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§1. Introduction.

In this paper, we will deal with the eigenvalues of Laplacian (Neumann
B.C.) in a singularly perturbed domain and consider their elaborate characteri-
zation. The eigenvalue problem of Laplacian has been an important subject
since many years ago and has been studied from the view point of physics,
geometry, PDE and other fields of mathematics. In particular, the eigenvalue
problem on singularly perturbed domains arise in several real phenomena of
physcical situations. We study the Dumbbell shaped domain (cf. Fig. 1) which
is related with sound phenomena of wind instruments and is also a simplest
case of partial degeneration of domain. Beale has first studied a spectral
property of such domain. Actually he characterized the set of the eigen-
frequencies and the scattering frequencies. Several related results on the
eigenvalue problem have been obtained afterwards (see Hale and Vegas [12],
Anné [1J, Jimbo [16], Fang [9], Jimbo and Morita and other papers in
the references). With the aid of the results and methods in [4], we can easily
see that the set of the eigenvalues (Neumann B.C.) of () (see Fig. 1) is
divided into two parts (in some sense). One is associated with the fixed region
D=D,UD, and the other is with degenerating region Q(). That is, the set of
eigenvalue {u.(0)}i=, can be expressed as follows,

(1.1) (@i = 10 Q)i U A Q)

where limq.,w:)=w, and lim;.,A,()=2;. Here {w.}w, is the set of eigen-
values of —A on D (Neumann B.C.) and {A:}5, is that of —d?/dz® on L=
Ne>Q@) with Dirichlet condition (see also [1], [16]). From w,=w,=0, w;>0,
2,>0 and [1.I), oné can easily see that p,({) goes to 0 while p,(0) is bounded
away from 0 when {—0. In [9], Fang obtained an elaborate convergence rate
of u,({). In [18], we extended this result to more general cases and moreover
we obtained some useful properties of the corresponding eigenfunctions which
will be effectively used in this paper. In both papers and [18], they dealt
with only eigenvalues tending to 0, whose corresponding eigenfunctions are
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“almost constant” in each D;. In this paper, we are concerned with the exten-
sion of the above results, that is, we deal with cases for higher eigenvalues.
Precisely speaking, we consider elaborate behaviors of w,({), for general k=1,
that is, we will obtain the limit,

. (Uk(C)"wk

1512’1 ToaQ"
for all £#=1, where r,_, is the volume of the unit ball in R*!. In the proof,
we rely on some earlier results ([15], [18]) which are concerned with charac-
terization of the eigenfunctions.

There have been several studies on other topics on such domain as in this
paper. Some of them are concerning solutions and their structure of elliptic
equations and reaction diffusion equations. See the papers in the references.
There have been also studies on eigenvalues of domains of other type of
singular perturbation. Among them, Ozawa [24], [25], dealt with “domain
with small holes” and deduced elaborate perturbation formula of eigenvalues.
The result in this paper is partially motivated from his nice work.

—

Q©)

Fig. 1: 2(O=D,JQ(H\UD,.

§2. Main result.

We first specify the domain 2(0) as in Fig. 1 which is the same domain as

that in our previous work [15], [16]. We put,
‘Q(C) = D1UD2UQ(C) ’

where D,, D, and Q() satisfy the following conditions where x’=(x,, x5, -+, X,)
ER™!.

() D, and D, are bounded domains in R" where D,N\D,=@® and each D,
has a smooth boundary and the following conditions hold for some positive
constant {4>0.

Din{x=(x,, x)ER"|x,£1, |x'| <8y} = {(1, x)ER"| | x| <3u},
DN {x=(x;, x)ER"|x,Z =1, |2'| <8} = {(—1, x)ER"||x’| <3Cu}.
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D Q®) = R QUR,QUI'Q)
R:(Q) = {(x;, x)ER" | 1-20<x, =1, |x'] <Co((x,—1)/D)},
R;Q) = {(x,, xNER" | —1=<x,<1-2, |x'| <Lp((—1—x.)/0)},
I'Q = {(xy, x)eR" | —1+2{=x,=1-2¢, x| <},

where p=C°((—2, 0)DNC=((—2, 0)) is a positive function such that p(0)=2,
0®)=1 for é=(—2, —1), dp/d&é>0 for é=(—1,0), and the inverse function
ot (1, 2)>(—1, 0) satisfies limg.,-,d*07'/d&* =0 holds for any positive integer
k=1. We denote L=N\,QQ), ».=1,0,--,0), po=(—1,0,--,0) and D=
D, UD,. We can identify as L=(—1, 1) and dL={p,, p.}. By this definition,
R is a bounded domain with a smooth boundary for any =0, {4).

\_ M
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Fig. 2: Q(O=R,(OUII'(OUR. (D).
To state the main results, we need to define several notations.

DEFINITION. Let {p:(Q)}ie: and {@, }i=: be, respectively, the eigenvalues
arranged in increasing order (counting multiplicity) and the complete system of
orthonormalized eigenfunctions of the following eigenvalue problem,

(2.1) b

5;—0, on GQ(C).

{ AD+pud =0, in 0,
DEFINITION. Let {w:}i-, and {@:}s, be, respectively, the eigenvalues ar-
ranged in increasing order (counting multiplicity) and the complete system of
orthonormalized eigenfunctions of the eigenvalue problem,

Ap+wp =0, in D,
2.2)

?—Q:O, on oD,
ov

such that
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1 for i=7,
(2-3) (¢i’¢j>L2(D) - { 0

for i#7.

We put {2}, by 2,=(xk/2)* which are eigenvalues of —d?/dz® in L with
Dirichlet boundary condition.

We recall some characterization of {p,(Q}i, (cf. [1], [4], [16).
PROPOSITION 2.1. The set of eigenvalues {u,()}i-, is divided as follows,

2.4 {: Oz = {0 O} V{4 O

where limg., w,(Q)=w,, limg., 4, )=2,, for k=1,

The convergence of w,({) and 2,() are not uniform in %2 and so the way
of decomposition is not unique for each fixed {>0.
In this paper, we will work under the following assumption.

(A) {or} e {Ak}iei= @, and n=3.

For the statement of the main results, we prepare a sequence of functions
{Vitieic C=([—1, 11), which are determined uniquely (from the condition (A))
by the following system of ordinary differential equations,

d*Ve
2.5) dz?
Vk(l) = ¢k(1’1) s Vk(‘“l) = ¢k(p2)-

Now we present the main results of this paper.

+w, Vk =0 , in L:(—l, 1),

THEOREM 2.2. Assume (A) and the condition (x) w, 1s simple for k=3, then
we have

2.6) lg_{rl“’f—k@gﬁ = Sil((ddzk)z——kai)dz (k=1),

71'(7‘_1)/2

N . ) et
where T"_I_F—_((n—l—l)/Z) (the volume of unit ball in R™Y).

The next theorem is a generalization of [Theorem 2.2. To deal with a
case that w, (£=3), are not necessary simple, we define a sequence of natural
integers {k;}7, inductively. Let 2,=1. After defining k%, ks, -, kj, let kj.,
be the smallest integer k satisfying w,>w, 5

THEOREM 2.3, Assume the condition (A). Then we have,

@.7) im @& =2

T~0 T Cn_l :aj(k"—k]+1) (kj§k<kj+ly ]_2;1)’
= n-1
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where a;(1), a;2), -+, a;(k;—k;), are the eigenvalues of the matrix A;=[a;(r,q)]rq
whose entries are defined by

VrdVoeir;mr dVgan -
(2-8) aj(r7 (]> = S_1< dzkj ! ijkj ! —wijT+kj-1Vq+kj—-l>d2)

(<7, g=kjni—k; 721).
REMARK 2.4. {V,}%: and the matrix A;, j/=1 in the theorems depend on
the choice of the orthonormalized eigenfunctions {¢.}:,. However, all the
values in the right hand side of the expressions |(2.6) and [(2.7) are well-defined.

Because if we took another system of orthonormalized eigenfunctions, A; would
be another matrix which is unitary equivalent to the original one.

We carry out the proofs using only real valued functions and hence all the
functions and function spaces in the following sections are real valued.

§3. Proof of Theorem 2.2.

Before the proof of the theorems, we recall some results (in the following
propositions) which were obtained in the earlier work (Fang [10], Jimbo [16],
Jimbo and Morita [18]). Let {®, ¢}#, be any complete system of eigenfunc-
tions for orthonormalized in L*Q(2)).

1 for b=y
3.1 @D 0200 = { - (k,jzD).
0 for b=+

According to the decomposition of the set of eigenvalues [2.4), we can express
{D,.c} o=y as follows,

(32) {@k.c} P {¢k.c}7;=1u {¢'k.(}2°=1 ’

where ¢ ¢ and ¢, ¢ correspond to w,() and 2:(0), respectively. We have the
= following characterization for these eigenfunctions.

ProposITION 3.1 ([16]). Assume (A). Then we have,
liIIclf‘}.lp lDe. cllzococryy < oo,
3.3) ICI_I};I e, cllLocoeryy = oo,
11‘?50“9 e, cllLicoanl™ P72 < oo
PROPOSITION 3.2 ([16]). Assume (A). Then, for any sequence of positive

values {{n}m=1 with im .. {r=0, there exist a subsequence {Gn}m=1C{ln}n=1 and
complete orthonormal system of eigenfunctions {¢.}i=: in (2.2) such that
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m—»00

(3.4) limsupfélglqﬁk,am(x)—qik(x)l =0, (kz1),

3.9) limsup  sup  [@r, 0, (%1, X)—V,(x)| =0, (k=1),

Moo (21, T'IEQI )

where V, is defined through (2.5) by the above ¢,.

PROPOSITION 3.3 ([10]).

_ oo 101 1
(3.6) @& =0, léi’%rn_lcn-l*2(xDll+lDzl)‘

REMARK 3.4. We remark that [Theorem 2.3] generalizes [Proposition 3.3l
By taking ¢,, ¢,, V., V, as follows,

¢:(x) = (ID:|+1D.D7"*  in DiUD,,

| D, |*2/1 D |*?| DI in Dy,
¢2(x):{ X

—|D:[**/| D, || D|®  in D,,
Viz) = (| D +1D.1)712,

e
2|D1|1/2[D|1/2(2+1) 2|Dz|1/ZID[1’2(1 2),

we see that [2.7), [2.8) of [Theorem 2.3 for ;=1 coincide with (3.6). We de-
noted the volume of the regions D,, D,, D by |D,|, |D.|, |D|. From D,N\D,

=@, we have |D|=|D,|+|D,].

Valz) =

PROPOSITION 3.5 ([18]). Let @i, @. be functions defined in the above Remark,

3.7 lim Splvm,gwx/cn—l =0, (k=12).

im g~ 2 @uc $uamdalines/ =0, (=1,2),
3.8)

2
lcifrol Ip— 23 (@i Pr. D2 Prclllnemy/E* =0,  @=1, 2),
where ¢ ¢ is defined as follows,

Ok (X)) = @, c(x)/|Dr.cll L2y re€RQ) (k=1).

We define some notation which we need in the proof.

o) =\, 1Vepltdx, s = lplndx.

2

Let r; be the largest natural number r satisfying Zr<cukj. If there is no such
number, we put r;=0 for convenience. The key in the proof of the main
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results is to make full use of the following approximate eigenfunctions,

V() in I'©),
(x,:—1—=28)/28 ¢ (L, )+ —x1)/20 Vi(xy), in R,(0),
(1 +D/28 Vo (x )+ (—=14+20—x1)/20 ¢ (—1, x), in Ry,

[ Pe(x) in D,

QDk,c(x) = 1

(k21).
It is easy to see that

Orc € CROINH (QOQ)NW =)

and there exists a constant ¢;(k)>0 for each £ such that

Qe (D) + V20 () S ei(R)  ace. x€2(0), 0<C<Ly).

In the proof, we will prove that ¢, ¢ is a nice approximation of the true eigen-
function ¢,.¢. is only a special case of [Theorem 2.3. But we
will first prove [Theorem 2.2 so that we see the important point of the proof
avoiding the complicated notation. In this section, we assume that (A) and w;
is simple for k=3 and hence it means that k,=1 and k;=j+1, (=2). Let
{¢:} 1= LA(D) be any complete orthonormal system of eigenfunctions of [2.2).
From the above assumption, by replacing ¢, by —¢, ¢ if necessary we can
assume

3.9 1}3} I|¢k,C_SDk,C”L°°(.Q(E)) =0,

for k=1 (see [Proposition 3.2).
We will prove the following, inductively, in j>2,

(3.10), lim 2O =9 _ [ ((i‘ﬁ)z—mjvg)dz ,

g-o0 'Z-n—lcnn1 -1 dz
3.11); ICIE} I¢s.c— é: (@i Pp)rem@Prlliemy/C* 1 =0,
(3.12), lim 6~ 8 Gh.c-Blreobhclian/C = 0.

As we mentioned just before in the Remark, the case j=2 is true from Pro-
position 3.5. Thus we assume (3.10);, (3.11); and (3.12); for j=2, ---, [—1. To
prove (3.10);, we use the variational characterization of the eigenvalue,

0,(0) < gé%)— for any o< HY((C)) with

(00501200 = (@ Pn. 2oy =0, (AZ/=ZI-1 1Sh<r).
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Put

l-1 T
=@, > ((Pz,:'¢j,:)L2<!2<;))¢j.;- > (SDz,c'¢n,c)L2<Q(:>)¢n.;
J=1 h=1

and then we have,

-1
49 Delp) = SQ(C) lVgol,;Izdx—j‘é‘l @@, $i.0 ke
T
—hgl'zh(C)(‘Pl,C’¢h,c)ﬁ2c9<:))
(3.14) H( )‘“S I izdx——l_zl( Psr)?
. A= 20 Pue = O 950k

Ty
"‘hgl (gDz. g ¢'h,c)22<9<:)) .

We can evaluate the first (main) terms in 9:(¢), 4 (¢) exactly modulo O(").
From the definition of ¢, ;, we have,

3.15) SQ(C;'VSDI.C'de = SD|V¢’ *dx +SQ(C>IV¢l'd2dx
1, dV N2
= wl_*"Tn—lCn—lS-l(Tgi;l") dz+0(")
. 2 -— 2 2

=14z, 0| Vida+0@o).

Applying (3.3), and (3.11);, 2<;<!—1) and the_orthonormality of {¢:} =
L*D), we estimate the remainder terms as follows,

3.17), (PrzPidrzy = (PiBj. ey = oD%, 1<5<0-1),
(3.17), Q1,0 PiDr2c0y = O™ 1), (1</<0-D).

To estimate the latter half of the remainder terms, we do as follows. So we
obtain, from [Proposition 3.1|,

(3.18) (.o Pr. 2o = @uc—@u Pn. D2
< o= cllzewa | Pn.cllizicey = 0O @112 = o(Lr-b12),

From all the calculations, we have,
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wz+rn_1C""‘Sl_l(de/dZ)zdz-FO(C"“)

(3.19) 0 < )
l+rn_1C”“S~1V%d2+o(§““1)

B S 1((‘1;;‘) wLV2>dz+o(C" .,

On the other hand, we estimate w;({) from below. Using above estimate, we
have,

dx

I

620 @@=, [Vpucltdr={ |Vgucltdr+| |Tgucldx
)

9(p1.c— & @

+ g} J(¢Z,C'¢j)%2(D)+SQ(V) Vo, z|%dx

= wlSol¢’l.c‘ g(sﬁt.rﬁﬁi)mcméﬁj de

-1
+ Sofguc)baot| [Toucldx

-1
o, 19l e+ 5 @—0) e @bt |, [Tl

i
e

l(l—SQd)‘¢l‘c|2dx>+0(cn—l)+gmc)|v¢l,c|2dx

= o(t—en- 8] Vide)ro@ 4| 19gucltax,

In the above process, we used ((3.8), (3.11);, 2<;<[—1). From (3.19), we get

. 2 n-1 ! ﬂl_ :
(3.21) 11%1%upSQ(:)IV¢z,c| dx/tn Q" < 5—1( iz ) dz.

To estimate the left side of the above expression, we define
ey, ¥) =0y, L), in I={(y, y)ER"||y:|<1, |y'|L1},
and we have,
a6
(3.22) (G 1 g ie)ay < | 19gnelsde/ee

and hence it yields {g; ¢}; is bounded in H*(I) from [(3.22) and it is also weakly
relatively compact. From ((3.9), we see that ¢, weakly converges to V, in H'.
Hence by the lower semicontinuity of the weak convergence of ¢, . in H'(I),
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we have,
.. a—z,c 2 oVi(y)\?
(3.23) lipinf Sz(_ayl e u—ay‘_) dy.
From [3.21), [3.22) and [3.23), we get,
M 2 n-1 — ! _4_1__/_1_ 2
(3.20) tim |19l ma = (Y e
With (3.19), (3.20), we get,
. oQ—w 1 Ei_ﬁ : 2
(325) lcl_{{]l _T:ZFT = S_1<( dz ) lel)dz .
Applying this result to (3.20), we have,
[, [ 78u.c%dx
(3.26) e —w, = oY),
SDI¢z,c|2dx

To prove (3.11);, we calculate as follows. From

wz+1gb[¢z.c— él(¢l.g'¢k)L2(D)¢k |?dx

= SDIV(¢I’C_k§l1 (Dr.0-Pe)rec;yPr)|*dx

we have,

(wl-ﬂ_wl)SDI ¢z,c“k§l1 (¢z,§' ¢k)L2(D>¢k | ’dx

< | 19pucltdv—o] 19piclidxt B @—00@ue g0t

From [(3.17), [(3.26) and w,,,>w;, the value of the right hand side is o(¢*"*) and
(3.11), is proved. (3.12), follows from

11— (D101 Dr2c;@t, cll ooy = 101, c— (DL P12y DillEe s
= |01, c— (@1, D)2 Pi | Zeoy/ 11, 32y = oY)

Thus (3.12), is true and this completes the induction and the proof of Theo-
rem 2.2.

§4. Proof of Theorem 2.3.

In this section, we will prove [Theorem 2.3 The proof is a more com-
plicated because of the multiplicity of the eigenvalue, but the idea is essentially
same as that of [Theorem 2.2, We will proceed under the same notation as in
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§3. We will show (2.7); and the following (4.1);, (4.2); by induction in 7. As
is mentioned in § 3, the first step j=1 of the induction corresponds to Proposi-
tion 3.3, [Proposition 3.5 and hence we assume that (2.7);, (4.1); and (4.2); are
true for j such that 1<;<p—1 and prove (2.7),, (4¢.1),, and (4.2),.

Bjeg-1

4.1); I @s.c— kgl (@s.c*Pr)ecmn@rlliecpy = 0oC"7Y), (1<s< k).
Bjap-t

(4-2>j Hﬁbs—‘ kg (¢s'¢l/e, :)L2<D)¢;z,cH%2(D) - O(Cn_l) ’ (1<s< kj+1)-

To prove (2.7),, (4.1), and (4.2),, we take arbitrary sequence of positive values
{Ca}3=; with limp-.lx=0. From [Proposition 3.2, we can choose some sub-
sequence {Gn}m=1< {{n}m=1 and complete orthonormal system of eigenfunctions
{@r}i=1 of and solutions {V .}, of so that all statements in Proposi-
tion 3.2 hold and we have only to prove (2.7),, (4.1), and (4.2), with these
functions, because the value of the right hand side of (2.7), and the meanings
of (4.1); and (4.2); do not depend on choices of such {¢;}i.,. To avoid very
complicated notation, we put, N=*k,.,—k, and a quadratic form,

4.3) G&) = (Ay6-8rv, E=4&, -, En)ERY.
G is also expressed as

GE) = GiE)—w,Gx(§),  when G = = Nai(r, Pé+&q,

17,9

for /=1, 2 and

dep+r~1 dep+q—1
dz dz

aitr, =1, dz, a9 =\ Viper Viparda

ap(r, @) = ap(r, Q—wr,a3(r, 9.

To prove (2.7),, (4.1),, (4.2),, we will prove the following (4.4);, (4.5);, (4.6);,
(1£s<N) by induction in s.

wkp+r—1(0'm> - wkp+r—1

(4.4)8 7]r-,,i£1;1’ Tn_lo'#‘_l = lep(?’), (1§r§s> s
kp+1—1

(4.5)s H¢kp+r—1-0m_ E‘l (¢kp+1'—1.6m'¢k)L2(D)¢kHz2(D) = o(oY),

(4.6)s Gle,) =ay(r), (1=r=s),

where ¢, is the vector in RY whose g¢-th element is 1 and others are 0. For
later use, we take an orthonormal system of eigenvectors b,, b,, ---, by RY of
the symmetric matrix A,=(a,@, ¢)isr.qsy corresponding to the eigenvalues
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a,(N=<ap2)< - Zap(N). We define,
N
SBT,I(X) = qgl bqrgokp+q—l,;(x), XEQ(C), <1§7§1V),

where we denote the g-th element of the vector b,=RY by by,.

However the first step (4.4),, 4.5),, (4.6); can be proved by a similar argu-
ment as in the proof of with the aid of @, . and the spectral gap
between w, o1 and Wk - We assume (4.4); and prove the next step. To prove
(4.4);.,, we choose a non-zero element

I3

97’; = L h [951.§, 952,(;, ) ¢s+1.£] < LZ(Q(C))
such that

“.7) (¢c'¢kp+r—1,;)m(52(z>> =0, (1<r<s),

where L. h. [W] is the subspace spanned by the set W. By multiplying by an
appropriate constant, we can express ¢; as follows,

8+1 8$+1
= 2 ¢Q@a.t 20 =1.
q=1 g=1
Putting
kp-1 rp
¢F = ¢— kgl (¢§'¢k.C)L2(Q(:))¢k,:"‘k§1 (@e- e, Dz Pe. ¢

we have,

kp-1
D98 = |, 199:"dx— 5 0nQ@c$u. Do

~ B O e Do

ky-1

) Tp
I (PF) = SQ(,)Sﬁ?d-’C— 2 (B drdizecn— EI@:'%,:}%Z(!)(;»-

Applying a similar argument as that to prove (3.17),, (3.17), and (3.18), we see
that the remainder terms can be estimated from (4.1),_, as follows,

(Do " Pr.om)r2caco = 0(aw %), (1=k<ky),
(Do Pr, o )L2@co > = 0(a7 0%, (ISk=Zry).
Using these estimates, we have,
Ko (@F) =147, 1007 Go(E(n)+0(arh),
{ Do (B3,) = @r ,+T0105 ' G1(E(an))+o(ar™),

“4.8)

where £(0) = sé c(Ob, = RV .
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From the Taylor expansion theorem, we get

Do ($5,0)
H o (P3)

From the fact that b,, ---, b, and bs., correspond to the eigenvalues a,(1), -,
ap(s) and a,(s+1) respectively and the minimax characterization of the eigen-
values of a real symmetric matrix, we have,

= W, 70100 (GiE(0n)— 0, Go(§(0m)))+o(0n™).

4.9) ap(s+1) = Gbss1) =2 GEQ) = Gi§Q)—w:,G2(6(0)).
Consequently we have,
(4.10) wkp+s(am) = a)kp+z'n_1o,’,i‘lap(s+1)—!—0(0,’,‘1“) .

Thus we conclude the estimate from the above.
On the other hand, to obtain an estimate from below, we use,

e Oryeo@ = | [TBeyencl?dx +{, 196,01

To estimate the right hand side from the below, we see,
kp—l

IN(@x s, c— kgl (G pes. 0 Pr)rzmyPr)llfocm

kp—l
Z O, Grprec— 2 Brprsc PedremPrlien
or equivalently,

| kp-1
||V¢kp+s,£|[z2(D) = wkp”¢kp+s.;§l22(m+ ka (wk_wkp)(¢kp+s,c‘¢k)12,2(m .

The second term is o(ep™!) from [Proposition 3.1 and (4.2),-,. To see this, we
use and (4.2),-, as follows,

kp—l

4.11) (¢kp+s,c'¢k)L2<D) = (¢kp+s,:' r§1 (@ D7, Or20yPr. Dr2cpy 0172

kp—1

2
= (Prpesct I (Be- 97 Drem@r. Drecoy T0 7P = oL 7P7).

Thus using the above argument in (%), we get,

412 onperow) = | [Wnenonl®dx 4| [Tgs0n %

= wkp”¢kp+8, Om [[IZ‘Z(D)‘E‘O(Uﬁ_l)‘i‘Sme) | vSﬁki,w. oml2dx
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= wkp(l|¢kp+s, omllE2c0¢o = ”¢kp+s, emllE2ceo ) Ho(em™)

2
+SQ(am)|v¢kp+s-6m| dx

= wkp(l—-Tn~10%”‘SLV§p+sd2>+0(0£’f1)+Sqwm) |V¢kp+s_ ol 2dx .

Consequently, we get, with [(4.10),

. 1
(4.13) limsup n—ISQ(,,m)meH»omizdx < ap(s+1)+wkngV%p+sdz.

Moo Tp10m

We can apply similar arguments as in the §3 to the stretched functions

{Bryrsomtmer  (f Ga,c(yy, ¥)=0sc(yy, L), kZ1),

defined in the region I={(y,, y)ER"||y,| <1, |y'|<1} (see (3.21)~(3.24)) and
from (4.13), we deduce H'(I) a-priori estimate to this family {;Ekp+s,,,m}m and
with the aid of [Proposition 3.2, we have that 5kP+s_,,m(y) converges to Vi .s(3.)
uniformly in I and weakly in H'(J) when m—c and we obtain,

.. 1 . dep+m 2
(414) liminf —'—ﬁ:Sme)|v¢kp+s,am| dx _Z_ SL(W) dZ .

Mmaoo Tp_10m dZ
From (4.12), we have,

dvkp+s 2
dz

= wkp+r7l,—1017;1,—10(28+1)+0(0‘177lb_1> .

From |(4.10) and (4.15), we have,

(4.15) Wryrs(Om) Z wkp+rn_101’h"SL( —wka%p+s>dz+0(o£‘f1)

Ton10m ap(s+1) = 7,007 Gles ) +o(an ™),

and so by taking m—oo, we have G(es.)<ap(s+1).

By applying the min-max principle using the orthogonality of e, e,, -, e;.,
and (4.6); to the quadratic form G we conclude G(es.,)=a,(s+1) and at the
same time, we see, from [4.10), (4.12), (4.15),

a)kp+s<0'm) - wkp'}‘fn—lo'#v.—lap(s+l)+0(01rrlt—l) .

Thus we have proved that (4.4),,, is true. By using (4.12)-(4.15), we see,
SD|V¢kp+s,om|2dx

2
SD¢kp+s, omdx

On the other hand, we have,

4.16)

—wkp = o(ox™.
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kpep-1
”v(¢kp+s, Cm kgl (¢kp+s, om” ¢k>L2(D)¢k)H%2(D)

kp+1—l
gwkp+1”¢kp+s,am"‘_ kgl (¢kp+s,am’¢k)L2(D)¢k”12“2(0)

or equivalently,

kp+1—1
(wkp+1—'wkp)||¢kp+s, om kz—}1 (¢kp+s, om '¢k)L2<D)¢k 220

kp-1

r
= SD|v¢kp+s,amIzdx_wkpSDgﬁl%pﬂ,umdx‘{_ kgl (wkp—wk)(¢kp+s,am’¢k>12ﬂ(D)-

In the above, we used W, =W 1= =W, 1 The last two terms of the
right hand side are o(¢7™") from (4.11) and [4.16). From this, we complete the
proof of (4.4)s,,, (4.5).,, (4.6),., and at the same time (4.4);, (4.5);, (4.6); are
true for s=1,2, ---, N. The whole sequence {{.};m-, is arbitrary and so these

mean that (2.7), and (4.1), are true. We will prove (4.2),. In the process of
the above arguments, we also have,

kp+1—1 kp“'l—l .
’
2 18— 2 (s fho )i, iz

kp+1—1

kpt+1-1 kp+1-1
=" g2 'S G bho bt 2 B b))

k

1—1

Ept ,
1282 GG uo @t oo

kp+1—1 , kp+1—1
= k§ {”¢k,om“22(m“ 8?1 (¢s'¢;’e,am)z%2(b)}+0(0'ﬁ—l)

kp+1—1 , kp+1—X , . »
= k; ||¢k, om g‘_{ (¢s'¢k,am)LZ(D>¢s”L2(D>+0(0'7'rl» )
=o(or™"), asm— oo,

In this calculation, we used

(@ Pr. ey = —(@g. ¢ Pr. Dreceeryy = 0Q* ™),
(**) Bpi1-1
é]l (@s@q, D20y (PP, D12y = 0(1), 1<g<r<kp.y,

which follow from |[Proposition 3.2, This calculation concludes (4.2), and the
induction is completed and the proof of [Theorem 2.3 has been completed.

REMARK 4.1. We can prove estimates which are stronger than (4.1); and
(4.2);. Actually the following convergences are true.
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S V. c|?dx
4.17) 2 —wy=0l*Y)  (s=1),
SD¢3,¢dx
kjtq-1
4.18); H¢s,("’ ;2::1 (¢s,£'¢k)L2(D)¢k”%11(D) =o{" ), (1§S§k1+1)-
kjy1-1 , ,
4.19); @s— ka (@s* Bt D2y, iy = 0o C* ), (I=s<kji1),
for any j=1.
(4.17) follows from [4.16). We give proofs of (4.18); and (4.19),.
kjy1-1 kjr1-1
> V(@ c— k21 (@s. 0O 2P i) 12>
y -
k. 1—1 k +1 1

= '3 (I960dbm— 3} 0xsc gt

-%J
kjy1-1

= 2 (IV@s. cll 220y — @5 | @s, cll E2)
s=kj

kjry—1 kj+1—1
+ Zk s || Ps, c— kZ (@s. 0 Dr)rec;ryPrllF2m
8= j =1

kjry—1 kj-1
+ 2 2 (wkj_wk)(¢s,5'¢k)%2(D)

s=kj k=1

From [4.17) and (4.1);, each term in the right hand side is o({*"!). 4.18); is
proved. To prove (4.19);, we remark

| 19gictdr—on = 0@ 2D,
SQ(C)'V¢;'d2dx - S.Q(C)IV¢Q'C|2dx_SDlV¢;'d2dx

= 00, _19c2dx— @it )

= (@s+ 0@ NA+0C* ) —(@s+oC M) = 0 ).

Using this estimates, we calculate as follows,

k'+1

g3 Gl duawdh0 b

kjyqm1 Bjp1m1
= 5 (02 S @9k 0T Tk I x

j
kil

TR

T,

(Be- 6. Qr2cor(Ba $h Drecon(TP. T4, Drecrs )

1
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Bji1mt kjvy1

=5 (], 78c7ax =27 @y $h0120o (T80 Ik Drrc
s=kj D k=1
Bjty1 ,

+ 2 (Ps- 01 Di20r [ VPk, ¢l L2n

—2 3 (G 8 dnsr (@ B Drsan (T, T Drscocen )

1sr<k<kj+y

kjpq=1

= '8 (9@t S Gheduwmdlbo

kjeq-1
+ 2 (@l g b(198h <l rm—ws) )+o(C ).

From 4.17); and (4.18);, this term is o({*"!). In the above calculation, we
used (xx). .
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