Elliptic differential inequalities with applications to harmonic maps

By Andrea Ratto and Marco Rigoli

(Received Aug. 13, 1991)
(Revised April 10, 1992)

Introduction.

Harmonic maps $\psi:(M, g) \rightarrow(N, h)$ between Riemannian manifolds are the smooth critical points of the energy functional

$$
E(\psi)=\int_{M} e(\psi) d V_{M},
$$

where $e(\psi)=(1 / 2)|d \psi|^{2}$ is the energy density of ψ. Or, equivalently, the C^{2} solutions of the elliptic system

$$
\begin{equation*}
\operatorname{Trace}_{g} \nabla d \psi=0 \tag{0.1}
\end{equation*}
$$

The left-hand side of (0.1) is the tension field of ψ, denoted $\tau(\psi)$; it is a vector field along ψ : we refer to the surveys [5], [6] for complete definitions and background.

Since the pioneering work of Eells and Sampson ([7] (1964)), harmonic maps have attracted the interest of both geometers and analysts: during the early stages of the theory, research was focused on maps between compact manifolds. Indeed, in a compact setting a harmonic map provides a strong candidate for a "best map" in a prescribed homotopy class; and a natural generalization of the concept of closed geodesic.

More recently, harmonic maps of non-compact domains have become object of growing interest: as a significant example, we quote the discovery of a new family of harmonic maps $\psi: \boldsymbol{R}^{2} \rightarrow \boldsymbol{H}^{2}$ of rank two almost everywhere; that was obtained by Choi and Treibergs [4], using a version of Ruh-Vilms' Theorem for constant mean curvature hypersurfaces of Minkowski 3 -space. It is natural to view the study of harmonic maps of non-compact domains as a generalization of the theory of harmonic functions $f: M \rightarrow \boldsymbol{R}$ on complete Riemannian manifolds [18]; however, we point out two key differences:
a) a single equation - i.e., $\Delta f=0$ - is replaced by a system - i. e., (0.1).
b) the curvature of the range plays a role, making system (0.1) non-linear.

Nevertheless, Liouville's type Theorems for harmonic maps have been obtained ([3], [16], [17]); more generally, one expects relations between the growth at ∞ of solutions - or of their energy density - and the geometry of the manifolds.

In this paper we undertake this type of study under the hypothesis that the domain M is a complete, m-dimensional Riemannian manifold such that $\operatorname{Ricci}(M) \geqq-A G(r)$, where A is a positive constant and r denotes distance from a fixed point $q \in M$ (the choice of q plays no role in what follows); $G(r)$ is a positive, non-decreasing function such that $G(0)=1$ and $G(r) \rightarrow+\infty$ as $r \rightarrow+\infty$. In the sequel, we shall always abbreviate this by simply writing that M satisfies $\operatorname{Ricci}(M) \geqq-A G(r)$.

We prove our results by studying the relations between the growth of G at $+\infty$ and the existence of C^{2} solutions on M of differential inequalities of the type

$$
\begin{equation*}
\Delta u \geqq b(x) \varphi(u), \quad x \in M \tag{0.2}
\end{equation*}
$$

(the sign convention is $\Delta=\operatorname{div}(\nabla u)$). Osserman [12] and Redheffer ([14], [15]) studied (0.2) in the case $M=\boldsymbol{R}^{m}$, while Calabi [1] analysed the case Ricci (M) $\geqq 0$: their use of the maximum principle has inspired our work.

In Section 2 we obtain a priori estimates for the energy density of bounded harmonic maps $\psi: M \rightarrow N$, where N has non-positive sectional curvature ((2.12) below). As a by-pass product of our analysis we also obtain refinements Theorem 2.17 and Corollary 2.24) of results of [2] and [9] on the image diameter of maps with bounded tension field; in the case of isometric immersions this also complements work of Karp [10].

In Section 3 we illustrate further applications and extensions to rotationally symmetric manifolds (i.e., models in the sense of [8]) ; in particular, we extend work of Tachikawa ([16], [17]), proving non-existence results for certain harmonic maps into Hadamard manifolds or models (see (3.26), (3.37-41) below).

Most of the technicalities of this paper rely on the analysis (Section 1) of an O.D.E. which arise from the study of rotationally symmetric solutions of (0.2): reading Sections 2 and 3 requires some familiarity with notation and facts of Section 1.

We also remark that the methods of this paper can be applied to study other elliptic equations of geometric interest; in particular, they yield some non-existence results for the non-compact Yamabe problem, as we shall illustrate in a forthcoming paper. Finally, we mention here that the works [10], [11], [13] deal - by different methods - with problems related to this paper.

1. Analysis of the O.D.E..

In this section we establish some qualitative properties of solutions of (1.1) below : the key technical result is Proposition 1.11.

$$
\begin{align*}
& \alpha^{\prime \prime}(t)+(m-1)\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \alpha^{\prime}(t)=f(\alpha(t)) \tag{1.1}\\
& \alpha^{\prime}(0)=0, \quad \alpha(0)=\alpha_{0}, \quad t \geqq 0
\end{align*}
$$

where $m \geqq 2, f \in \operatorname{Lip}_{10 c}(\boldsymbol{R}), f$ is non-decreasing and nonnegative ; $\tilde{g} \in C^{1}([0,+\infty))$, $\tilde{g}>0$ on $(0,+\infty), \tilde{g}(0)=0$ and $\tilde{g}^{\prime}(0)>0$. Unless otherwise specified, in the sequel we shall tacitly assume that the above assumptions on f, \tilde{g} and m hold (but we note that the assumption f non-decreasing is unnecessary in Lemma 1.2 below).

Lemma 1.2. The Cauchy problem (1.1) has a unique solution α which is defined on a maximal interval $[0, T)$. Moreover, if $f\left(\alpha_{0}\right)>0$, then $\alpha^{\prime}>0$ on $(0, T)$; and if $T<+\infty$, then $\alpha(t) \rightarrow+\infty$ as $t \rightarrow T^{-}$.

Proof. First we write (1.1) in integral form

$$
\begin{equation*}
\alpha(t)=\alpha_{0}+\int_{0}^{t}[\tilde{g}(s)]^{1-m}\left\{\int_{0}^{s}[\tilde{g}(u)]^{m-1} f(\alpha(u)) d u\right\} d s \tag{1.3}
\end{equation*}
$$

Existence and uniqueness for small t is standard: it can be obtained by applying the Picard iteration procedure. To see that $\alpha^{\prime}(t)>0$ for $t>0$, we write (1.1) as

$$
\left(\tilde{g}^{m-1} \alpha^{\prime}\right)^{\prime}=\tilde{g}^{m-1} f(\alpha) .
$$

Integrating over $[0, t]$ and using $\alpha^{\prime}(0)=0$ we find

$$
[\tilde{g}(t)]^{m-1} \alpha^{\prime}(t)=\int_{0}^{t}[\tilde{g}(s)]^{m-1} f(\alpha(s)) d s
$$

from which the assertion follows immediately. Finally, let $T<+\infty$ and suppose that $\alpha(t) \rightarrow c<+\infty$ as $t \rightarrow T^{-}$. Then $[\tilde{g}(s)]^{m-1} f(\alpha(s)) \in L^{1}([0, T])$; therefore differentiating (1.3) we find that $\alpha^{\prime}(t)$ converges to a finite limit as $t \rightarrow T^{-}$, a fact which contradicts the maximality of [0,T). //

Lemma 1.4. Let α be a solution of (1.1) on $[0,+\infty)$ such that $\alpha(t) \rightarrow+\infty$ as $t \rightarrow+\infty$. Suppose that $\tilde{g}^{\prime} \geqq 0$ and

$$
\begin{equation*}
\left([f(t)]^{\eta} / t\right) \longrightarrow+\infty \text { as } t \rightarrow+\infty, \text { for some } \eta>0 \text {. } \tag{1.5}
\end{equation*}
$$

Then for any $c>0$ there exists $\tau_{0} \in(0,+\infty)$ such that

$$
\begin{equation*}
\left\{1-(m-1)(2 / c)^{1 / 2}\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right][f(\boldsymbol{\alpha}(t))]^{(\eta-1) / 2}\right\} f(\alpha(t))<\alpha^{\prime \prime}(t) \tag{1.6}
\end{equation*}
$$

for all $t \geqq \tau_{0}$.
Proof. Because $\alpha^{\prime} \geqq 0$ and $\tilde{g}^{\prime} \geqq 0$, (1.1) implies $f(\alpha) \alpha^{\prime} \geqq \alpha^{\prime \prime} \alpha^{\prime}$. Integrating this inequality over $[0, t]$ and using $\alpha^{\prime}(0)=0, \alpha^{\prime}>0$ on $(0,+\infty)$ we obtain

$$
\begin{equation*}
2 \int_{\alpha_{0}}^{\alpha(t)} f(s) d s \geqq\left[\alpha^{\prime}(t)\right]^{2} . \tag{1.7}
\end{equation*}
$$

Given $c>0$, (1.5) guarantees the existence of t_{0} such that

$$
[f(t)]^{\eta}>c\left(t-\alpha_{0}\right) \quad \text { for all } t \geqq t_{0} .
$$

We choose $\tau_{0} \geqq t_{0}$ in such a way that $\alpha(t) \geqq t_{0}$ for all $t \geqq \tau_{0}$; it follows that

$$
\begin{equation*}
[f(\alpha(t))]^{n}>c\left[\alpha(t)-\alpha_{0}\right] \quad \text { for all } t \geqq \tau_{0} . \tag{1.8}
\end{equation*}
$$

From now on let $t \geqq \tau_{0}$. From (1.7) and f non-decreasing we get

$$
\left[\alpha^{\prime}(t)\right]^{2} \leqq 2 f(\alpha(t))\left[\alpha(t)-\alpha_{0}\right] .
$$

Thus, applying (1.8) and elevating to $1 / 2$, we obtain

$$
\begin{equation*}
\alpha^{\prime}(t)<(2 / c)^{1 / 2}[f(\alpha(t))]^{(\eta+1) / 2} . \tag{1.9}
\end{equation*}
$$

Now multiplying (1.9) by ($m-1$)[$\left.\tilde{g}^{\prime} / \tilde{g}\right]$ and using (1.1) gives (1.6). //
(1.10) In order to measure the rate of growth of $\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right]$ as $t \rightarrow+\infty$ it is convenient to introduce two classes \mathscr{F}, \mathcal{G} of C^{1} functions F defined in a neighbourhood of $+\infty$: namely, we say that $F \in \mathcal{G}$ if $[F]^{-1} \notin L^{1}(+\infty), F^{\prime}(t) \geqq 0$ (t large) and $F(t) \rightarrow+\infty$ as $t \rightarrow+\infty$. And $F \in \mathscr{F}$ if $F \in \mathcal{G}$ and furthermore

$$
\lim _{t \rightarrow+\infty} F^{\prime}(t)\left[F^{\prime}(t)\right]^{-\varepsilon} \in \boldsymbol{R} \quad \text { for any } \varepsilon>0 .
$$

Examples of $F(t) \in \mathscr{F}$ are : $t, t \log t, t[\log t][\log (\log t)], \cdots$.
Notation. [$\left.\tilde{g}^{\prime} / \tilde{g}\right]=\mathcal{O}(k)$ means that $\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] / k(t) \rightarrow 0$ as $t \rightarrow+\infty$.
Proposition 1.11. Let α be a solution of (1.1) such that $f\left(\alpha_{0}\right)>0$. Assume that
i) $\quad\left([f(t)]^{\eta} / t\right) \longrightarrow+\infty$ as $t \rightarrow+\infty$, for some $0<\eta<1$;
ii) there exists $0<\gamma<(1-\eta) /(1+\eta)$ and a nonnegative function $D(t)$ such that

$$
\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \leqq D(t) ; \text { and } D(t)=\mathcal{O}\left(F^{\gamma}\right) \quad \text { for some } F \in \mathscr{F} \text { as in (1.10). }
$$

Then α is defined on a maximal interval $[0, T)$ with $T<+\infty$.
Proof. For technical reasons (the application of Lemma 1.4) we begin with proving the Proposition under the additional hypothesis that $\tilde{g}^{\prime} \geqq 0$. We define

$$
h(t)=[\tilde{g}(t)]^{1-m} \int_{0}^{t}[\tilde{g}(s)]^{m-1} d s, \quad k(t)=\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right]\left\{\int_{0}^{t} h(s) d s\right\}^{-\delta / \eta}
$$

where $\delta=(1-\eta) / 2$; for a moment, let us suppose that

$$
\text { iii) } \quad h(t) \notin L^{1}(+\infty) ; \quad \text { iv) } \quad k(t) \in L^{\infty}(+\infty) \quad \text { and } \quad \text { v) }\left\{\int_{0}^{t} f(s) d s\right\}^{-1 / 2} \in L^{1}(+\infty)
$$

We show that iii), iv) and v) together imply the Proposition: by contradiction, let $T=+\infty ; \alpha^{\prime} \geqq 0$ and f non-decreasing force $f(\alpha(t)) \geqq f\left(\alpha_{0}\right)$ for all $t \geqq 0$. Therefore from (1.3) we have

$$
\begin{equation*}
\alpha(t) \geqq \alpha_{0}+f\left(\alpha_{0}\right) \int_{0}^{t} h(s) d s \tag{1.12}
\end{equation*}
$$

Now (1.12) together with iii) imply that $\alpha(t) \rightarrow+\infty$ as $t \rightarrow+\infty$, so that the hypotheses of Lemma 1.4 are satisfied. Moreover, for t large, $f(\alpha(t)) \geqq[\alpha(t)]^{1 / \eta}$ by i). It follows that

$$
\left[\tilde{g}^{\prime} / \tilde{g}\right][f(\alpha)]^{-\delta} \leqq\left[\tilde{g}^{\prime} / \tilde{g}\right][\alpha]^{-\delta / \eta} \leqq c_{1} k
$$

for some $c_{1}>0$. Applying iv) and (1.6) with a sufficiently large $c>0$ we obtain the existence of $B>0$ such that

$$
\begin{equation*}
B f(\alpha)<\alpha^{\prime \prime} \quad \text { for all } t \geqq \tau_{0}, \tau_{0} \text { large. } \tag{1.13}
\end{equation*}
$$

Multiplying both members of (1.13) by α^{\prime} and integrating over [τ_{0}, t] gives

$$
\begin{equation*}
(2 B) \int_{\alpha\left(\tau_{0}\right)}^{\alpha(t)} f(s) d s+\left[\alpha^{\prime}\left(\tau_{0}\right)\right]^{2}<\left[\alpha^{\prime}(t)\right]^{2} \tag{1.14}
\end{equation*}
$$

Because $\alpha^{\prime}>0$ on $\left[\tau_{0}, t\right]$, (1.14) gives

$$
\begin{equation*}
\alpha^{\prime}(t)\left\{(2 B) \int_{\alpha\left(\tau_{0}\right)}^{\alpha(t)} f(s) d s+\left[\alpha^{\prime}\left(\tau_{0}\right)\right]^{2}\right\}^{-1 / 2}>1 \tag{1.15}
\end{equation*}
$$

Integrating (1.15) over [$\left.\tau_{0}, \tau\right]$ we obtain

$$
\begin{equation*}
\int_{\alpha\left(\tau_{0}\right)}^{\alpha(\tau)}\left\{(2 B) \int_{\alpha\left(\tau_{0}\right)}^{u} f(s) d s+\left[\alpha^{\prime}\left(\tau_{0}\right)\right]^{2}\right\}^{-1 / 2} d u>\tau-\tau_{0} \tag{1.16}
\end{equation*}
$$

Letting $\tau \rightarrow+\infty$ we see that (1.16) contradicts v): so (if $\tilde{g}^{\prime} \geqq 0$) the proof is complete provided that we show that iii), iv) and v) hold.

Proof of iii). If $\tilde{g}(t)$ is bounded the conclusion is obvious. So we assume that $\tilde{g}(t)$ tends to $+\infty$ as t goes to $+\infty$: since $[F]^{-1} \notin L^{1}(+\infty)$, also $[F]^{-r} \notin$ $L^{1}(+\infty)$ for γ as in (1.11) ii): therefore it is enough to show that

$$
\begin{equation*}
[F]^{r} h(t) \longrightarrow+\infty \quad \text { as } t \rightarrow+\infty \tag{1.17}
\end{equation*}
$$

Now, using the explicit expression of $h(t)$, (1.17) follows easily from de l'Hôpital's rule, (1.10) and (1.11) ii).

Proof of iv). Using (1.17) we deduce that

$$
k(t) \leqq c_{2}+\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right]\left\{\int_{0}^{t}[F(s)]^{-r} d s\right\}^{-\delta / \eta} \quad \text { for some } c_{2}>0
$$

Because of (1.11) ii) it suffices to show that $[F(t)]^{r r / \partial} /\left\{\int_{0}^{t}[F(s)]^{-r} d s\right\}$ converges to a finite limit as $t \rightarrow+\infty$: but this follows easily from de l'Hôpital's rule and the fact that $F^{\prime} F^{-\varepsilon}$ converges for all $\varepsilon>0$ because $F \in \mathscr{F}$.

Proof of v). Clearly $\int_{0}^{t} f(s) d s \rightarrow+\infty$ as $t \rightarrow+\infty$, because $f\left(\alpha_{0}\right)>0$ and f is non-decreasing. Since $0<\eta<1$ we can choose $\sigma>0$ such that $[2 \sigma+1-(1 / \eta)]$ <0. Now we apply de l'Hôpital's rule and (1.11) i) to obtain

$$
\lim _{t \rightarrow+\infty}\left\{t^{2 \sigma+2} / \int_{0}^{t} f(s) d s\right\}=\lim _{t \rightarrow+\infty}(2 \sigma+2)\left\{t^{1 / \eta} / f(t)\right\} t^{2 \sigma+1-(1 / \eta)}=0
$$

from which v) follows.
Finally, we show that the assumption $\tilde{g}^{\prime} \geqq 0$ is unnecessary. Indeed, we can consider

$$
\begin{aligned}
& \alpha^{\prime \prime}(t)+(m-1) D(t) \alpha^{\prime}(t)=f(\alpha(t)) \\
& \alpha^{\prime}(0)=0, \quad \alpha(0)=\alpha_{0}, \quad f\left(\alpha_{0}\right)>0
\end{aligned}
$$

where $D(t)$ is a suitable function as in (1.11) ii). The previous argument (with $\exp \left[\int_{1}^{t} D(s) d s\right]$ in place of $\left.\tilde{g}(t)\right)$ tells us that the unique solution of this Cauchy problem is defined on a maximal interval $\left[0, T_{1}\right)$ with $T_{1}<+\infty$. Now standard comparison arguments (using $\left.\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \leqq D(t)\right)$ imply that the solution of the original problem (1.1) blows up in finite time $T \leqq T_{1}$. //

A modification of the arguments of Proposition 1.11 gives
Lemma 1.18. Let α be a solution of (1.1) which is defined on $[0,+\infty)$, with $f\left(\alpha_{0}\right)>0$. Suppose that there exists a nonnegative function $D(t)$ such that $\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \leqq D(t)$; and $D(t)=\mathcal{O}(F)$ for some $F \in G$ as in (1.10). Then $\alpha(t) \rightarrow+\infty$ as $t \rightarrow+\infty$.

Remarks 1.19. a) Hypothesis (1.1) ii) is quite sharp, as the following example shows:

$$
\begin{gathered}
\alpha^{\prime \prime}(t)+\left\{\left[\left(t^{2}+3\right)^{\delta}-2\right] / 2 t\right\} \alpha^{\prime}(t)=[\alpha(t)]^{\delta}, \quad \delta>1 \\
\alpha^{\prime}(0)=0, \quad \alpha(0)=3
\end{gathered}
$$

admits the global solution $\alpha(t)=t^{2}+3\left(\right.$ here $\left.\tilde{g}(t)=\exp \left(\int_{1}^{t}\left\{\left[\left(s^{2}+3\right)^{\delta}-2\right] / 2 s\right\} d s\right)\right)$.
b) If $\tilde{g}^{\prime}(t) \geqq 0$, then the natural choice for the function $D(t)$ is $D(t)=$
[$\left.\tilde{g}^{\prime}(t) / \tilde{g}(t)\right]$; in general, the function $D(t)$ serves a technical purpose of comparison, based on the fact that $\tilde{g}^{\prime}(t)<0-$ and, all the more reason, $\tilde{g}^{\prime}(t) \rightarrow-\infty$ as $t \rightarrow+\infty-$ is a condition which contributes to a faster growth of solutions and so to their blowing up in finite time.

The following is a standard fact:
Lemma 1.20. Suppose that the function f in (1.1) satisfies

$$
\begin{equation*}
f(s) \leqq a_{1} s+a_{2} \quad \text { for some } a_{1}, a_{2}>0 . \tag{1.21}
\end{equation*}
$$

Then any solution $\alpha(t)$ of (1.1) is defined for all $t \geqq 0$.
(1.22) For our purposes it will be useful to consider a variant of (1.1): namely, let $a \in C^{1}([0,+\infty))$ be a positive function such that $a^{1 / 2} \notin L^{1}(+\infty)$. We consider

$$
\begin{equation*}
\beta^{\prime \prime}(r)+(m-1)\left[g^{\prime}(r) / g(r)\right] \beta^{\prime}(r)=a(r) f(\beta(r)) \tag{1.23}
\end{equation*}
$$

and set

$$
\begin{equation*}
h(r)=\int_{0}^{r}[a(s)]^{1 / 2} d s . \tag{1.24}
\end{equation*}
$$

Then the change of variable $h(r)=t, t \in[0,+\infty)$, defines a bijection between solutions of

$$
\begin{equation*}
\alpha^{\prime \prime}(t)+(m-1)\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \alpha^{\prime}(t)=f(\alpha(t)) \tag{1.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(t)=\beta\left(h^{-1}(t)\right), \quad \tilde{g}(t)=g(r)[a(r)]^{1 /(2 m-2)} \quad \text { and } \tag{1.26}
\end{equation*}
$$

$$
\begin{equation*}
\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right]=[a(r)]^{-1 / 2}\left\{\left[g^{\prime}(r) / g(r)\right]+[1 / 2(m-1)]\left[a^{\prime}(r) / a(r)\right]\right\} . \tag{1.27}
\end{equation*}
$$

The proof of these facts is a straightforward computation and therefore we omit it. We observe that (1.25) is of type (1.1); thus we can apply (modulo the change of variable $t=h(r))$ the results of this section to (1.23).

Remark 1.28. The methods of this section apply to the more general Cauchy problem

$$
\begin{gather*}
\left|\alpha^{\prime}(t)\right|^{-p}\left\{\alpha^{\prime \prime}(t)+(m-1)\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \alpha^{\prime}(t)\right\}=f(\alpha(t)) \tag{1.29}\\
\alpha^{\prime}(0)=0, \quad \alpha(0)=\alpha_{0}, \quad t \geqq 0 .
\end{gather*}
$$

In particular, Proposition 1.11 holds in this case provided that $p<1,0<\eta<$ $1 /(1-p), 0<\gamma<[1-(1-p) \eta] /\left[1+(1-p)^{2} \eta\right]$ and $\left[\tilde{g}^{\prime} / \tilde{g}\right]=\mathcal{O}(F r(1-p))$.

Equation (1.29) would permit us to study inequalities of the type

$$
\begin{equation*}
\Delta u \geqq b(x) \varphi(u)|\nabla u|^{p}, \quad x \in M \tag{1.30}
\end{equation*}
$$

which arise in the study of the operator $\operatorname{div}\left(|\nabla u|^{-p} \nabla u\right)$. However, we shall not pursue this generalization in this paper, because the case $p=0$ suffices for the geometric applications of the next sections.

2. Estimates for harmonic maps.

Differential equations of type (1.1) arise in geometry from problems involving Δr, where r is the distance function from a fixed point $q \in M$. We will use the following estimate which can be derived from [8]: suppose that $\operatorname{Ricci}(M) \geqq$ $-A G(r)$, as in the introduction; then, at each $x \notin C_{q}$ (the cut locus of q), we have

$$
\begin{equation*}
\Delta r \leqq(m-1)\left[g^{\prime}(r) / g(r)\right] \tag{2.1}
\end{equation*}
$$

where $m=\operatorname{dim} M$ and, setting $\Omega=(A /(m-1))^{1 / 2}$,

$$
g(r)=[\sinh (\Omega r)] \exp \int_{0}^{r} \Omega \operatorname{coth}(\Omega s)\left\{\left[1+(G(s)-1) \tanh ^{2}(\Omega s)\right]^{1 / 2}-1\right\} d s
$$

We observe that

$$
\begin{equation*}
\left[g^{\prime}(r) / g(r)\right] \approx \Omega[G(r)]^{1 / 2} \quad \text { as } r \rightarrow+\infty ; \text { and } \tag{2.2}
\end{equation*}
$$

also recall that if $\operatorname{Ricci}(M) \geqq 0$, then (2.1) holds with $g(r)=r$; and if $\operatorname{Ricci}(M)$ $\geqq-A, A>0$, we can take $g(r)=\sinh (\Omega r)$.

Lemma 2.3. [15] Let M be a complete Riemannian manifold and u a C^{2} solution on M of the differential inequality

$$
\begin{equation*}
\Delta u \geqq b(x) \varphi(u), \quad x \in M, \tag{2.4}
\end{equation*}
$$

where $b(x) \geqq 0, b \not \equiv 0$ and $\varphi \geqq 0$. Fix $q \in M$ and let r be the distance from q : If there exists a C^{2} function v such that, for some $R>0$,

$$
\begin{equation*}
\Delta v<b \quad \text { on } M / B_{R}(q) \text { and } \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
v(x) \longrightarrow+\infty \quad \text { as } r(x) \rightarrow+\infty \tag{2.6}
\end{equation*}
$$

then either $\sup _{M}\{u\}=+\infty$ or $\sup _{M}\{u\} \in Z(\varphi)=\{t \in \boldsymbol{R}: \varphi(t)=0\}$.
Proof. This was proved by Redheffer in case $M=\boldsymbol{R}^{m}$ ([15], Theorem 1): in this general case the proof is essentially the same and therefore omitted. //

In the notation of the introduction and Section 1, we have
Lemma 2.7. Assume $\operatorname{Ricci}(M) \geqq-A G(r)$. Let $a(r)$ be a function as in (1.22) and suppose that

$$
\begin{equation*}
\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right]=\mathcal{O}(F(t)), \tag{2.8}
\end{equation*}
$$

where $t=h(r)$, as in (1.24); [$\left.\tilde{g}^{\prime} / \tilde{g}\right]$ is defined by (1.27) with g as in (2.1); and $F \in G$ as in (1.10). Consider inequality (2.4) and furthermore suppose that $b(x) \geqq$ $a(r(x))$ on $M / B_{R}(q)$, for some $R>0$. If u is a C^{2} solution of (2.4) then either $\sup _{\mathcal{M}}\{u\}=+\infty$ or $\sup _{M}\{u\} \in Z(\varphi)=\{t \in \boldsymbol{R} ; \varphi(t)=0\}$. Moreover, in the special case $a \equiv 1 \equiv b$, the conclusion holds with (2.8) replaced by

$$
\begin{equation*}
[G(t)]^{1 / 2}=\mathcal{O}(F(t)) \tag{2.9}
\end{equation*}
$$

Proof. We proceed to the construction of a function v as in Lemma 2.3. Let β be the unique solution of

$$
\begin{equation*}
\beta^{\prime \prime}(r)+(m-1)\left[g^{\prime}(r) / g(r)\right] \beta^{\prime}(r)=(1 / 2) a(r) \tag{2.10}
\end{equation*}
$$

determined by $\beta(0)=0, \beta^{\prime}(0)=0$. Equation (2.10) is of type (1.23), with $f \equiv 1 / 2$: so we can transform it into (1.25) (via (1.24)) and apply Lemma 1.20 to conclude that β is defined for all $r \geqq 0$. Moreover, (2.8) enables us to apply Lemma 1.18 and deduce that $\beta(r) \rightarrow+\infty$ as $r \rightarrow+\infty$. Next, set $v(x)=\beta(r(x))$; we compute using Gauss Lemma, (2.1) and (2.10) to get

$$
\Delta v=\beta^{\prime \prime}(r)+\beta^{\prime}(r) \Delta r \leqq \beta^{\prime \prime}(r)+(m-1)\left[g^{\prime}(r) / g(r)\right] \beta^{\prime}(r)=(1 / 2) a(r)<a(r) \leqq b
$$

outside some $B_{R}(q)$. Thus we can apply Lemma 2.3 to conclude. If furthermore $a(r) \equiv 1$, then $t=h(r)=r$; so $\tilde{g}=g$ and (2.2) tells us that in this case (2.9) is equivalent to (2.8). //
(2.11) Let N be a complete Riemannian manifold such that Riem $N \leqq K$, for some nonpositive constant K. We study harmonic maps $\phi: M \rightarrow N$ under the assumption $\operatorname{Ricci}(M) \geqq-A G(r)$. We say that any such ψ is bounded if its image is relatively compact in N. We have

THEOREM 2.12. Let $\psi: M \rightarrow N$ be a harmonic map between manifolds as in (2.11). Suppose that

$$
e(\psi)(x) \geqq[\varepsilon+r(x)]^{-2 d} \quad \text { outside } B_{R}(q) \text {, }
$$

for some $R, \varepsilon>0$ and $d \leqq(1 / 2)$. If

$$
\begin{equation*}
[t]^{d /(1-d)}\left[G\left(t^{1 /(1-d)}\right)\right]^{1 / 2}=\mathcal{O}(F(t)) \tag{2.13}
\end{equation*}
$$

for some $F \in G$ as in (1.10), then ψ is unbounded.
Proof. Let ρ be the distance in N from $\varphi(q)$. We prove the theorem for $K<0$ (the case $K=0$ is similar). Without loss of generality we can assume $K=-1$: setting $h=(\cosh \rho) / 2$ and $u=h \circ \psi$, we compute (see [5])

$$
\begin{equation*}
\Delta u=\Sigma_{i} \operatorname{Hess}(h)\left(\psi_{*} e_{i}, \psi_{*} e_{i}\right)+d h(\tau(\psi)) \tag{2.14}
\end{equation*}
$$

where $\left\{e_{i}\right\}, 1 \leqq i \leqq m$, is a local orthonormal frame in $T M$. But $\tau(\psi)=0$, because ψ is harmonic: thus, applying the Hessian comparison theorem [8] to (2.14), we obtain

$$
\begin{equation*}
\Delta u \geqq(\cosh \rho) e(\psi) \geqq e(\psi) . \tag{2.15}
\end{equation*}
$$

Now we show that we can apply Lemma 2.7 with $\varphi \equiv 1, b=e(\psi)$ and $a(r)=$ $[\varepsilon+r]^{-2 d}$: indeed, (1.24) is explicitly integrable and gives

$$
t=h(r)=(1 /(1-d))\left[(\varepsilon+r)^{1-d}-\varepsilon^{1-d}\right] ;
$$

from this, together with (1.27) and (2.2) it is not difficult to see that there exists $c_{1}>0$ such that

$$
\begin{equation*}
0 \leqq\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \leqq c_{1}[t]^{d /(1-d)}\left[G\left(t^{1 /(1-d)}\right)\right]^{1 / 2} \quad \text { for } t \text { large ; } \tag{2.16}
\end{equation*}
$$

this latter is $\mathcal{O}(F(t))$ by hypothesis (2.13); thus (2.8) holds and we can apply Lemma 2.7 (with $\varphi \equiv 1$) to conclude that u - and so ψ - is unbounded

ThEOREM 2.17. Assume Ricci $(M) \geqq-A G(r)$, with $[G(r)]^{1 / 2}=\mathcal{O}(F(r))$, for some $F \in G$ as in (1.10). Let N be a Riemannian manifold such that Riem $N \leqq K$, $K \in \boldsymbol{R}$; and let $B_{R}(\tilde{q})$ be a geodesic ball centered at $\tilde{q} \in N$ and inside the cut locus of $\tilde{q}\left(R<\pi / 2(K)^{1 / 2}\right.$ if $\left.K>0\right)$. If $\psi: M \rightarrow N$ is a smooth map with $|\tau(\psi)| \leqq \tau_{0}, \tau_{0} \in$ $[0,+\infty)$, and $\psi(M) \subset B_{R}(\tilde{q})$, then setting $\chi=\inf _{M}\{e(\psi)\}$

$$
\begin{array}{ll}
R \geqq(K)^{-1 / 2} \tan ^{-1}\left\{2(K)^{1 / 2} \chi / \tau_{0}\right\} & \text { when } K>0 ; \\
R \geqq 2 \chi / \tau_{0} & \text { when } K=0 ; \\
R \geqq(-K)^{-1 / 2} \tanh ^{-1}\left\{2(-K)^{1 / 2} \chi / \tau_{0}\right\} & \text { when } K<0 . \tag{2.20}
\end{array}
$$

Proof. Again, we only prove the theorem in the case $K=-1$ (the other cases are similar). Proceeding as in the proof of (2.12) we obtain (2.14) and deduce that

$$
\begin{equation*}
\Delta u \geqq u\{2 e(\psi)+\tanh (\rho \circ \psi)<\nabla \rho, \tau(\psi)\rangle\} \tag{2.21}
\end{equation*}
$$

Since $u \geqq(1 / 2)$ and $-\tanh (R) \tau_{0} \leqq \tanh (\rho \circ \psi)\langle\nabla \rho, \tau(\psi)\rangle($ using $|\nabla \rho|=1)$, we have

$$
\begin{equation*}
\Delta u \geqq \chi-(1 / 2) \tanh (R) \tau_{0} . \tag{2.22}
\end{equation*}
$$

Now, suppose that $\chi-(1 / 2) \tanh (R) \tau_{0}=C>0$: then we apply Lemma 2.7 with $a \equiv 1 \equiv b$ and $\varphi \equiv C$ to conclude that u is unbounded - contradiction. Thus

$$
\chi-(1 / 2) \tanh (R) \tau_{0} \leqq 0
$$

and (2.20) follows readily. //
Remark 2.23. Theorem 2.17 was proved - with different methods - in [2]
in the special case $G(r)=\left[1+\{r \log (r+2)\}^{2}\right]$ (compare with (1.10)). Similarly, Corollary 3.2, 3.5 and Theorems 3.3, 3.4 of [2] still hold if assumption Ricci (M) $\geqq-A\left[1+\{r \log (r+2)\}^{2}\right]$ is replaced by $\operatorname{Ricci}(M) \geqq-A G(r)$ as in our Theorem 2.17. If ψ is an isometric immersion, then $\tau(\psi)=m H$, where $m=\operatorname{dim} M$ and H is the mean curvature vector; the boundedness of $|H|$, together with Gauss equations, ensure that in this case the assumption $\operatorname{Ricci}(M) \geqq-A G(r)$ can be substituted by the corresponding assumption on the scalar curvature: in particular (compare with Theorem 3.3 of [2]), we obtain

Corollary 2.24. Let M be a complete, non-compact immersed submanifold of \boldsymbol{R}^{n} with parallel mean curvature H and scalar curvature bounded below by $-A G(r)$, with $[G(r)]^{1 / 2}=\mathcal{O}(F(r))$, for some $F \in G$ as in (1.10). If the image of the Gauss ma力 $\gamma: M \rightarrow G_{m}\left(\boldsymbol{R}^{n}\right)$ lies in a geodesic ball $B_{R}(\tilde{q})$ with $R<\pi /(2 \sqrt{B})$ (where $B=1$ if $n-m=1$ and $B=2$ otherwise), then M is minimal.

Remark 2.25. Let M be the 2 -dimensional plane with metric $d r^{2}+k^{2}(r) d \theta^{2}$ and assume that $k(r)=\exp \left[r^{2}(\log r)\right]$ for $r \gg 1$. Since Ricci $(M)=-k^{\prime \prime} / k$, we see that $\operatorname{Ricci}(M) \geqq-A r^{2}(\log r)^{2}$ for $r \gg 1$ and some $A>0$. So we can apply Theorem 2.17 with $F(r)=r(\log r)(\log \log r)$; on the other hand, M has no subquadratic exponential growth. Indeed

$$
\lim _{r \rightarrow+\infty}\left\{\log \left(\operatorname{Vol} B_{r}\right)\right\} / r^{2}=\lim _{r \rightarrow+\infty} \log r=+\infty
$$

Thus Theorem 2.17 extends Theorem 3.1 (and related Corollaries) of [10].

3. Applications to models and Hadamard manifolds.

(3.1) We begin with some differential geometric preliminaries: a model (see [8]) is a complete Riemannian manifold

$$
\begin{equation*}
M^{m}(g)=\left(S^{m-1} \times[0,+\infty), g^{2}(r) d \theta^{2}+d r^{2}\right), \quad m \geqq 2 \tag{3.2}
\end{equation*}
$$

where $d \theta^{2}$ is the standard metric of S^{m-1} and $g(r)$ is a smooth function, odd at the origin and such that

$$
\begin{equation*}
g(0)=0, \quad g^{\prime}(0)=1 \quad \text { and } \quad g(r)>0 \quad \text { for all } r>0 \tag{3.3}
\end{equation*}
$$

The point of $M^{m}(g)$ corresponding to $r=0$ is called pole and denoted by p. If $g(r)=r, \sinh r, \sin r(r \in[0, \pi / 2))$, we have $M^{m}(g)=\boldsymbol{R}^{m}, \boldsymbol{H}^{m}, S_{+}^{m}$ respectively. (Of course, S_{+}^{m} is not a model.)
(3.4) Let $\left(N, d s^{2}\right)$ be a complete, n-dimensional Riemannian manifold; and let $B_{R}(q)$ be a geodesic ball inside the cut locus of $q \in N$: following [8] we say that $B_{R}(q)$ dominates an n-dimensional model $M^{n}(\tilde{k})$ if $z \in B_{R}(q), y \in$ $M^{n}(\tilde{k})$ and $\rho(z)=\tilde{\rho}(y)\left(\rho, \tilde{\rho}\right.$ distances from q and the pole of $M^{n}(\tilde{k})$ respectively) imply

$$
\begin{equation*}
K_{\mathrm{rad}}(z) \leqq K_{\mathrm{rad}}(y) \tag{3.5}
\end{equation*}
$$

where K_{rad} is the radial curvature. Under these hypotheses, the hessian comparison theorem and Proposition 2.20 of [8] give

$$
\begin{equation*}
\operatorname{Hess}(\rho)_{z}>\operatorname{Hess}(\tilde{\rho})_{y}=\tilde{k}^{\prime}(\tilde{\rho}(y)) \tilde{k}(\tilde{\rho}(y)) d \theta^{2} \tag{3.6}
\end{equation*}
$$

where $d \theta^{2}$ is the standard metric of S^{n-1} and the symbol $>$ is explained in [8], p. 19.

Lemma 3.7. Let M, N be Riemannian manifolds, $p \in M, q \in N, \operatorname{dim} N=n$, and let $d s^{2}$ be the metric on N. Let ρ be the distance function from q and $B_{R}(q)$ a ball which dominates $M^{n}(\tilde{k})$ as in (3.4). Let $\lambda^{2}(z)$ be the minimum eigenvalue of $d s^{2}-d \rho^{2}$ at $z \in B_{R}(q)$ and $\psi: M \rightarrow N$ a smooth map such that $\psi(p)=q$. Define $u=\rho \circ \psi, U=\{x \in M: u(x) \neq 0\}$, and $\xi=\pi \circ \psi$ on U, where $\pi: B_{R}(q)=[0, R) \times S^{n-1}$ $\rightarrow S^{n-1}$ denotes projection on the second factor. Then on $U \cap \psi^{-1}\left(B_{R}(q)\right)$

$$
\begin{equation*}
\langle\nabla \rho, \tau(\psi)\rangle \leqq \Delta u-2 \tilde{k}^{\prime}(u) \tilde{k}(u) e(\xi)\left[\left(\lambda^{2} \circ \psi\right) /(\tilde{k}(u))^{2}\right] . \tag{3.8}
\end{equation*}
$$

Proof. A standard computation (see [5]) gives

$$
\begin{equation*}
\langle\nabla \rho, \tau(\psi)\rangle=\Delta u-\Sigma_{i} \operatorname{Hess}(\rho)_{\psi}\left(d \psi\left(e_{i}\right), d \psi\left(e_{i}\right)\right) \tag{3.9}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is a local orthonormal frame on M. Now we apply (3.6) to (3.9) to get

$$
\begin{equation*}
\langle\nabla \rho, \tau(\psi)\rangle \leqq \Delta u-\tilde{k}^{\prime}(u) \tilde{k}(u) \sum_{i} d \theta^{2}\left(d \tilde{\psi}\left(e_{i}\right), d \tilde{\psi}\left(e_{i}\right)\right) \tag{3.10}
\end{equation*}
$$

where $d \tilde{\psi}\left(e_{i}\right)$ are defined as follows: Let $\theta^{4}, A=1, \cdots, n-1$, be a local orthonormal coframe for S^{n-1}; using polar coordinates (ρ, θ) we can express $d s^{2}$ on $B_{R}(q)$ in the form

$$
\begin{equation*}
d s^{2}=d \rho^{2}+\left[h_{A B}^{2}(\rho, \theta)\right] \theta^{A} \theta^{B} \tag{3.11}
\end{equation*}
$$

(the sum over repeated indexes is understood). Because we perform the computations at a point $z=\phi(x) \neq q$, we can assume that we have diagonalized (3.11) by means of an orthogonal transformation of the θ^{4} 's, so that at z

$$
d s^{2}=d \rho^{2}+\left[h_{A}^{2}(\rho, \theta)\right]\left[\theta^{A}\right]^{2} .
$$

Let $\left\{E_{A}\right\}$ be the frame field dual to $\left\{\theta^{A}\right\}$. Then

$$
d \psi\left(e_{i}\right)=B_{i}^{0}[\partial / \partial \rho]+B_{i}^{A}\left[h_{A}(\rho, \theta)\right]^{-1} E_{A}
$$

with $\left|d \psi\left(e_{i}\right)\right|^{2}=\left(B_{i}^{0}\right)^{2}+\Sigma_{A}\left(B_{i}^{A}\right)^{2}$. It follows that we can define, at y,

$$
d \tilde{\psi}\left(e_{i}\right)=B_{i}^{0}[\partial / \partial \tilde{\rho}]+B_{i}^{A}[\tilde{k}(\tilde{\rho}(y))]^{-1} E_{A} .
$$

From this we deduce that

$$
\begin{equation*}
\Sigma_{i} d \theta^{2}\left(d \tilde{\psi}\left(e_{i}\right), d \tilde{\psi}\left(e_{i}\right)\right)=\left\{\Sigma_{A, i}\left(B_{i}^{A}\right)^{2}\right\} / \tilde{k}^{2}(u) \tag{3.12}
\end{equation*}
$$

Now we observe that, on $U, 2 e(\xi)=\Sigma_{A, i}\left\{B_{i}^{A} / h_{A}\right\}^{2}$ and therefore

$$
\begin{equation*}
2 e(\xi) \leqq\left\{\Sigma_{A, i}\left(B_{i}^{A}\right)^{2}\right\} / \lambda^{2} . \tag{3.13}
\end{equation*}
$$

Now (3.8) follows from (3.10), (3.12) and (3.13). //
REmark 3.14. In many instances $\left[\lambda^{2} / \tilde{k}^{2}\right] \geqq 1$ and so (3.8) yields the more manageable inequality

$$
\begin{equation*}
\langle\nabla \rho, \tau(\psi)\rangle \leqq \Delta u-2 \tilde{k}^{\prime}(u) \tilde{k}(u) e(\xi) . \tag{3.15}
\end{equation*}
$$

For instance, a model N dominates itself with $\left[\lambda^{2} / \tilde{k}^{2}\right] \equiv 1$. Or else, let the sectional curvature on $B_{R}(q)$ be bounded above by $K \in \boldsymbol{R}$. We have the three cases $K<0, K=0$ and $K>0$ or, to simplify notation, $K=-1, K=0$ and $K=1$. Using Rauch comparison theorem we obtain $\lambda^{2} \geqq \sinh ^{2} \rho, \lambda^{2} \geqq \rho^{2}$ and $\lambda^{2} \geqq \sin ^{2} \rho$ respectively. Thus, choosing $\boldsymbol{H}^{n}, \boldsymbol{R}^{n}$ and S_{+}^{n} respectively as dominated "models", we find $\left[\lambda^{2} / \tilde{k}^{2}\right] \geqq 1$. Lemma 3.7 provides a key ingredient in the proof of the next results and can be applied to manifolds M, N in considerable generality : however, in order to limit technical assumptions on the cut locus of points, we shall only state and prove the next theorems for especially interesting choices of M and N, leaving to the interested reader the details of further possible extensions to the other cases covered by Lemma 3.7 (see also (3.40), as an example).
(3.16) Recall that a Hadamard manifold N is a complete, simply connected Riemannian manifold with non-positive sectional curvature; in particular, the cut locus of any point is empty. In case the sectional curvature is bounded above by $-B^{2}, B>0$, then N dominates $M_{\tilde{k}}^{n}$ with $\tilde{k}(r)=\sinh (B r)$.

Theorem 3.17. Let N be a Hadamard manifold. Suppose that $M^{m}(g)$ is a model such that

$$
\begin{equation*}
[g(r)]^{-1} \notin L^{1}(+\infty) \quad \text { and } \quad g^{\prime}(r)=\mathcal{O}(F(h(r))) \tag{3.18}
\end{equation*}
$$

for some $F \in \mathcal{G}$ as in (1.10) and $h(r)=\int_{0}^{r}[1+g(s)]^{-1} d s$. Then there are no bounded harmonic maps $\psi: M^{m}(g) \rightarrow N$ such that $e(\xi)>0$ on $U=\left\{x \in M^{m}(g): \psi(x) \neq \boldsymbol{\psi}(p)\right\}$ and

$$
\begin{equation*}
e(\xi) \geqq\left[c / g^{2}\right] \quad \text { on } U \cap\left\{M^{m}(g) \backslash B_{R_{0}}(p)\right\} \text { for some } c, R_{0}>0 \tag{3.19}
\end{equation*}
$$

(ξ is defined as in Lemma 3.7).
Proof. By contradiction, suppose that there exists a harmonic map $\psi: M^{m}(g) \rightarrow N$ whose image is contained in $B_{R}(q)$, for $q=\phi(p)$ and some $R>0$.

By Remark (3.14) and (3.16) $B_{R}(q)$ dominates a model $M^{n}(\tilde{k})$ that, without loss of generality, we can assume to be either \boldsymbol{H}^{n} or \boldsymbol{R}^{n} : in particular, we have

$$
\begin{equation*}
\tilde{k}^{\prime}(\rho)>0 . \tag{3.20}
\end{equation*}
$$

Let $u=\rho \circ \psi$; because ψ is harmonic, $\tau(\psi)=0$. Thus, using Lemma 3.7 in the form (3.15), we obtain

$$
\begin{equation*}
\Delta u \geqq 2 \tilde{k}^{\prime}(u) \tilde{k}(u) e(\xi) \tag{3.21}
\end{equation*}
$$

on the open, dense set U. By a version of Lemma 2.3 (with $\varphi(u)=2 \tilde{k}^{\prime}(u) \tilde{k}(u)$, $b(x)=e(\xi)(x))$ it suffices to construct a C^{2} function v such that

$$
\begin{gather*}
\Delta v<e(\xi) \quad \text { on } U \cap\left\{M^{m}(g) \backslash B_{R_{0}}(p)\right\} ; \text { and } \tag{3.22}\\
v(x) \longrightarrow+\infty \quad \text { as } r(x) \rightarrow+\infty . \tag{3.23}
\end{gather*}
$$

For this purpose we consider

$$
\begin{gather*}
\beta^{\prime \prime}(r)+(m-1)\left[g^{\prime}(r) / g(r)\right] \beta^{\prime}(r)=c /[1+g(r)]^{2} \tag{3.24}\\
\beta(0)=0, \quad \beta^{\prime}(0)=0 .
\end{gather*}
$$

This is of type (1.23) with $f \equiv 1$ and $a(r)=c /[1+g(r)]^{2}$; using (1.24) we transform (3.24) in an equation of type (1.25): then, using (1.27), (3.18) and computing it is not difficult to deduce that $\left[\tilde{g}^{\prime}(t) / \tilde{g}(t)\right] \leqq D(t)$, for some function $D(t)$ which satisfies the hypotheses of Lemma 1.18. Thus Lemmas 1.2, 1.18 and 1.20 (with $f \equiv 1$) enable us to conclude that (3.24) has a solution β which is defined for all $r>0$ and tends to $+\infty$ as $r \rightarrow+\infty$. We set $v=\beta$ or: clearly (3.23) holds. Moreover, on $U \cap\left\{M^{m}(g) \backslash B_{R_{0}}(p)\right\}$,

$$
\begin{equation*}
\Delta v=\beta^{\prime \prime}(r)+(m-1)\left[g^{\prime}(r) / g(r)\right] \beta^{\prime}(r)=c /[1+g(r)]^{2}<c /[g(r)]^{2} \leqq e(\xi) \tag{3.25}
\end{equation*}
$$

as required by (3.22).
Theorem 3.26. Let N be a Hadamard manifold with sectional curvature bounded above by a negative constant. Let $M^{m}(g)$ be a model such that

$$
\begin{equation*}
[g(r)]^{-1} \notin L^{1}(+\infty) \quad \text { and } \quad g^{\prime}(r)=\mathcal{O}\left(F^{r}(h(r))\right) \tag{3.27}
\end{equation*}
$$

for some $F \in \mathscr{F}$ as in (2.10), $0<\gamma<1$ and $h(r)=\int_{0}^{r}[1+g(s)]^{-1} d s$. Then there are no harmonic maps $\psi: M^{m}(g) \rightarrow N$ such that, on $U=\left\{x \in M^{m}(g): \phi(x) \neq \boldsymbol{\phi}(p)\right\}$,

$$
\begin{equation*}
e(\xi) \geqq\left[c / g^{2}\right] \quad \text { for some } c>0 . \tag{3.28}
\end{equation*}
$$

(ξ is defined as in Lemma 3.7).
Proof. We consider

$$
\begin{equation*}
\beta^{\prime \prime}(r)+(m-1)\left[g^{\prime}(r) / g(r)\right] \beta^{\prime}(r)=\left\{c /[1+g(r)]^{2}\right\} \tilde{k^{\prime}}(\beta) \tilde{k}(\beta) . \tag{3.29}
\end{equation*}
$$

with \tilde{k} as in (3.16). As usual, we transform (3.29) into an equation of type (1.25): applying Proposition 1.11 (with η so small as to have $\gamma<(1-\eta) /(1+\eta)$) we obtain a solution β of (3.29) corresponding to initial conditions

$$
\begin{equation*}
\beta(0)=\beta_{0}>0, \quad \beta^{\prime}(0)=0 . \tag{3.30}
\end{equation*}
$$

Such a β is defined on a maximal finite interval $[0, R)$ and satisfies

$$
\begin{equation*}
\beta(r) \longrightarrow+\infty \quad \text { as } r \rightarrow R^{-} . \tag{3.31}
\end{equation*}
$$

Moreover, given arbitrary $\varepsilon, \delta>0$, we can assume that $R>\delta$ and

$$
\begin{equation*}
\beta(r)<\varepsilon \quad \text { for all } r \in[0, \delta] \tag{3.32}
\end{equation*}
$$

provided that β_{0} is sufficiently small ; indeed, $\tilde{k}^{\prime} \tilde{k}$ is locally Lipschitz on $[0,+\infty)$ and so, if β_{0} is small, the solution determined by (3.30) approximates the trivial solution $\beta \equiv 0$ on compact sets.

Next, for $x \in M^{m}(g)$ we define $v(x)=\beta(r(x))$; so, using (3.29), we have

$$
\begin{align*}
\Delta v & =\beta^{\prime \prime}(r)+(m-1)\left[g^{\prime}(r) / g(r)\right] \beta^{\prime}(r) \tag{3.33}\\
& =\left\{c /[1+g(r)]^{2}\right\} \tilde{k}^{\prime}(v) \tilde{k}(v)<\left\{c /[g(r)]^{2}\right\} \tilde{k}^{\prime}(v) \tilde{k}(v) .
\end{align*}
$$

Moreover,

$$
\begin{equation*}
v(x)<\varepsilon \text { on } B_{\hat{o}}(p) ; \text { and } v(x) \longrightarrow+\infty \quad \text { as } x \rightarrow \partial B_{R}(p) \tag{3.34}
\end{equation*}
$$

by (3.31) and (3.32). Now we assume that there exists a nonconstant $\psi: M^{m}(g)$ $\rightarrow N$ as in the statement of the theorem. Let ρ be the distance in N from $q=\phi(p)$ and set $u=\rho \circ \psi$. Since ψ is nonconstant, there exist $\delta, \varepsilon>0$ and $y \in$ $B_{\hat{o}}(p)$ such that $u(y)>\varepsilon$. Let v be constructed as above with respect to this latter choice of ε, δ. Since ψ is nonconstant, U is dense in $M^{m}(g)$; thus the open set $U \cap B_{R}(p)$ is not empty. On it we consider the function $w=u-v$: if $z \in \partial\left\{U \cap B_{R}(p)\right\}$, then either $r(z)=R$ or $\psi(z)=q$; hence w is nonpositive near $\partial\left\{U \cap B_{R}(p)\right\}$. On the other hand at y we have $w(y)=u(y)-v(y)>\varepsilon-\varepsilon=0$. It follows that w attains a positive maximum at some interior point $\tilde{y} \in U \cap B_{R}(p)$. Using Lemma 3.7 and (3.33), at \tilde{y} we have

$$
0 \geqq \Delta w \geqq \tilde{k}^{\prime}(u) \tilde{k}(u) e(\xi)-\tilde{k}^{\prime}(v) \tilde{k}(v) c / g^{2} \geqq\left[c / g^{2}\right]\left\{\tilde{k}^{\prime}(u) \tilde{k}(u)-\tilde{k}^{\prime}(v) \tilde{k}(v)\right\} .
$$

Now $u(\tilde{y})>v(\tilde{y})$ together with $\tilde{k}^{\prime} \tilde{k}$ increas:ng give the desired contradiction. //
Application 3.36. In the case of rotationally symmetric maps between models $e(\xi)=(m-1) / g^{2}$ (see [13]). We also observe that the condition $g^{\prime}(r)=$ $\mathcal{O}\left(F^{\gamma}(h(r))\right)$ in (3.27) (and similarly in (3.18)) can be relaxed: indeed, in order to be able to apply Proposition 1.11, as required in the proof of Theorem 3.26, it
suffices that $g^{\prime}\left(r_{i}\right)=\mathcal{O}\left(F^{\gamma}\left(h\left(r_{i}\right)\right)\right.$ as $i \rightarrow+\infty$, for each sequence r_{i} such that $g^{\prime}\left(r_{i}\right)$ $\rightarrow+\infty$ as $i \rightarrow+\infty$ (see also Remark 1.19 b)). As a special case, blowing up of solutions occurs if $g^{\prime}(r)$ is bounded from above; these facts together lead us to

Corollary 3.37. Let $M^{m}(g)$ be a model such that $[g]^{-1} \notin L^{1}(+\infty)$ and g^{\prime} is bounded above by some positive constant. Then any rotationally symmetric harmonic map $\psi: M^{m}(g) \rightarrow \boldsymbol{H}^{m}$ is constant.

Similarly,
Corollary 3.38. Let N be a Hadamard manifold with sectional curvature bounded above by a negative constant and $M^{m}(g)$ a model such that $[g]^{-1} \notin L^{1}(+\infty)$ and g^{\prime} is bounded above by some positive constant. Then there are no nonconstant harmonic maps $\psi: M^{m}(g) \rightarrow N$ such that, on $U=\left\{x \in M^{m}(g): \psi(x) \neq \phi(p)\right\}$,

$$
\begin{equation*}
e(\xi) \geqq\left[c / g^{2}\right] \quad \text { for some } c>0 . \tag{3.39}
\end{equation*}
$$

(ξ is defined as in Lemma 3.7).
Application 3.40. Instead of a Hadamard manifold N we can take a model, say $N=N^{n}(k)$, and consider maps $\psi: M^{m}(g) \rightarrow N^{n}(k)$ which send pole into pole: then Theorem 3.17 (resp., Theorem 3.26 and its Corollaries 3.37 and 3.38) holds true - with the same proofs - if $k^{\prime}>0$ (resp., $k^{\prime}>0,\left(k k^{\prime}\right)^{\prime}>0$ and $k k^{\prime}$ verifies (1.11) i)), the remaining assumptions being unchanged. That is of interest because the sectional curvature of these models $N^{n}(k)$ is not necessarily nonpositive.

Remark 3.41. Assumption (3.19) (or, equivalently, (3.28) or (3.39)) gives an extension of condition (0.2) in Theorem 0.1 (resp., Theorem 1) of [16] (resp., [17]). In particular, Theorem 3.26, Corollaries 3.37, 3.38 and (3.40) extend the main theorems of [16], [17].

Acknowledgement. We wish to thank the referee for pointing out to us a mistake in a first version of Theorem 3.26.

References

[1] E. Calabi, An extension of E. Hopf's maximum principle, Duke Math. J., 25 (1957), 45-56.
[2] Q. Chen and Y.L. Xin, A generalized maximum principle and its applications in geometry, Preprint MSRI (1990), to appear in Amer. J. Math..
[3] S. Y. Cheng, Liouville's theorems for harmonic maps, Proc. Sympos. Pure Math., 36 (1980), 91-94.
[4] H.I. Choi and A. Treibergs, Gauss maps of space-like constant mean curvature hypersurfaces of Minkowski space, J. Differential Geom., 32 (1990), 775-817.
[5] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68.
[6] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524.
[7] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.
[8] R. Greene and $\mathrm{H} . \mathrm{Wu}$, Function theory on manifolds which possess a pole, Lecture Notes in Math., 699, Springer, 1979.
[9] L. Jorge and D. Koutroufiotis, An estimate for the curvature of bounded submanifolds, Amer. J. Math., 103 (1981), 711-725.
[10] L. Karp, Differential inequalities on complete Riemannian manifolds and applications, Math. Ann., 272 (1985), 449-459.
[11] A. Kasue, Estimates for solutions of Poisson equations and their applications to submanifolds, (ed. K. Kenmotsu), Lecture Notes in Math., 1090, Springer, 1984, pp. 1-14.
[12] R. Osserman, On the inequality $\Delta u \geqq f(u)$, Pacific J. Math., 7 (1957), 1641-1647.
[13] A. Ratto and M. Rigoli, On the asymptotic behaviour of rotationally symmetric harmonic maps, J. Differential Equations, to appear.
[14] R. Redheffer, A classification of solutions of certain nonlinear differential inequalities with applications to theorems of Liouville type, Math. Z., 192 (1986), 453-465.
[15] R. Redheffer, On the inequality $\Delta u \geqq f(u,|\operatorname{grad} u|)$, J. Math. Anal. Appl., 1 (1960), 277-299.
[16] A. Tachikawa, A non-existence result for harmonic mappings from \boldsymbol{R}^{n} to \boldsymbol{H}^{n}, Tokyo J. Math., 11 (1988), 311-316.
[17] A. Tachikawa, Harmonic mappings from \boldsymbol{R}^{n} into an Hadamard manifold, J. Math. Soc. Japan, 42 (1990), 147-153.
[18] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.

Andrea Ratto
Mathematics Institute
University of Warwick
Coventry CV4 7AL
England

Marco Rigoli
Dipartimento di Matematica
Universită di Milano
Via Saldini 50 - Città Studi
20133 Milano
Italy

