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Introduction.

Harmonic maps $\psi:(M, g)arrow(N, h)$ between Riemannian manifolds are the
smooth critical points of the energy functional

$E( \emptyset)=\int_{M}e(\psi)dV_{M}$ ,

where $e(\psi)=(1/2)|d\psi|^{2}$ is the energy density of $\psi$ . Or, equivalently, the $C^{2}$

solutions of the elliptic system

(0.1) $Trace_{g}\nabla d\psi=0$ .

The left-hand side of (0.1) is the tension field of $\psi$ , denoted $\tau(\psi)$ ; it is a vector
field along $\psi$ : we refer to the surveys [5], [6] for complete definitions and
background.

Since the pioneering work of Eells and Sampson ([7] (1964)), harmonic maps
have attracted the interest of both geometers and analysts: during the early
stages of the theory, research was focused on maps between compact manifolds.
Indeed, in a compact setting a harmonic map provides a strong candidate for
a “best map” in a prescribed homotopy class; and a natural generalization of
the concept of closed geodesic.

More recently, harmonic maps of non-compact domains have become object
of growing interest: as a significant example, we quote the discovery of a new
family of harmonic maps $\psi:R^{2}arrow H^{2}$ of rank two almost everywhere; that was
obtained by Choi and Treibergs [4], using a version of Ruh-Vilms’ Theorem
for constant mean curvature hypersurfaces of Minkowski 3-space. It is naturaI
to view the study of harmonic maps of non-compact domains as a generaliza-
tion of the theory of harmonic functions $f:Marrow R$ on complete Riemannian
manifolds [18]; however, we point out two key differences:

a) a single equation – $i.e.,$ $\Delta f=0-is$ replaced by a system – $i.e.,$ $(0.1)$ .
b) the curvature of the range plays a role, making system $(0.1)$ non-linear.
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Nevertheless, Liouville’s type Theorems for harmonic maps have been obtained
$([3], [16J, [17])$ ; more generally, one expects relations between the growth at
$\infty$ of solutions–or of their energy density–and the geometry of the manifolds.

In this paper we undertake this type of study under the hypothesis that
the domain $M$ is a complete, $m$-dimensional Riemannian manifold such that
Ricci $(M)\geqq-AG(r)$ , where $A$ is a positive constant and $r$ denotes distance from
a fixed point $q\in M$ (the choice of $q$ plays no role in what follows); $G(r)$ is a
positive, non-decreasing function such that $G(O)=1$ and $G(r)arrow+\infty$ as $rarrow+\infty$ .
In the sequel, we shall always abbreviate this by simply writing that $M$ satisfies
Ricci $(M)\geqq-AG(r)$ .

We prove our results by studying the relations between the growth of $G$

at $+\infty$ and the existence of $C^{2}$ solutions on $M$ of differential inequalities of
the type

(0.2) $\Delta u\geqq b(x)\varphi(u)$ , $x\in M$

(the sign convention is $\Delta=div(\nabla u)$ ). Osserman [12] and Redheffer ([14], [15])

studied (0.2) in the case $M=R^{m}$ , while Calabi [1] analysed the case Ricci $(M)$

$\geqq 0$ : their use of the maximum principle has inspired our work.
In Section 2 we obtain a priori estimates for the energy density of bounded

harmonic maps $\psi:1tfarrow N$, where $N$ has non-positive sectional curvature $((2.12)$

below). As a by-pass product of our analysis we also obtain refinements
(Theorem 2.17 and Corollary 2.24) of results of [2] and [9] on the image dia-
meter of maps with bounded tension field; in the case of isometric immersions
this also complements work of Karp [10].

In Section 3 we illustrate further applications and extensions to rotationally
symmetric manifolds (i.e., models in the sense of [8]); in particular, we ex-
tend work of Tachikawa ([16], [17]), proving non-existence results for certain
harmonic maps into Hadamard manifolds or models (see (3.26), (3.37-41) below).

Most of the technicalities of this paper rely on the analysis (Section 1) of
an $0$ . D. E. which arise from the study of rotationally symmetric solutions of
(0.2): reading Sections 2 and 3 requires some familiarity with notation and
facts of Section 1.

We also remark that the methods of this paper can be applied to study

other elliptic equations of geometric interest; in particular, they yield some
non-existence results for the non-compact Yamabe problem, as we shall illustrate
in a forthcoming paper. Finally, we mention here that the works [10], [11],

[13] deal –by different methods –with problems related to this paper.
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1. Analysis of the 0.D.E..

In this section we establish some qualitative properties of solutions of (1.1)

below: the key technical result is Proposition 1.11.

(1.1) $\alpha’’(t)+(m-1)[\tilde{g}’(t)/\tilde{g}(t)]\alpha’(t)=f(\alpha(t))$

$\alpha’(0)=0$ , $\alpha(0)=a_{0}$ , t10

where $m\geqq 2,$ $f\in Lip_{loc}(R),$ $f$ is non-decreasing and nonnegative; $\tilde{g}\in C^{1}([0, +\infty))$ ,
$\tilde{g}>0$ on $(0, +\infty),\tilde{g}(0)=0$ and $\tilde{g}’(0)>0$ . Unless otherwise specified, in the sequel
we shall tacitly assume that the above assumptions on $f,$ $g$ and $m$ hold (but

we note that the assumption $f$ non-decreasing is unnecessary in Lemma 1.2
below).

LEMMA 1.2. The Cauchy problem (1.1) has a unique solution a which is de-
fined on a maximal interval $[0, T)$ . Moreover, if $f(\alpha_{0})>0$ , then $a’>0$ on $(0, T),\cdot$

and if $T<+c\circ$ then $\alpha(t)arrow+\infty$ as $tarrow T^{-}$ .

PROOF. First we write (1.1) in integral form

(1.3) $a( r)=a_{0}+\int_{0}^{t}[\tilde{g}(s)]^{1-m\{\int_{0}^{s}[\tilde{g}(\mathcal{U})]^{m- 1}f(\alpha(u))du\}ds}$ .

Existence and uniqueness for small $t$ is standard: it can be obtained by apply-
ing the Picard iteration procedure. To see that $\alpha’(t)>0$ for $t>0$ , we write
(1.1) as

$(\tilde{g}^{m- 1}a’)’=\tilde{g}^{m- 1}f(\alpha)$ .
Integrating over $[0, t]$ and using $\alpha’(0)=0$ we find

$[ \tilde{g}(t)]^{m- 1}a’(t)=\int_{0}^{t}[\tilde{g}(s)]^{m- 1}f(a(s))ds$

from which the assertion follows immediately. Finally, let $T<+\infty$ and sup-
pose that $\alpha(t)arrow c<+\infty$ as $tarrow T^{-}$ . Then $[\tilde{g}(s)]^{m-1}f(\alpha(s))\in L^{1}([0, T])$ ; therefore
differentiating (1.3) we find that $\alpha’(t)$ converges to a finite limit as $tarrow T^{-}$ , a
fact which contradicts the maximality of $[0, T)$ . //

LEMMA 1.4. Let $\alpha$ be a solution of (1.1) on $[0, +\infty)$ such that $\alpha(t)arrow+\infty$ as
$tarrow+\infty$ . Suppose that $\tilde{g}’\geqq 0$ and

(1.5) $([f(t)]^{\eta}/t)arrow+\infty$ as $tarrow+\infty$ , for some $\eta>0$ .

Then for any $c>0$ there exists $\tau_{0}\in(0, +\infty)$ such that

(1.6) $\{1-(m-1)(2/c)^{1/2}[\tilde{g}’(t)/\tilde{g}(t)][f(a(t))]^{(\eta- 1)/2}\}f(\alpha(t))<\alpha’(t)$
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for all $t\geqq\tau_{0}$ .

PROOF. Because a’lilO and $\tilde{g}’\geqq 0$ , (1.1) implies $f(\alpha)a’\geqq a’’a’$ . Integrating
this inequality over $[0, t]$ and using $\alpha’(0)=0,$ $a’>0$ on $(0, +\infty)$ we obtain

(1.7) $2 \int_{\alpha_{0}}^{\alpha(t)}f(s)ds\geqq[\alpha’(t)]^{2}$

Given $c>0,$ $(1.5)$ guarantees the existence of $t_{0}$ such that

$[f(t)]^{\eta}>c(t-a_{0})$ for all $t\geqq t_{0}$ .

We choose $\tau_{0}\geqq t_{0}$ in such a way that $a(t)\geqq t_{0}$ for all $t\geqq\tau_{0}$ ; it follows that

(1.8) $[f(a(i))]^{\eta}>c[a(t)-\alpha_{0}]$ for all $t\geqq\tau_{0}$ .
From now on let $t\geqq\tau_{0}$ . From (1.7) and $f$ non-decreasing we get

$[a’(t)]^{2}$ $ $2f(a(t))[a(t)-a_{0}]$ .

Thus, applying (1.8) and elevating to 1/2, we obtain

(1.9) $\alpha’(t)<(2/c)^{1/2}[f(\alpha(t))]^{\mathfrak{c}\eta+1)/2}$

NOW multiplying (1.9) by $(m-1)[\tilde{g}’/\tilde{g}]$ and using (1.1) gives (1.6). //

(1.10) In order to measure the rate of growth of $[\tilde{g}’(t)/\tilde{g}(t)]$ as $tarrow+\infty$ it is
convenient to introduce two classes $\mathscr{F},$

$\mathcal{G}$ of $C^{1}$ functions $F$ defined in a neigh-
bourhood of $+\infty$ : namely, we say that $F\in \mathcal{G}$ if $[F]^{-1}\not\in L^{1}(+\infty),$ $F’(t)\geqq 0$ ( $t$ large)

and $F(t)arrow+\infty$ as $tarrow+\infty$ . And $F\in \mathscr{F}$ if $F\in \mathcal{G}$ and furthermore

$\lim_{tarrow+\infty}F’(t)[F’(t)]^{-\epsilon}\in R$ for any $e>0$ .

Examples of $F(t)\in \mathscr{F}$ are: $t,$ $t\log t,$ $t[\log t][\log(\log t)],$ $\cdots$

NOTATION. $[\tilde{g}’/\tilde{g}]=O(k)$ means that $[\tilde{g}’(t)/\tilde{g}(t)]/k(t)arrow 0$ as $tarrow+\infty$ .

PROPOSITION 1.11. Let $a$ be a solution of (1.1) such that $f(\alpha_{0})>0$ . Assume
that

i) $([f(t)]^{\eta}/t)arrow+\infty$ as $tarrow+\infty$ , for some $0<\eta<1$ ;

ii) there exists $0<\gamma<(1-\eta)/(1+\eta)$ and a nonnegative function $D(t)$ such that

$[\tilde{g}’(t)/\tilde{g}(t)]\leqq D(t)$ ; and $D(t)=O(F^{\gamma})$ for some $F\in \mathscr{F}$ as in (1.10).

Then $a$ is defined on a maximal interval $[0, T)$ with $T<+\infty$ .

PROOF. For technical reasons (the application of Lemma 1.4) we begin with
proving the Proposition under the additional hypothesis that $\tilde{g}’\geqq 0$ . We define
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$h(t)=[ \tilde{g}(t)]^{1-m}\int_{0}^{t}[\tilde{g}(s)]^{m- 1}ds$ , $k(t)=[ \tilde{g}’(t)/\tilde{g}(t)]\{\int_{0}^{t}h(s)ds\}^{-\delta/\eta}$

where $\delta=(1-\eta)/2$ ; for a moment, let us suppose that

iii) $h(t)\not\in L^{1}(+\infty)$ ; iv) $k(t)\in L^{\infty}(+\infty)$ and v) $\{\int_{0}^{t}f(s)ds\}^{-1/z}\in L^{1}(+\infty)$ .

We show that iii), iv) and v) together imply the Proposition: by contradiction,
let $T=+\infty;\alpha’\geqq 0$ and $f$ non-decreasing force $f(\alpha(t))\geqq f(\alpha_{0})$ for all $t\geqq 0$ . There-
fore from (1.3) we have

(1.12) $\alpha(t)\geqq\alpha_{0}+f(\alpha_{0})\int_{0}^{t}h(s)ds$ .

NOW (1.12) together with iii) imply that $\alpha(t)arrow+\infty$ as $tarrow+\infty$ , so that the
hypotheses of Lemma 1.4 are satisfied. Moreover, for $t$ large, $f(a(t))\geqq[\alpha(t)]^{1/\eta}$

by i). It follows that

$[\tilde{g}’/\tilde{g}][f(\alpha)]^{-\delta}\leqq[\tilde{g}’/\tilde{g}][\alpha]^{-\delta}/\eta\leqq c_{1}k$

for some $c_{1}>0$ . Applying iv) and (1.6) with a sufficiently large $c>0_{\Delta}we$ obtain
the existence of $B>0$ such that

(1.13) $Bf(a)<\alpha’’$ for all $t\geqq\tau_{0},$
$\tau_{0}$ large.

Multiplying both members of (1.13) by $\alpha’$ and integrating over $[\tau_{0}, t]$ gives

(1.14) $(2B) \int_{a(\tau_{0})}^{\alpha(t)}f(s)ds+[a’(\tau_{0})]^{2}<[a’(t)]^{2}$ .

Because $\alpha’>0$ on $[\tau_{0}, t],$ $(1.14)$ gives

(1.15) $\alpha’(t)\{(2B)\int_{\alpha(?0)}^{\alpha(t)}f(s)ds+[\alpha’(\tau_{0})]^{2}\}^{-1/2}>1$ .

Integrating (1.15) over $[\tau_{0}, \tau]$ we obtain

$\langle$ 1.16) $\int_{\alpha}^{\alpha}|_{\tau_{0})}^{\tau)}\{(2B)\int_{\alpha(\tau_{0})}^{u}f(s)ds+[\alpha’(\tau_{0})]^{2}\}^{-1/2}du>\tau-\tau_{0}$ .

Letting $\tauarrow+\infty$ we see that (1.16) contradicts v): so (if $\tilde{g}’\geqq 0$) the proof is
complete provided that we show that iii), iv) and v) hold.

Proof of iii). If $\tilde{g}(t)$ is bounded the conclusion is obvious. So we assume
that $\tilde{g}(t)$ tends to $+\infty$ as $t$ goes to $+\infty$ : since $[F]^{-1}\not\in L^{1}(+\infty)$ , also $[F]^{-\gamma}\not\in$

$L^{1}(+\infty)$ for $\gamma$ as in (1.11) ii): therefore it is enough to show that

(1.17) $[F]^{\gamma}h(t)arrow+\infty$ as $tarrow+\infty$

NOW, using the explicit expression of $h(t),$ $(1.17)$ follows easily from de l’H\^opital’s

rule, (1.10) and (1.11) ii).
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Proof of iv). Using (1.17) we deduce that

$k(t) \leqq c_{2}+[\tilde{g}’(t)/\tilde{g}(t)]\{\int_{0}^{t}[F(s)]^{-\gamma}ds\}^{-\delta/\eta}$ for some $c_{2}>0$ .

Because of (1.11) ii) it suffices to show that $[F(t)]^{\eta\gamma/} \delta/\{\int_{0}^{t}[F(s)]^{-\gamma}ds\}$ converges

to a finite limit as $tarrow+\infty$ : but this follows easily from de l’H\^opital’s rule and
the fact that $F’F^{-\in}$ converges for all $\epsilon>0$ because $F\in \mathscr{F}$ .

Proof of v). Clearly $\int_{0}^{t}f(s)dsarrow+\infty$ as $tarrow+\infty$ , because $f(a_{0})>0$ and $f$ is

non-decreasing. Since $0<\eta<1$ we can choose $\sigma>0$ such that $[2\sigma+1-(1/\eta)]$

$<0$ . NOW we apply de l’H\^opital’s rule and (1.11) i) to obtain

$\lim_{tarrow+\infty}\{t^{2\sigma+2}/\int_{0}^{t}f(s)ds\}=\lim_{tarrow+\infty}(2\sigma+2)\{t^{1/\eta}/f(t)\}t^{2\sigma+1-(1/\eta)}=0$

from which v) follows.
Finally, we show that the assumption $\tilde{g}’\geqq 0$ is unnecessary. Indeed, we

can consider
$\alpha’(t)+(m-1)D(t)\alpha’(t)=f(\alpha(t))$

$\alpha’(0)=0$ , $\alpha(0)=a_{0}$ , $f(\alpha_{0})>0$

where $D(t)$ is a suitable function as in (1.11) ii). The previous argument (with

$\exp[\int_{1}^{t}D(s)ds]$ in place of $\tilde{g}(t))$ tells us that the unique solution of this Cauchy

problem is defined on a maximal interval $[0, T_{1})$ with $T_{1}<+\infty$ . Now standard
comparison arguments (using $[\tilde{g}’(t)/\tilde{g}(t)]\leqq D(t)$ ) imply that the solution of the
original problem (1.1) blows up in finite time $T\leqq T_{1}$ . //

A modification of the arguments of Proposition 1.11 gives

LEMMA 1.18. Let $\alpha$ be a solution of (1.1) whuch is defined on $[0, +\infty)$ ,

with $f(\alpha_{0})>0$ . Suppose that there exists a nonnegative function $D(t)$ such that
$[\tilde{g}’(t)/\tilde{g}(t)]\leqq D(t)$ ; and $D(t)=O(F)$ for some $F\in \mathcal{G}$ as in (1.10). Then $\alpha(t)arrow+\infty$

as $tarrow+\infty$ .

REMARKS 1.19. a) Hypothesis (1.1) ii) is quite sharp, as the following
example shows:

$\alpha^{\nu}(t)+\{[(t^{2}+3)^{\delta}-2]/2t\}\alpha’(t)=[\alpha(t)]^{\delta}$ $\delta>1$

$a’(O)=0$ , $\alpha(0)=3$

admits the global solution $\alpha(t)=t^{2}+3(here\tilde{g}(t)=\exp(\int^{t}\{[(s^{2}+3)^{\delta}-2]/2s\}ds))$ .

b) If $\tilde{g}’(t)\geqq 0$ , then the natural choice for the function $D(t)$ is $D(t)=$
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$[\tilde{g}’(t)/\tilde{g}(t)]$ ; in general, the function $D(t)$ serves a technical purpose of com-
parison, based on the fact that $\tilde{g}’(t)<0$ –and, all the more reason, $\tilde{g}’(t)arrow-\infty$

as $tarrow+\infty-is$ a condition which contributes to a faster growth of solutions
and so to their blowing up in finite time.

The following is a standard fact:

LEMMA 1.20. Suppose that the function $f$ in (1.1) satisfies
(1.21) $f(s)\leqq a_{1}s+a_{2}$ for some $a_{1},$ $a_{2}>0$ .

Then any solution $\alpha(t)$ of (1.1) is defined for all $t\geqq 0$ .

(1.22) For our purposes it will be useful to consider a variant of (1.1): namely,
let $a\in C^{1}(\overline{L}0, +\infty))$ be a positive function such that a $\not\in L^{1}(+\infty)$ . We con-
sider

(1.23) $\beta’(r)+(m-1)[g’(r)/g(r)]\beta’(r)=a(r)f(\beta(r))$

and set

(1.24) $h(r)= \int_{0}^{\tau}[a(s)]^{1/2}ds$ .

Then the change of variable $h(r)=t,$ $t\in[0, +\infty)$ , defines a bijection between
solutions of

(1.25) $\alpha’(i)+(m-1)[\tilde{g}’(t)/\tilde{g}(t)]\alpha’(t)=f(\alpha(t))$

where

(1.26) $\alpha(t)=\beta(h^{-1}(t))$ , $\tilde{g}(t)=g(r)[a(r)]^{1/(2m-2)}$ and

(1.27) $[\tilde{g}’(t)/\tilde{g}(t)]=[a(r)]^{-1/2}\{[g’(r)/g(r)]+[1/2(m-1)][a’(r)/a(r)]\}$ .

The proof of these facts is a straightforward computation and therefore we
omit it. We observe that (1.25) is of type (1.1); thus we can apply (modulo

the change of variable $t=h(r))$ the results of this section to (1.23).

REMARK 1.28. The methods of this section apply to the more general
Cauchy problem

(1.29) $|\alpha’(t)|^{-p}\{\alpha’(t)+(m-1)[\tilde{g}’(t)/\tilde{g}(t)]\alpha’(t)\}=f(\alpha(t))$

$\alpha’(0)=0$ , $\alpha(0)=\alpha_{0}$ , $t\geqq 0$ .

In particular, Proposition 1.11 holds in this case provided that $p<1,0<\eta<$

$1/(1-p),$ $0<r<[1-(1-p)\eta]/[1+(1-p)^{2}\eta]$ and $[\tilde{g}’/\tilde{g}]=o(F^{\gamma(1-p)})$ .
Equation (1.29) would permit us to study inequalities of the type
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(1.30) $\Delta u\geqq b(x)\varphi(u)|\nabla u|^{p}$ , $x\in M$

which arise in the study of the operator $div(|\nabla u|^{-p}\nabla u)$ . However, we shall
not pursue this generalization in this paper, because the case $p=0$ suffices for
the geometric applications of the next sections.

2. Estimates for harmonic maps.

Differential equations of type (1.1) arise in geometry from problems involv-
ing $\Delta r$ , where $r$ is the distance function from a fixed point $q\in M$. We will use
the following estimate which can be derived from [8]: suppose that Ricci $(M)\geqq$

$-AG(r)$ , as in the introduction; then, at each $x\not\in C_{q}$ (the cut locus of $q$), we
have

(2.1) $\Delta r\leqq(m-1)[g’(r)/g(r)]$

where $m=\dim M$ and, setting $\Omega=(A/(m-1))^{1/2}$ ,

$g(r)=[ \sinh(\Omega r)]\exp\int_{0}^{r}\Omega\coth(\Omega s)\{[1+(G(s)-1)\tanh^{2}(\Omega s)]^{1/2}-1\}ds$ .

We observe that

(2.2) $[g’(r)/g(r)]\simeq\Omega[G(r)]^{1/2}$ as $rarrow+\infty$ ; and

also recall that if Ricci $(M)\geqq 0$ , then (2.1) holds with $g(r)=r$ ; and if Ricci $(M)$

$\geqq-A,$ $A>0$ , we can take $g(r)=\sinh(\Omega r)$ .
LEMMA 2.3. [15] Let $M$ be a complete Riemannian manifold and $u$ a $C^{2}$

solution on $M$ of the differential inequality

$\langle$2.4) $\Delta u\geqq b(x)\varphi(u)$ , $x\in M$ ,

where $b(x)\geqq 0,$ $b\not\equiv O$ and $\varphi\geqq 0$ . Fix $q\in M$ and let $r$ be the distance from $q$ : If
there exists a $C^{2}$ function $v$ such that, for some $R>0$ ,

(2.5) $\Delta v<b$ on $M/B_{R}(q)$ and

(2.6) $v(x)arrow+\infty$ as $r(x)arrow+\infty$ ,

then either $\sup_{M}\{u\}=+\infty$ or $\sup_{M}\{u\}\in Z(\varphi)=\{t\in R:\varphi(t)=0\}$ .
PROOF. This was proved by Redheffer in case $M=R^{m}$ ([15], Theorem 1):

in this general case the proof is essentially the same and therefore omitted. //

In the notation of the introduction and Section 1, we have

LEMMA 2.7. Assume Ricci $(M)\geqq-AG(r)$ . Let $a(r)$ be a function as in (1.22)

and suppose that
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(2.8) $[\tilde{g}’(t)/\tilde{g}(t)]=O(F(t))$ ,

where $t=h(r)$ , as in (1.24); $[\tilde{g}’/\tilde{g}]$ is defined by (1.27) with $g$ as in (2.1); and
$F\in \mathcal{G}$ as in (1.10). Consider inequality (2.4) and furthermore suppose that $b(x)\geqq$

$a(r(x))$ on $M/B_{R}(q)$ , for some $R>0$ . If $u$ is a $C^{2}$ solution of (2.4) then either
$\sup_{M}\{u\}=+\infty$ or $\sup_{M}\{u\}\in Z(\varphi)=\{t\in R;\varphi(t)=0\}$ . Moreover, in the sPecial case
$a\equiv 1\equiv b$ , the concluston holds with (2.8) $rePlaced$ by

(2.9) $[G(t)]^{1/2}=O(F(t))$ .
PROOF. We proceed to the construction of a function $v$ as in Lemma 2.3.

Let $\beta$ be the unique solution of

(2.10) $\beta^{n}(r)+(m-1)[g’(r)/g(r)]\beta’(r)=(1/2)a(r)$

determined by $\beta(0)=0,$ $\beta’(0)=0$ . Equation (2.10) is of type(1.23), with $f\equiv 1/2$ :
so we can transform it into (1.25) (via (1.24)) and apply Lemma 1.20 to con-
clude that $\beta$ is defined for all $r\geqq 0$ . Moreover, (2.8) enables us to apply Lemma
1.18 and deduce that $\beta(r)arrow+\infty$ as $rarrow+\infty$ . Next, set $v(x)=\beta(r(x))$ ; we com-
pute using Gauss Lemma, (2.1) and (2.10) to get

$\Delta v=\beta’’(r)+\beta’(r)\Delta r\leqq\beta’’(r)+(m-1)[g’(r)/g(r)]\beta’(r)=(1/2)a(r)<a(r)\leqq b$

outside some $B_{R}(q)$ . Thus we can aPPly Lemma 2.3 to conclude. If further-
more $a(r)\equiv 1$ , then

$r=h(r)=r;//$
so $\tilde{g}=g$ and (2.2) tells us that in this case (2.9)

is equivalent to (2.8).

(2.11) Let $N$ be a complete Riemannian manifold such that Riem N$K, for
some nonpositive constant $K$ . We study harmonic maps $\psi:Marrow N$ under the
assumption Ricci $(M)\geqq-AG(r)$ . We say that any such $\psi$ is bounded if its
image is relatively compact in $N$. We have

THEOREM 2.12. Let $\psi:Marrow N$ be a harmonic maP between manifolds as in
(2.11). SuPPose that

$e(\psi)(x)\geqq[\epsilon+r(x)]^{-2d}$ outside $B_{R}(q)$ ,

for some $R,$ $\epsilon>0$ and $d\leqq(1/2)$ . If
(2.13) $[t]^{a/(1-d)}[G(t^{1/(1-d)})]^{1/2}=O(F(t))$

for some $F\in \mathcal{G}$ as in (1.10), then $\psi$ is unbounded.

PROOF. Let $\rho$ be the distance in $N$ from $\psi(q)$ . We prove the theorem for
$K<0$ (the case $K=0$ is similar). Without loss of generality we can assume
$K=-1$ : setting $h=(\cosh\rho)/2$ and $u=h\circ\psi$ , we compute (see [5])

(2.14) $\Delta u=\Sigma_{i}Hess(h)(\psi_{*}e_{i}, \psi_{*}e_{i})+dh(\tau(\psi))$
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where $\{e_{i}\},$ $1\leqq\iota\leqq m$ , is a local orthonormal frame in $T$M. But $\tau(\psi)=0$ , because
$\psi$ is harmonic: thus, applying the Hessian comparison theorem [8] to (2.14),

we obtain

(2.15) $\Delta u\geqq(\cosh\rho)e(\psi)\geqq e(\psi)$ .

NOW we show that we can apply Lemma 2.7 with gi 1, $b=e(\psi)$ and $a(r)=$

$[\epsilon+r]^{-2d}$ : indeed, (1.24) is explicitly integrable and gives

$t=h(r)=(1/(1-d))[(\epsilon+r)^{1- d}-\epsilon^{1-(}f]$ ;

from this, together with (1.27) and (2.2) it is not difficult to see that there
exists $c_{1}>0$ such that

(2.16) $0\leqq[\tilde{g}’(t)/\tilde{g}(t)]\leqq c_{1}[t]^{cl/(1-d)}[G(t^{1/(1-a)})]^{1/2}$ for $t$ large;

this latter is $\mathcal{O}(F(t))$ by hypothesis (2.13); thus (2.8) holds and we can apply
Lemma 2.7 (with $\varphi\equiv 1$ ) to conclude that $u$ – and so $\psi-$ is unbounded. //

THEOREM 2.17. Assume Ricci $(M)\geqq-AG(r)$ , with $[G(r)]^{1/2}=\mathcal{O}(F(r))$ , for
some $F\in \mathcal{G}$ as in (1.10). Let $N$ be a Riemannian manifold such that Riem $N\leqq K$,
$K\in R$ ; and let $B_{R}(\tilde{q})$ be a geodesic ball centered at $\tilde{q}\in N$ and inside the cut locus
of $\tilde{q}$ ($R<\pi/2(K)^{1/2}$ if $K>0$). If $\psi:Marrow N$ is a smooth map with $|\tau(\psi)|\leqq\tau_{0},$ $\tau_{0}\in$

$[0, +\infty)$ , and $\psi(M)\subset B_{R}(\tilde{q})$ , then setting $x= \inf_{M}\{e(\psi)\}$

(2.18) $R\geqq(K)^{-1/2}\tan^{-1}\{2(K)^{1/2}\chi/\tau_{0}\}$ when $K>0$ ;

(2.19) $R\geqq 2\chi/\tau_{0}$ when $K=0$ ;

(2.20) $R\geqq(-K)^{-1/2}\tanh^{- 1}\{2(-K)^{1/2}\chi/\tau_{0}\}$ when $K<0$ .

PROOF. Again, we only prove the tbeorem in the case $K=-1$ (the other
cases are similar). Proceeding as in the proof of (2.12) we obtain (2.14) and
deduce that

(2.21) $\Delta u\geqq u\{2e(\psi)+\tanh(\rho\circ\psi)\langle\nabla\rho, \tau(\psi)\rangle\}$

Since $u\geqq(1/2)$ and $-\tanh(R)\tau_{0}\leqq\tanh(\rho\circ\psi)\langle\nabla\rho, \tau(\psi)\rangle(using|\nabla\rho|=1)$ , we have

(2.22) $\Delta u\geqq\chi-(1/2)\tanh(R)\tau_{0}$ .
NOW, suppose that $x-(1/2)\tanh(R)\tau_{0}=C>0$ : then we apply Lemma 2.7 with
$a\equiv 1\equiv b$ and $\varphi\equiv C$ to conclude that $u$ is unbounded –contradiction. Thus

$\chi-(1/2)\tanh(R)\tau_{0}\leqq 0$

and (2.20) follows readily. //

REMARK 2.23. Theorem 2.17 was proved–with different methods – in [2]
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in the special case $G(r)=[1+\{r\log(r+2)\}^{2}]$ (compare with (1.10)). Similarly,
Corollary 3.2, 3.5 and Theorems 3.3, 3.4 of [2] still hold if assumption Ricci $(M)$

$\geqq-A[1+\{r\log(r+2)\}^{2}]$ is replaced by Ricci $(M)\geqq-AG(r)$ as in our Theorem
2.17. If $\psi$ is an isometric immersion, then $\tau(\psi)=mH$, where $m=\dim M$ and $H$

is the mean curvature vector; the boundedness of $|H|$ , together with Gauss
equations, ensure that in this case the assumption Ricci $(M)\geqq-AG(r)$ can be
substituted by the corresponding assumption on the scalar curvature: in parti-
cular (compare with Theorem 3.3 of [2]), we obtain

COROLLARY 2.24. Let $M$ be a complete, non-compact immersed submanifold
of $R^{n}$ with parallel mean curvature $H$ and scalar curvature bounded below by
$-AG(r)$ , with $[G(r)]^{1/2}=O(F(r))$ , for some $F\in \mathcal{G}$ as in (1.10). If the image of
the Gauss map $\gamma:Marrow G_{m}(R^{n})$ lies in a geodesic ball $B_{R}(\tilde{q})$ with $R<\pi/(2\sqrt{}\overline{B}\rangle$

(where $B=1$ if $n-m=1$ and $B=2$ otherwise), then $M$ is minimal.

REMARK 2.25. Let $M$ be the 2-dimensional plane with metric $dr^{2}+k^{2}(r)d0^{2}$

and assume that $k(r)=\exp[r^{2}(\log r)]$ for $r\gg 1$ . Since Ricci $(M)=-k’’/k$ , we
see that Ricci $(M)\geqq-Ar^{2}(\log r)^{2}$ for $r\gg 1$ and some $A>0$ . So we can apply
Theorem 2.17 with $F(r)=r(\log r)(\log\log r)$ ; on the other hand, $M$ has no sub-
quadratic exponential growth. Indeed

$\lim_{rarrow+\infty}\{\log(VolB_{\tau})\}/r^{2}=\lim_{rarrow+\infty}\log r=+\infty$ .

Thus Theorem 2.17 extends Theorem 3.1 (and related Corollaries) of [10].

3. Applications to models and Hadamard manifolds.

(3.1) We begin with some differential geometric preliminaries: a model
(see [8]) is a complete Riemannian manifold

(3.2) $M^{m}(g)=(S^{m-1}\cross[0, +\infty),$ $g^{2}(r)d\theta^{2}+dr^{2})$ , $m\geqq 2$ ,

where $d\theta^{2}$ is the standard metric of $S^{m-1}$ and $g(r)$ is a smooth function, odd
at the origin and such that

(3.3) $g(O)=0$ , $g’(O)=1$ and $g(r)>0$ for all $r>0$ .

The point of $M^{m}(g)$ corresponding to $r=0$ is called pole and denoted by $p$ . If
$g(r)=r,$ $\sinh r,$ $\sin r(r\in[0, z/2))$ , we have $M^{m}(g)=R^{m},$ $H^{m}$ , se respectively.
(Of course, $S_{+}^{m}$ is not a model.)

(3.4) Let $(N, ds^{2})$ be a complete, $n$ -dimensional Riemannian manifold; and
let $B_{R}(q)$ be a geodesic ball inside the cut locus of $q\in N$ : following [8]

we say that $B_{R}(q)$ dominates an $n$ -dimensional model $M^{n}(\tilde{k})$ if $z\in B_{R}(q),$ $y\in$

$M^{n}(\tilde{k})$ and $\rho(z)=\tilde{\rho}(y)$ ( $\rho,\tilde{\rho}$ distances from $q$ and the pole of $M^{n}(\tilde{k})$ respectively)

imply
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(3.5) $K_{rad}(z)\leqq K_{rad}(y)$ ,

where $K_{rad}$ is the radial curvature. Under these hypotheses, the hessian com-
parison theorem and Proposition 2.20 of [8] give

(3.6) $Hess(\rho)_{z}>Hess(\tilde{\rho})_{y}=\tilde{k}’(\tilde{\rho}(y))\tilde{k}(\tilde{\rho}(y))d\theta^{2}$

where $d\theta^{2}$ is the standard metric of $S^{n-1}$ and the symbol $>$ is explained in [8],

p. 19.

LEMMA 3.7. Let $M,$ $N$ be Riemannian manifolds, $p\in M,$ $q\in N,$ $\dim N=n$ ,

and let $ds^{2}$ be the metric on N. Let $\rho$ be the distance function from $q$ and $B_{R}(q)$

a ball which dominates $M^{n}(k)$ as in (3.4). Let $\lambda^{2}(z)$ be the minimum eigenvalue
of $ds^{2}-d\rho^{2}$ at $z\in B_{R}(q)$ and $\psi:Marrow N$ a smooth map such that $\psi(p)=q$ . Define
$u=\rho\circ\psi,$ $U=\{x\in M:u(x)\neq 0\}$ , and $\xi=\pi\circ\psi$ on $U$ , where $\pi:B_{R}(q)=[0, R)\cross S^{n-1}$

$arrow S^{n-1}$ denotes projection on the second factor. Then on $U\cap\psi^{-1}(B_{R}(q))$

(3.8) $\langle\nabla\rho, \tau(\emptyset)\rangle\leqq\Delta u-2\tilde{k}’(u)\tilde{k}(u)e(\xi)[(\lambda^{2}\circ\psi)/(\tilde{k}(u))^{2}]$ .

PROOF. A standard computation (see [5]) gives

(3.9) $\langle\nabla\rho, \tau(\psi)\rangle=\Delta u-\Sigma_{i}Hess(\rho)_{\psi}(d\psi(e_{i}), d\psi(e_{t}))$

where $\{e_{i}\}$ is a local orthonormal frame on $M$. Now we aPPly (3.6) to (3.9) to
get

(3.10) $\langle\nabla\rho, \tau(\psi)\rangle\leqq\Delta u-\tilde{k}’(u)\tilde{k}(u)\Sigma_{\ell}d0^{2}(d\tilde{\psi}(e_{i}), d\tilde{\psi}(e_{i}))$

where $d\tilde{\psi}(e_{i})$ are defined as follows: Let $\theta^{A},$ $A=1$ , , $n-1$ , be a local ortho-
normal coframe for $S^{n-1}$ ; using polar coordinates $(\rho, 0)$ we can express $ds^{2}$ on
$B_{R}(q)$ in the form

(3.11) $ds^{2}=d\rho^{2}+[h_{AB}^{2}(\rho, \theta)]\theta^{A}\theta^{B}$

(the sum over repeated indexes is understood). Because we perform the com-
putations at a point $z=\psi(x)\neq q$ , we can assume that we have diagonalized (3.11)

by means of an orthogonal transformation of the $\theta^{A}’ s$ , so that at $z$

$ds^{2}=d\rho^{2}+[h_{A}^{2}(\rho, \theta)][\theta^{A}]^{2}$

Let $\{E_{A}\}$ be the frame field dual to $\{\theta^{A}\}$ . Then

$d\psi(e_{t})=B_{i}^{0}[\partial/\partial\rho]+B_{i}^{A}[h_{A}(\rho, \theta)]^{-1}E_{A}$

with $|d\psi(e_{i})|^{2}=(B_{i}^{0})^{2}+\Sigma_{A}(B_{i}^{A})^{2}$ . It follows that we can define, at $y$ ,

$d\tilde{\psi}(e_{i})=B_{i}^{0}[\partial/\partial_{\tilde{\rho}}]+B_{i}^{A}[\tilde{k}(\tilde{o}(y))]^{-1}E_{A}$ .

From this we deduce that
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(3.12) $\Sigma_{i}d\theta^{2}(d\tilde{\psi}(e_{t}), d\tilde{\psi}(e_{t}))=\{\Sigma_{A.i}(B_{i}^{A})^{2}\}/\tilde{k}^{2}(u)$ .
NOW we observe that, on $U,$ $2e(\xi)=\Sigma_{A.i}\{B_{i}^{A}/h_{A}\}^{2}$ and therefore

(3.13) $2e(\xi)\leqq\{\Sigma_{A.i}(B_{i}^{A})^{2}\}/\lambda^{2}$

NOW (3.8) follows from (3.10), (3.12) and (3.13). //

REMARK 3.14. In many instances $[\lambda^{2}/\tilde{k}^{2}]\geqq 1$ and so (3.8) yields the more
manageable inequality

(3.15) $\langle\nabla\rho, \tau(\psi)\rangle\leqq\Delta u-2\tilde{k}’(u)\tilde{k}(u)e(\xi)$ .
For instance, a model $N$ dominates itself with $[\lambda^{2}/\tilde{k}^{2}]\equiv 1$ . Or else, let the sec-
tional curvature on $B_{R}(q)$ be bounded above by $K\in R$ . We have the three
cases $K<0,$ $K=0$ and $K>0$ or, to simplify notation, $K=-l,$ $K=0$ and $K=1$ .
Using Rauch comparison theorem we obtain $\lambda^{2}\geqq\sinh^{2}\rho,$ $\lambda^{2}\geqq\rho^{2}$ and $\lambda^{2}\geqq\sin^{2}\rho$

respectively. Thus, choosing $H^{n},$ $R^{n}$ and $S_{+}^{n}$ respectively as dominated “models”,
we find $[\lambda^{2}/\tilde{k}^{2}]\geqq 1$ . Lemma 3.7 provides a key ingredient in the proof of the
next results and can be applied to manifolds $M,$ $N$ in considerable generality:
however, in order to limit technical assumptions on the cut locus of points, we
shall only state and prove the next theorems for especially interesting choices
of $M$ and $N$, leaving to the interested reader the details of further possible
extensions to the other cases covered by Lemma 3.7 (see also (3.40), as an ex-
ample).

(3.16) Recall that a Hadamard manifold $N$ is a complete, simply connected
Riemannian manifold with non-positive sectional curvature; in particular, the
cut locus of any point is empty. In case the sectional curvature is bounded
above by $-B^{2},$ $B>0$ , then $N$ dominates $M_{\tilde{k}}^{n}$ with $\tilde{k}(r)=\sinh(Br)$ .

THEOREM 3.17. Let $\Lambda^{\gamma}$ be a Hadamard manifold. SuPPose that $M^{m}(g)$ is a
model such that

(3.18) $[g(r)]^{-1}\not\in L^{1}(+\infty)$ and $g’(r)=\mathcal{O}(F(h(r)))$

for some $F\in \mathcal{G}$ as in (1.10) and $h(r)= \int_{0}^{r}[1+g(s)]^{-1}ds$ . Then there are no bounded

harmonic maPs $\psi:M^{m}(g)arrow N$ such that $e(\xi)>0$ on $U=\{x\in M^{m}(g):\psi(x)\neq\psi(p)\}$

and

(3.19) $e(\xi)\geqq[c/g^{2}]$ on $U\cap\{M^{m}(g)\backslash B_{R_{0}}(p)\}$ for some $c,$ $R_{0}>0$

( $\xi$ is defined as in Lemma 3.7).

PROOF. By contradiction, suppose that there exists a harmonic map
$\psi:M^{m}(g)arrow N$ whose image is contained in $B_{R}(q)$ , for $q=\psi(p)$ and some $R>0$ .



334 A. RATTO and M. RIGOLI

By Remark (3.14) and (3.16) $B_{R}(q)$ dominates a model $M^{n}(\tilde{k})$ that, without loss
of generality, we can assume to be either $H^{n}$ or $R^{n}$ : in particular, we have

(3.20) $\tilde{k}’(\rho)>0$ .

Let $u=\rho\circ\psi$ ; because $\psi$ is harmonic, $\tau(\psi)=0$ . Thus, using Lemma 3.7 in the
form (3.15), we obtain

(3.21) $\Delta u\geqq 2\tilde{k}’(u)\tilde{k}(u)e(\xi)$

on the open, dense set $U$ . By a version of Lemma 2.3 (with $\varphi(u)=2\tilde{k}’(u)\tilde{k}(u)$ ,

$b(x)=e(\xi)(x))$ it suffices to construct a $C^{2}$ function $v$ such that

(3.22) $\Delta v<e(\xi)$ on $U\cap\{M^{m}(g)\backslash B_{R_{0}}(p)\}$ ; and

(3.23) $v(x)arrow+\infty$ as $r(x)arrow+\infty$ .

For this purpose we consider

(3.24) $\beta^{7}’(r)+(m-1)[g’(r)/g(r)]\beta’(r)=c/[1+g(r)]^{2}$

$\beta(0)=0$ , $\beta’(0)=0$ .

This is of type(1.23) with $f\equiv 1$ and $a(r)=c/[1+g(r)]^{2}$ ; using (1.24) we trans-
form (3.24) in an equation of type(1.25): then, using (1.27), (3.18) and comput-
ing it is not difficult to deduce that $[\tilde{g}’(t)/\tilde{g}(t)]\leqq D(t)$ , for some function $D(t)$

which satisfies the hypotheses of Lemma 1.18. Thus Lemmas 1.2, 1.18 and 1.20
$\langle$with $f\equiv 1$ ) enable us to conclude that (3.24) has a solution $\beta$ which is defined
for all $r>0$ and tends to $+\infty$ as $rarrow+\infty$ . We set $v=\beta\circ r$ : clearly (3.23) holds.
Moreover, on $U\cap\{M^{n}(g)\backslash B_{R_{0}}(p)\}$ ,

$\langle$3.25) $\Delta v=\beta^{\nu}(r)+(m-1)[g’(r)/g(r)]\beta’(r)=c/[1+g(r)]^{2}<c/[g(r)]^{2}\leqq e(\xi)$

as required by (3.22).

THEOREM 3.26. Let $N$ be a Hadamard manifold with sectional curvature
bounded above by a negative consfant. Let $M^{m}(g)$ be a model such that

$\langle$3.27) $[g(r)]^{-1}\not\in L^{1}(+\infty)$ and $g’(r)=O(F^{\gamma}(h(r)))$

for some $F\in \mathscr{F}$ as in (2.10), $0<\gamma<1$ and $h(r)= \int_{0}^{\tau}[1+g(s)]^{-1}ds$ . Then there are

no harmonic maps $\psi:M^{m}(g)arrow N$ such that, on $U=\{x\in M^{m}(g):\psi(x)\neq\psi(p)\}$ ,

(3.28) $e(\xi)\geqq[c/g^{2}]$ for some $c>0$ .

( $\xi$ is defined as in Lemma 3.7).

PROOF. We consider
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(3.29) $\beta^{\chi}(r)+(m-1)[g’(r)/g(r)]\beta’(r)=\{c/[1+g(r)]^{2}\}\tilde{k}’(\beta)\tilde{k}(\beta)$ .
with $\tilde{k}$ as in (3.16). As usual, we transform (3.29) into an equation of type
(1.25): applying Proposition 1.11 (with $\eta$ so small as to have $\gamma<(1-\eta)/(1+\eta)$ )

we obtain a solution $\beta$ of (3.29) corresponding to initial conditions

(3.30) $\beta(0)=\beta_{0}>0$ , $\beta’(0)=0$ .
Such a $\beta$ is defined on a maximal finite interval $[0, R)$ and satisfies

(3.31) $\beta(r)arrow+\infty$ as $rarrow R^{-}$

Moreover, given arbitrary $\epsilon,$
$\delta>0$ , we can assume that $R>\delta$ and

(3.32) $\beta(r)<\epsilon$ for all $r\in[0, \delta]$

provided that $\beta_{0}$ is sufficiently small; indeed, $\tilde{k}’\tilde{k}$ is locally Lipschitz on $[0, +\infty)$

and so, if $\beta_{0}$ is small, the solution determined by (3.30) approximates the trivial
solution $\beta\equiv 0$ on compact sets.

Next, for $x\in_{-}VI^{m}(g)$ we define $v(x)=\beta(r(x))$ ; so, $us^{1}\wedge ng(3.29)$ , we have

(3.33) $\Delta v=\beta^{\nu}(r)+(m-1)[g’(r)/g(r)]\beta’(r)$

$=\{c/[1+g(r)]^{2}\}\tilde{k}’(v)\tilde{k}(v)<\{c/[g(r)]^{2}\}\tilde{k}’(v)\tilde{k}(v)$ .
Moreover,

(3.34) $v(x)<\epsilon$ on $B_{\partial}(p)$ ; and $v(x)arrow+\infty$ as $xarrow\partial B_{R}(p)$

by (3.31) and (3.32). Now we assume that there exists a nonconstant $\psi:M^{m}(g)$

$arrow N$ as in the statement of the theorem. Let $\rho$ be the distance in $N$ from
$q=\psi(P)$ and set $u=\rho\circ\psi$ . Since $\psi$ is nonconstant, there exist $\delta,$ $\epsilon>0$ and $y\in$

$B_{\delta}(p)$ such that $u(y)>\epsilon$ . Let $v$ be constructed as above with respect to this
latter choice of $\epsilon,$

$\delta$ . Since $\psi$ is nonconstant, $U$ is dense in $M^{m}(g)$ ; thus the
open set $U\cap B_{R}(p)$ is not empty. On it we consider the function $w=u-v$ : if
$z\in\partial\{U\cap B_{R}(p)\}$ , then either $r(z)=R$ or $\psi(z)=q$ ; hence $w$ is nonpositive near
$\partial\{U\cap B_{R}(p)\}$ . On the other hand at $y$ we have $w(y)=u(y)-v(y)>\epsilon-\epsilon=0$ . It
follows that $w$ attains a positive maximum at some interior point $\tilde{y}\in U\cap B_{R}(p)$ .
Using Lemma 3.7 and (3.33), at $\tilde{y}$ we have

$0\geqq\Delta w\geqq\tilde{k}’(u)\tilde{k}(u)e(\xi)-\tilde{k}’(v)\tilde{k}(v)c/g^{2}\geqq[c/g^{2}]\{\tilde{k}’(u)\tilde{k}(u)-\tilde{k}’(v)\tilde{k}(v)\}$ .

NOW $u(\tilde{y})>v(\tilde{y})$ together with $\tilde{k}’\tilde{k}$ increasing give the desired contradiction. //

APPLICATION 3.36. In the case of rotationally symmetric maps between
models $e(\xi)=(m-1)/g^{2}$ (see [13]). We also observe that the condition $g’(r)=$

$\mathcal{O}(F^{\gamma}(h(r)))$ in (3.27) (and similarly in (3.18)) can be relaxed: indeed, in order to
be able to apply Proposition 1.11, as required in the proof of Theorem 3.26, it
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suffices that $g’(r_{t})=O(F^{\gamma}(h(r_{i})))$ as $iarrow+\infty$ , for each sequence $r_{i}$ such that $g’(r_{i}\rangle$

$arrow+\infty$ as $iarrow+\infty$ (see also Remark 1.19 $b$) $)$ . As a special case, blowing up of
solutions occurs if $g’(r)$ is bounded from above; these facts together lead us to

COROLLARY 3.37. Let $M^{m}(g)$ be a model such that $[g]^{-1}\not\in L^{1}(+\infty)$ and $g’$

is bounded above by some posrtive constant. Then any rotationally symmetric
harmonic map $\psi:M^{m}(g)arrow H^{m}$ is constant.

Similarly,

COROLLARY 3.38. Let $N$ be a Hadamard manifold with sectional curvature
bounded above by a negative constant and $M^{m}(g)$ a model such that $[g]^{-1}\not\in L^{1}(+\infty)$

and $g’$ is bounded above by some posrtive constant. Then there are no nonconstant
harmonic maps $\psi:M^{m}(g)arrow N$ such that, on $U=\{x\in M^{m}(g):\psi(x)\neq\psi(p)\}$ ,

(3.39) $e(\xi)\geqq[c/g^{2}]$ for some $c>0$ .
( $\xi$ is defined as in Lemma 3.7).

APPLICATION 3.40. Instead of a Hadamard manifold $N$ we can take a
model, say $N=N^{n}(k)$ , and consider maps $\psi:M^{m}(g)arrow N^{n}(k)$ which send pole
into pole: then Theorem 3.17 (resp., Theorem 3.26 and its Corollaries 3.37 and
3.38) holds true–with the same proofs–if $k’>0$ (resp., $k’>0,$ $(kk’)’>0$ and $kk’$

veriPes (1.11) $i))$ , the remaining assumptions being unchanged. That is of
interest because the sectional curvature of these models $N^{n}(k)$ is not neces-
sarily nonpositive.

REMARK 3.41. Assumption (3.19) (or, equivalently, (3.28) or (3.39)) gives
an extension of condition (0.2) in Theorem 0.1 (resp., Theorem 1) of [16] (resp.,

[17] $)$ . In particular, Theorem 3.26, Corollaries 3.37, 3.38 and (3.40) extend the
main theorems of [16], [17].

Acknowledgement. We wish to thank the referee for pointing out to us
a mistake in a first version of Theorem 3.26.
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