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\S 0. Introduction.

In this article we would like to give more natural verification to Nikulin’s
theorems in Nikulin [4] and Nikulin [5]. (Nikulin [4] is a report distributed
at the symposium held at Tokyo Metropolitan University in August 1990.)

First we explain Nikulin’s results.
Let $X$ be a K3 surface ( $i.e.$ , a smooth projective algebraic surface over

algebraically closed field such that the canonical line bundle $K_{X}$ is trivial and
$H^{1}(X, O_{X})=0)$ . A line bundle $L$ (resp. a divisor $D$ ) on $X$ is $nef$, if $L\cdot C\geqq 0$ (resp.
$D\cdot C\geqq 0)$ holds for every irreducible algebraic curve $C$ on $X$ . Needless to say, the
self-intersection number $C\cdot C=C^{2}$ is an even integer with $\geqq-2$ for every irredu-
cible curve C. $C^{2}=-2$ if and only if $C$ is a smooth rational curve. Moreover,
$h^{0}(O_{X}(C))=\dim H^{0}(O_{X}(C))=\dim|C|+1=C^{2}/2+2$ by Riemann-Roch theorem.

Here we quote the following proposition contained in [4] and [5]. It fol-
lows easily from Saint-Donat [6].

PROPOSITION 0.1. Let $H\in Pic(X)$ be a $nef$ line bundle. One of the following
cases (1) $-(4)$ holds.

(1) $H^{2}>0$ . The comPlete linear system $|H|$ contains an irreducible curve
and has no fixed $p\alpha nt$ . $\dim|H|=H^{2}/2+1>0$ .

(2) $H^{2}=0,$ $|H|=m|E|,$ $m>0$ , where $|E|$ is an elliPtic Pencil. ( $|H|$ contains
an irreducible curve for $m=1$ only.)

(3) $H^{2}>0,$ $|H|=m|E|+\Gamma,$ $m\geqq 2$ , where $|E|$ is an elliptic pencil and $\Gamma$ is
an irreducible curve with $\Gamma^{2}=-2$ and $E\cdot\Gamma=1$ . Here also $m=\dim|H|=H^{2}/2+1$ .
$\Gamma$ is the fixed part of $|H|$ .

(4) $H\cong O_{X},$ $|H|=\{\emptyset\}$ .

Let $\Delta=\Sigma n_{i}\Delta_{i}$ be an effective divisor on $X$ . By $G(\Delta)$ we denote the dual
graph of intersections of the components $\Delta_{i}$ of $\Delta$ , the weight of the vertex
corresponding to $\Delta_{i}$ being the multiplicity $n_{i}$ , the number of edges connecting
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two vertices corresponding to $\Delta_{\ell}$ and $\Delta_{j}$ being the intersection number $\Delta_{i}\cdot\Delta_{j}$ .
If a distinguished component $\Delta_{0}$ of $\Delta$ is given, $G(\Delta, \Delta_{0})$ denotes the dual graph
$G(\Delta)$ with the distinguished vertex corresponding to $\Delta_{0}$ . (In this article the
word “component” is used for a divisor with the meaning “irreducible component”
for simplicity. If a connected component is considered, we use the words “con-
nected component” adding “connected”.)

Note that any linear system can be written $|D|+\Delta$ where $|D|$ is the
moving part and $\Delta$ is the fixed part. The divisor $D$ is necessarily nef, and
one of the conditions (1), (2) and (4) in Proposition 0.1 holds for the line bundle
$O_{X}(D)$ .

We would like to consider one of Nikulin’s theorems in [4] and [5]. We
divide it into three pieces corresponding to the cases (1), (2) and (4) in Pro-
position 0.1.

THEOREM 0.2. Let $C$ be an irreducible curve on $X$ with $C^{2}>0$ . Let $\Delta$ be
an effective divisor on X. The two conditions below are equivalent.

(A) $|C+\Delta|=|C|+\Delta$ .

(B) Every component $\Delta_{i}$ of $\Delta$ satisfies $\Delta_{\iota^{2}}=-2$ . The graph $G(C+\Delta, C)$ is
a tree (particularly all components of $C+\Delta$ intersect transversally at at most one
point), and $G(C+\Delta, C)$ has no subtree of type $D_{k}(C),\tilde{E}_{6}(C),\tilde{E}_{7}(C)$ or $\tilde{E}_{8}(C)$

below.

If we treat a curve $E$ on $X$ with $E^{2}=0$ , we cannot assume that the mul-
tiplicity of $E$ in the divisor under consideration is equal to 1. (See Proposition
0.1.) The corresponding theorem can be stated as follows.

THEOREM 0.3. Let $E$ be an irreducible curve on $X$ with $E^{2}=0$ . Let $\Delta$ be
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an effective divisor on X. Let $m$ be a positive integer. The two -conditions
below are equivalent.

(A) $|mE+\Delta|=|mE|+\Delta$ .

(B) Every component $\Delta_{i}$ of $\Delta$ satisfies $\Delta_{i}^{2}=-2$ . The graph $G(mE+\Delta, E)$

is a tree without a subtree of type $D_{k},\tilde{E}_{6},$ $E_{7}$ or $\tilde{E}_{8}$ below and one of the fol-
lowing conditions (1) $-(4)$ holds.

1 2 2 2 $---------2$ 2 1
$\tilde{D}_{k}$ :
$k\geqq 4$

2 4 6 5 4 3 2 1

2 1

(1) $m=1$ and $G(mE+4E)$ has no subtree of $tyPeD_{k}(E),\tilde{E}_{6}(E),\tilde{E}_{7}(E)^{-}or$

$\tilde{E}_{8}(E)$ .
(2) $m-2$ and $G(mE+\Delta, E)$ has no subtree of the $tyPe\tilde{B}_{k}(E)$ below.

$\tilde{B}_{k}(E)$ :

le 12

(3) $m=3$ and $G(mE+\Delta, E)$ has no subtree of the $tyPe\tilde{G}_{2}(E)$ or of the $tyPe$

$\tilde{B}_{2}(E)$ below.

$\tilde{B}_{2}(E)$ :

(4) $m\geqq 4$ and $G(mE+\Delta, E)$ has no subtree of type $2BC_{1}(E)\sim$ below or of type
$\tilde{B}_{2}(E)$ .

2 4
$2BC_{1}(E)$ :

$\sim$

$\infty E$
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REMARK. The above four conditions have the following relation. Let $(n)’$

$(1\leqq n\leqq 4)$ denote the latter half of the above corresponding condition $(n)$ . $(n)’$

is a statement on $G(mE+\Delta, E)$ free from the value of $m$ . Under this notation,
if $m\geqq n\geqq 2$ and if $G(mE+\Delta, E)$ is a tree satisfying $(n)’$ , then $(n-1)’$ also holds.

THEOREM 0.4. Let $\Delta$ be an effective divisor on X. The following two con-
ditions are equivalent.

(A) $\dim|\Delta|=0$ .

(B) Every component $\Delta_{i}$ of $\Delta$ satisfies $\Delta_{t^{2}}=-2$ , and the graPh $G(\Delta)$ is a
tree without a subtree of tyPe $\tilde{D}_{k},\tilde{E}_{6},\hat{E}_{7}$ or $\tilde{E}_{8}$ .

In Nikulin [4] only Theorem 0.2 was given. In Nikulin [5] we can find
one theorem containing all the contents of our three theorems Theorem 0.2,
0.3 and 0.4. Here we divide it into three in order to make the statements
more precise. Besides, one notices that the verification in [4] or [5] seems
slightly artificial. We give more natural verification in tbis article.

This article is a result of discussions with Professor V. V. Nikulin. I ex-
press very deep thanks to him. Also I thank the referee for his nice comments.

REMARK. Perbaps you can understand the meaning of the names $B_{k}(E)$

$and_{-}\tilde{G}_{2}(E)$ of the graphs in Theorem 0.3, because obviously they correspond to
the extended Dynkin graphs of type $B_{k}$ and $G_{2}$ respectively. However, some
explanation is necessary for $2\overline{BC}_{1}(E)$ .

Root systems are finite sets of vectors satisfying certain axioms related to
symmetries. We have four infinite series $A_{k},$ $B_{k},$ $C_{k},$ $D_{k}$ and five exceptional
ones $E_{6},$ $E_{7},$ $E_{8},$ $F_{4},$ $G_{2}$ of irreducible root systems. It is known tbat another
series $BC_{k}$ of irreducible root systems appears, if we ignore one non-essential
axiom called the axiom of the reduced property. (Bourbaki [2].) Also for $BC_{k}$

we can define the Weyl group, the Dynkin graph and the extended Dynkin
graph.

If $E$ has a virtual fractional self-intersection number $E^{2}=-1/2$ , then the

graph $1rightarrow E2$ can be regarded as the extended Dynkin graph of type

$BC_{1}$ . (Urabe [7].) Thus when $E^{2}$ is arbitrary, this graph can be called $BC_{1}(E)\sim$ .
The above graph in (4) is 2 times this graph. With the lower left subscript

indicating the multiplicity 2 the graph in (4) is called $2BC_{1}(E)\sim$ .

\S 1. The verification.

Our verificatlon of the above three theorems Theorem 0.2-4 is very similar.
After giving the exact verification of the most complicated Theorem 0.3, we
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give comments on the different points in the verification of Theorem 0.2 and
Theorem 0.4. We consider Theorem 0.3 below.

We have very simple verification due to Nikulin for the implication $(A)\Rightarrow$

(B). (Nikulin [4], [5].)

First, by Riemann-Roch theorem every component $\Delta_{i}$ of $\Delta$ satisfies $\Delta_{\iota^{2}}=-2$

under the condition (A) and is isomorphic to a smooth rational curve.
Next we can check easily the following three facts.
(1) For every two irreducible curves $\Delta_{1}$ and $\Delta_{2}$ on $X$ , the sum $\Delta_{1}+\Delta_{2}$ is

a nef divisor, if $\Delta_{1}\cdot\Delta_{2}\geqq 2$ .
(2) If a is a divisor on $X$ giving the following graph $\tilde{A}_{k}$ or $\tilde{A}_{k}(C)$ with

$k\geqq 1$ , then $\tilde{\Delta}$ is nef. (In $\tilde{A}_{k}(C)$ $C$ is an irreducible curve on $X$ with $C^{2}\geqq 0.$ )

$\tilde{A}_{k}$ : $\tilde{A}_{k}(C)$ :

(3) If $\tilde{\Delta}$ is a divisor on $X$ giving the graph $D_{k},$ $E_{6},$ $E_{7},$ $E_{8},$ $D_{k}(C),$ $E_{6}(C)$ ,

$\tilde{E}_{7}(C),\tilde{E}_{8}(C),\tilde{B}_{k}(E),\tilde{G}_{2}(E)$ , or $2\sim$ , then a is nef. ( $C$ is the same as above.
$E$ is an irreducible curve with $E^{2}=0.$ )

Under (A) the condition (B) follows easily from Proposition 0.1 and the
above facts.

We give our own verification to the implication $(B)\Rightarrow(A)$ .
Assume that (A) does not hold. We will deduce that (B) does not hold.
First we introduce a partial order lil among divisors on $X$ by the following

condition.
$D\geqq D’=D-D’$ is effective.

(Note that the zero divisor is effective by definition.) Set

$S=\{\Delta’|\Delta\geqq\Delta’\geqq 0, |mE+\Delta’|\neq|mE|+\Delta’\}$ .

By assumption $\Delta\in S\neq\emptyset$ . $S$ is a finite partially ordered set with respect
to the order $\geqq$ . Let $\overline{J}\in S$ be a minimal element.

LEMMA 1.1. $\overline{\Delta}\neq 0$ .
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PROOF. ObviouS.

LEMMA 1.2. For any comPonent $\Gamma$ of a
$|mE+-\Gamma|-=|mE|+\overline{\Delta}-\Gamma$ .

PROOF. It follows from the minimality.

LEMMA 1.3. $|mE+\overline{\Delta}|$ has no fixed comPonent.

PROOF. Assume that an irreducible curve $\Gamma$ is a fixed component. If $\Gamma=$

$E$ , then we have $-2=\Gamma^{2}=E^{2}\geqq 0$ a contradiction. Thus $\Gamma$ is a component of
$\overline{\Delta}$ . We have

$|mE+\overline{\Delta}|=|(mE+\overline{\Delta}-\Gamma)+\Gamma|$

$=|mE+\overline{\Delta}-\Gamma|+\Gamma$ ( $\Gamma$ is a fixed component)

$=|mE|+(\overline{\Delta}-\Gamma)+\Gamma$ (Lemma 1.2)

$=|mE|+\overline{\Delta}$

$\neq|mE+\overline{\Delta}|$

a contradiction.

(By the choice of $\overline{\Delta}$ ),

Q. E. D.

By Lemma 1.3 the line bundle $H=\mathcal{O}_{X}(mE+\overline{\Delta})$ is nef and by Proposition 0.1
it defines a morphism $\varphi=\varphi_{H}$ : $Xarrow P^{\dim|H|}=P$. Here we divide the argument
into three cases.

CASE 1. $(mE+\overline{\Delta})\cdot\Gamma_{0}=0$ for some component $\Gamma_{0}$ of a and $(mE+\overline{\Delta})^{2}=0$ .
By the above condition the image $\varphi(\Gamma_{0})$ is a point, say $x_{0}\in P$. Note that

by Lemma 1.2 for every component $\Gamma$ of $\overline{\Delta}-\Gamma_{0}$ , we have $\varphi(\Gamma)=\varphi(\Gamma_{0})=\{x_{0}\}$ .
Thus $\varphi(Supp\overline{\Delta})=\{x_{0}\}$ . ($SuppD$ denotes the support of a divisor $D.$ )

On the other hand by Proposition 0.1, $\varphi$ is decomposed into the composi-
tion of $\pi:Xarrow B,$ $B\cong P^{1}$ and the Veronese embedding $BcP$ of degree $n=$

$\dim|H|$ . $\pi$ is a morphism associated with an elliptic pencil $|E’|$ , and has no
multiple fiber. Therefore an equality of divisors $mE+\overline{\Delta}=\pi^{*}(x_{0}+x_{1}+\cdots+x_{n-1})$

holds for some points $x_{0},$ $x_{1},$ $\cdots$ , $x_{n-1}\in B$ . Assume $\pi(E)=\{x_{0}\}$ . $E$ is a component
of $\pi^{-1}(x_{0})$ . Since $\pi^{-1}(x_{0})\supset Supp$ a, $\pi^{-1}(x_{0})$ is reducible. We have $-2=E^{2}\geqq 0$ , a
contradiction. We can conclude $E=\pi^{*}(x_{1})$ for some point $x_{1}\in B$ with $x_{1}\neq x_{0}$ .
We have $\overline{\Delta}=(n-m)\pi^{*}(x_{0})$ . Thus the graph $G(\pi^{*}(x_{0}))$ is a subgraph of $G(mE+$
$\overline{\Delta},$ $E)$ and a subgraph of $G(mE+\Delta, E)$ . By Kodaira’s classification of singular
fibers of elliptic surfaces (Kodaira [3]), either $G(\pi^{*}(x_{0}))$ is not a tree, or of
type $\tilde{D}_{k}$ or $E_{l}$ for some $k\geqq 4,$ $l=6,7,8$ . Thus the condition (B) never holds.

CASE 2. $(mE+\overline{\Delta})\cdot\Gamma_{0}=0$ for some component $\Gamma_{0}$ of a and $(mE+\overline{\Delta})^{2}>0$ .
By the same reason as in Case 1, $\varphi(Supp\overline{\Delta})=\{x_{0}\}$ for some point $x_{0}\in P$ .
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By definition of $\varphi$ we have a hyperplane $L_{0}\subset P$ passing through $x_{0}$ with $mE+$
$\overline{\lrcorner}=\varphi^{*}L_{0}$ . Thus $(mE+\overline{\Delta})\cdot\Gamma=\varphi^{*}L_{0}\cdot\Gamma=0$ for every component $\Gamma$ of a. Moreover,
$Supp\overline{\Delta}=\varphi^{-1}(x_{0})$ holds, since $\varphi(Supp(mE+\overline{\Delta}))\not\subset\{x_{0}\}$ .

Let $T=U$ { $\Theta|\Theta$ is an irreducible curve on $X$ with $\Theta\cdot(mE+\overline{\Delta})=0$ }. Let
$\rho:Xarrow\overline{X}$ be the contraction morphism sending each connected component of $T$

to a rational double point. (Saint-Donat [6].) The morphism $\varphi$ factors through
$\rho$ and the induced morphism $\overline{\varphi}$ : $\overline{X}arrow P$ is finite.

Let $\mathscr{I}$ be the ideal sheaf of the finite set $\overline{\varphi}^{-1}(x_{0})\subset\overline{X}$ . $\mathscr{I}$ is a subsheaf of
the structure sheaf er of $\overline{X}$ . Note that every point in $\overline{\varphi}^{-1}(x_{0})$ is a singular
point of $\overline{X}$ , since $\varphi^{-1}(x_{0})=\rho^{-1}(\overline{\varphi}^{-1}(x_{0}))=Supp$ a has pure codimension 1. Since
$\overline{X}$ has rational double points as singularities, the pull-back $\mathscr{I}O_{X}$ of $\mathscr{I}$ on $X$ is
locally free and we can write $\mathscr{I}O_{X}=O_{X}(-\overline{\Delta}’)$ for some effective divisor $\overline{\Delta}’$ with
$Supp\lrcorner’=\varphi^{-1}(x_{0})-$ . One knows that $mE+\overline{\Delta}-\overline{\Delta}’$ is effective, since $\overline{\varphi}^{*}L_{0}$ passes
through $\overline{\varphi}^{-1}(x_{0})$ . Since $\varphi(E)\not\subset\{x_{0}\},$ $E$ is not a component of a’ and $\overline{\Delta}-\overline{\Delta}’$ is
effective, too.

Since $\overline{\Delta}’\neq 0$ , by the minimality of a we have

$|mE+\overline{\Delta}-\overline{\Delta}’|=|mE|+\overline{\Delta}-\overline{\Delta}’$

On the other hand it is known that for every component $\Gamma$ of $Supp\overline{\Delta}’=$

$Supp\overline{\Delta}=\varphi^{-1}(x_{0})$ , the inequality $\Gamma\cdot\overline{\Delta}’\leqq 0$ holds. (Artin [1].)

REMARK. Assume that a rational double point $\overline{x}_{0}\in\overline{\varphi}^{-1}(x_{0})$ is of type $U$ .
$U=A_{k}(k\geqq 1),$ $D_{\iota}(l\geqq 4),$ $E_{6},$ $E_{7}$ or $E_{8}$ . Let $\Delta_{U}$ be the connected component of $\overline{\Delta}’$

with $Supp\Delta_{U}\subset\rho^{-1}(\overline{x}_{0})$ . The divisor $\Delta_{U}$ is the maximal ideal divisor of the
singularity (X, $\overline{x}_{0}$). The graph $G(\Delta_{U})$ is the Dynkin graph of the type $U$ .
Besides, if there is an irreducible curve $F$ such that $F\cdot\Gamma=-\Delta_{U}\cdot\Gamma$ for every
component $\Gamma$ of $\Delta_{U}$ , then $G(\Delta_{U}+F)$ coincides with the extended Dynkin graph
$O$ (Note the tilde over $U.$ ) in Theorem 0.3 or in the beginning of this section.

Thus $(mE+\overline{\Delta}-\overline{\Delta}’)\cdot\Gamma=-\lrcorner’\cdot\Gamma-\geqq 0$ . It implies that $mE+\overline{\Delta}-\overline{\Delta}’$ is nef. One
knows that one of the cases (1) $-(4)$ in Proposition 0.1 holds for $H’=O_{X}(mE+$
$\overline{J}-\overline{\Delta}’)$ .

Assume that case (1) or case (2) holds. Then $|mE+\overline{\Delta}-\overline{\Delta}’|$ has no fixed
component. By $*$ we bave $\overline{\Delta}=\overline{J}’$ .

Assume that case (4) holds. By *we can conclude $\overline{\Delta}=\overline{\Delta}’$ also in this case.
Therefore in what follows for the time being we assume that case (3)

takes place. By *one knows that $m\geqq 2$ , and $\overline{\Delta}-\lrcorner’=\overline{\Gamma}-$ for some irreducible
curve $\overline{\Gamma}$ with $\overline{\Gamma}^{2}=-2$ and $\overline{\Gamma}\cdot E=1$ .

Assume that $Supp\overline{\Delta}=Supp$ a’ is not connected. We have a component $\Gamma$

of a with $\overline{\Gamma}\cdot\Gamma=0,\overline{\Delta}’\cdot\Gamma=-1$ or-2. Thus $0=(mE+\overline{\Delta})\cdot\Gamma=(mE+\overline{\Delta}’+\overline{\Gamma})\cdot\Gamma=$

$mE\cdot\Gamma+\overline{\Delta}’\cdot\Gamma$ . Since $m\geqq 2$ , we have $m=2,$ $E\cdot\Gamma=1$ , and $\overline{\Delta}’\cdot\Gamma=-2$ . We can
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see easily $|2E+\overline{\Gamma}+\Gamma|\neq|2E|+\overline{\Gamma}+\Gamma$ . Thus $\overline{\Delta}-\overline{\Gamma}+\Gamma$ by the minimality of a.
Then, we have $\overline{\Delta}’=\Gamma$ and $Supp\overline{\Delta}\neq Supp\overline{\Delta}’$ , a contradiction. Thus $Supp\overline{\Delta}=$

$Supp$ a’ is connected.
Since $0=(mE+\overline{\Delta}’+\overline{\Gamma})\cdot\overline{\Gamma}=(m-2)+\overline{\Delta}’\cdot\overline{\Gamma}$ and since a’. $\overline{\Gamma}=-2,$ $-1$ or $0$ , we

have three possibilities.
(a) $m=4,\overline{\Delta}’\cdot\overline{\Gamma}=-2$ .
(b) $m=3,\overline{\Delta}’\cdot\overline{\Gamma}=-1$ .
(c) $m=2,\overline{\Delta}’\cdot\overline{\Gamma}=0$ .
In the case (a) $\overline{\Delta}’$ is of type $A_{1}$ and $mE+\overline{\Delta}=4E+2\overline{\Gamma}$. This implies that

$G(mE+\overline{\Delta}, E)$ is of type $2BC_{1}(E)\sim$ and the condition (B) does not hold.
In the case (b) $\overline{\Delta}’$ is not of type $A_{1}$ . If it is not of type $A_{2}$ , then we have

a component $\Gamma$ of $\overline{\Delta}’$ with $\Gamma\cdot\overline{\Gamma}=1,\overline{\Delta}’\cdot\Gamma=0$ . We have $0=(3E+\overline{\Delta}’+\overline{\Gamma})\cdot\Gamma=$

$3E\cdot\Gamma+1$ , a contradiction. Thus a’ is of type $A_{2}$ and we can write $mE+\overline{\Delta}=$

$3E+2\overline{\Gamma}+\Gamma$ with $\overline{\Gamma}^{2}=\Gamma^{2}=-2,$ $E\cdot\overline{\Gamma}=\overline{\Gamma}\cdot\Gamma=1$ , and $E\cdot\Gamma=0$ . Thus $G(mE+\overline{\Delta}$ ,
$E)$ is of type $G_{2}(E)$ , and (B) never holds.

We consider the case (c). In this case a’ is neither of type $A_{1}$ nor of type
$A_{2}$ . Assume that a component $\Gamma$ of a’ satisfies a’. $\Gamma=-1$ and $\Gamma\cdot\overline{\Gamma}=0$ . Thus
$0=(2E+\overline{\Delta}’+\overline{\Gamma})\cdot\Gamma=2E\cdot\Gamma-1$ , a contradiction. It implies that a’ is not of type
$A_{k}$ for $k\geqq 4$ . Moreover, if $\overline{\Delta}’\cdot\Gamma=-1$ for a component $\Gamma$ of a’, then $\Gamma\cdot\overline{\Gamma}=1$ .
Assume conversely that we have a component $\Gamma$ of a’ with $\Gamma\cdot\overline{\Gamma}=1$ . We
have $0=(2E+\overline{\Delta}’+\overline{\Gamma})\cdot\Gamma=2E\cdot\Gamma+\overline{\Delta}’\cdot\Gamma+1$ . Thus $\overline{\Delta}’\cdot\Gamma=-1$ . In conclusion we
have a’. $\Gamma=-1\epsilon\Rightarrow\overline{\Gamma}\cdot\Gamma=1$ for a component $\Gamma$ of a’. By the classification of
rational double points this implies that $\overline{\Delta}’$ is of type $D_{k}$ for some $k\geqq 4$ or of
type $A_{3}$ . I“ corresponds to the end of the longest arm of the graph $D_{k}$ , if $\overline{\Delta}’$

is of type $D_{k}$ . $\overline{\Gamma}$ corresponds to the middle vertex of the graph $A_{3}$ , if a’ is
of type $A_{3}$ . It implies that $G(mE+\overline{\Delta}, E)$ is of type $\tilde{B}_{k}(E)$ for some $k\geqq 3$ . The
condition (B) never holds. Here we conclude the case where the case (3) in
Proposition 0.1 takes place for $H’$ .

We can continue the verification assuming $\overline{\Delta}=\overline{\Delta}’$ . Here note that

$mE\cdot\Gamma=-\overline{\Delta}\cdot\Gamma=-\overline{\Delta}’\cdot\Gamma$ $**$

for every component $\Gamma$ of $\varphi^{-1}(x_{0})$ . We have three cases.
(a) A point in $\overline{\varphi}^{-1}(x_{0})$ is of type $D_{k}$ or $E_{l}$ for some $k,$ $1$ .
(b) A point in $\overline{\varphi}^{-1}(x_{0})$ is of type $A_{k}$ with $k\geqq 2$ .
(c) Every point in $\overline{\varphi}^{-1}(x_{0})$ is of type $A_{1}$ .
In the case (a) in $**-\overline{\Delta}’\cdot\Gamma=1$ for some component $\Gamma$ . Thus $m=1$ . By

** one knows that $G(mE+\Delta, E)$ has a subgraph of type $\tilde{D}_{k}(E)$ or $E_{\iota}(E)$ , and
the condition (B) does not hold.

In the case (b) by the same reason as above we know $m=1$ . By $**G(mE$
$+\Delta,$ $E)$ has a subgraph of type $\tilde{A}_{k}(E)$ with $k\geqq 2$ . (B) does not hold.
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In the third case (c) $mE\cdot\Gamma=2$ for every component $\Gamma$ of $\varphi^{-1}(x_{0})$ . Thus
$m=1$ or 2. If $m=1$ , then $E\cdot\Gamma=2$ and $G(mE+\Delta, E)$ is not a tree. (B) does
not hold. Assume $m=2$ . Let $\Gamma_{1},$ $\Gamma_{2},$ $\cdots$ , $\Gamma_{n}$ be all the components of $\varphi^{-1}(x_{0})$ .
We have $mE+\overline{\Delta}=2E+\Gamma_{1}+\Gamma_{2}+\cdots+\Gamma_{n},$ $E\cdot\Gamma_{i}=1$ for $1\leqq i\leqq n$ , and $\Gamma_{i}\cdot\Gamma_{j}=0$ for
$i\neq j$ . Since $|mE+\overline{\Delta}|\neq|mE|+\overline{\Delta}$ , we have $n\geqq 2$ . By the minimality of a, one
knows $n=2$ . Thus $G(mE+\overline{\Delta}, E)$ is of type $\tilde{B}_{2}(E)$ , and the condition (B) never
holds in this case, either.

CASE 3. $(mE+\overline{\Delta})\cdot\Gamma>0$ for every component $\Gamma$ of a.
In this case assuming moreover that $G(mE+\Delta, E)$ is a tree, we will show

that either the following (1) or (2) holds.
(1) $m\geqq 3$ and $G(mE+\Delta, E)$ contains a subgraph $\tilde{B}_{2}(E)$ .
(2) $m\geqq 5$ and $G(mE+\Delta, E)$ contains a subgraph $2BC_{1}(E)\sim$ .
If this can be shown, we can complete the verification of Theorem 1.3.
First note that $E\cdot\Gamma=0$ or 1 and $\Gamma\cdot\Gamma’=0$ or 1 for arbitrary two components

$\Gamma,$ $\Gamma’$ of $\overline{\Delta}$ by the assumption of a tree.

LEMMA 1.4. $\Delta^{\prime 2}\leqq-2$ for any non-zero effective divisor $\Delta’$ on $X$ with
$\dim|\Delta’|=0$ .

PROOF. By Riemann-Roch $1=h^{0}(\mathcal{O}_{X}(\Delta’))+h^{0}(O_{X}(-\Delta’))\geqq(\Delta^{\prime 2}/2)+2$ . Q. E. D.

Assume that a is not connected. Let $\Delta’$ be an arbitrary connected com-
ponent of $\overline{\Delta}$ . By the minimality of a, $|mE+\Delta’|=|mE|+\Delta’$ . Thus $\dim|\Delta’=0$

and $\Delta^{\prime 2}\leqq-2$ by Lemma 1.4. We have two cases.

(a) $m\geqq 2$ (b) $m=1$ .
First we consider the case (a). Assume moreover that $\Delta’$ is disjoint from

$E$ . Then, we have $\Delta’\cdot\Gamma=\overline{\Delta}\cdot\Gamma=(mE+\overline{\Delta})\cdot\Gamma>0$ for every component $\Gamma$ of $\Delta’$ .
Let $\Delta’=\Sigma l_{i}\Gamma_{i}$ be the irreducible decomposition. $l_{i}’ s$ are positive integers. We
have $-2 \geqq\Delta^{\prime 2}=\sum l_{i}\Gamma_{i}\cdot\Delta’\geqq 0$ , a contradiction. Thus every connected component
of a intersects $E$ . Since a is not connected, we have two components $\Gamma_{1}$ and
$\Gamma_{2}$ of a with $\Gamma_{1}\cdot E=\Gamma_{2}\cdot E=1$ , and $\Gamma_{1}\cdot\Gamma_{2}=0$ . Since $m\geqq 2$ , we can check easily
$|mE+\Gamma_{1}+\Gamma_{2}|\neq|mE|+\Gamma_{1}+\Gamma_{2}$ and $|mE+\Gamma_{i}|=|mE|+\Gamma_{i}$ for $t=1,2$ . By the
minimality we have $\overline{\Delta}=\Gamma_{1}+\Gamma_{2}$ . Since $0<(mE+\Gamma_{1}+\Gamma_{2})\cdot\Gamma_{1}=m-2$ , we have
$m\geqq 3$ . The above (1) holds.

We proceed to the case (b). In this case $\Delta’\cdot\Gamma=\overline{\Delta}\cdot\Gamma=(E+\overline{\Delta})\cdot\Gamma-E\cdot\Gamma\geqq 0$

for every component $\Gamma$ of $\Delta’$ , since $(E+\overline{\Delta})\cdot\Gamma=(mE+\overline{\Delta})\cdot\Gamma\geqq 1$ and $E\cdot\Gamma\leqq 1$ .
Writing $\Delta’=\Sigma l_{i}\Gamma_{t}$ , we have $-2\geqq\Delta^{\prime 2}=\Sigma l_{t}\Gamma_{i}\cdot\Delta’\geqq 0$ , a contradiction.

We can assume that a is connected in the sequel. If for two different
components $\Gamma_{1}$ and $\Gamma_{2}$ of a, $E\cdot\Gamma_{1}>0$ and $E\cdot\Gamma_{2}>0$ , then $G(mE+\overline{\Delta}, E)$ contains
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a cycle, because $\overline{\Delta}$ is connected. Thus $G(mE+\Delta, E)$ is not a tree, contradicting
the assumption. A component $\Gamma$ of $\overline{\Delta}$ with $E\cdot\Gamma>0$ is unique, if it exists. Let
a $=\Sigma_{t=1}^{r}l_{i}\Gamma_{i}$ be the irreducible decomposition. We can assume moreover $E\cdot\Gamma_{i}$

$=0$ for $i\geqq 2$ .
If $\overline{\Delta}=\Gamma_{1}$ , then we have $|mE+\overline{\Delta}|=|mE|+\overline{\Delta}$ , which contradicts the defini-

tion of a. Thus $\overline{\Delta}-\Gamma_{1}\neq 0$ . Note that $\overline{\Delta}\cdot\Gamma_{i}=(mE+\overline{\Delta})\cdot\Gamma_{i}\geqq 1$ for $i\geqq 2$ and $\overline{\Delta}\cdot\Gamma_{1}$

$=(mE+\overline{\Delta})\cdot\Gamma_{1}-mE\cdot\Gamma_{1}\geqq 1-m$ . Thus $\Gamma_{i}\cdot(\overline{\Delta}-\Gamma_{1})=\Gamma_{i}\cdot\overline{\Delta}-\Gamma_{\ell}\cdot\Gamma_{1}\geqq 0$ for $i\geqq 2$ , and
$\Gamma_{1}\cdot(\overline{\Delta}-\Gamma_{1})\geqq 1-m+2=3-m$ . On the other hand by the minimality we have
$|mE+\overline{\Delta}-\Gamma_{1}|=|mE|+\overline{\Delta}-\Gamma_{1}$ . Thus $\dim|\overline{\Delta}-\Gamma_{1}|=0$ and $(\overline{\Delta}-\Gamma_{1})^{2}\leqq-2$ by Lemma
1.4. We have

$-2\geqq(\overline{\Delta}-\Gamma_{1})^{2}=(l_{1}-1)\Gamma_{1}\cdot(\overline{\Delta}-\Gamma_{1})+\Sigma_{i=2}^{r}l_{i}\Gamma_{i}\cdot(\overline{\Delta}-\Gamma_{1})\geqq(l_{1}-1)(3-m)$ .

Thus $l_{1}\geqq 2$ and $m\geqq 4$ . If $E\cdot\Gamma_{1}=0$ , a stronger estimate $-2\geqq 3(l_{1}-1)$ is
obtained. It is a contradiction. Thus $E\cdot\Gamma_{1}=1$ . Since $|mE+2\Gamma_{1}|\neq|mE|+2\Gamma_{1}$

and since $|mE+\Gamma_{1}|=|mE|+\Gamma_{1}$ , one has $\overline{\Delta}=2\Gamma_{1}$ by the minimality of a. We
have $1\leqq(mE+\overline{\Delta})\cdot\Gamma_{1}=m-4$ . This implies that the above (2) holds. We com-
plete the verification of Theorem 0.3.

Next we would like to consider Theorem 0.2. The implication $(A)\Rightarrow(B)$ is
due to Nikulin and can be shown by the same argument as in Theorem 0.3.
$(B)\Rightarrow(A)$ can be shown by replacing $E$ by $C$ and setting $m=1$ in the above
verification $(B)\Rightarrow(A)$ of Theorem 0.3. The case of Theorem 0.2 is rather easier.
First, we can check that Case 1 above never takes place for Theorem 0.2. In
Case 2 the subcase corresponding to (3) in Proposition 0.1 never takes place,
either. The last part of Case 2 discussing the case of $m=2$ is not necessary,
since we can assume $m=1$ . In Case 3 the subsubcase (a) in the subcase where
a is not connected is not necessary. The subcase where a is connected in
Case 3 becomes simpler, since $m=1$ .

AS for Theorem 0.4, $(A)\Rightarrow(B)$ follows from Nikulin’s same method as above.
Setting $E=0$ and $m=0$ in the above argument of $(B)\Rightarrow(A)$ of Theorem 0.3, we
obtain the verification $(B)\Rightarrow(A)$ of Theorem 0.4.
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