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Introduction.

In this paper, we study an infinite dimensional analogue of compact Rie-
mannian symmetric spaces of rank one by using a Jordan-algebraic method.
This work is motivated by the paPer [6] of U. Hirzebruch in which it is shown
that the set of primitive idempotents in a finite dimensional simple formally
real Jordan algebra is a compact Riemannian symmetric space of rank one and
that any such space arises in this way. So, as a natural step of generalization,
we consider an infinite dimensional analogue of formally real Jordan algebras
and treat the set of primitive idempotents. Since it is the associative inner
product, not the algebraic formally real property, that plays a significant role
in [6], we shall base our study on Jordan-Hilbert algebras (for definition, see
the beginning of \S 1) and deal with the set $\mathfrak{J}_{1}$ of primitive idemPotents as a
Riemannian Hilbert manifold. We prove that $\mathfrak{J}_{1}$ is two-point homogeneous
(Theorem 5.3) and derive a unified formula for the sectional curvature of $\mathfrak{J}_{1}$

(Theorem 6.4).

Let us explain the matters which do not occur in the finite dimensional
cases. First, Jordan-Hilbert algebras do not necessarily have a unit element.
Note that the adjunction of unit element does not in general agree with the
Hilbert space structure. However, this lack of unit element is compensated to
some extent by (a version of) McCrimmon’s theorem [11]. Our version of his
theorem states that in a topologically simple (non-trivial) Jordan-Hilbert algebra,
the Peirce 1-space is also topologically simple (see Proposition 1.6). This en-
ables us to carry out computations concerning idempotents as in the finite
dimensional cases.

Next, infinite dimensional connected complete (in the sense of Riemannian
distance) Riemannian manifolds may carry two points which cannot be joined
by a minimal geodesic [4], [9, p. 127]. Because of this possibility of missing
minimal geodesic, we compute the Riemannian distance on $\mathfrak{J}_{1}$ along the standard
line of textbooks on Riemannian geometry: the inclusion map of $\mathfrak{J}_{1}$ into the
ambient Hilbert space being an embedding, we define the canonical Levi-Civita
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connection, exhibit a geodesic, examine the diffeomorphism domain of the ex-
ponential mapping and make use of $GauB$ lemma to derive the minimality of
geodesics.

We organize this paper as follows. In \S 1, we give the definition of a
Jordan-Hilbert algebra $V$ and state some basic facts. In \S 2, propositions involv-
ing idempotents are presented. Although these are known in the finite dimen-
sional cases, some require a modified proof ($e.g.$ , Proposition 2.2), whereas others
do not ($e.g.$ , Proposition 2.9). In any case, we supply each of them with a
proof in order to make this paper readable.

In \S 3, we introduce a Riemannian Hilbert manifold structure on the set $\mathfrak{J}_{1}$

of primitive idempotents in $V$ in an explicit way. Since the automorphism
group Aut (V) of the Jordan-Hilbert algebra $V$ is merely a Banach-Lie group,
it is not so evident that one can introduce a Hilbert manifold structure on $\mathfrak{J}_{1}$

through the aid of Aut (V). Such being the case, we shall give a concrete
atlas using the maps $\xi_{a}$ defined by (3.3). We also show that the inclusion $S^{{}_{1}C}\alphaarrow V$

is an embedding, so that $\mathfrak{J}_{1}$ has a natural Riemannian manifold structure.
In \S 4, we compute the Riemannian distance by introducing the canonical

Levi-Civita connection through the embedding $\mathfrak{J}{}_{1}C_{*}V$ as already mentioned above.
The resulting formula for Riemannian distance between two points $a,$ $b\in \mathfrak{J}_{1}$ is
given in Theorem 4.5, showing that it is equal to the length of a geodesic
segment connecting $a$ and $b$ .

In \S 5, two-point homogeneity of $\mathfrak{J}_{1}$ is establisbed. This is done by first
proving the isotropy property (the stabilizer at $a\in 3_{1}$ acts transitively on the
unit sphere in the tangent space at $a$ ). Since we have a minimizing geodesic
at hand, two-point homogeneity follows from this without difficulty.

In \S 6, we give a formula to the sectional curvature $k_{a}(x, y)$ of $\mathfrak{J}_{1}$ (Theo-

rem 6.4). This formula is visible enough to derive the estimate $1/2\leqq k_{a}(x, y)$

$2 immediately (Corollary 6.5). Of course, the formula accounts for the con-
stancy of $k_{a}(x, y)$ for real projective spaces and for spheres in Hilbert spaces
(see the end of \S 6).

The major part of progress in this work was made while I was staying at
Nancy I university in France during the second semester of 1990/91. I am
grateful to all of the staff at Nancy I university for a friendly atmosphere. In
particular, I express my gratitude to Professor Pierre Eymard who made my
stay fruitful.

\S 1. Jordan-Hilbert algebra.

Let $V$ be a Jordan-Hilbert algebra ($JH$-algebra for short). By this we mean
(1) $V$ is a real Hilbert space with inner product $\langle. |\cdot\rangle$ ,
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(2) $V$ is a real Jordan algebra, so that a bilinear product $x,$ $y\mapsto xy$ is
defined and one has for all $x,$ $y\in V$ ,

(i) $xy=yx$ , (ii) $x^{2}(xy)=x(x^{2}y)$ ,

(3) $\langle xy|z\rangle=\langle y|xz\rangle$ for all $x,$ $y,$ $z\in V$ .
In what follows, we denote by $L(x)$ the multiplication operator by $x:L(x)y$

$=xy$ . We also use the operators

$P(x):=2L(x)^{2}-L(x^{2})$ , $x\coprod y:=L(xy)+[L(x), L(y)]$ ,

where $[A, B]:=AB-BA$ for two operators $A,$ $B$ . As is well-known, we have
$P(x^{n})=P(x)^{n}(n=1, 2, )$ .

LEMMA 1.1. The Jordan product $V\cross V\ni(x, y)\vdasharrow xy\in V$ is continuous.

PROOF. Since $L(x)$ is a symmetric operator defined everywhere on $V$ , the
closed graph theorem implies $L(x)\in B(V)$ , where $B(V)$ denotes the Banach
algebra of all bounded linear operators defined everywhere on $V$ . Consider the
family $x:=\{L(x);||x||\leqq 1\}$ of bounded linear operators. Since

$||L(x)y||=||xy||=||L(y)x||\leqq||L(y)||$ for $||x||\leqq 1$ ,

the family $\mathcal{L}$ is pointwise bounded. Hence Banach-Steinhaus theorem says-that
$\mathcal{L}$ is uniformly bounded. This implies that the linear operator $L:V\ni xrightarrow L(x)$

$\in B(V)$ is bounded, so that we get

$||xy||=||L(x)y||\leqq||L(x)||||y||\leqq||L||||x||||y||$ . $\blacksquare$

Later we wlll normalize the inner product of $V$ in a convenient way to
our subject matter (see Proposition 2.2). Throughout this paper, the following
basic assumptions are in force:

(i) $\dim V>0$ , (ii) $L(x)=0$ implies $x=0$ .

The assumption (ii) is necessary in order to exclude the algebra in which $xy=0$

for all $x,$ $y$ . We also remark that $V$ does not necessarily have a unit element
(consider for instance the $JH$-algebra of symmetric Hilbert-Schmidt operators
on an infinite dimensional real Hilbert space). We need the following lemma
to ensure the existence of non-zero idempotents.

LEMMA 1.2. (1) $x^{2}=0$ implies $x=0$ .
(2) If $x\neq 0$ , then $x^{n}\# 0$ for any $n=1,2,$ $\cdots$

PROOF. (1) Since $P(x)$ is a selfadjoint operator, we have for any $y\in V$

$||P(x)y||^{2}=\langle P(x)y|P(x)y\rangle=\langle P(x^{2})y|y\rangle=0$ .
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Thus, $2L(x)^{2}=P(x)+L(x^{2})=0$ , so that $||L(x)y||^{2}=\langle L(x)^{2}y|y\rangle=0$ . By the basic
assumption (ii), we get $x=0$ .

(2) A simple inductive argument. $\blacksquare$

In particular, there is $x\in V$ such that $P(x)x=x^{3}\# 0$ . This means that, the
Hilbert Jordan triple system associated to $V$ defined by introducing the triple
product $\{x, y, z\}:=(x\coprod y)z$ satisfies the condition of [12, Theorem IV.2.4] (see

also [8-II, Lemma 3.3] $)$ . Consequently, there are non-zero $c\in V$ and $\epsilon=\pm 1$

such that $c^{3}=sc$ . But
$0<\langle c|c\rangle=\epsilon\langle c^{3}|c\rangle=\epsilon||c^{2}||^{2}$

forces $\epsilon=1$ , and $(c^{2})^{2}=c^{4}=c^{2}$ implies that $c^{2}$ is a non-zero idempotent. Thus
we have shown

PROPOSITION 1.3. $V$ contains a non-zero idempotent.

NOW, for every idempotent $a\in V$ , we have the Peirce decomposition of $V$

relative to $a$ (see [15, Theorem 21.2]): for $k=0,1/2,1$ , let us put $V_{k}(a):=\{x$

$\in V;ax=kx\}$ , then

(1.1) $V=V_{0}(a)\oplus V_{1/2}(a)\oplus V_{1}(a)$ (orthogonal direct sum)

with the multiplication rule: (here we write $V_{k}$ instead of $V_{k}(a)$ for simplicity)

(1.2) $\{$

$V_{0}V_{0}\subset V_{0}$ , $V_{0}V_{1}=\{0\}$ , $V_{1}V_{1}\subset V_{1}$ ,

$V_{k}V_{1/2}\subset V_{1/2}$ $(k=0,1)$ , $V_{1/2}V_{1/2}\subset V_{0}+V_{1}$ .
Moreover,

(1.3) $[L(u), L(v)]=0$ for $u\in V_{0}(a),$ $v\in V_{1}(a)$ .

The orthogonal projections $E_{k}(a)$ of $V$ onto $V_{k}(a)$ are expressed respectively as

$E_{1}(a)=P(a)$ ,

(1.4) $E_{1/2}(a)=4L(a)-4L(a)^{2}=2L(a)-2P(a)$ ,

$E_{0}(a)=I-2L(a)+P(a)$ .
TWO idempotents $a,$ $b\in V$ are said to be orthogonal if $ab=0$ . This is equi-

valent to the orthogonality with respect to the inner product:

LEMMA 1.4. IdemPotents a, $b$ are orthogonal if and only if $\langle a|b\rangle=0$ .
PROOF. Let $b=b_{0}+b_{1/2}+b_{1}$ be the Peirce decomposition of $b$ relative to $a$ ,

so that $b_{k}\in V_{k}(a)$ . Then, the lemma is clear from $\langle a|b\rangle=\langle ab|b\rangle=||b_{1/2}||^{2}/2+$

$\ovalbox{\tt\small REJECT} 1b_{1}11^{2}$ . $\blacksquare$

A non-zero idempotent $a$ is said to be Primitive if $a$ cannot be expressed
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as a sum of non-zero orthogonal idempotents. Arguing just as in the proof of
[12, Corollary IV.2.7], one sees easily that every non-zero idempotent in $V$ can
be written as a finite sum of orthogonal primitive idempotents. Furthermore,
every element $x\in V$ has the following spectral decomposition:

(1.5) $x= \sum_{k=1}^{\infty}\lambda_{k}a_{k}$ (convergent in norm),

where the $a_{k}$ are mutually orthogonal primitive idempotents and the $\lambda_{k}$ are
real numbers. This is obtained by taking a maximal orthogonal family of pri-
mitive idempotents in the associative closed algebra $\overline{R[x]}$, the closure of the
algebra generated by $x,$ $x^{2},$ $\cdots$ (cf. [12, Corollary IV.2.9]).

LEMMA 1.5. A non-zero idempotent $a$ is Primitive if and only if $V_{1}(a)=Ra$ .

PROOF. If $a$ is not primltive, then $a=a_{1}+a_{2}$ with non-zero orthogonal
idempotents $a_{1},$ $a_{2}$ . Since $aa_{j}=a_{j}(j=1,2)$ , one has $\dim V_{1}(a)\geqq 2$ . Conversely,
supposea is primitive. Let $b\in V_{1}(a)$ be a non-zero idempotent. Then, $a-b$ is
an idempotent orthogonal to $b$ as is easily seen. Since $a=(a-b)+b$ , the primi-
tivity of $a$ then implies $b=a$ . This means that $V_{1}(a)$ does not contain non-
zero idempotents other than $a$ . Thus, only the idempotent $a$ appears in the
spectral decomposition (1.5) for every $x\in V_{1}(a)$ . Hence $\dim V_{1}(a)=1$ . $\blacksquare$

We say that $V$ is toPologically simPle if $V$ has no non-trivlal closed ideal.
The following proposition compensates the lack of unit element to some extent.

PROPOSITION 1.6 [11]. If $V$ is toPologically simPle, then for any non-zero
idempotent a, the subalgebra $V_{1}(a)$ is also toPologically simPle.

REMARK. McCrimmon [11] works in the framework of quadratic Jordan
algebras. An almost word for word translation of the proof of his Theorems
1.11 and 2.11 shows that if $I_{1}$ is a closed ideal $I_{1}\triangleleft V_{1}(a)$ , then

$I:=\overline{P(V_{1/2}(a))I_{1}}\oplus\overline{L(V_{1/z}(a))I}_{1}\oplus I_{1}$ (direct sum in accordance with (1.1))

is a closed ideal of $V$ , where the bars stand for the closure and $P(V_{1/2}(a))I_{1}$ ,

for example, is the subspace spanned by $P(x)u$ with $x\in V_{1/2}(a)$ and $u\in I_{1}$ . The
only thing to be noted here is the following “strong semiprimeness” (in the
sense of [11] $)$ of a closed ideal of $V_{1}(a)$ .

LEMMA 1.7. SuPPose $I_{1}$ is a closed ideal $I_{1}\triangleleft V_{1}(a)$ . Then, for $u\in V_{1}(a)$ , one
has $P(u)V_{1}(a)\subset I_{1}$ if and only if $u\in I_{1}$ .

PROOF. The if part being evident, we suppose $P(u)V_{1}(a)\subset I_{1}$ . Then, since
$a$ is the unit element of $V_{1}(a)$ , we have $u^{2}=P(u)a\in I_{1}$ . Denote by $I_{1}^{\perp}$ the
orthogonal complement of $I_{1}$ in $V_{1}(a)$ . Then, we have an orthogonal direct
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sum of closed ideals: $V_{1}(a)=I_{1}\oplus I_{1}^{\perp}$ . Let $u=u_{1}+u_{1}’(u_{1}\in I_{1}, u_{1}’\in I_{1}^{\perp})$ . Then,
$u^{2}\in I_{1}$ implies $u_{1}^{\prime 2}=0$ , so that we get $u_{1}’=0$ by Lemma 1.2. Hence $u=u_{1}\in I_{1}$ . $\blacksquare$

The rest of the proof of Proposition 1.6 is omitted.

\S 2. Pairs of primitive idempotents.

From now on, the $JH$-algebra $V$ is supposed to be topologically simple. In
this section, we prepare some propositions about idempotents. First of all, we
note that $V_{1/2}(a)\neq\{0\}$ for every non-zero idempotent $a$ . This is an immediate
consequence of our simplicity assumption together with the multiplication rules
(1.2). In the same way, we have the following

LEMMA 2.1. Let a, $b$ be non-zero orlhogonal idempotents. Then one has

$V_{1/2}(a)\cap V_{1/2}(b)\neq\{0\}$ .

PROOF. Since $ab=0,$ $c:=a+b$ is an idempotent. Thus (1.3) implies

$V_{1}(c)=V_{1}(a)\oplus V_{1}(b)\oplus(V_{1/2}(a)\cap V_{1/2}(b))$ .

If $V_{1/2}(a)\cap V_{1/2}(b)=\{0\}$ , then, $V_{1}(c)=V_{1}(a)\oplus V_{1}(b)$ , a direct sum of non-zero
closed ideals. This contradicts Proposition 1.6. $\blacksquare$

Let $3_{1}=S_{1}(V)$ be the set of all primitive idempotents in $V$ .

PROPOSITION 2.2. All the elements in $\mathfrak{J}_{1}$ have the same norm.

PROOF. Let $a,$ $b\in \mathfrak{J}_{1}$ be distinct. We separate the cases $ab=0$ and $ab\neq 0$ .
(1) Case $ab=0$ : By Lemma 2.1, there is non-zero $x\in V_{1/2}(a)\cap V_{1/2}(b)\subset$

$V_{1}(a+b)$ . Then, (1.2) shows $x^{2}\in V_{1}(a)+V_{1}(b)$ , so that there are $\lambda,$ $\mu\in R$ with
which $x^{2}=\lambda a+\mu b$ by virtue of Lemma 1.5. Thus,

$(\lambda+\mu)x=2(\lambda a+\mu b)x=4x^{2}(xa)=4x(x^{2}a)=4x(\lambda a)=2\lambda x$ .
Since $x\neq 0$ , we get $\mu=\lambda$ , so that $x^{2}=\lambda(a+b)$ . Then, we have

(2.1) $\lambda||a||^{2}=\langle x^{2}|a\rangle=\langle x|ax\rangle=||x||^{2}/2=\langle x|bx\rangle=\langle x^{2}|b\rangle=\lambda||b||^{2}$ .

Hence $\lambda\neq 0$ and $||a||=||b||$ .
(2) Case $ab\neq 0$ : Since $P(a)$ is the orthogonal projection onto $V_{1}(a)=Ra$ ,

Lemma 1.5 says that there are $\alpha,$ $\beta\in R$ such that $P(a)b=\alpha a$ and $P(b)a=\beta b$ .
Then,

$\alpha\langle a|b\rangle=\langle P(a)b|b\rangle=\langle(a\coprod b)a|b\rangle=\langle a|(b\coprod a)b\rangle=\langle a|P(b)a\rangle=\beta\langle a|b\rangle$ .
By Lemma 1.4, this implies $\alpha=\beta$ and
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(2.2) $a||a||^{2}=\langle P(a)b|a\rangle=\langle b|a\rangle=\langle P(b)b|a\rangle=\langle b|P(b)a\rangle=a||b||^{2}$ .
Thus $\alpha\neq 0$ and $||a||=||b||$ . $\blacksquare$

In view of Proposition 2.2, we normalize the inner product of $V$ so that
$||a||=1$ for any $a\in \mathfrak{J}_{1}$ . Since every idempotent is expressed as a finite sum of
orthogonal primitive idempotents, we see that an idempotent $a$ is primitive if
and only if $||a||=1$ . We record here some formulas used frequently in this
paper.

LEMMA 2.3. Let $a\in \mathfrak{J}_{1}$ . Then, for $x,$ $y\in V_{1/2}(a)$ , one has

(i) $a(xy)=\langle x|y\rangle a/2$ , (ii) $x^{3}=||x||^{2}x/2$ , (iii) $||x^{2}||^{2}=||x||^{4}/2$ .

PROOF. (i) Since $x^{2}\in V_{0}(a)+V_{1}(a)$ , there is $\alpha\in R$ such that $ax^{2}=\alpha a$ .
Then $\alpha=\langle ax^{2}|a\rangle=\langle x|ax\rangle=||x||^{2}/2$ . Thus, $ax^{2}=||x||^{2}a/2$ . Then we get (i) by
polarization.

(ii) $x^{3}=2(ax)x^{2}=2(ax^{2})x=||x||^{2}ax=||x||^{2}x/2$ .
(iii) $\langle x^{2}|x^{2}\rangle=\langle x^{3}|x\rangle=||x||^{2}\langle x|x\rangle/2$ .

LEMMA 2.4. Let a, $b\in \mathfrak{J}_{1}$ be orthogonal. Then, one has

$xy=\langle x|y\rangle(a+b)/2$ for $x,$ $y\in V_{1/2}(a)\cap V_{1/2}(b)$ .

PROOF. The proof (1) of Proposition 2.2 ($(2.1)$ in particular) shows that
$x^{2}=||x||^{2}(a+b)/2$ . Polarization of this gives the lemma. $\blacksquare$

LEMMA 2.5. Let a, $b\in \mathfrak{J}_{1}$ . Then, $||ab||^{2}=\lambda(\lambda+1)/2$ , where $\lambda:=\langle a|b\rangle$ .

PROOF. The cases $a=b$ or $ab=0$ being obvious, we assume that $a\neq b$ and
$ab\neq 0$ . Then, the proof (2) of Proposition 2.2 ($(2.2)$ in particular) shows $P(a)b$

$=\lambda a$ with $\lambda:=\langle a|b\rangle$ . Then, we obtain

$2||ab||^{2}=2\langle L(a)^{2}b|b\rangle=\langle(P(a)+L(a))b|b\rangle=\lambda\langle a|b\rangle+\langle a|b\rangle$ . $\blacksquare$

We denote by Sym $(2, R)$ the three dimensional $JH$-algebra of all $2\cross 2$ real
symmetric matrices with inner product $\langle A|B\rangle$ $:=trace$ (AB). If $a,$ $c\in \mathfrak{J}_{1}$ are
orthogonal, then there is $y\in V_{1/2}(a)\cap V_{1/2}(c)$ with $||y||^{2}=2$ such that $y^{2}=a+c$

by virtue of Lemmas 2.1 and 2.4. It is evident that $Ra\oplus Rc\oplus Ry$ is a sub-
algebra isometrically isomorphic to Sym $(2, R)$ via

(2.3) $\nu\#.c(\alpha a+\beta c+\xi y):=(\begin{array}{ll}\alpha \xi\xi \beta\end{array})$ $(\alpha, \beta, \xi\in R)$ .

For $u,$ $v\in V$ , we denote by $V[u, v]$ the subalgebra generated by $u,$ $v$ .
PROPOSITION 2.6. Let a, $b\in \mathfrak{J}_{1}$ with $a\neq b$ and $ab\neq 0$ . Then, $\dim V[a, b]=3$



44 T. NOMURA

and there is an isometric Jordan algebra isomorPhism $\rho_{a.b}$ of $V[a, b]$ onto
Sym $(2, R)$ such that

(2.4) $\rho_{a.b}(a)=A:=(\begin{array}{ll}1 00 0\end{array})$ , $\rho_{a.b}(b)=B:=(\begin{array}{ll}cos^{2}\theta scos\theta in\thetacos\theta sin\theta sin^{2}\theta\end{array})$ ,

where $\cos^{2}\theta=\langle a|b\rangle$ , so that $0<\theta<\pi/2$ .

PROOF. Put $u:=ab$ and $\lambda:=\langle a|b\rangle$ . Then, the proof (2) of Proposition 2.2
shows $P(a)b=\lambda a$ and $P(b)a=\lambda b$ . Since $P(a)b=2au-u$ and $P(b)a=2bu-u$ , we
obtain

(2.5) $au=(\lambda a+u)/2$ , $bu=(\lambda b+u)/2$ .

Just in the same way as [6, (1.6)], we also have

(2.6) $u^{2}=\lambda(a+b+2u)/4$ .

NOW by Lemma 2.5 and Schwarz inequality, we get $0<\lambda<1$ . Thus, there is
$\theta(0<\theta<\pi/2)$ such that $\lambda=\cos^{2}\theta$ . Let $A,$ $B$ be the matrices in (2.4) and con-
sider the basis $A,$ $B,$ $U$ of Sym $(2, R)$ , where

$U:= \frac{1}{2}(AB+BA)=(\begin{array}{lll}cos^{2}\theta cos\theta sin\theta/2cos\theta sin\theta/2 0 \end{array})$ .

Then we see, through a straightforward computation with (2.5) and (2.6), that
$p_{a,b}(\alpha a+\beta b+\xi u):=aA+\beta B+\xi U(\alpha, \beta, \xi\in R)$ defines a Jordan algebra isomor-
phism of $V[a, b]$ onto Sym $(2, R)$ . Moreover, $\rho$ is an isometry: the equality
$||U||^{2}=\cos^{4}\theta+\cos^{2}\theta\sin^{2}\theta/2=||u||^{2}$ is seen from Lemma 2.5 and the others such
as $\langle a|u\rangle=trace$ (AU) are immediate. $\blacksquare$

PROPOSITION 2.7. Let $a\in \mathfrak{J}_{1}$ and $x\in V_{1/2}(a)$ . Suppose $x\neq 0$ .
(1) $c:=(2/||x||^{2})x^{2}-a$ is a Primitive idemPotent orthogonal to a.
(2) Put $y$ $:=\sqrt{2}x/||x||$ , so that $y^{2}=a+c$ . Then the maP $\nu_{a,t}^{y}$ defined by

(2.3) gives an isometric isomorphism of $V[a, x]$ onto Sym $(2, R)$ such that

(2.7) $\nu_{a,c}^{y}(x)=\frac{||x||}{\sqrt{2}}(\begin{array}{ll}0 11 0\end{array})$ .

PROOF. (1) The formulas in Lemma 2.3 together with $2x^{4}=||x||^{2}x^{2}$ yield
$c^{2}=c$ and $||c||=1$ , so that $c\in S_{1}$ . Moreover, $ca=0$ as is readily seen.

(2) Evident. $\blacksquare$

Let $GL(V)$ be the multiplicative group of invertible elements $B(V)^{x}$ of the
Banach algebra $B(V)$ of all bounded linear operators defined everywhere on $V$ .
Let $T\in B(V)$ . Then, $T\in GL(V)$ if and only if $T$ is bijective by the open map-
ping theorem. The group $GL(V)$ has a natural Banach-Lie group structure in



Manifold of primitive idempotents 45

the norm topology. Let Aut (V) denote the automorphism group of the JH-
algebra $V$ :

Aut $(V):=$ { $T\in GL(V);T(xy)=(Tx)(Ty)$ for all $x,$ $y\in V$ }.

Thus, as an algebraic subgroup of degree ;S2 of $GL(V),$ $Aut(V)$ inherits a
Banach-Lie group structure from $GL(V)$ ( $[5],$ [15, Theorem 7.14]). Hence
Aut (V) is a Banach-Lie group in the norm topology. Let 0(V) be the ortho-
gonal group of $V$ :

$O(V):=\{T\in GL(V);{}^{t}TT=I\}$ ,

where ${}^{t}T$ denotes the adjoint operator of T. 0(V) is also a Banach-Lie group
in the norm topology for the same reason.

PROPOSITION 2.8. Aut $(V)\subset O(V)$ .

PROOF. Suppose $T\in Aut(V)$ . Let $x\in V$ and $x= \sum\lambda_{k}a_{k}$ be the spectral de-
composition (1.5) of $x$ . Then, $Tx= \sum\lambda_{k}Ta_{k}$ . Since the $a_{k}$ are mutually ortho-
gonal primitive idempotents, so are the $T$ a $k$ . Therefore, $||Tx||^{2}= \sum\lambda_{k}^{2}=||x||^{2}$ .
Thus, $T\in GL(V)$ is an isometry, so that $T\in O(V)$ . $\blacksquare$

We now recall the orthogonal projection $E_{1/2}(a)$ onto $V_{1/2}(a)$ for an idem-
potent $a$ (see (1.4)). Then, the operator

(2.8) $T(a):=I-2E_{1/2}(a)$

is a symmetry ( $i$ . $e.$ , selfadjoint involution): we have $T(a)x=x$ for $x\in V_{0}(a)+$

$V_{1}(a)$ and $T(a)x=-x$ for $x\in V_{1/2}(a)$ . It is easy to see that $T(a)\in Aut(V)$ for
any idempotent $a$ .

PROPOSITION 2.9. If a, $b\in \mathfrak{J}_{1}$ , then there is $c\in \mathfrak{J}_{1}$ such that $T(c)a=b$ .

PROOF. We first assume $a\neq b$ and $ab\neq 0$ . Then, Proposition 2.6 says that
$V[a, b]$ is isometrically isomorphic to Sym $(2, R)$ via $\rho_{a,b}$ . With $\theta$ as in Pro-

position 2.6, let $W:=(\begin{array}{ll}cos\theta sin\thetasin\theta -cos\theta\end{array})$ and $C:=(I_{2}-W)/2$ , where $I_{2}$ is the $2\cross 2$

identity matrix. Clearly $W,$ $C\in Sym(2, R)$ . We have $W^{2}=I_{2}$ and

(2.9) $B=WAW=(I_{2}-2C)A(I_{2}-2C)=A-2(CA+AC)+4CAC$ .
Put $c:=\rho_{a.b}^{-1}(C)\in V[a, b]$ . Then, $c$ is an idempotent with $||c||=||C||=1$ , so that
$c\in \mathfrak{J}_{1}$ . Applying $\rho_{a.b}^{-1}$ to (2.9), we get $b=a-4L(c)a+4P(c)a=T(c)a$ .

For the case $ab=0$ , it suffices to argue as above with $\theta=\pi/2$ and the iso-
metric isomorphism $\nu_{a.b}^{y}$ in (2.3). $\blacksquare$
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\S 3. Primitive idempotents as a Riemannian Hilbert manifold.

In this section, we introduce a Riemannian Hilbert manifold structure on $\mathfrak{J}_{1}$

in such a way that the inclusion $\mathfrak{J}_{1}cV$ is an embedding. For finite dimen-
sional $JH$-algebras treated by U. Hirzebruch [6], the manifold structure is de-
fined as a homogeneous space of the finite dimensional comPact Lie group
Aut (V). However, since Aut (V) is merely a Banach-Lie group in the infinite
dimensional case, we prefer to introduce a Riemannian manifold structure
modelled on a Hilbert space in a more explicit manner. We will say a Rie-
mannian manifold instead of Riemannian Hilbert manifold for simplicity.

First, it is clear that $\mathfrak{J}_{1}$ is a closed subset of $V$ . So, we equip $\mathfrak{J}_{1}$ with
the norm topology of $V$ . Next, we note that $\mathfrak{J}_{1}$ is arcwise connected. This
can be seen as follows. Let $a,$ $b\in \mathfrak{J}_{1}$ be distinct and suppose first ab#O. Then,
Proposition 2.6 says that there is an isometric Jordan algebra isomorphism $p_{a,b}$

of $V[a, b]$ onto Sym $(2, R)$ such that (2.4) holds. With $\theta$ as in (2.4), we let

(3.1) $\Gamma(t):=(\begin{array}{ll}cos^{2}t costsintcostsint sin^{2}t\end{array})$ for OS t$ $\theta$ ,

and put $\gamma(t):=\rho_{a,b}^{-1}(\Gamma(t))$ . Then, it is easy to see that $\gamma$ is a curve in $\mathfrak{J}_{1}$ join-
ing $a$ and $b$ . For the case $ab=0$ , modify the argument as in the last part of
the proof of Proposition 2.9. Later, this $\gamma$ will be shown to be a geodesic in
$\mathfrak{J}_{1}$ (see the discussion after Proposition 4.2).

For every $a\in \mathfrak{J}_{1}$ , put

(3.2) $N_{a}:=\{b\in \mathfrak{J}_{1} ; \langle b|a\rangle\neq 0\}$ .
It is clear that $N_{a}$ is an open subset of $\mathfrak{J}_{1}$ containing $a$ , so the family { $N_{a}$ ;
$a\in \mathfrak{J}_{1}\}$ is an open covering of $\mathfrak{J}_{1}$ . Let us define two maps $\xi_{a},$

$\eta_{a}$ as follows:

$\xi_{a}(b):=-2a+2ab/\langle a|b\rangle$ $(b\in N_{a})$ ,
(3.3)

$\eta_{a}(x):=(2-||x||^{2})a/(2+||x||^{2})+2x/(2+||x||^{2})+2x^{2}/(2+||x||^{2})$ $(x\in V_{1/2}(a))$ .

PROPOSITION 3.1. One has

Image $(\xi_{a})=V_{1/2}(a)$ , Image $(\eta_{a})=N_{a}$

and the two maps are inverses to each other:

$\xi_{a}\circ\eta_{a}(x)=x$ for all $x\in V_{1/2}(a)$ , $\eta_{a}\circ\xi_{a}(b)=b$ for all $b\in N_{a}$ .

PROOF. Step1. Let $b\in N_{a}$ . Since $\xi_{a}(a)=0$ , we assume $b\neq a$ . Then, Pro-
position 2.6 says that there is an isometric Jordan algebra isomorphism $\rho_{a,b}$ of
$V[a, b]$ onto Sym $(2, R)$ such that (2.4) holds. Then,
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(3.4) $\rho_{a.b}(\xi_{a}(b))=(\begin{array}{ll}0 tan\thetatan\theta 0\end{array})$ ,

so that $\xi_{a}(b)\in V_{1/2}(a)$ .
Step2. Let $x\in V_{1/2}(c)$ . Since $\eta_{a}(O)=a$ , we assume $x\neq 0$ . Define $c\in \mathfrak{J}_{1}\cap$

$V_{0}(a)$ and $y\in V_{1/2}(a)$ as in Proposition 2.7. Then, (2.7) holds. Putting $||x||=$

$\sqrt{2}\tan\theta(0<\theta<\pi/2)$ , we find through a simPle comPutation that $\nu_{a.c}^{y}(\eta_{a}(x))$

equals the matrix $B$ in (2.4). Thus, $\eta_{a}(x)$ belongs to $\mathfrak{J}_{1}$ and indeed to $N_{a}$ .
SteP 3. Let $b\in N_{a}$ . We may assume $b\neq a$ . Then, $x:=\xi_{a}(b)\neq 0$ . In Step

1, we have shown that $x\in V_{1/2}(a)$ . By definition, $x$ belongs to $V[a, b]$ , so that
$V[a, x]\subset V[a, b]$ . Both subalgebras being of three dimension (Propositions

2.6 and 2.7), we obtain $V[a, x]=V[a, b]$ . On the other hand, $\rho_{a,b}$ is an iso-
metry, so we have $||x||^{2}=2\tan^{2}\theta$ by (3.4). Setting $c:=y^{2}-a$ with $y:=\sqrt{2}x/||x||$

and comparing (2.7) with (3.4), we get $\rho_{a,b}=\nu_{\alpha.C}^{y}$ . Therefore, $\eta_{a}\circ\xi_{a}(b)=b$ by

ProPosition 2.6 and Step 2. In a similar way, we obtain $\xi_{a}\circ\eta_{a}(z)=z$ for all
$z\in V_{1/2}(a)$ . $\blacksquare$

We shall make use of the maps $\xi_{a}$ and $\eta_{a}$ to introduce a Hilbert manifold
structure on $\mathfrak{J}_{1}$ . Before proceeding, we note that the Peirce (1/2)-spaces $V_{1/2}(a)$

$(a\in \mathfrak{J}_{1})$ are mutually unitarily isomorphic, because we have a continuous family
of orthogonal projections $\mathfrak{J}_{1}\ni a-E_{1/2}(a)$ and $\mathfrak{J}_{1}$ is arcwise connected. This
isomorphism follows from the well-known fact that if $P,$ $Q$ are orthogonal pro-
jections on a Hilbert space such that $||P-Q||<1$ , then the operator

$U:=[I-(P-Q)^{2}]^{-1/2}[QP+(I-Q)(I-P)]$

gives a unitary equivalence $Q=UPU^{-1}$ [$7$ , Theorem I.6.32]. Thus, take $a_{0}\in \mathfrak{J}_{1}$

and put $\mathfrak{H}=V_{1/2}(a_{0})$ . Let $r_{a}$ : $V_{1/2}(a)arrow \mathfrak{H}$ be the unitary isomorphism. Then,
thanks to Proposition 3.1, it is now easy to see that the collection

$\{(N_{a}, Y_{a^{\circ}}\xi_{a}, \mathfrak{H});a\in \mathfrak{J}_{1}\}$

defines an atlas of $\mathfrak{J}_{1}$ .
We shall show that the inclusion $3_{l}gV$ is an embedding. Let $a\in \mathfrak{J}_{1}$ and

consider the Peirce decomposition (1.1). Let us define a map $\Phi_{a}$ as follows:

$\Phi_{a}(x, y):=\eta_{a}(x)+y$ for $x\in V_{1/2}(a)$ and $y\in V_{0}(a)\oplus V_{1}(a)$ .
Then, $\Phi_{a}(0,0)=\eta_{a}(0)=a$ . Moreover, we have $(d/dt)\eta_{a}(tx)|_{t=0}=x$ . Hence the
Fr\’echet derivative $d_{(0.0)}\Phi_{a}$ of $\Phi_{a}$ at $(x, y)=(O, 0)$ is the “identity” map $(x, y)$

$\mapsto x+y$ . The inverse mapping theorem then guarantees the existence of an
open neighborhood $W_{a}$ of $(0,0)$ such that $\Phi_{a}$ : $W_{a}arrow\Phi_{a}(W_{a})$ is a diffeomorphism.
The equality

$N_{a}\cap\Phi_{a}(W_{a})=\mathfrak{J}_{1}\cap\Phi_{a}(W_{a})=\Phi_{a}((V_{1/2}(a)\oplus\{0\})\cap W_{a})$

shows that $\mathfrak{J}_{1}$ is a submanifold of the Hilbert space $V$ . Furthermore the in-
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clusion $c:\mathfrak{J}_{1}cV$ has the following local expression:

$\mathfrak{J}_{1}\cap\Phi_{a}(W_{a})$ $\Phi_{a}(W_{a})$

’

$\Phi_{a}^{-1}\downarrow$ $\downarrow\Phi_{a}^{-1}$

$V_{1/2}(a)$ – $V$

The topology of $\mathfrak{J}_{1}$ being the induced one from $V$ , we thus see the inclusion
$f$ is an embedding, so that the tangent space $T_{a}(3_{1})$ at $a$ is identified with
$V_{1/2}(a)$ . In this way, $\mathfrak{J}_{1}$ now inherits a Riemannian manifold structure as a
closed submanifold of the Hilbert space $V$ .

Finally, we mention that $\mathfrak{J}_{1}$ is a symmetric space. In fact, every $a\in \mathfrak{J}_{1}$

is an isolated fixed point of the symmetry $T(a)\in Aut(V)$ introduced in (2.8).

\S 4. Riemannian distance.

In this section, we compute the Riemannian distance on the Riemannian
manifold $s_{1}^{\alpha}$ . Our reference concerning Riemannian manifolds is the book [9].

Let $M$ be an arcwise connected Riemannian manifold. By definition, the
Riemannian distance dist: $M\cross Marrow R$ between two points $p,$ $q\in M$ is

dist $(p, q):= \inf$ { $length(\gamma);\gamma$ a curve from $P$ to $q$ }.

We know that the function ’dist’ determines a metric on $M$ compatible with the
given topology on $M$. Unlike finite dimensional cases, there may exist two points
on $M$ which miss a minimizing geodesic even if $M$ is complete with respect to
the Riemannian distance ’dist’. Such an example can be found in [4] (see also
[9, p. 127] $)$ .

NOW, let $s_{1}^{\alpha}$ be the Riemannian manifold of primitive idempotents in the
$JH$-algebra $V$ . We denote by $\mathfrak{X}(\mathfrak{J}_{1})$ the set of vector fields on $\mathfrak{J}_{1}$ . Since
the tangent space $T_{a}(\mathfrak{J}_{1})$ at $a\in \mathfrak{J}_{1}$ is identified with $V_{1/2}(a)$ , we shall con-
sider every vector field on $\mathfrak{J}_{1}$ as a $V$ -valued function such that the value
at $a\in \mathfrak{J}_{1}$ is contained in $V_{1/2}(a)$ . Thus, for $Y\in k(\mathfrak{J}_{1}),$ $d_{a}Y(a\in \mathfrak{J}_{1})$ stands for
the tangent map at $a$ of the $V$ -valued function $Y$ on $\mathfrak{J}_{1}$ , so that $d_{a}Y$ is a
bounded linear operator $V_{1/2}(a)arrow V$ . Recalling the orthogonal projection $E_{1/2}(a)$

onto $V_{1/2}(a)$ introduced in (1.4), we define the canonical connection $\nabla$ of $s_{1}^{\circ}$ :

(4.1) $\nabla_{X}Y(a):=E_{1/2}(a)(d_{a}Y(X(a)))$ ( $a\in_{S_{1}}^{\alpha}$ and $X,$ $Y\in X(\circ s_{1})$).

Then, one can show by a standard calculation that the connection $\nabla$ is Levi.
Civita: the parallel transport associated to $\nabla$ is an isometry and the torsion tensor
vanishes. Furthermore, it is Aut (V)-invariant:

$g\cdot(\nabla_{Y}Z)=\nabla_{g\cdot Y}(g\cdot Z)$ for all $g\in Aut(V)$ ,
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where $(g\cdot Y)(a):=g(Y(g^{-1}a))$ for $Y\in X(\mathfrak{J}_{1})$ . This can be easily proved by not-
ing the relation $E_{1/2}(ga)=gE_{1/2}(a)g^{-1}$ for $g\in Aut(V)$ .

Let Der (V) denote the set of all continuous derivations of the $JH$-algebra $V$ :

Der $(V):=$ {$T\in B(V);T(xy)=(Tx)y+x(Ty)$ for all $x,$ $y\in V$ }.

Then, Der (V) is a Banach-Lie algebra as a closed Lie subalgebra of g1(V),

where 91(V) is $B(V)$ regarded as a Banach-Lie algebra by the usual bracket of
operators $[A, B]=AB-BA$ . Clearly, Der (V) is the Lie algebra of the Banach-
Lie group Aut (V). For $x,$ $y\in V$ , it is known that the operator $[L(x), L(y)]$ is
a derivation, called an inner derivation of $V$ (cf. [15, 19.6]). For simplicity,
we shall put

(4.2) $D(x, y):=4[L(x), L(y)]\in Der(V)$ .
Then, $\exp tD(x, y)\in Aut(V)$ for every $t\in R$ . Moreover, it is easy to show
that

(4.3) $TD(x, y)T^{-1}=D(Tx, Ty)$ for any $T\in Aut(V)$ .
PROPOSITION 4.1. Let $a\in \mathfrak{J}_{1}$ and $x\in V_{1/2}(a)$ . Then the curve $R\ni t-\gamma_{a.x}(t\rangle$

$=(\exp tD(x, a))a$ is a geodesic with $\gamma_{a.x}(0)=a$ and $\dot{\gamma}_{a.x}(0)=x$ .
PROOF. Put $D=D(x, a)$ and $\gamma=\gamma_{a.x}$ for brevity. Our task is to show that

$E_{1/z}(\gamma(t))(\ddot{\gamma}(t))=0$ for all $t\in R$ . Since $Da=4(xa^{2}-a(xa))=x$ , we have

7 $(i)=(\exp tD)Da=(\exp tD)x$ .
Therefore, $\ddot{\gamma}(t)=(\exp tD)Dx$ . Here $Dx=2(x^{2}-||x||^{2}a)$ by (i) of Lemma 2.3, so
that

$\ddot{\gamma}(t)=2(\exp tD)x^{2}-2||x||^{2}\gamma(t)$ .
By using the explicit expression (1.4) for $E_{1/2}(\gamma(t))$ , we have

$E_{1/2}(\gamma(t))(\ddot{\gamma}(t))=8(L(\gamma(t))-L(\gamma(t))^{2})(\exp tD)x^{2}$ ,

because $\gamma(t)\in V_{1}(\gamma(t))$ . Since $\exp tD\in Aut(V)$ , we obtain

$E_{1/2}(\gamma(t))(\ddot{\gamma}(t))=8(\exp tD)(ax^{2}-a(ax^{2}))$ .

By (i) of Lemma 2.3, we have $ax^{2}=||x||^{2}a/2=a(ax^{2})$ , so that we arrive at
$E_{1/2}(\gamma(t))(\ddot{\gamma}(t))=0$ . $\blacksquare$

PROPOSITION 4.2. Let $a\in \mathfrak{J}_{1}$ and $x\in V_{1/2}(a)$ . If $|t|\cdot||x||<\pi/\sqrt{2}$ , then

(4.4) $\gamma_{a.x}(t)=\eta_{a}(\frac{\tan(||x||t/\sqrt{2})}{(||x||/\sqrt{2})}x)$ ,

where $\eta_{a}$ is the maP introduced in (3.3).
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PROOF. Let the notation be as in the proof of Proposition 4.1. An easy
induction together with Lemma 2.3 shows that for $n=1,2,$ $\cdots$

$D^{2n-1}a=(-2||x||^{2})^{n-1}x$ , $D^{2n}a=2(-2||x||^{2})^{n-1}(x^{2}-||x||^{2}a)$ .
From this, we get easily

(4.5) $\gamma_{a.x}(t)=(\omega s\sqrt{2}||x||t)a+\frac{\sin(\sqrt{2}||x||t)}{\sqrt{2}||x||}x+\frac{1-\cos(\sqrt{2}||x||t)}{||x||^{2}}x^{2}$

for all $t\in R$ . Comparing (4.5) with (3.3), we find (4.4). $\blacksquare$

NOW, given two distinct points $a,$ $b\in \mathfrak{J}_{1}$ such that $ab\neq 0$ , we take $\theta(0<\theta$

$<\pi/2)$ as in Proposition 2.6. Then, we have (2.4) with $p_{a,b}$ the isometric
Jordan algebra isomorphism of $V[a, b]$ onto Sym $(2, R)$ . Let

(4.6) $X:=(\begin{array}{ll}0 11 O\end{array})\in Sym(2, R)$ , $x:=p_{a,b}^{-1}(X)\in V_{1/2}(a)\cap V[a, b]$ .

Then, $||x||=\sqrt{2}$ and $V[a, x]=V[a, b]$ . Moreover, with the same notation as
in Proposition 2.7, we have $\nu_{a.c}^{x}=\rho_{a.b}=:p$ (cf. Step 3 of the proof of Proposi-
tion 3.1). Let $\Gamma(t)$ be as in (3.1). Then, (2.7) and (4.5) show that $p(\gamma_{a.x}(t))=$

$\Gamma(t)$ . Hence, $a$ and $b$ are connected by the geodesic $\gamma_{a,x}$ with $x$ defined by
(4.6). Modification of argument for $ab=0$ is obvious.

Our next objective is to show that the geodesic segment $\gamma_{a.x}|_{[0.\theta]}$ in the
above paragraph is minimal. In other words, we shall show that it is a curve
attaining the infimum in the definition of the Riemannian distance. To do so,
let us define the ExPonential maPPing $Exp_{a}$ at $a\in \mathfrak{J}_{1}$ by

$Exp_{a}(x):=\gamma_{a.x}(1)=(\exp D(x, a))a$ for $x\in V_{1/2}(a)$ .
Let $B_{a}$ be the open ball in $V_{1/2}(a)$ with radius $\pi/\sqrt{2}$ :

$B_{a}:=\{x\in V_{1/2}(a);||x||<\pi/\sqrt{2}\}$ .
Proposition 4.2 says that

(4.7) $Exp_{\alpha}(x)=\eta_{a}([\tan(||x||/\sqrt{2})/(||x||/\sqrt{2})]x)$ for $x\in B_{a}$ .
Recalling the set $N_{a}$ defined by (3.2), we have

PROPOSITION 4.3. The maP $Exp_{a}$ is a diffeomorPhism of $B_{a}$ onto $N_{a}$ . Denote
by ${\rm Log}_{a}$ the inverse map of $Exp_{a}$ , then

(4.8) ${\rm Log}_{a}(b)= \frac{\arctan\psi(\langle a|b\rangle)}{\psi(\langle a|b\rangle)}\cdot\xi_{a}(b)$ $(b\in N_{a})$ ,

where $\psi(t):=\sqrt{1-t}/\sqrt{t}$ and $\xi_{a}$ is the map introduced in (3.3).
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PROOF. Let us define the map ${\rm Log}_{a}$ by (4.8). It is clear that both $Exp_{a}$

and ${\rm Log}_{a}$ are real analytic. We shall show that they are inverses to each
other.

SteP 1. Let $x\in B_{a}$ . We set $\varphi:=||x||/\sqrt{2}$ and $y:=(\tan\varphi/\varphi)x$ for simplicity.
By Proposition 3.1 and (4.7), we have $Exp.(x)\in N_{a}$ and

$\xi_{a}(Exp_{a}(x))=\xi_{a}(\eta_{a}(y))=y=(\tan\varphi/\varphi)_{X}$ .
Thus, to show that ${\rm Log}_{a}(Exp_{a}(x))=x$ , it suffices to prove $\psi(\langle a|\eta_{a}(y)\rangle)=\tan\varphi$

NOW, by (3.3), we have

$\langle a|\eta_{a}(y)\rangle=(2-||y||^{2})/(2+||y||^{2})+2\langle a|y^{2}\rangle/(2+||y||^{2})$ .
Since $||y||=\sqrt{}\overline{2}\tan\varphi$ and since $2\langle a|y^{2}\rangle=||y||^{2}$ , we get $\langle a|\eta_{a}(y)\rangle=\cos^{2}\varphi$ , so that
$\psi(\langle a|\eta_{a}(y)\rangle)=\tan\varphi$ .

Step2. Let $b\in N$. and put $\lambda:=\langle a|b\rangle=\cos^{2}\theta$ with $0\leqq\theta<\pi/2$ . By (3.4), we
have $||\xi_{a}(b)||^{2}=2\tan^{2}\theta=2(1-\lambda)/\lambda$ . Hence, we get

$||{\rm Log}_{a}(b)||^{2}=2\arctan^{2}\psi(\langle a|b\rangle)<\pi^{2}/2$ .
This implies that if we put $x:={\rm Log}_{a}(b)$ and $\varphi:=||x||/\sqrt{2}$ , then $x\in B_{a}$ and
$\tan\varphi=\psi(\langle a|b\rangle)$ . Consequently, $Exp_{a}(Log.(b))=Exp.(x)=\eta_{a}(\xi_{a}(b))=b$ . $\blacksquare$

THEOREM 4.4. Let a, $b\in S_{1}$ be distinct and $ab\neq 0$ . Define $x\in V_{1/2}(a)$ by
(4.6). Then, the geodesic $\gamma_{a,x}$ Passing a, $b$ is a minimizing one.

PROOF. We have $||x||=\sqrt{2}$ by definition, so that Proposition 4.2 gives
$\gamma_{a.x}(t)=\eta_{a}((\tan t)x)$ for $|t|<\pi/2$ . We note $b=\gamma_{a.x}(\theta)$ with $\theta$ defined by $\langle a|b\rangle$

$=\cos^{2}\theta(0<\theta<\pi/2)$ . Therefore,

(4.9) $\gamma_{a.x}(t)\in N_{a}=Exp_{a}(B_{a})$ for O$t;Sll\mbox{\boldmath $\theta$}

by Propositions 3.1 and 4.3. Since our connection $\nabla$ defined by (4.1) is Levi-
Civita, a standard argument using $GauB$ ’ lemma ([9, 1.9]) together with (4.9)

leads us to the inequality length $(\gamma_{a.x})\leqq 1ength(\gamma)$ for any curve $\gamma$ joining $a$

and $b$ . $\blacksquare$

THEOREM 4.5. For a, $b\in \mathfrak{J}_{1}$ , one has

dist $(a, b)=\sqrt{2}\arcsin(||a-b||/\sqrt{2})$ .
PROOF. For $a=b$ , the formula is trivial. If $a\# b$ and $ab\neq 0$ , then we get

by Theorem 4.4 (with the notation therein)

dist $(a, b)= length(\gamma_{a.x})=\int_{0}^{\theta}||\dot{\gamma}_{a.x}(t)||dt=||\dot{\gamma}_{a.x}(O)||\theta=||x||\theta=\sqrt{}\overline{2}\theta$ .

Since, $\cos^{2}\theta=\langle a|b\rangle=1-||a-b||^{2}/2$ , we have $\sin\theta=||a-b||/\sqrt{2}$ .
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If $ab=0$ , then we let $x:=(\nu_{a.b}^{y})^{-1}(X)$ with the isometric isomorphism va, $b$

defined by (2.3) and the $X$ in (4.6). We have $b=\gamma_{a,x}(\pi/2)$ . Since $\langle\gamma_{a,x}(t)|a\rangle$

$\# 0$ for $t\in[0, \pi/2)$ , the preceding argument gives

dist $(a, \gamma_{a.x}(t))=\sqrt{2}\arcsin(||a-\gamma_{a,x}(t)||/\sqrt{2})$ for $0\leqq t<\pi/2$ .

Letting $t\uparrow\pi/2$ , we get the formula by continuity. $\blacksquare$

\S 5. Two-point homogeneity.

First of all, we recall here the $JH$-algebras called spin factors. Let $\mathfrak{H}$ be
a real Hilbert space with inner product $\langle\cdot|\cdot\rangle_{\mathfrak{H}}$ . Let $e$ be a symbol and we
denote by $Re$ the one-dimensional vector space spanned by $e$ . Then, the vector
space $Re\oplus \mathfrak{H}$ becomes a $JH$-algebra $S(e, \mathfrak{H})$ , the spin factor associated to $\mathfrak{H}$ , if
we define a Jordan product and an inner product respectively by

(5.1) $(\alpha e+u)(\beta e+v):=[\alpha\beta+\langle u|v\rangle_{\mathfrak{H}}]e+\alpha v+\beta u$ ,

(5.2) $\langle\alpha e+u|\beta e+v\rangle:=2(\alpha\beta+\langle u|v\rangle_{\mathfrak{H}})$ ,

where $\alpha,$ $\beta\in R$ and $u,$ $v\in \mathfrak{H}$ . We note that the coefficient 2 appears on the
right hand side of (5.2) in order to make the norm of the primitive idempotents
equal to 1. We have

(5.3) $\mathfrak{J}_{1}(S(e, \mathfrak{H}))=\{e/2+u ; ||u||_{\mathfrak{H}}=1/2\}$ .
For the symmetry $T(a)$ defined by (2.8) with $a=e/2+u\in \mathfrak{J}_{1}$ ($S$ ( $e$ , if)), the re-
striction $T(a)|_{\mathfrak{H}}$ is the orthogonal reflection with respect to the hyperplane
$(Ru)^{\perp}$ .

NOW we return to our $JH$-algebra $V$ .

LEMMA 5.1. Let $a\in \mathfrak{J}_{1}$ and suppose non-zero $x,$ $y\in V_{1/2}(a)$ satisfy $x^{2}=y^{2}$ .
(1) Put $e:=2x^{2}/||x||^{2}$ . Then, $e=2y^{2}/||y||^{2}$ and $e$ is a non-zero idempotent.
(2) Put $c:=(2x^{2}/||x||^{2})-a\in \mathfrak{J}_{1}$ , so that $e=a+c$ . Let $\langle a, x, y\rangle$ denote the

subalgebra generated by a, $x,$ $y$ . Then, there is an isometric Jordan algebra iso-
morPhism $\sigma$ of $\langle a, x, y\rangle$ onto the $sPin$ factor $S$ ( $e$ , ab), where $\mathfrak{H}$ is the vector sPace
spanned by $x,$ $y,$ $a-c$ with inner product $\langle u|v\rangle_{\mathfrak{H}}=\langle u|v\rangle/2$ .

PROOF. (1) By (iii) of Lemma 2.3, $x^{2}=y^{2}$ implies $||x||=||y||$ . The fact
that $e$ is an idempotent follows from (1) of Proposition 2.7.

(2) Note $x,$ $y\in V_{1/2}(a)\cap V_{1/2}(c)$ . Then, we have $xy=\langle x|y\rangle e/2$ by Lemma
2.4. This together with

$x^{2}=y^{2}=||x||^{2}e/2gives\blacksquare$
the isometric isomorphism $\sigma$

immediately in view of (5.1) and (5.2).

For every $a\in \mathfrak{J}_{1}$ , let $S_{a}$ denote the sphere in $V_{1/2}(a)$ with radius $\sqrt{2}$ :
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$S_{a}:=\{x\in V_{1/2}(a);||x||=\sqrt{2}\}$ .
It is clear that if $T\in Aut(V)$ fixes $aES_{1}$ , then $T$ leaves $S_{a}$ stable by Proposi-
tion 2.8. Since $V_{1/2}(a)$ is identified with the tangent space $T_{a}(\mathfrak{J}_{1})$ , the follow-
ing proposition due to U. Hirzebruch [6] for finite dimensional $V$ implies that
the Riemannian manifold $\mathfrak{J}_{1}$ is isotropic, that is, the stabilizer of Aut (V) at
$a\in \mathfrak{J}_{1}$ acts transitively on the unit sphere in the tangent space at $a$ .

PROPOSITION 5.2. Let $a\in \mathfrak{J}_{1}$ . For $x,$ $y\in S_{a}$ , there is $T\in Aut(V)$ such that
$Ta=a$ and $Tx=y$ . This $T$ can be taken as a finite product of the operators
$T(d)$ with $d\in \mathfrak{J}_{1}$ .

PROOF. Suppose first $x^{2}\neq y^{2}$ . Then, $b:=x^{2}-a$ and $c:=y^{2}-a$ are distinct
primitive idempotents in $V_{0}(a)$ by virtue of Proposition2.7. The subalgebra
$V[b, c]$ has the unit element $e$ : if $bc=0$ then $e=b+c$ , and if bc#O then note
$V[b, c]=Sym(2, R)$ . Since $e$ itself is a non-zero idempotent, Proposition 1.6
says that the $JH$-algebra $V_{1}(e)$ is topologically simple. An application of Pro-
position 2.9 to the pair $b,$ $c$ within $V_{1}(e)$ gives $d\in S_{1}\cap V_{1}(e)cV_{0}(a)$ such that
$T_{1}(d)b=c$ , where $T_{1}(d)$ is the symmetry defined by (2.8) acting on $V_{1}(e)$ . Then,

it is immediate to show that $T(d)a=a,$ $T(d)b=T_{1}(d)b=c$ . This implies $(T(d)x)^{2}$

$=T(d)x^{2}=y^{2}$ , so that we are led to the case $x^{2}=y^{2}$ .
We thus assume that $x^{2}=y^{2}$ . Then, (2) of Lemma 5.1 says that the sub-

algebra $\langle a, x, y\rangle$ generated by $a,$ $x,$ $y$ is isometrically isomorphic to the spin
factor $S(e, \mathfrak{H})$ , where $e$ $:-x^{2}=y^{2}$ and $\mathfrak{H}$ is the vector space spanned by $x,$ $y$ ,

$a-c(c:=x^{2}-aES_{1})$ with inner product $\langle u|v\rangle_{\mathfrak{H}}=\langle u|v\rangle/2$ . Let $u$ $:=\delta(x+y)\in$

$\langle a, x, y\rangle$ , where $\delta\in R$ is chosen so that $2||u||_{\mathfrak{H}}=1$ . Put $d_{1}:=e/2+u\in \mathfrak{J}_{1}$ (see

(5.3) $)$ . Then, translating everything into $S(e, \mathfrak{H})$ , we see easily that

(5.4) $T(d_{1})e=e$ , $T(d_{1})(a-c)=c-a$ , $T(d_{1})y=x$ ,

because $\langle a -- c|u\rangle=0$ . The first two equalities in (5.4) yield $T(d_{1})a=c$ . Next,
since $||x||_{\mathfrak{H}}=1$ , we have $d_{2}$ $:=(e+x)/2\in \mathfrak{J}_{1}$ and

(5.5) $T(d_{2})x=x$ , $T(d_{2})e=e$ , $T(d_{2})(a-c)=c-a$ .

The last two equalities in (5.5) imply $T(d_{2})c=a$ . Hence we get

$T(d_{2})T(d_{1})y=x$ , $T(d_{2})T(d_{1})a=a$ . $\blacksquare$

Once we have the isotropy property, two-point homogeneity follows through
a somewhat general argument.

THEOREM 5.3. The Riemannian manifold $\mathfrak{J}_{1}$ is $iwo$-Point homogeneous: suP-
Pose dist $(a_{1}, b_{1})=dist(a_{2}, b_{2})$ for $a_{1},$ $a_{2},$ $b_{1},$ $b_{2}\in \mathfrak{J}_{1}$ , then there is $T\in Aut(V)$ such
that Ta $1^{=a_{2}}$ and $Tb_{1}=b_{2}$ . This $T$ can be chosen as a finite product of the
operators $T(d)$ with $d\in \mathfrak{J}_{1}$ .
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PROOF. Clearly we may assume $a_{1}=a_{2}=:$ $a$ by transitivity (Proposition 2.9).

Take geodesic segments $\gamma_{1},$ $\gamma_{2}$ such that $\gamma_{j}$ realizes dist $(a, b_{j})$ for $j=1,2$ . This
is possible by Theorem 4.4 in case $ab_{j}\neq 0$ , and if $ab_{j}=0$ , then one argues as in
the second half of the proof of Theorem 4.5. Each of the $\gamma_{j}$ has the form
$\gamma_{j}(t)=(\exp tD(x_{j}, a))a$ with $x_{j}\in S_{a}$ . Since dist $(a, b_{1})=dist(a, b_{2})$ , we have
length $(\gamma_{1})=1ength(\gamma_{2})$ . Hence, $b_{j}=\gamma_{j}(\theta)$ with $\theta\in[0, \pi/2]$ independent of 7. By
Proposition 5.2, there is $T\in Aut(V)$ , which is a finite product of the operators
$T(d)$ with $d\in \mathfrak{J}_{1}$ , such that $Ta=a$ and $Tx_{1}=x_{2}$ . Then, using (4.3), we get

$Tb_{1}=T\gamma_{1}(\theta)=T(\exp\theta D(x_{1}, a))a=(\exp\theta D(x_{2}, a))a=\gamma_{2}(\theta)=b_{2}$ . $\blacksquare$

\S 6. Sectional curvature.

In this section, we compute the sectional curvature of the Riemannian
manifold $\mathfrak{J}_{1}$ . First, we recall the orthogonal projection $E_{1/2}(a)$ onto $V_{1/2}(a)$ for
every idempotent $a$ (see (1.4)). For simplicity, we write $E(a)$ instead of $E_{1/2}(a)$

till Theorem 6.4. Thus, $E:\mathfrak{J}_{1}\ni a-,E(a)=4L(a)-4L(a)^{2}\in B(V)$ is a real analytic
$B(V)$-valued function. The derivative of $E$ at $a\in S_{1}$ will be denoted by $E’(a)$

in place of $d_{a}E$ . Being a bounded linear operator $V_{1/2}(a)arrow B(V)$ , the map $E’(a)$

will be considered as a bounded bilinear operator $V_{1/2}(a) \cross V\frac{>}{}V$ . An explicit
formula for $E’(a)$ is given in the next lemma.

LEMMA 6.1. Let $a\in \mathfrak{J}_{1}$ and $x\in V_{1/2}(a)$ . Then,

$E’(a)(x, u)=\{$

$2(xu)_{0}-\langle x|u\rangle a\in V_{0}(a)+V_{1}(a)$ if $u\in V_{1/2}(a)$ ,

$2(1-2k)xu\in V_{1/2}(a)$ if $u\in V_{k}(a)(k=0,1)$ ,

where $v_{0}$ $:=E_{0}(a)v$ for any $v\in V$ .

PROOF. Let $c$ be a curve in $\mathfrak{J}_{1}$ such that $c(O)=a$ and $\dot{c}(0)=x$ . Then, for
any $u\in V$ , we have

$E’(a)(x, u)=(d/dt)E(c(t))u|_{t=0}=4xu-4x(au)-4a(xu)$ .
Thus, if $u\in V_{k}(a)$ , then $E’(a)(x, u)=4(1-k)xu-4a(xu)$ .

Case 1. Suppose $u\in V_{1/2}(a)$ . Then, $xu\in V_{0}(a)+V_{1}(a)$ . Hence, by (i) of
Lemma 2.3 we have

(6.1) $E_{1}(a)(xu)=a(xu)=\langle x|u\rangle a/2$ ,

so that $E’(a)(x, u)=2xu-2\langle x|u\rangle a=2(xu)_{0}-\langle x|u\rangle a$ .
Case 2. Suppose $u\in V_{h}(a)(k=0,1)$ . Since $xu\in V_{1/2}(a)$ , we have $2a(xu)$

$=xu$ , so that $E’(a)(x, u)=2(1-2k)xu$ . $\blacksquare$

Recalling the connection $\nabla$ defined by (4.1), we consider the curvature tensor:
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$R(X, Y):=\nabla_{X}\nabla_{Y}-\nabla_{Y}\nabla_{X}-\nabla_{[X.Y]}$ (X, $Y\in \mathfrak{X}(\mathfrak{J}_{1})$).

In what follows, we write $Z’(a)$ for the derivative $d.Z$ at $a$ of vector fields $Z$

on $\mathfrak{J}_{1}$ which are considered as $V$ -valued functions such that $Z(a)EV_{1/2}(a)$ .
Thus, $Z’(a)$ is a bounded linear operator $V_{1/2}(a)arrow V$ . We also introduce the
notation

$\bigwedge_{X.Y}f(X, Y)$ $:=f(X, Y)-f(Y, X)$ .

LEMMA 6.2. For $X,$ $Y,$ $Z\in\#(^{\alpha}s_{1})$ , one has

$R(X, Y)Z(a)= \bigwedge_{X.Y}E’(a)(X(a), E’(a)(Y(a), Z(a)))$ .

PROOF. By a simple calculation, we have

(6.2) $R(X, Y)Z(a)=X\wedge Y^{E(a)E’(a)(X(a)},$ $Z’(a)(Y(a)))$ .

NOW, differentiation of the identity $E(a)^{2}=E(a)$ in the direction $x\in V_{1/2}(a)$ gives

$E(a)E’(a)(x, u)=E’(a)(x, u)-E’(a)(x, E(a)u)$ for all $u\in V$ .
Substituting this into (6.2), we get

$R(X, Y)Z(a)=_{X\wedge Y^{E’(a)(x(a)}},$ $(I-E(a))Z’(a)(Y(a)))$ .

Since $Z(a)\in V_{1/2}(a)$ , we have $E(a)Z(a)=Z(a)$ . Differentiating this in the direc-
tion $y\in V_{1/2}(a)$ , we obtain

$(I-E(a))Z’(a)(y)=E’(a)(y, Z(a))$ for all $y\in V_{1/2}(a)$ ,

whence the lemma. $\blacksquare$

The previous lemma says that $R(X, Y)Z(a)$ depends only on the values
$X(a),$ $Y(a),$ $Z(a)$ but not on the vector fields $X,$ $Y,$ $Z$ . Thus, for $x,$ $y\in V_{1/2}(a)$ ,
we consider the bounded linear operator $R_{a}(x, y)$ on $V_{1/2}(a)$ defined by

$R_{a}(x, y)z:=E’(a)(x, E’(a)(y, z))-E’(a)(y, E’(a)(x, z))$ $(z\in V_{1/2}(a))$ .

Let $D(x, y)$ be the operator introduced in (4.2). We note that the multi-
plication rules (1.2) imply that $D(x, y)$ leaves $V_{1’ 2}(a)$ stable if $x,$ $y$ are in $V_{1/2}(a)$ .

PROPOSITION 6.3. One has $R_{a}(x, y)=D(x, y)|_{v_{1/2}Ca)}$ for all $x,$ $y\in V_{1/2}(a)$ .
PROOF. Let $x,$ $y,$ $z\in V_{1/2}(a)$ . Then, by Lemma 6.1, we have

$E’(a)(y, z)=2(yz)_{0}-\langle y|z\rangle a\in V_{0}(a)+V_{1}(a)$ ,

so that by Lemma 6.1 again
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$E’(a)(x, E’(a)(y, z))=4x(yz)_{0}+\langle y|z\rangle x$ .
Since $yz\in V_{0}(a)+V_{1}(a)$ , we get by (6.1)

(6.3) $(yz)_{0}=yz-E_{1}(a)(yz)=yz-\langle y|z\rangle a/2$ .
Hence we arrive at $E’(a)(x, E’(a)(y, z))=4x(yz)$ , which gives the conclusion
$R_{a}(x, y)z=4x(yz)-4y(xz)$ . $\blacksquare$

NOW, for $\chi y\in V_{1/2}(a)$ with $||x||=||y||=1$ and $\langle x|y\rangle=0$ , the sectional curva-
ture $k_{a}(x, y)$ at $a\in \mathfrak{J}_{1}$ is defined as

$k_{a}(x, y)$ $:=\langle R_{a}(x, y)y|x\rangle$ .
Using (4.3) and Proposition 6.3, we see that if $T\in Aut(V)$ , then on $V_{1/2}(a)$ one
has

$R_{\tau a}(Tx, Ty)T=TR_{a}(x, y)$ for all $x,$ $y\in V_{1/2}(a)$ .
Hence $k_{Ta}(Tx, Ty)=k_{a}(x, y)$ . Before giving a formula for $k_{a}(x, y)$ , we note
here that if $x\in V_{1/2}(a)$ with $||x||=1$ , then $2_{X^{2}}-a$ is a primitive idempotent
orthogonal to $a$ by virtue of Proposition 2.7.

THEOREM 6.4. The sectional curvature of $\mathfrak{J}_{1}$ is given by

$k_{a}(x, y)= \frac{1}{2}+\frac{3}{2}||E_{1/2}(2x^{2}-a)y||^{2}$ .

COROLLARY 6.5. The sectional curvature of $\mathfrak{J}_{1}$ satisfies $1/2\leqq k_{a}(x, y)\leqq 2$ .

Theorem 6.4 is a consequence of Lemmas 6.7 and 6.8 below. First of all,
we need a technical lemma. Let $x,$ $y\in V_{1/2}(a)$ with $||x||=||y||=1$ and $\langle x|y\rangle=0$ .
This condition for $x,$ $y$ will be kept in all of the following.

LEMMA 6.6. One has $2||xy||^{2}=1/4-\langle(x^{2})_{0}|(y^{2})_{0}\rangle$ .

PROOF. We have

$2||xy||^{2}=2\langle xy|xy\rangle=2\langle L(x)^{2}y|y\rangle=\langle(P(x)+L(x^{2}))y|y\rangle$

$=\langle P(x)y|y\rangle+\langle x^{2}|y^{2}\rangle=\langle P(x)y|y\rangle+\langle(x^{2})_{0}|(y^{2})_{0}\rangle+1/4$ ,

where the last equality follows from (6.3): one has $x^{2}=(x^{2})_{0}+a/2$ in the present
situation. On the other hand, using the triple product $\{u, v, w\}$ $:=(u\square v)w$ , we
obtain

$P(x)y=\{x, y, x\}=2\{x, \{y, a, a\}, x\}=4\{\{x, y, a\}, a, x\}-2\{a, y, \{x, a, x\}\}$ ,

where we have used the Jordan triple identity [15, 18.2.3] to derive the third
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equality. Now, 2 $\{x, y, a\}=2(xy)a=\langle x|y\rangle a=0$ , because $x,$ $y\in V_{1/2}(a)$ are
orthogonal. Thus

$\langle P(x)y|y\rangle=-2\langle(a\square y)\{x, a, x\}|y\rangle=-2\langle\{x, a, x\}|\{y, a, y\}\rangle$ .

Since $\{x, a, x\}=x^{2}-ax^{2}=x^{2}-a/2=(x^{2})_{0}$ as is seen from (i) of Lemma 2.3, we
get

$\langle P(x)y|y\rangle=-2\langle(x^{2})_{0}|(y^{2})_{0}\rangle$ ,

whence the lemma. $\blacksquare$

LEMMA 6.7. One has $k_{0}(x, y)=1/2+6\langle(x^{2})_{0}|(y^{2})_{0}\rangle$ .

PROOF. By definition and Proposition 6.3, we have

$k_{a}(x, y)=4\langle xy^{2}|x\rangle-4\langle y(xy)|x\rangle=4\langle x^{2}|y^{2}\rangle-4||xy||^{2}$

$=4\langle(x^{2})_{0}|(y^{2})_{0}\rangle+1-4||xy||^{2}$ (by (6.3))

$=1/2+6\langle(x^{2})_{0}|(y^{2})_{0}\rangle$ (by Lemma 6.6). $\blacksquare$

LEMMA 6.8. One has $4\langle(x^{2})_{0}|(y^{2})_{0}\rangle=||E_{1/2}(2x^{2}-a)y||^{2}$ .

PROOF. Put $c:=2x^{2}-a\in \mathfrak{J}_{1}\cap V_{0}(a)$ . Then, since $x^{2}=(a+c)/2$ , we have
$(x^{2})_{0}=c/2$ . Taking (1.2) and (1.3) into account, we let $y=y_{1/2}’+y_{0}’$ with $y_{j}’\in$

$V_{j}(c)\cap V_{1/2}(a)(j=0,1/2)$ . Then,

$2\langle(x^{2})_{0}|(y^{2})_{0}\rangle=\langle c|y^{2}\rangle=\langle c|(y_{1/2}’)^{2}\rangle$ ,

because $y_{1/2}’y_{0}’\in V_{1/2}(c)$ and $(y_{0}’)^{2}\in V_{0}(c)$ owing to (1.2). Since $2(y_{1/2}’)^{2}=$

$||y_{1/2}’||^{2}(a+c)$ by Lemma 2.4, we get

$4\langle(x^{2})_{0}|(y^{2})_{0}\rangle=||y_{1/2}’||^{2}=||E_{1/2}(c)y||^{2}$ . $\blacksquare$

We end this paper by mentioning some usefulness of the unified formula
for $k_{\alpha}(x, y)$ given in Theorem 6.4. Let $x,$ $y$ be as in Theorem 6.4 and put
$c:=2x^{2}-a\in \mathfrak{J}_{1}\cap V_{0}(a)$ . Since $\chi\in V_{1/2}(a)\cap V_{1/2}(c)$ , we have $\langle x|E_{1/2}(c)y\rangle=\langle x|y\rangle$

$=0$ . Hence,

(6.4) $E_{1/2}(c)y\in V_{1/2}(a)\cap V_{1/2}(c)\cap(Rx)^{\perp}$ .
If $\dim V_{1/2}(a)\cap V_{1/2}(c)=1$ , which is the case when $V=Sym_{2}(\mathfrak{H})$ , the JH-

algebra of symmetric Hilbert-Schmidt operators on a real Hilbert space $\mathfrak{H}$ , then
$E_{1/2}(c)y=0$ in view of (6.4). In this case, Theorem 6.4 says that $\mathfrak{J}_{1}$ , which is
in fact a (real) projective space of $\mathfrak{H}$ , is of constant curvature 1/2.

On the other hand, if $V$ is the spin factor $S(e, \mathfrak{H})$ , then $2x^{2}=e$ for all $x\in$

$V_{1/2}(a)$ with $||x||=1$ . Thus, $E_{1/z}(c)=E_{1/2}(e-a)=E_{1/2}(a)$ . Hence, $k_{a}(x, y)=2$ in
the spin factor case. In this case, $\mathfrak{J}_{1}$ is identified with the sphere in $\mathfrak{H}$ of
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radius 1/2 owing to (5.3).
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