative theorem.

We shall first state some fundamental Properties about Brunel-Sucheston’s
spreading model which are needed in the proofs of theorems and lemmas in
this paper. Since Brunel-Sucheston’s spreading model is investigated in detail
by Beauzamy and Laprest\’e [4], for proofs, we refer to it.

Let $\{x_{n}\}_{n}$ be a bounded sequence with no norm Cauchy subsequence in a
Banach space $X$. Suppose that the limit

$m \leqq n_{1}<\cdot\cdot<n_{k}\lim_{marrow\infty}||\sum_{t=1}^{k}a_{i}x_{n_{i}}||$

exists for each $(a_{i})_{i=1}^{k}\in S_{0}$ . We shall call such a sequence $\{x_{n}\}_{n}$ a Brunel-
Sucheston sequence. Then we can define the nonnegative function $\Psi$ on $S_{0}$ by

$\Psi((a_{i})_{i=1}^{k}):=$
$\lim_{marrow\infty,m\leqq n_{1}<\cdot\cdot<n_{k}}||\sum_{i=1}^{k}a_{i}x_{n_{i}}||$ .

Clearly $\Psi$ defines a seminorm on $S_{0}$ . Furthermore, since $\{x_{n}\}_{n}$ is assumed to
have no norm Cauchy subsequence, $\Psi$ indeed defines a norm on $S_{0}$ (see Brunel
and Sucheston [6] $)$ . Hence we shall write $||\Sigma_{i=1}^{k}a_{i}e_{i}||$ in place of $\Psi((a_{i})_{i\Leftarrow 1}^{k})$ for
each $(a_{i})_{i=1}^{k}\in S_{0}$ . Let $E$ be the completion of $[S_{0}, ||\cdot||]$ . Then $\{x_{n}\}_{n}$ and
$[E, \{e_{n}\}_{n}]$ have the following properties (1), (2) and (3) which are referred as
Spreading Model Property in the sequel:

(1) (a) The norm $||\cdot||$ for $E$ is invariant under spreading in the sense that

$|| \sum_{i=1}^{k}a_{i}e_{i}||=||\sum_{i=1}^{k}a_{\ell}e_{n_{i}}||$

holds for each $k,$ $n_{l}\in N$ $(i=1,2, , k)$ with $n_{1}<n_{2}<\cdots<n_{k}$ and $(a_{i})_{t=1}^{k}\in S_{0}$ .
(b) $\{e_{2n-1}-e_{2n}\}_{n}$ is a monotone unconditional basic sequence, i.e.,

$|| \sum_{i\in A_{1}}a_{i}(e_{8i-1}-e_{2i})||\leqq||\sum_{i\in A_{2}}a_{i}(e_{2i-1}-e_{2i})||$

for each finite subsets $A_{1},$ $A_{2}$ of $N$ with $A_{1}\subset A_{2}$ and $(a_{i})_{i}\in S_{0}$ .
Moreover if, in addition, $\{x_{n}\}_{n}$ is a weakly null sequence, then $\{e_{n}\}_{n}$ is a

monotone unconditional Schauder basis for $E$ , hence (b) can be improved as
follows:

$(b’)$ $||_{t} \sum_{\in A_{1}}a_{i}e_{i}||\leqq||\sum_{i\in A_{2}}a_{t}e_{i}||$

for each finite subsets $A_{1},$ $A_{2}$ of $N$ with $A_{1}\subset A_{2}$ and $(a_{i})_{i}\in S_{0}$ .
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(2) $m \leqq n_{1}<\cdot\cdot<n_{k}\lim_{marrow\infty}||\sum_{i=1}^{k}a_{i}x_{n_{i}}||=||\sum_{i=1}^{k}a_{i}e_{i||}$

for every vector $(a_{i})_{i=1}^{k}\in S_{0}$ .
(3) For any $\epsilon>0$ and $k\in N$ there exists an $L(\epsilon, k)\in N$ so that for every

$(a_{i})_{i=1}^{k}\in S_{0}$ and $n_{i}\in N(i=1,2, \cdots , k)$ with $L(\epsilon, k)\leqq n_{1}<n_{2}<\ldots<n_{k}$ ,

$(1- \epsilon)||\sum_{i=1}^{k}a_{i}e_{i}||\leqq||\sum_{i=1}^{k}a_{i}x_{n_{i}}||\leqq(1+\epsilon)||\sum_{i=1}^{k}a_{i}e_{i}||$ .

We shall call $[E, \{e_{n}\}_{n}]$ the spreading model of a Brunel-Sucheston sequence
$\{x_{n}\}_{n}$ . We pay much attention to the fact that each subsequence of $\{x_{n}\}_{n}$ is
a Brunel-Sucheston sequence and $[E, \{e_{n}\}_{n}]$ is (isometrically isomorphic to) the
spreading model of each subsequence of $\{x_{n}\}_{n}$ .

It is easy to see that there is no Brunel-Sucheston sequence in any finite
dimensional Banach space. On the other hand, Brunel-Sucheston sequences in-
deed exist in any infinite dimensional Banach space. This result is due to
Brunel and Sucheston [6]. By using the classical Ramsey’s theorem, they
actually proved the following:

THEOREM (Brunel-Sucheston [6]). In any Banach space, every bounded
sequence with no norm Cauchy subsequence has a subsequence which is a Brunel-
Sucheston sequence.

NOW we shall prove the following Theorems 1 and 2 which are main results
in this section and also necessary for our later applications. Theorem 2 will
be formulated free from spreading models. We have first the following lemma.

LEMMA 1. Let $\{x_{n}\}_{n}$ be a weakly null Brunel-Sucheston sequence in a Banach
space $X$ and $[E, \{e_{n}\}_{n}]$ be its spreading model. We put

$\rho(k):=||\frac{1}{k}\sum_{i=1}^{k}e_{i}||$ $(k\in N)$ .

Then $\rho:=\lim_{karrow\infty}\rho(k)$ exists and is equal to $\inf_{k}\rho(k)$ .

PROOF. We set $\nu:=\inf_{k}\rho(k)$ , then for all $\eta>0$ there exists an $m\in N$ such
that p(m)$v+\eta . Take any $k\in N$ and decompose as $k=pm+q$ for some $p,$ $q\in$

$N\cup\{0\}$ with O$q\leqq m--1. Note that

$\rho(k)=||\frac{1}{k}\sum_{i=1}^{k}e_{i}||\leqq\frac{1}{k}\sum_{j=0}^{p-1}||\sum_{i=1}^{m}e_{i+jm}||+\frac{1}{k}\sum_{i=pm+1}^{k}||e_{i}||$

$= \frac{1}{k}p||\sum_{i=1}^{m}e_{i}||+\frac{q}{k}||e_{1}||=\frac{pm}{k}\rho(m)+\frac{q}{k}||e_{1}||$

$ $\frac{pm}{k}(\nu+\eta)+\frac{q}{k}||e_{1}||$ .
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Letting $karrow\infty$ , we get

$\varlimsup_{karrow\infty}\rho(k)\leqq\nu+\eta$ for all $\eta>0$ ,

hence we have
$\varlimsup_{karrow\infty}\rho(k)$ $ $\nu=\inf_{k}\rho(k)\leqq\varliminf_{karrow\infty}p(k)$ .

Therefore $p= \lim_{karrow\infty}\rho(k)$ exists and is equal to $\inf_{k}p(k)$ .

The following well known facts are repeatedly used in the sequel.

LEMMA 2 (Singer [18, p. 499]). For a monotone unconditional basic sequence
$\{x_{n}\}_{n}$ in a Banach space $X$, we have

$|| \sum_{i=1}^{k}a_{i}x_{i}||\leqq 4||\sum_{i=1}^{k}b_{i}x_{i}||$

for all $(a_{i})_{i=1}^{k},$ $(b_{i})_{i=1}^{k}\in S_{0}$ with $|a_{i}|\leqq|b_{i}|(i=1,2, \cdots , k)$ . The constant 4 can be
replaced by 2 if the scalars are real.

LEMMA 3 (Bessaga-Pelczytski [5]). Let $\{x_{n}\}_{n}$ be a weakly null sequence
with $\varlimsup_{narrow\infty}||x_{n}||>0$ in a Banach space X. Then for every $\epsilon>0$ one can choose a
subsequence of $\{x_{n}\}_{n}$ whech is a bastc sequence with basis constant $1+\epsilon$ .

We shall now state the following proposition concerning the case $\rho>0$ , of
which (1) follows from Beauzamy [3] together with Lemma 2, and (2) follows
from (3) of Spreading Model Property.

PROPOSITION 1. Let $\{x_{n}\}_{n}$ be a Brunel-Sucheston sequence in a Banach space
$X$ and $[E, \{e_{n}\}_{n}]$ be its spreading model. Assume that

$p= \lim_{karrow\infty}||\frac{1}{k}\sum_{i=1}^{k}e_{i}||=\inf_{k}||\frac{1}{k}\sum_{i=1}^{k}e_{i}||>0$ .

Then the following statements hold.
(1) $E$ is isomorphic to $p_{1}$ . In fact we have the following inequality:

$\frac{p}{4}\sum_{t=1}^{k}$ a $t| \leqq||\sum_{i=1}^{k}$ a $iei||$

for all $(a_{i})_{i=1}^{k}\in S_{0}$ .
(2) $X$ contains finite dimensional $\ell_{1}$-spaces unifomly. More precisely, for

any stnctly increasing sequence $\{j(n)\}_{n}$ of $N$ one can choose a subsequence $\{x_{n}’\}_{n}$

of $\{x_{n}\}_{n}$ so that

$\frac{\rho}{8}\sum_{i=1}^{j(k)}|a_{i}|\leqq||\sum_{i=1}^{J^{(k)}}a_{t}x_{n_{i}}’||$

for all $k,$ $n_{t}\in N$ $(i=1,2, \cdots , j(k))$ with $k\leqq n_{1}<n_{2}<\ldots<n_{j(k)}$ and $(a_{i})_{i=1}^{j(k)}\in S_{0}$ .
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The following result is the key to our applications of the Brunel-Sucheston’s
spreading model.

THEOREM 1. Let $\{x_{n}\}_{n}$ be a Bmnel-Sucheston sequence in a Banach space
$X$ and $[E, \{e_{n}\}_{n}]$ be its spreading model. Then for any $\epsilon>0$ and integer $t\geqq 2$

one can select a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ with the following property:
For every $k,$ $n_{i}\in N$ $(i=1,2, \cdots , k)$ with $n_{1}<n_{2}<$ $<n_{k}$ and $(a_{i})_{i=1}^{k}\in S_{0}$ , we

have

(1.1) $\{$

$(1- \epsilon)||\sum_{i=1}^{k}a_{i}e_{i}||-(2\log_{t}k)\sup_{1\leq i\leq k}|a_{i}|\sup_{n}||x_{n}’||$

$\leqq||\sum_{i=1}^{k}a_{i}x_{n_{i}}’||\leqq(1+\epsilon)||it||+(3\log_{t}k)\sup_{1\leq i\leq k}|a_{t}|\sup_{n}||x_{n}’||$ .

PROOF. Let $0<\epsilon<1$ and an integer $t\geqq 2$ be given. By the property (3) of
Spreading Model Property, for any $k\in N$ there exists an $L(k)\in N$ such that for
all $n_{t}\in N$ $(i=1,2, \cdots , k)$ with $L(k)\leqq n_{1}<n_{2}<$ $<n_{k}$ and $(a_{i})_{i=1}^{k}\in S_{0}$ ,

$(1- \epsilon)||\sum_{i=1}^{k}a_{\iota}e_{i}||\leqq||\sum_{i=1}^{k}a_{i}x_{n_{i}}||\leqq(1+\epsilon)||\sum_{i=1}^{k}a_{i}e_{i}||$ .
We may assume that $\{L(k)\}_{k}$ is strictly increasing, and we set

$x_{n}’:=x_{L(c^{n})}$ $(n\in N)$ .
We shall show that this subsequence $\{x_{n}’\}_{n}$ meets the requirement. Let $k,$ $m$

$\in N$ with $t^{m}\leqq k<t^{m+1},$ $n_{i}\in N(i=1,2, \cdots , k)$ with $n_{1}<n_{2}<$ $<n_{k}$ and $(a_{i})_{i=1}^{k}\in S_{0}$

be given. We observe the following decomposition:

$\sum_{i=1}^{k}a_{i}x_{n_{i}}’=_{i=}^{m_{1}}a_{t}x_{n_{i}}’+\sum_{i=m+1}^{k}a_{i}x_{n_{i}}’$ .

Since $x_{n_{m+1}}’=x_{L(\iota^{nm+1})}$ and $L(k)<L(t^{m+1})\leqq L(t^{n_{m+1}})$ , it follows that

$|| \sum_{i=m+1}^{k}a_{i}x_{n_{i}}’||\leqq(1+\epsilon)||\sum_{i=m+1}^{k}a_{i}e_{i}||$

$\leqq(1+\epsilon)(||\sum_{i=1}^{k}a_{i}e_{t}||+||\sum_{i=1}^{m}a_{i}e_{\ell||)}$

$\leqq(1+\epsilon)||\sum_{i=1}^{k}a_{i}e_{i}||+2m\sup_{1\leq i\leq m}|a_{\ell}|\sup_{1\leq i\leq m}||e_{i}||$

$\leqq(1+\epsilon)||\sum_{i=1}^{k}a_{i}e_{i}||+(2\log_{t}k)\sup_{1\lessgtr t\leq k}|a_{i}|\sup_{n}||x_{n}’||$

and
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$|| \sum_{i=+1}a_{i}x_{n_{i}}’||\geqq(1-\epsilon)(||\sum_{i=1}^{k}a_{\ell}e_{i}||-||=1ma_{i}e_{i}||)$

$\geqq(1-\epsilon)||\sum_{i=1}^{k}a_{i}e_{i}||-(\log_{t}k)\sup_{1\leqq t\leqq k}|a_{i}|\sup_{n}||x_{n}’||$ .

Moreover the following estimate is easily verified:

$|| \sum_{i=1}^{m}a_{i}x_{n_{i}}’||\leqq(\log_{t}k)\sup_{1\leqq\iota\leqq k}|a_{i}|\sup_{n}||x_{n}’||$ .

Hence we get (1.1).

This completes the proof of Theorem 1.

By using Theorem 1, we can show an “alternative” theorem concerning
weakly null sequences which is a generalization of Rosenthal’s result [16].

THEOREM 2. For every weakly null sequence $\{x_{n}\}_{n}$ in $X$ one can extract a
subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ such that a ther

(1) $\lim_{karrow\infty}(_{n_{1}<\cdot\cdot\prec n_{k}}\sup_{|a_{i^{|\not\leqq 1}}}||\frac{1}{k}\sum_{i=1}^{k}a_{i}x_{n_{i}}’||)=0$

$or$

(2) $\inf_{k}(\inf_{n_{1}<\cdot\cdot\prec n_{k}.|\theta_{i^{|=1}}}||\frac{1}{k}\sum_{i=1}^{k}\theta_{i}x_{n_{\ell}}’||)>0$ .

If the case (2) happens, then, in addition to (2), we have the following: for
any stnctly $increa\alpha ng$ sequence $\{](n)\}_{n}$ of $N$ one can choose further a sub-
sequence $\{x_{n}’’\}_{n}$ of $\{x_{n}’\}_{n}$ so that

(3)
$\inf_{k}(_{kgn_{1}<\cdot\cdot\prec n_{j(k)\cdot ii}}\inf_{(a)\neq 0}\frac{1}{\sum_{i=1}^{j(k)}|a_{i}|}||\sum_{t=1}^{j(k)}a_{i}x_{n_{i}}’’||)>0$

.

PROOF. If $\{x_{n}\}_{n}$ has a norm convergent subsequence whose limit is neces-
sarily zero, then one can choose a subsequence which satisfies (1). So we may
suppose that $\{x_{n}\}_{n}$ has no norm convergent subsequence. By virtue of Brunel-
Sucheston’s theorem, Theorem 1, Lemma 2 and Spreading Model Property (1)
$(b’)$ , there is a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ which is a Brunel-Sucheston sequ-
ence with its spreading model $[E, \{e_{n}\}_{n}]$ and satisfies the following estimates:

(1.2) $\frac{1}{5}||\sum_{i=1}^{k}e_{i}||-(2\log_{2}k)\sup_{n}||x_{n}’||\leqq||\sum_{t=1}^{k}\theta_{i}x_{n_{i}}’||$

and

(1.3) $|| \sum_{i=1}^{k}a_{i}x_{n_{i}}’||\leqq 5||\sum_{i=1}^{k}e_{i}||+(3\log_{2}k)\sup_{n}||x_{n}’||$

for every $k,$ $n_{i}\in N(i=1,2, \cdots k)$ with $n_{1}<n_{2}<\ldots<n_{k}$ and $(a_{i})_{i=1}^{k},$ $(\theta_{i})_{i=1}^{k}$ with
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$|a_{i}|\leqq 1,$ $|\theta_{i}|=1(i=1,2, \cdots k)$ .
We investigate two cases $\rho=0$ and $p>0$ , where $p$ is as in Lemma 1, $i.e.$ ,

$\rho=\lim_{karrow\infty}||\frac{1}{k}\sum_{i=1}^{k}e_{i}||=\inf_{k}||\frac{1}{k}\sum_{i=1}^{k}e_{i}||$ .

In the case of $p=0$ , one can obtain from (1.3),

$\varlimsup_{karrow\infty}(_{n_{1<\cdot\cdot\prec}}\sup_{n_{k}.|a_{i^{|\leqq 1}}}||\frac{1}{k}\sum_{i=1}^{k}a_{\ell}x_{n_{t}}’||)$

$\leqq\varlimsup_{karrow\infty}(\frac{5}{k}||\sum_{i=1}^{k}e_{i}||+3\frac{\log_{2}k}{k}\sup_{n}||x_{n}’||)=0$ .

For the case $\rho>0$ , one can get from the inequality (1.2) that

$\varliminf_{karrow\infty}(\inf_{n_{k\cdot|}}||\frac{1}{k}\sum_{t=1}^{k}\theta_{i}x_{n_{i}}’||)$

$\geqq\varliminf_{karrow\infty}(\frac{1}{5k}||\sum_{t=1}^{k}e_{i}||-2\frac{\log_{2}k}{k}\sup_{n}||x_{n}’||)=\frac{1}{5}p>0$ .

Hence there is an $m\in N$ such that

$\inf_{k\geqq m}(\inf_{\theta_{i^{|=1}}}||\frac{1}{k}\sum_{i=1}^{k}\theta_{i}x_{n_{i}}’||)\geqq 6^{p}1$ .

We may assume that

$\frac{2}{3}||\sum_{i=1}^{m}a_{\ell}e_{i}||\leqq||\sum_{i=1}^{m}a_{i}x_{n_{i}}’$ II
for all $n_{i}\in N$ $(i=1,2, -- , m)$ with $n_{1}<n_{2}<...$ $<n_{m}$ and $(a_{i})_{i=1}^{m}\in S_{0}$ . Therefore
we have

$\inf_{k\subseteq m}(_{n_{1}<\cdot\cdot\prec n_{k\cdot|}}\inf_{\theta_{i^{|=1}}}||\frac{1}{k}\sum_{t=1}^{k}\theta_{i}x_{n_{i}}’||)\geqq\frac{2}{3}\inf_{k\leq m}(_{n_{1}<\cdot\cdot<n_{k\cdot|}}\inf_{\theta_{i^{|=1}}}||\frac{1}{k}\sum_{i=1}^{k}\theta_{t}e_{i||)}$

$\geqq\frac{1}{6}\inf_{k\xi m}||\frac{1}{k}\sum_{i=1}^{k}e_{i}||\geqq\frac{1}{6}p$ ,

since $\{e_{n}\}_{n}$ is monotone unconditional, hence we get

$\inf_{k}(_{n_{1}<\cdot\cdot\prec n_{k\cdot|}}\inf_{\theta_{i^{|=1}}}||\frac{1}{k}\sum_{i=1}^{k}\theta_{i}x_{n_{\ell||)}}’\geqq\frac{1}{6}p>0$ .

Finally, it is easy to see that the condition (3) is a direct consequence of
Proposition 1. This completes the proof of the theorem.

AS a direct consequence, we get the following fact which is a slight gen-
eralization of Partington’s result [14].

COROLLARY 1. Let $X$ be a Banach space with the weak Banach-Saks pro-
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perty. Then every weakly null sequence $\{x_{n}\}_{n}$ in $X$ has a subsequence $\{x_{n}’\}_{n}$

which satisfies the condition (1) in the above theorem.

\S 2. Regular methods of summability.

In this section, we shall first prove that the subsequences which are chosen
with respect to the condition (1) or (2) in Theorem 2 are closely related to
“complete $R$-summability” and “complete non $R$-summability” (see Definition 1).

Secondly we show an alternative theorem concerning bounded sequences of
Banach spaces with respect to regular methods of summability.

Recall that a real or complex infinite matrix $(a_{n,m})_{n.m}$ is called a regular
method of summability, if given a sequence of scalars $\{x_{n}\}_{n}$ converging to $x_{0}$ ,

then the sequence

$y_{n}:= \sum_{m=1}^{\infty}a_{n.m}x_{m}$ $(n\in N)$

also converges to $x_{0}$ . It is well known that $(a_{n.m})_{n.m}$ is a regular method of
summability if and only if

(1) $\sup_{n}(\sum_{m=1}^{\infty}|a_{n,m}|)<\infty$ ,

(2) $\lim_{narrow\infty}(\sum_{m=1}^{\infty}a_{n.m})=1$

and

(3) $\lim_{narrow\infty}a_{n.m}=0$ $(m\in N)$ .

For a proof, see DeVito [7, p. 96].

By the conditions (1), (2) and (3), it is easy to see the following fact:
Let $(a_{n.m})_{n.m}$ be a regular method of summability and $\{x_{n}\}_{n}$ be a sequence

in a Banach space $X$ wfuch converges strongly (resp. weakly) to an element
$x_{0}\in X$ . Then the sequence

$y_{n}:= \sum_{m=1}^{\infty}a_{n.m}x_{m}$ $(n\in N)$

also converges strongly (resp. weakly) to $x_{0}$ .
Let $\Lambda$ denote the set of all regular methods of summability and put

$\Lambda_{0}:=\{(a_{n,m})_{n.m}\in\Lambda:\lim_{narrow\infty}(\sup_{m}|a_{n.m}|)=0\}$ ,

$\Lambda_{+}:=\{(a_{n.m})_{n.m}\in\Lambda:\varlimsup_{narrow\infty}(\sup_{m}|a_{n,m}|)>0\}$ ,
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$I:=(\delta_{n.m})_{n.m}\urcorner$ and $C:=(c_{n.m})_{n.m}$ ,

where $\delta_{n.m}$ denotes the Kronecker delta, and we set $c_{n.m}$ $:=1/n$ (1:$m;S $n$ ) and
$c_{n.m}:=0(1\leqq n<m)$ . It is easy to see that $\Lambda$ is the disjoint union of $\Lambda_{0}$ and
$\Lambda_{+},$ $C$ is a “typical” element in $\Lambda_{0}$ and $I$ is a “trivial” element in $\Lambda_{+}$ . In
order to state the main results of this section, we need more definitions.

DEFINITION 1. Let $\{x_{n}\}_{n}$ be a bounded sequence in $X,$ $x_{0}$ be an element
of $X$ and $R=(a_{n.m})_{?\iota.m}$ be an element of $\Lambda$ .

(1) We say that $\{x_{n}\}_{n}$ is $R$-summable to $x_{0}$ if

$\lim_{narrow\infty}||\sum_{m=1}^{\infty}a_{n,m}x_{m^{-X_{0||}}}=0$ .

(2) We say that $\{x_{n}\}_{n}$ is completely $R$-summable to $x_{0}$ if each subsequence
of $\{x_{n}\}_{n}$ is $R$-summable to $x_{0}$ .

(3) We say that $\{x_{n}\}_{n}$ is completely non $R$-summable if no subsequence of
$\{x_{n}\}_{n}$ is R-summable.

DEFINITION 2. Let $\{x_{n}\}_{n}$ be a bounded sequence in $X,$ $x_{0}$ be an element
of $X$ and $R=(a_{n.m})_{n.m}$ be an element of $\Lambda$ .

(1) We say that $\{x_{n}\}_{n}$ is $R$-summable to $x_{0}$ with respect to the weak topo-
logy, denoted by w-R-summable to $x_{0}$ , if

$x_{0}=w- \lim_{narrow\infty}(\sum_{m=1}^{\infty}a_{n.m}x_{m})$ .

(2) We say that $\{x_{n}\}_{n}$ is completely $R$-summable to $x_{0}$ with respect to the
weak topology, denoted by completely w-R-summable to $x_{0}$ if each subsequence
of $\{x_{n}\}$ . is w-R-summable to $x_{0}$ .

(3) We say that $\{x_{n}\}_{n}$ is completely non $R$-summable with respect to the
weak topology, denoted by completely non w-R-summable, if no subsequence of
$\{x_{n}\}_{n}$ is w-R-summable.

In order to clarify the above definitions, we give examples.

EXAMPLE 1 (cf. Theorem 4). Let $\{e_{n}\}_{n}$ denote the unit vector basis of $p_{1}$ .
(1) We put for $n,$ $m\in N$

$x_{n}:=\{$

$e_{m}$ $(n=2^{m})$ ,

$0$ $(n\neq 2^{m})$ .
Then $\{x_{n}\}_{n}$ is $C$ -summable to zero and has a subsequence $\{x_{2}n_{-1}\}_{n}=\{0\}_{n}$ which
is completely $C$ -summable to zero. However, $\{x_{n}\}_{n}$ also has a subsequence
$\{X_{2}n\}_{n}=\{e_{n}\}_{n}$ which is completely non $C$ -summable (in fact, $\{e_{n}\}_{n}$ is completely
non w-C-summable).

(2) We put for $n,$ $m\in N$
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$x_{n}:=\{$

$e_{m}$ $(n=2m-1)$ ,

$-e_{m}$ $(n=2m)$ .

Then $\{x_{n}\}_{n}$ is $C$ -summable to zero. Since every subsequence of $\{x_{n}\}_{n}$ has fur-
ther a subsequence which is equivalent to $\{e_{n}\}_{n}$ , no subsequence of $\{x_{n}\}_{n}$ is
completely C-summable.

NOW we shall prove lemmas.

LEMMA 4.
(1) Let $\{x_{n}\}_{n}$ be a bounded sequence in $X,$ $x_{0}$ be an element of $X$ and $R=$

$(a_{n.m})_{n.m}$ be an element of $\Lambda$ . Assume that $\{x_{n}\}_{n}$ is completely w-R-summable
to $x_{0}$ . Then $\{x_{n}\}_{n}$ converges weakly to $x_{0}$ .

(2) Let $\{x_{n}\}_{n}$ be a bounded sequence in $X,$ $x_{0}$ be an element of $X$ and $R=$

$(a_{n,m})_{n.m}$ be an element of $\Lambda_{+}$ . Assume that $\{x_{n}\}_{n}$ is completely $R$-summable to
$x_{0}$ . Then $\{x_{n}\}_{n}$ converges strongly to $x_{0}$ .

PROOF. PROOF of (1). Suppose the conclusion is false, then one can choose
an element $x^{*}\in X^{*}$ and a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ such that $\lim_{narrow\infty}x^{*}(x_{n}’)$

exists, but $x^{*}(x_{0}) \neq\lim_{narrow\infty}x^{*}(x_{n}’)$ . Note that $x_{0}=w- \lim_{narrow\infty}(\Sigma_{m=1}^{\infty}a_{n,m}x_{m}’)$ , hence
one has

$x^{*}(x_{0})= \lim_{narrow\infty}x^{*}(\sum_{m=1}^{\infty}$ a $n.m^{X’}m)= \lim_{narrow\infty}\{\sum_{m=1}^{\infty}$ a $n.m^{X^{*}(x_{m}’)\}}= \lim_{narrow\infty}x^{*}(x_{n})$

by the regularity of $R=(a_{n.m})_{n.m}$ , which is a contradiction.
PROOF of (2). Let $\{x_{n}\}_{n}$ be a bounded sequence in $X$ which is completely

$R$-summable to $x_{0}$ for some $R=(a_{n,m})_{n.m}\in\Lambda_{+}$ . By Lemma 4 (1), $x_{0}=w- \lim_{narrow\infty}x_{n}$

and we may assume without Ioss of generality that $x_{0}=0$ , hence $\{x_{n}\}_{n}$ is a
weakIy null sequence. Suppose that $\lim_{narrow\infty}||x_{n}||=0$ does not hold, then there
exists a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ which is a basic sequence with basis con-
stant 2 and $L:= \inf_{n}||x_{n}’||>0$ (cf. Lemma 3). Therefore we have

$\sup_{m}|a_{n,m}|\leqq\frac{4}{L}||\sum_{m=1}^{\infty}a_{n.m}x_{m}’||$ $(7l\in N)$ ,

but this contradicts our assumptions

$\lim_{narrow\infty}||\sum_{m=1}^{\infty}$ a $n.m^{X’}m||=0$ and $\overline{narrow\infty im}(\sup_{m}|a_{n,m}|)>0$ .

This completes the proof of the lemma.

LEMMA 5.
(1) Let $\{e_{n}\}_{n}$ be the unit vector basis of $\ell_{1}$ . Then $\{e_{n}\}_{n}$ is completely non

w-R-summable for every $R\in\Lambda$ .
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(2) Let $\{x_{n}\}_{n}$ be a weakly Cauchy sequence in $X$ with no weak limit. Then
$\{x_{n}\}_{n}$ is completely non w-R-summable for every $R\in\Lambda$ .

(3) Let $\{x_{n}\}_{n}$ be a weakly null bastc sequence in $X$ with $L:= \inf_{n}||x_{n}||>0$ .
Then $\{x_{n}\}_{n}$ is completely non $R$-summable for every $R\in\Lambda_{+}$ .

PROOF. PROOF of (1). Let $R=(a_{n.m})_{n,m}$ be an element of $\Lambda$ . Suppose
that for an element $x_{0}=(b_{n})_{n}\in P_{1}$ , we have

$x_{0}=w- \lim_{narrow\infty}(\sum_{m=1}^{\infty}a_{n.m}e_{m})$ .

Since weak convergence in $P_{1}$ implies coordinatewise convergence, by using the
fact $\lim_{narrow\infty}a_{n.m}=0(m\in N)$ , one can see that $b_{n}=0(n\in N)$ . But for the ele-
ment $x^{*}\in p_{\infty}=p_{1}*$ whose coordinates are all 1, we have

$\sum_{n=1}^{\infty}b_{n}=x^{*}(x_{0})=\lim_{narrow\infty}\{\sum_{m=1}^{\infty}$ a $n.m^{X^{*}(e_{m})\}}= \lim_{narrow\infty}(\sum_{m=1}^{\infty}$ a $n.m)=1$ ,

which is a contradiction. Since every subsequence of $\{e_{n}\}_{n}$ is equivalent to
$\{e_{n}\}_{n}$ itself, the conclusion follows.

PROOF of (2). Let $R=(a_{n.m})_{n.m}$ be an element of $\Lambda$ . Suppose that for a
subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ and an element $x_{0}\in X$, we have

$x_{0}=w- \lim_{narrow\infty}(\sum_{m=1}^{\infty}a_{n.m}x_{m}’)$ .

Take any $x^{*}\in X^{*}$ . Since $\lim_{narrow\infty}x^{*}(x_{n}’)$ exists and $R$ is a regular method of
summability, we have

$x^{*}(x_{0})= \lim_{narrow\infty}\{\sum_{m=1}^{\infty}$ a $n.m^{X^{*}(x_{m}’)} \}=\lim_{narrow\infty}x^{*}(x_{n}’)=\lim_{narrow\infty}x^{*}(x_{n})$ .

This means that $x_{0}=w- \lim_{narrow\infty}x_{n}$ , which is a contradiction. Hence $\{x_{n}\}_{n}$ is
completely non w-R-summable for every $R\in\Lambda$ .

PROOF of (3). Let $R=(a_{n.m})_{n,m}$ be an element of $\Lambda_{+}$ and $M$ be a basis
constant of $\{x_{n}\}_{n}$ . Since we have

$\max_{1\leq i\leq k}|c_{i}|\leqq\frac{2M}{L}||\sum_{i=1}^{k}c_{i}x_{\ell||}$

for all $(c_{i})_{i=1}^{k}\in S_{0}$ and $\varlimsup_{narrow\infty}(\sup_{m}|a_{n.m}|)>0$ , no subsequence of $\{x_{n}\}_{n}$ is R-
summable (to zero), hence $\{x_{n}\}_{n}$ is completely non R-summable.

Thus we complete the proof of Lemma 5.

NOW we will prove Theorem 3 and 4 which are main results in this section.

THEOREM 3.
(1) Let $\{x_{n}\}_{n}$ be a bounded sequence in $X$ wluch satisfies the condition (1)

of Theorem 2, $i.e.$ ,
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$\lim_{karrow\infty}(_{n_{1}<\cdot\cdot<n_{k}}\sup_{|a_{i^{|\leqq 1}}}||\frac{1}{k}\sum_{i=1}^{k}a_{i}x_{n_{\ell}}||)=0$ .

Then $\{x_{n}\}_{n}$ is completely $R$-summable (to zero) for every $R\in\Lambda_{0}$ .
(2) Let $\{x_{n}\}_{n}$ be a weakly null sequence in $X$ which satisfies the condition

(2) of Theorem 2, i.e.,

$\inf_{k}(\inf_{n_{1}<\cdot\cdot\prec n_{k}.|\theta_{iI=1}}||\frac{1}{k}\sum_{t=1}^{k}\theta_{i}x_{n_{i}}||)>0$ .

Then $\{x_{n}\}_{n}$ has a subsequence $\{x_{n}’\}_{n}$ whch is completely non $R$-summable for
each $R\in\Lambda_{+}$ , and for each $R\in\Lambda_{0}$ there is a subsequence $\{x_{n}’’\}_{n}$ of $\{x_{n}’\}_{n}$ which
is completely non R-summable.

PROOF. PROOF of (1). Let $\{x_{n}\}_{n}$ be a bounded sequence in $X$ which satisfies
the condition (1) of Theorem 2 and $R=(a_{n.m})_{n.m}$ be an element of $\Lambda_{0}$ . We put
for any subsequence $\{x\prime n\}_{n}$ of $\{x_{n}\}_{n}$ ,

$y_{n}:= \sum_{m=1}^{\infty}a_{n,m}x_{m}’$ $(n\in N)$

and

$M:= \max\{\sup_{n}||x_{n}||,$ $\sup_{n}(\sum_{m=1}^{\infty}|a_{n.m}|)\}<\infty$ .

By our assumption laid on $\{x_{n}\}_{n}$ , for any $\epsilon>0$ there exists a $k\in N$ such that

$n_{1<\cdot\cdot\prec k\cdot t\}\xi 1} \sup_{n|a}||\frac{1}{k}\sum_{i=1}^{k}a_{i}x_{n_{i}}||<\epsilon$ .

Fix any $n\in N$ and let $h(m)(m\in N)$ be a permutation of $N$ such that

$|a_{n.h(1)}|\geqq|a_{n.h(2)}|\geqq|a_{n.h(3)}|\geqq\ldots$

Let $x^{*}\in X^{*}$ with $||x^{*}||=1$ . We choose $|\theta_{m}|=1(m\geqq k+1)$ such that

$|x^{*}(x_{h(m)}’)|=\theta_{m}x^{*}(x_{h(m)}’)$ .

Then we have the following estimates:

$|x^{*}(y_{n})| \leqq\sum_{m=1}^{\infty}|a_{n.m}||x^{*}(x_{m}’)|=\sum_{m=1}^{\infty}|a_{n,h(m)}||x^{*}(x_{\acute{\hslash}(m)})|$

$= \sum_{m=1}^{k}|a_{n.h(m)}||x^{*}$ ( $x$ A $(m)$ ) $|+ \sum_{j=1}^{\infty}\sum_{m=jk+1}^{(j+1)k}|a_{n.h(m)}||x^{*}$ ( $x$ A $(m)$ ) $|$

$\leqq Mk|a_{n.h(1)}|+\sum_{j=1}^{\infty}(k|a_{n,h(jk)}|||\frac{1}{k}\sum_{m=jk+1}^{(j+1)k}\theta_{m}x_{h(m)||)}’$
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$\leqq Mk|a_{n.h(1)}|+\epsilon\sum_{j=1}^{\infty}k|a_{n.h(jk)}|$ $ $Mk|a_{n,h(1)}|+ \epsilon\sum_{m-1}^{\infty}|a_{n.h(m)}|$

$ $Mk( \sup_{m}|a_{n.m}|)+M\epsilon$ .

Therefore we get

$||y_{n}||$ $ $Mk( \sup_{m}|a_{n.m}|)+M\epsilon$ $(n\in N)$ ,

hence we have
$\underline{\varlimsup_{n}}||y_{n}||\leqq Me$

by virtue of $\lim_{narrow\infty}(\sup_{m}|a_{n}, . |)=0$ . Since $\epsilon>0$ is arbitrary, we get

$\lim_{narrow\infty}||y_{n}||=0$ ,

hence $\{x_{n}\}_{n}$ is completely R-summable.
PROOF of (2). By our assumption, Brunel-Sucheston’s theorem, Theorems

1, 2 and Lemma 3, $\{x_{n}\}_{n}$ has a subsequence which is still denoted by $\{x_{n}\}_{n}$

such that $\{x_{n}\}_{n}$ is a Brunel-Sucheston sequence with its spreading model
$[E, \{e_{n}\}_{n}]$ with $p>0$ and is a basic sequence with basis constant 2, where

$\rho=\lim_{karrow\infty}||\frac{1}{k}\sum_{i=1}^{k}e_{i}||=\inf_{k}||\frac{1}{k}\sum_{t=1}^{k}e_{i}||$ .

Then, by Lemma 5 (3), $\{x_{n}\}_{n}$ is completely non $R$-summable for each $R\in\Lambda_{+}$ .
Let $R=(a_{n,m})_{n,m}$ be an element of $\Lambda_{0}$ (or $\Lambda$ ). Since

$\lim_{narrow\infty}(\sum_{m=1}^{\infty}a_{n.m})=1$ and $\lim_{narrow\infty}a_{n,m}=0$ $(m\in N)$ ,

one can choose suitable subsequences $\{j(k)\}_{k},$ $\{h(k)\}_{k}$ of $N$ so as to satisfy

$\sum_{m=k}^{j(k)}|a_{h(k).rn}|\geqq\frac{1}{2}$ $(k\in N)$ .

Then, by Proposition 1 (2), there is a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ such that

$\frac{p}{8}\sum_{i=1}^{j(k)}|a_{t}|\leqq||\sum_{i=1}^{j(k)}a_{i}x_{m_{i}}’||$

for all $k,$ $m_{i}\in N$ $(i=1,2, \cdots , j(k))$ with $k\leqq m_{1}<m_{2}<--$ $<m_{j(k)}$ and $(a_{i})_{i=1}^{j(k)}\in S_{0}$ .
Let $\{x_{n}’’\}_{n}$ be any subsequence of $\{x_{n}’\}_{n}$ and put

$y_{n}:= \sum_{m=1}^{\infty}a_{n.m}x_{m}’’$ $(n\in N)$ .

Then we have
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$0<\frac{p}{16}\leqq\frac{\rho}{8}\sum_{m=k}^{j(k)}|a_{h(k).m}|\leqq||\sum_{m=k}^{j(k)}a_{h(k).m}x_{m}’’||$

$\leqq 4||\sum_{m=1}^{\infty}a_{h(k),m}x_{m}’’||=4||y_{h(k)}||$ $(k\in N)$ .

Hence $\{y_{n}\}_{n}$ is non $R$-summable, therefore $\{x_{n}’\}_{n}$ is completely non R-summable.
This completes the proof of Theorem 3.

THEOREM 4. Let $\{x_{n}\}_{n}$ be a bounded sequence with no norm convergent
subsequence in a Banach space X. Then $\{x_{n}\}_{n}$ has a subsequence $\{x_{n}’\}_{n}$ which
satisfies one of the following three cases:

(1) $\{x_{n}’\}_{n}$ is completely $R$-summable for every $R\in\Lambda_{0}$ and completely non
$R$-summable for every $R\in\Lambda_{+}$ .

(2) $\{x_{n}’\}_{n}$ converges weakly and is completely non $R$-summable for every
$R\in\Lambda_{+}$ , and for each $R\in\Lambda_{0}$ there is a subsequence $\{x_{n}’’\}_{n}$ of $\{x_{n}’\}_{n}$ which is com-
pletely non $R$-summable. Moreover, $\{x_{n}’\}_{n}$ has no subsequence whach is completely
non $R$-summable for every $R\in\Lambda_{0}$ .

(3) $\{x_{n}’\}_{n}$ is completely non w-R-summable for every $R\in\Lambda$ .

PROOF. We rely upon Rosenthal’s $p_{1}$-theorem ([15], Dor [8] for complex
scalars), so we know that $\{x_{n}\}_{n}$ has a subsequence $\{x_{n}’\}_{n}$ which is either equi-
valent to the unit vector basis of $p_{1}$ or a weakly Cauchy sequence. If $\{x_{n}’\}_{n}$ is
either equivalent to the unit vector basis of $\ell_{1}$ or a weakly Cauchy sequence
with no weak limit, then by Lemma 5 (1) and (2), $\{x_{n}’\}_{n}$ satisfies the case (3)

of Theorem 4. Hence we need only to consider the case where $\{x_{n}’\}_{n}$ is a
weakly convergent sequence. We may assume that $\{x_{n}’\}_{n}$ is a weakly null
sequence. Moreover, by Lemma 3 and Theorem 2, we may suppose that $\{x_{n}’\}_{n}$

is a basic sequence with $\inf_{n}||x_{n}’||>0$ and satisfies one of the conditions stated
in Theorem 2. If $\{x_{n}’\}_{n}$ satisfies the condition (1) of Theorem 2, then, by
Theorem 3 (1) and Lemma 5 (3), $\{x_{n}’\}_{n}$ itself satisfies the case (1) of Theorem
4. On the other hand, suppose that $\{x_{n}’\}_{n}$ satisfies the condition (2) of Theo-
rem 2. Then, by virtue of Theorem 3 (2), a subsequence of $\{x_{n}’\}_{n}$ , which we
still denote by $\{x_{n}’\}_{n}$ , satisfies the first part of the case (2) of Theorem 4. Let
$\{x_{n}’’\}_{n}$ be any subsequence of $\{x_{n}’\}_{n}$ . Since $\{x_{n}’’\}_{n}$ converges weakly to zero,
by Mazur’s theorem [13], there is a subsequence $\{]_{k}\}_{k}$ of $N$ and a sequence

$\{\alpha_{\ell}\}_{i}$ of nonnegative real numbers such that

$\sum_{t=J_{k}}^{J_{k+1^{-1}}}\alpha_{i}=1$ $(k\in N)$ and $\lim_{karrow\infty}||\sum_{i=J_{h}}^{j_{k+1^{-1}}}\alpha_{i}x_{i}’’||=0$ .

Then, $R=(a_{n,m})_{n.m}$ defined by
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$a_{n,m}=\{$

$\alpha_{m}$ $(_{Jn}\leqq m<j_{n+1}, n\in N)$ ,

$0$ , otherwise,

is a regular method of summability and $\{x_{n}’’\}_{n}$ is $R$-summable (to zero). Hence,
by the first part of the case (2), $R$ belongs to $\Lambda_{0}$ . This means that $\{x_{n}’\}_{n}$

satisfies the second part of the case (2).

Therefore we complete the proof of Theorem 4.

Before stating some corollaries, we give examples of sequences appeared in
three cases of Theorem 4.

EXAMPLE 2.
(1) The canonical unit vector basis $\{e_{n}\}_{n}$ of $p_{p}(1<p<\infty)$ or $c_{0}$ satisfies the

case (1) of Theorem 4.
(2) The Schauder basis $\{e_{n}\}_{n}$ of Baernstein’s space [1] satisfies the case

(2) $of$ Theorem 4. More generally, let $\{x_{n}\}_{n}$ be a weakly null basic sequence
with $\inf_{n}||x_{n}||>0$ which has no $C$ -summable subsequence. Then $\{x_{n}\}_{n}$ itself
satisfies the case (2) of Theorem 4.

(3) By Lemma 5, a bounded sequence which is equivalent to the unit vector
basis of $p_{1}$ or a weakly Cauchy sequence with no weak limit satisfies the $case|$

(3) of Theorem 4.

The first corollary of Theorem 4 is the following:

COROLLARY 2 ($Erd6s$-Magidor [9]). Let $\{x_{n}\}_{n}$ be a bounded sequence in $X$

and $R$ be a regular method of summability. Then there is a subsequence $\{x_{n}’\}_{n}$

of $\{x_{n}\}_{n}$ such that either
(1) $\{x_{n}’\}_{n}$ is completely R-summable

$or$

(2) $\{x_{n}’\}_{n}$ is completely non R-summable.

Since, by virtue of Lemma 4 (2), a bounded sequence which is completely
$R$-summable for some $R\in\Lambda_{+}$ is norm convergent, it is completely R-summable
for every $R\in\Lambda_{+}$ (or $\Lambda$ ). For $\Lambda_{0}$ , we have the following:

COROLLARY 3. Let $\{x_{n}\}_{n}$ be a bounded sequence in X. Suppose that $\{x_{n}\}_{n}$

is completely $R$-summable for some $R\in\Lambda_{0}$ . Then there is a subsequence $\{x_{n}’\}_{n}$

of $\{x_{n}\}_{n}$ which is completely $R$-summable for every $R\in\Lambda_{0}$ .

COROLLARY 4. A Banach space $X$ has the Banach-Saks property if (and only
if) there is an $R\in\Lambda$ such that every bounded sequence in $X$ has a subsequence
which is R-summable.

By combining Theorem 4 and Lemma 4 (1), we have the following:
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COROLLARY 5 (Singer [17]). A Banach space $X$ is reflexive if (and only if)
every bounded sequence in $X$ is w-R-summable for some $R\in\Lambda$ .

COROLLARY 6. Let $X$ be a Banach space with the weak Banach-Saks prop-
erly. Then for every weakly convergent sequence $\{x_{n}\}_{n}$ in $X$, one can choose a
subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ whuch is completely $R$-summable for every $R\in\Lambda_{0}$ .

\S 3. Growth rate of Ces\‘aro means.

In [2], Banach and Saks proved that $L_{p}[0,1](1<p<\infty)$ has the weak
Banach-Saks property by actually showing the following:

Each weakly null sequence $\{x_{n}\}_{n}$ in $L_{p}[0,1]$ has a subsequence $\{x_{n}’\}_{n}$ which
satisfies

$|| \sum_{i=1}^{k}x_{i}’||_{p}=\{$

$O(k^{1/p})$ $(1<p\leqq 2)$ ,

$O(k^{1/2})$ $(2<p<\infty)$ .

Note that this result implies that $L_{p}[0,1](1<p<\infty)$ has the Banach-Saks
property, since $L_{p}[0,1](1<p<\infty)$ is reflexive. As we stated in the introduc-
tion, a Banach space $X$ is called of type $p$ for some $1<p\leqq 2$ , if there exists a
constant $M\geqq 1$ so that for every finite set of vectors $\{x_{i}\}_{i=1}^{k}\subset X$, we have

$\int_{0}^{1}||\sum_{i=1}^{k}r_{t}(t)x_{i}||dt$ $ $M( \sum_{i\approx 1}^{k}||x_{i}||^{p})^{1/p}$ ,

where $\{r_{n}\}_{n}$ denotes the sequence of the Rademacher functions, $i.e.,$ $r_{n}(t)=$

sign $(\sin 2^{n-1}\pi t)(n\in N)$ . Any constant $M$ satisfying the above inequality is
called a type $p$ constant of $X$ . We note the following equalities:

$Av_{i^{=\pm 1}}erage||\sum_{i=1}^{k}\theta_{t}x_{t}||=\frac{1}{2^{k}}\sum_{\theta_{i}=\pm 1}||\sum_{t=1}^{k}\theta_{i}x_{i}||=\int_{0}^{1}||\sum_{\ell=1}^{k}r_{i}(t)x_{i}||dt$ .

It is well known that $L_{p}[0,1](1<p<\infty)$ is of type $\min(2, p)$ (see Linden-
strauss and Tzafriri [11, p. 73] $)$ .

The notion of type (and cotype) was first introduced by $Hoffmann- J\emptyset rgensen$

[10] and was studied extensively by Maurey and Pisier (in particular [12]).

We shall see that the notion of type (and cotype) is closely related to tbe rates
of convergence of Ces\‘aro means. First we generalize the result of Banach and
Saks with regard to the rates of convergence of Ces\‘aro means.

THEOREM 5. Let $X$ be a Banach space of type $p(1<p\leqq 2)$ and $M$ be a type
$p$ constant of X. Then for each weakly null sequence $\{x_{n}\}_{n}$ with $\sup_{n}||x_{n}||\leqq 1$

in $X$, one can extract a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ so that

$|| \sum_{i=1}^{k}a_{\ell}x_{n_{i}}’||$ $ $78Mk^{1/p}$
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for every $k,$ $n_{i}\in N$ $(i=1,2, \cdots , k)$ with $n_{1}<n_{2}<\cdots n_{k}$ and $(a_{i})_{i=1}^{k}$ with $|a_{i}|\leqq 1$

$(i=1,2, \cdots k)$ .
PROOF. Let $\{x_{n}\}_{n}$ be a weakly null sequence with $\sup_{n}||x_{n}||\leqq 1$ in $X$. If

$\{x_{n}\}_{n}$ has a norm convergent subsequence whose limit is necessarily zero, then
one can easily choose a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ which meets the require-
ment. For example, let $\{x_{n}’\}_{n}$ be chosen so that for all $m\geqq n\geqq 1$ ,

$||x_{m}’||\leqq n^{1/p}-(n-1)^{1/p}$ .

So we may assume that $\{x_{n}\}_{n}$ has no norm convergent subsequence. By virtue
of Brunel-Sucheston’s theorem and Theorem 1, $\{x_{n}\}_{n}$ has a subsequence $\{x_{n}’\}_{n}$

which is a Brunel-Sucheston sequence with its spreading model $[E, \{e_{n}\}_{n}]$ and
satisfies the following:

(3.1) $\frac{1}{5}||\sum_{i=1}^{k}e_{\ell}||-2\log_{3}k\leqq\inf_{\theta_{t^{\mathfrak{l}=1}}|}||\sum_{i=1}^{k}\theta_{i}x_{n_{\ell}}’||$

and

(3.2) $\sup_{|a_{i^{|\leq 1}}}||\sum_{i=1}^{k}a_{i}x_{n_{i}}’||\leqq 5||\sum_{i=1}^{k}e_{i}||+3\log_{3}k$

for each $k,$ $n_{i}\in N$ $(i=1,2, \cdots , k)$ with $n_{1}<n_{2}<\ldots<n_{k}$ .
We show this subsequence $\{x_{n}’\}_{n}$ has the desired property. By using the

inequality (3.1) we have

$\frac{1}{5}||\sum_{i=1}^{k}e_{t}||-2\log_{3}k\leqq Average\theta_{i}=\pm 1||\sum_{i=1}^{k}\theta_{i}x_{i}’||$

$\leqq M(\sum_{i=1}^{k}||x_{i}’||^{p})^{1/p}\leqq Mk^{1/p}$ ,

hence by the inequality (3.2) and the fact

$\log_{3}k\leqq k^{1/p}$ $(k\in N)$ ,

we obtain

$|| \sum_{i=1}^{k}a_{i}x_{n_{i}}’||\leqq\{5(5Mk‘/p+10k^{1/p})+3k^{1/p}\}\leqq 78Mk^{1/p}$

for all $k,$ $n_{i}\in N$ $(i=1,2, \cdots , k)$ with $n_{1}<n_{2}<\ldots<n_{k}$ and $(a_{i})_{i=1}^{k}$ with $|a_{i}|$ Sl
$(i=1,2, \cdots , k)$ .

This completes the proof of the theorem.

The following result which is a direct consequence of Theorem 5 is also
derived from the works of Rosenthal [16] and Maurey and Pisier [12].

COROLLARY 7. Let $X$ be a Banach space of type $P$ for some $1<p\leqq 2$ . Then
$X$ has the weak Banach-Saks property.
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Recall that a Banach space $X$ is said to be of cotype $q(2\leqq q<\infty)$ , if there
exists a constant $M\geqq 1$ such that

$\frac{1}{M}(\sum_{t=1}^{k}||x_{i}||^{q})^{1/q}$ $ $\int_{0}^{1}||\sum_{i=1}^{k}r_{i}(t)x_{i}||dt$

for every finite set of vectors $\{x_{i}\}_{\ell=1}^{k}\subset X$, where $\{r_{n}\}_{n}$ is the sequence of the
Rademacher functions. Any constant $M$ satisfying the above inequality is called
a cotype $q$ constant of $X$. For instance, $L_{p}[O, 1](1<p<\infty)$ is of cotype
$\max(2, p)$ ( $[11$ , p. 73]).

We now describe a cotype version of Theorem 5.

THEOREM 6. Let $X$ be a Banach space of cotype $q(2\leqq q<\infty)$ and $M$ be a
cotype $q$ constant of X. Then each weakly null sequence $\{x_{n}\}_{n}$ with $\inf_{n}||x_{n}||\geqq 1$

in $X$ admits of a subsequence $\{x_{n}’\}_{n}$ which satisfies

$\frac{1}{5OM}k^{1/q}\leqq||\sum_{i=1}^{k}\theta_{\ell}x_{n_{i}}’||$

for all $k,$ $n_{i}\in N$ $(i=1,2, \cdots , k)$ with $n_{1}<n_{2}<\cdots<n_{k}$ and $(\theta_{t})_{t=1}^{k}$ with $|\theta_{i}|=1$

$(i=1,2, \cdots k)$ .

PROOF. Let $\{x_{n}\}_{n}$ be a weakly null sequence with $\inf_{n}||x_{n}||\geqq 1$ in $X$. Since
$\{x_{n}\}_{n}$ has no norm convergent subsequence, by Brunel-Sucheston’s theorem and
Theorem 1, one can select a subsequence $\{x_{n}’\}_{n}$ of $\{x_{n}\}_{n}$ which is a Brunel-
Sucheston sequence with its spreading model $[E, \{e_{n}\}_{n}]$ and satisfies the fol-
lowing:

(3.3) $\frac{1}{5}||\sum_{i=1}^{k}e_{\ell}||-(2\log_{t}k)\sup_{n}||x_{n}’||\leqq\inf_{\theta_{t\mathfrak{l}=1}|}||\sum_{i=1}^{k}\theta_{i}x_{n_{i}}’||$

and

(3.4) $\sup_{1a_{i^{|\leqq 1}}}||\sum_{i=1}^{k}a_{i}x_{n_{i}}’||\leqq 5||\sum_{i=1}^{k}e_{t}||+(3\log_{t}k)\sup_{n}||x_{n}’||$

for all $k,$ $n_{i}\in N$ $(i=1,2, , k)$ with $n_{1}<n_{2}<\ldots<n_{k}$ , where an integer $t\geqq 2$ is
chosen so large that

$\sup_{k}\{\frac{1}{k^{1/q}}(\log_{t}k)\sup_{n}||x_{n}’||\}\leqq\frac{1}{106M}$ .
We now see that the subsequence $\{x_{n}’\}_{n}$ meets our requirement. Note that

by the inequality (3.4) we have

$\frac{1}{M}(\sum_{i=1}^{k}||x_{n_{i}}’||^{q})^{1/q}\leqq Avera_{1}ge\theta\ell=\pm||\sum_{i=1}^{k}\theta_{i}x_{n_{i}}’||\leqq 5||\sum_{i=1}^{k}e_{i}||+(3\log_{t}k)\sup_{n}||x_{n}’||$

for all $k,$ $n_{i}\in N$ $(i=1,2, , k)$ with $n_{1}<n_{2}<$ $<n_{k}$ , hence we obtain
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$\frac{1}{M}k^{1/q}\leqq 5||\sum_{i=1}^{k}e_{t}||+(3\log_{t}k)\sup_{n}||x_{n}’||$ .

Therefore we get by the inequality (3.3),

$\inf_{|\theta_{i^{|=1}}}||\sum_{i=1}^{k}\theta_{i}x_{n_{i}}’||\geqq\frac{1}{5}||\sum_{i=1}^{k}e_{i}||-(2\log_{t}k)\sup_{n}||x_{n}’||$

$\geqq\frac{1}{5}\{\frac{1}{5M}k^{1/q}-\frac{3}{5}(\log_{t}k)\sup_{n}||x_{n}’||\}-(2\log_{t}k)\sup_{n}||x_{n}’||$

$= \frac{1}{25M}k^{1/q}-\frac{53}{25}(\log_{t}k)\sup_{n}||x_{n}’||\geqq\frac{1}{50M}k^{1/q}$

for all $k,$ $n_{t}\in N$ $(i=1,2, \cdots , k)$ with $n_{1}<n_{2}<\ldots<n_{k}$ .
Thus the proof of the theorem is completed.
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