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1. Introduction.

A (local) Liouville surface is by definition a surface with a Riemannian
metric of the following form:

$g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$ ,

where $x=(x_{1}, x_{2})$ is a local coordinate system, and $f_{i}$ is a function of the slngle
variable $x_{i}(i=1,2)$ . This type of metric has a sPecial property. Define

$F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ ,

where $(x, \xi)$ are the canonical coordinates on the cotangent bundle. Then $F$

is a first integral of the geodesic flow on the bundle, i.e., the Poisson bracket
$\{F, E\}$ of $F$ and the energy function

$E= \frac{1}{2}\frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(\xi_{1}^{2}+\xi_{2}^{2})$

vanishes. As a matter of fact, the Liouville surfaces are characterized in terms
of a first integral.

Let $g$ be a Riemannian metric on a neighborhood $U$ of a point $p\in R^{2}$ , and
$E\in C^{\infty}(T^{*}U)$ the corresponding energy function. For a function $H\in C^{\infty}(T^{*}U)$

on the cotangent bundle, we denote by $H_{p}$ the restriction of $H$ to the cotangent
space $T_{p}^{*}U$ at $p$ . The following proposition is classical.

PROPOSITION 1.1 ([2, Proposition 1.1]). Assume that $F\in C^{\infty}(T^{*}U)$ satisfies
the following conditions

(1) $\{FE\}=0$ ,

(2) $F_{q}$ is a homogeneous polynomial of degree 2 for every $q\in U$ ,

(3) $F_{p}\not\in RE_{p}$ .
Then there is a coordinate system $(x_{1}, x_{2})$ on a (possibly smaller) neighborhood

of $p$ , and there are functions $f_{i}(x_{i})(i=1,2)$ such that
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$g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$

and

$F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ ,

where $(x, \xi)$ are the associated canonical coordinates on the cotangent bundle. Fur-
thermore, such coordinate system $(x_{1}, x_{2})$ and functions $f_{1},$ $f_{2}$ are essentially unique.

Based on this fact, the second author defined a global Liouville surface in
terms of a first integral of the geodesic flow and classified the equivalence
classes of compact Liouville surfaces in [2].

DEFINITION 1.2. A triple $(S, g, F)$ is called a Liouville surface if $(S, g)$ is
a 2-dimensional Riemannian manifold and $F$ a $C^{\infty}$ function on the cotangent
bundle $T^{*}S$ satisfying the following conditions:

(L.1) $\{E, F\}$ vanishes,
(L.2) $F_{p}$ is a homogeneous polynomial of degree 2 for any $p\in S$ ,
(L.3) $F$ is not of the form $rH+sE$ , where $H\in C^{\infty}(T^{*}S)$ is fibrewise the

square of a linear form, and $s,$ $r\in R$ .

DEFINITION 1.3. TWO Liouville surfaces $(S, g, F)$ and $(S’, g’, F’)$ are said
to be equivalent if there is an isometry $\varphi$ : $(S, g)arrow(S’, g’)$ and $r,$ $s\in R$ such
that $F’\circ(\varphi^{*})^{-1}=rF+sE$ . In case $r=1$ and $s=0$ , the two Liouville surfaces are
said to be isomorphic.

The main purpose of this paper is to classify the equivalence classes of
noncompact complete Liouville surfaces.

It is known that quadratic surfaces in the Euclidean 3-space $E^{3}$ are Liouville
surfaces. Their first integrals $F$ can be explicitly expressed in terms of
the elliptic coordinates and the behavior of geodesics on them are fully in-
vestigated (see Darboux [1], Klingenberg [3], $v$ . Mangoldt [5], and Sugahara
[6] $)$ . AS $v$ . Mangoldt studied the distribution of poles in [5], noncompact
quadratic surfaces are good examples of Riemannian manifolds with poles. $For$

Riemannian manifolds of nonnegative sectional curvature, M. Maeda [4] gave
an inequality that the diameter of the set of poles does not exceed a constant
given by the expanding order at infinity. The third author gave a best possible
constant for the inequality in [6], by making use of a family of elliptic para-
boloids.

Let $(S, g, F)$ be a complete Liouville surface. As in [2], the set

$\Re=$ { $p\in S;F_{p}=rE_{p}$ for some $r\in R$ }

plays an important role also in this paper.
Since the first integrals $F$ of quadratic surfaces are proportional pointwise
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to the second fundamental forms modulo $RE$ , their singularity sets $\Re$ are equal
to the set of umbilic points. And for noncompact quadratic surfaces, umbilic
points are poles ([5], and [6]). This fact will be generalized in Theorem 2.1
in section 2.

We note that the constant $r$ does not depend on the point of $\Re$ .
LEMMA 1.4 ([2, Lemma 1.2]). The ratio $r=F_{p}/E_{p}$ does not dePend on the

$p_{\alpha nt}P\in\Re$ .
For any $r\in R$ , a triple $(S, g, F-rE)$ is also a Liouville surface which is

equivalent to $(S, g, F)$ . Hence, in view of Lemma 1.4, we can assume the
following condition without loss of generality as in [2]:

(L.4) $F_{p}=0$ if $p\in\Re$ .
In this paper Liouville surfaces are assumed to satisfy (L.4) unless otherwise

stated.
In \S 2, we study the geometric properties of points of Su and show that $S$

is diffeomorphic to $R^{2}$ , a cylinder, or a M\"obius band.
In \S 3, we give a classification of noncompact complete Liouville surfaces,

using the natural coordinate system given in Proposition 1.1.
In the final section, \S 4, we show that quadratic surfaces in the hyperbolic

3-space $H^{3}(-1)$ of constant sectional curvature $-1$ are also Liouville surfaces.
We would like to thank our referee for kind advice to complete our clas-

sification.

2. The set C77 and the geodesics with $F=0$ .
Let $(S, g, F)$ be a noncompact complete Liouville surface and $\Re$ the subset

of $S$ defined in the previous section. In this section, we shall prove the follow-
ing theorem which is a noncompact version of [2, Theorem 2.1].

THEOREM 2.1. $\#\Re$ , the number of the poznts in 92, must be $0$ or 1 or 2.
If $\#\Re>0$ , then every point of su is a pole of $S$ , i.e., the exponential map

$\exp_{p}$ : $T_{p}Sarrow S$ is a diffeomorphism. Consequently, $S$ is diffeomorphic to $R^{2}$ .
Moreover, there is a geodesic $L$ which satisfies the following conditions:

(1) $L$ passes all points of $\Re$ ,

(2) $F_{q}$ is indefinite if $q\not\in L$ ,

(3) $F_{q}$ is degenerate and semidefinite if $q\in L$ .
If $\#\Re=0$ , then $S$ is diffeomorphic to $R^{2}$ , a cylinder, or a Mobius band.

PROOF. First we shall consider the case where $\#\Re=0$ . Let $\pi:\tilde{S}arrow S$ be
the universal covering of $S$ . The uniqueness of the coordinates $(x_{1}, x_{2})$ in
Proposition 1.1 implies that the tangent bundle $T\hat{S}$ of $\tilde{S}$ splits into tbe sunn of
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two trivial line bundles $E_{i}=R\partial/\partial x_{i}(i=1,2)$ and that vector fields $X_{t}=\partial/\partial x_{i}$

are globally well-defined. Let $\varphi_{t}$ (resp. $\psi_{s}$ ) denote the local one-parameter sub-
group of transformations generated by $X_{1}$ (resp. $X_{2}$). Let $p$ be a point of S.
Suppose that $\varphi_{t}(p)(a<t<b)$ are well-defined. For each $t\in(a, b)$ , define

$a_{t}= \inf$ { $s_{0}$ ; $\psi_{s}(\varphi_{t}(p))$ is well-defined for any $s\in(s_{0},0]$ }

$b_{t}= \sup$ { $s_{0}$ ; $\psi_{s}(\varphi_{t}(p))$ is well-defined for any $s\in[0,$ $s_{0})$ } .

For $t\in(a, b)$ and $s\in(a_{t}, b_{t})$ , define $\Phi(t, s)=\psi_{s}(\varphi_{t}(P))$ . Then

$\Phi^{*}(\pi^{*}g)=(f_{1}(t)+f_{2}(s))(dt^{2}+ds^{2})$ .

Since $\tilde{S}$ is complete, the length of the curve $sarrow\psi_{s}(\varphi_{t}(P))$ is infinite. More
precisely, we have

$\int_{0}^{b_{t}}\sqrt{}\overline{f_{1}(t)+f_{2}(s)}ds=\infty$ ,

$\int_{a_{i}}^{0}\sqrt{f_{1}(t)+f_{2}(s)}ds=\infty$ ,

for any $t\in(a, b)$ . Hence $a_{t}$ and $b_{t}$ must not depend on $t$ . The same argument
can be applied to the integral curves of $X_{2}$ . Therefore there are four real
numbers $a_{1},$ $a_{2},$

$b_{1}$ , and $b_{2}$ so that the map $\Phi$ : $(a_{1}, b_{1})\cross(a_{2}, b_{2})arrow\tilde{S}$ defined by
$\Phi(t, s)=\psi_{s}(\varphi_{t}(p))$ is a Riemannian covering with respect to $\Phi^{*}(\pi^{*}g)$ and $\pi^{*}g$ ,

and $\Phi^{\cross’}(\pi^{*}g)$ is complete. Since $\tilde{S}$ is simply connected, $\Phi$ is an isometry.
Suppose $S$ is not simply connected. We identify $\tilde{S}$ with the rectangle $(a_{l}, b_{1})$

$\cross(a_{2}, b_{2})$ through the isometry $\Phi$ . Slnce the action of the fundamental group
$\pi_{1}(S)$ on $\tilde{S}$ maps vector fields $X_{i}$ to $\pm X_{\iota}(i=1,2)$ , we may assume that $\pi_{1}(S)$

consists of the following maps

$(t, s)arrow(\pm t+\alpha, \pm s+\beta)$ ,

where a and $\beta$ are real numbers. S’nce $S$ is noncompact, it is easily seen
that $\pi_{1}(S)$ is generated by one of the following maps

$(t, s)arrow(t+\alpha, s+\beta)$ ,

$(t, s)arrow(t+\alpha, -s+\beta)$ ,

$(t, s)-arrow(-t+\alpha, s+\beta)$ .

Hence $S$ is diffeomorphic to a cylinder or a M\"obius band.
The case where #S12 $>0$ shall be treated as in [2]. We need some lemmas

and a proposition in it.

For a tangent vector $v$ to $S$ , let $\gamma_{\iota}(f)$ denote the geodesic of $(S, g)$ such
that the initial vector 7,.(0) is $v$ .
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LEMMA 2.2 (cf. [2, Lemma 2.3]). Suppose that $\#\Re\geqq 3$ , and let $p_{i}(i=1,2,3)$

be three points in $\Re$ . Assume that $p_{2}$ and $p_{3}$ are not in the cut locus Cut $(p_{1})$ of
$p_{1}$ . Let $\gamma_{t}(t)=\gamma_{v_{i}}(t)(0\leqq t\leqq t_{i}, v_{i}\in S_{p_{1}}S)$ be the minimizing geodesic from $p_{1}$ to $p_{i}$

$(i=2,3)$ parametrized by arc length. Then we have $v_{2}+v_{3}=0$ . Furthermore, if
we put $w=-\dot{\gamma}_{2}(t_{2})\in S_{p_{2}}S$ , then $p_{3}$ is the first conjugate point of $p_{2}$ along the
geodeszc $\gamma_{w}(t)(0\leqq t\leqq t_{2}+t_{3})$ . In particular $\subseteq n$ is discrete.

PROPOSITION 2.3 (cf. [2, Proposition 2.6]). If the tangential first $con_{J}ugate$

locus SConj $(p)$ of $p\in_{\iota}n$ is not empty, then it is a circle of constant radius.

In [2], Liouville surfaces are assumed to be compact, and the compactness
derives that $gConj(p)$ is not empty for any $p\in\Re$ . In our case Liouville sur-
faces are noncompact. Hence we get

COROLLARY 2.4. (1) $g;Conj(p)=\emptyset$ for any $p\in\Re$ .
(2) $\#\Re\leqq 2$ .
(3) $S$ is diffeomorphic to $R^{2}$ if $\Re\neq\emptyset$ .
PROOF. (1) If $g^{-}Con_{J}(p)$ is not empty, then Proposition 2.3 implies that

$S$ is compact, which contradicts our assumption.
(2) Suppose #SU $>2$ . Here we may assume that $S$ is simply connected. If

not, we may consider the universal covering space of $S$ in place of S. Let $p_{i}$

$(i=1,2,3)$ be three distinct points of $\Re$ . Since $g:Conj(p_{i})=\emptyset$ , it follows that
each $p_{i}$ is a pole of $S$ . Then Lemma 2.2 leads us to a contradiction.

(3) Since the exponential mapping $\exp_{p}$ : $T_{p}Sarrow S$ is of maximal rank for
any $p\in\Re$ , it suffices to show that $S$ is simply connected. Suppose $S$ is
not simply connected and let $\pi:\tilde{S}arrow S$ be the universal covering of $S$ . From
(2) we get $\#\Re(\tilde{S})=\#\pi^{-1}(\Re(S))\leqq 2$ . Hence the fundamental group $\pi_{1}(S)$ is iso-
morphic to $Z_{2}$ and $\#\Re(\tilde{S})=2$ . Let $\Re(\tilde{S})=\{\tilde{p}_{1},\tilde{p}_{2}\}$ . Let $\sigma$ be the generator of
$\pi_{1}(S)$ . Then $\sigma$ acts on $\tilde{S}$ as an isometry and $\Re(\tilde{S})$ is invariant by $\sigma$ . Since
$\tilde{p}_{i}(i=1,2)$ are poles, the geodesic which connects $\tilde{p}_{1}$ and $\tilde{p}_{2}$ is unique. Hence
the middle point of the geodesic is fixed by $\sigma$ . Since the fundamental group
acts freely, it is a contradiction. $\blacksquare$

In the rest of this paper we shall often regard the first integral $F$ as a
function on the tangent bundle by using the natural identification of $TS$ with
$T^{*}S$ .

LEMMA 2.5. If $\#\Re>0$ , then there is a geodesic $L$ which satisfies
(1) $L$ passes all points of $\Re$ ,
(2) $F_{q}$ is indefinite for $q\not\in L$ ,
(3) $F_{q}$ is degenerate and semidefinite for $q\in L$ .

PROOF. Case 1: $\Re=\{p_{1}\}$ . Since the point $p_{1}$ is a pole, we consider the
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normal polar coordinates $(r, \theta)$ centered at $p_{1}$ . Let

$\mathscr{I}=$ { $q\in S;F_{q}$ is indefinite} ,

$S=$ { $q\in S;F_{q}$ is semidefinite}.

Then $\mathscr{I}$ is an open set.
Suppose $\mathscr{I}\neq\emptyset$ . Since $F(\partial/\partial r)=0$ , there is a unit vector $v_{q}\in S_{q}S$ for each

$q\in \mathscr{I}$ with $F(v_{q})=0$ which is linearly independent of $(\partial/\partial r)_{q}$ . Then $F(\dot{\gamma}_{v_{q}}(t))=0$

along each geodesic $\gamma_{q}(t)$ . Since $p_{1}$ is a pole, $\gamma_{v_{q}}$ does not pass $p_{1}$ . We note
that the two geodesics $\gamma_{v_{x}}$ and $\gamma_{v_{y}}(x, y\in \mathscr{I})$ do not intersect transversally. (If
they intersect at a point $q$ transversally, $F_{q}$ has value $0$ with respect to tbree
directions $(\partial/\partial r)_{q},\dot{\gamma}_{v_{x}}$ and $\dot{\gamma}_{t^{\backslash }}y$ which are in general direction. Hence $F_{q}=0,$ $i.e.$ ,
$q=p_{1}.)$ Therefore $\mathscr{I}$ consists of ’parallel’ geodesics and its boundary is also a
disjoint union of ’parallel’ geodesics. Let $\gamma$ be one of the boundary geodesics.
Then we have

$\lim_{qarrow\gamma(t)}v_{q}=\pm\dot{\gamma}(t)$ ,

$0= \lim_{qarrow\gamma(t)}F_{q}(v_{q})=F_{\gamma(t)}(\pm\dot{\gamma}(t))$ ,

for any $t\in R$ . Since $\mathscr{I}$ is open, $\gamma\cap \mathscr{I}=\emptyset$ . Hence $\dot{\gamma}(t)$ must be linearly dependent
on $(\partial/\partial r)_{\gamma(t)}$ . Consequently $\gamma$ passes $p_{1}$ . Therefore the boundary of $\mathscr{I}$ consists
of a single geodesic, which we denote by $L=\{r(t);t\in R\}$ with $7(0)=p_{1}$ . Let
$q$ be a point of $\mathscr{I}$ . Then the tangent space $T_{q}S$ is divided into four parts by two
lines $Rv_{q}$ and $R(\partial/\partial r)_{q}$ . For a small positive number $\epsilon$ , let $\gamma_{+}$ and $\gamma_{-}$ denote
the geodesics from $q$ to $\gamma(\epsilon)$ and $\gamma(-\epsilon)$ respectively. Then their initial tangent
vectors $\dot{\gamma}_{+}(0)$ and $\dot{\gamma}_{-}(0)\in T_{q}S$ are separated by $R(\partial/\partial r)_{q}$ . Since $\dot{\gamma}_{\pm}(0)$ goes towards
$(\partial/\partial r)_{q}$ as $\epsilonarrow 0$ and since $F$ is indefinite at $q$ with $F_{q}((\partial/\partial r)_{q})=0,$ $F_{q}(7+(0))$ and
$F_{q\backslash }^{(}\dot{\gamma}_{-}(0))$ have different sign. Hence we may assume that $F_{\gamma(t)}$ is positive semi-
definite for $t>0$ and negative semidefinite for $t<0$ . Let $\tilde{q}$ be a point of $S\backslash L$ .
Let $\overline{\gamma}_{+}$ and $\tilde{\gamma}_{-}$ denote geodesics from $\tilde{q}$ to $\gamma(\epsilon)$ and $\gamma(-\epsilon)$ with $\tilde{\gamma}_{+}(t_{+})=\gamma(\epsilon)$ and
$\tilde{\gamma}_{-}(t_{-})=\gamma(-\epsilon)$ respectively. Since $F$ is invariant by the geodesic flow, we have

$F_{q}(\tilde{\gamma}_{+}(0))=F_{\gamma(\text{\’{e}})}(\tilde{\gamma}_{+}(t_{+}))>0$ ,

$F_{d}(\tilde{\gamma}_{-}(0))=F_{\gamma(-\epsilon)}(\tilde{\gamma}_{-}(t_{-}))<0$ .
Hence $\tilde{q}\in \mathscr{I}$ and $S$ is a disjoint union of $\mathscr{I}$ and $L$ .

If $\mathscr{I}=\emptyset$ , then we may assume $F$ is positive semidefinite. Since $\dim S=2$ ,
$F$ is the square of some linear form, which is excluded by our condition (L.3).

Case 2: $\Re=\{p_{1}, p_{2}\}$ . Let $L$ denote the unique geodesic which passes $p_{1}$

and $p_{2}$ . Suppose $F$ is indefinite at some point $p\in L$ . Let $v_{p}\in S_{p}S$ denote a
unit tangent vector which is transversal to $L$ with $F_{p}(v_{p})=0$ . Let $q$ be a point
on a geodesic $\gamma_{v_{p}}$ . Then $F_{q}$ has value zero for tangent vectors to geodesics
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from $q$ to $p_{1},$ $p_{2}$ , and $P$ at $q$ . Hence $F_{q}=0,$ $i.e.,$ $\gamma_{v_{p}}\subset\Re$ , which contradicts our
assumption #SU $=2$ . Next suppose that $F$ is semidefinite at some point $q\not\in L$ .
Since $F_{q}$ has value zero for tangent vectors to geodesics from $q$ to $p_{1}$ and $p_{2}$

at $q$ which are linearly independent. Hence $F_{q}=0$ , which also contradicts our
assumption $\#\Re=2$ . $\blacksquare$

It is clear that Theorem 2.1 follows from Corollary 2.4 and Lemma 2.5. $\blacksquare$

3. The natural coordinate system and the classification.

First we shall classify Liouville surfaces with $\#\Re>0$ . We need some
modification of the quadruples $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2})$ introduced in [2].

Case 1 : $\#\Re=1$ . Let us introduce sextuples $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2}, r_{1}, r_{2})$ such that
$\alpha_{1}=\alpha_{2}=\infty$ and $0<r_{1},$ $r_{2}\leqq\infty$ , and that $f_{t}$ is a $C^{\infty}$ function on an interval $(-r_{i}$ ,
$r_{i})(i=1,2)satisfy^{\mathfrak{l}}Ang$ the following conditions:

$f_{i}(-t)=f_{i}(t)$ , $f_{i}’’(0)>0$ , $f_{i}(0)=0$ ,

$f_{i}(t)>0$ if $t\neq 0(i=1,2)$ ;

if $f_{1}(t) \sim\sum_{k\geqq 1}a_{k}t^{2k}(tarrow 0)$ , then $f_{2}(t) \sim\sum_{k\geqq 1}(-1)^{k-1}a_{k}t^{2k}(tarrow 0)$ ;
(3.1)

$\int_{0}^{r_{1}}\sqrt{f}\overline{(t_{1})+f_{2}^{(}t_{2})}dt_{1}=\infty$ for any $-r_{2}<t_{2}<r_{2}$ ,

$\int_{0}^{r_{2}}\sqrt{}\overline{f}_{1}\overline{(t_{1})+f_{2}(t_{2/}^{)}}dt_{2}=\infty$ for any $-r_{1}<t_{1}<r_{1}$ .

Here the symbol $\sim$ stands for the formal Taylor expansion. Let $Q_{1}$ be the set
of all such sextuples. We say that two sextuples $(\alpha_{1}, \alpha_{2}, f_{1}, f’, r_{v}, r_{2})$ and
$(\beta_{1}, \beta_{2}, h_{1}, h_{2}, s_{1}, s_{2})$ in $Q_{1}$ are equivalent if there is a constant $c>0$ such that
one of the following conditions is satisfied:

(1) $s_{1}=cr_{1},$ $s_{2}=cr_{2}$ , and $c^{2}h_{1}(ct)=f_{1}(t)$ , $c^{2}h_{2}(ct)=f_{2}(t)$ ;

(2) $s_{1}=cr_{2},$ $s_{2}=cr_{1}$ , and $c^{2}h_{1}(ct)=f_{2}(t)$ , $c^{2}h_{2}(ct)=f_{1}(t)$ .
If $c=1$ , then these two sextuples are said to be isomorphic.

We can construct a Liouville surface whose underlying manifold is diffeo- I
morphic to $R^{2}$ from each sextuple $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2}, r_{1}, r_{2})\in Q_{1}$ in the following
way. Let $T$ denote an open rectangle $(-r_{1}, r_{1})\cross(-r_{2}, r_{2})\subset R^{2}$ . We shall
identify $R^{2}$ with $C$ by taking the complex coordinate $z=x_{1}+\sqrt{-1}x_{2}$ . Let $\tau$

be an involution on $T$ defined by $zarrow-z$ . We now consider the quotient space
$R=T/\{id, \tau\}$ . Note that $\tau$ has a unique fixed point $z=0$ . By taking $z^{2}$ as a
coordinate, the quotient space $R$ can be regarded as a 1-dimensional complex
manifold. Clearly the quotient mappAng $\Phi$ : $Tarrow R$ is holomorphic. If $r_{1}=r_{2}=\infty$ ,



466 M. IG ARASHI, K. KIYOHARA and K. Sb GAHARA

then $R$ is isomorphic to $C$ as a complex manifold. If one of $r_{i}’ s$ is finite, then
$R$ is isomorphic to the unit disk. By the condition (3.1) we have a unique
Riemannian metric $g$ on $R$ such that

$\Phi^{*}g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$ ,

and we also have a unique $C^{\infty}$ function $F$ on $T^{*}R$ such that

$fl_{0}\Phi=F$, $F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{Q}\sim-f_{1}(x_{1})\xi_{2}^{2})$ ,

where $(x, \xi)$ is the canonical coordinate system of $T^{*}T$ . Then $(R, g, F)$ is a
Liouville surface which satisfies the condition (L.4).

Case 2: $\#\Re=2$ . Let us introduce sextuples $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2}, r_{1}, r_{2})$ such that
$0<\alpha_{1}<\infty,$ $\alpha_{2}=\infty,$ $r_{1}=\infty$ , and $0<r_{2}\leqq\infty$ and that $f_{1}$ and $f_{2}$ are $C^{\infty}$ functions
defined on $R/\alpha_{1}Z$ and $(-r_{2}, r_{2})$ respectively which satisfy the following condi-
tions:

$f_{i}(-t)=f_{i}(t)$ , $f7(0)>0$ , $(i=1,2)$ ;

$f_{1}(0)=f_{1}(\alpha_{1}/2)=f_{2}(0)=0$ ;

$f_{1}(t)>0$ if $r\sim\neq 0,$ $\alpha_{i}/2$ $mod \alpha_{arrow}Z$ :
$f_{2}(t)>0$ if $t\neq 0$ ;

if $f_{1}(t) \sim\sum_{k\geqq 1}a_{k}t^{2k}$
$(tarrow 0)$ , then

(3.2)

$f_{2}(t) \sim\sum_{k\geqq 1}(-1)^{k-1}a_{k}t^{2k}$ $(tarrow 0)$ ,

$f_{1}(t) \sim\sum_{k\geqq 1}a$
$k(t-\alpha_{1}/2)^{2k}$ $(tarrow\alpha_{1}/2)$ ;

$\int_{0}^{r_{2}}\sqrt{}\overline{f}_{1}\overline{(t_{1})+f_{2}(t_{2})}dt_{2}=\infty$ for any $-r_{A}<t_{1}<r_{1}$ .

Let $Q_{2}$ be the set of all such sextuples. We say that two sextuples $(\alpha_{1},$
$\alpha_{2},$

$f_{1}$ ,
$f_{2},$

$r_{J},$
$r_{2})$ and $(\beta_{1}, \beta_{2}, h_{1}, h_{2}, s_{1}, s_{2})$ in $Q_{2}$ are equivalent if there is a constant

$c>0$ and
$\nu\in\{0, -\alpha_{1}/2\}$

such that

$\beta_{1}=c\alpha_{1},$ $s_{2}=cr_{2}$ , and $c^{2}h_{1}(ct)=f_{1}(t+\nu),$ $c^{2}h_{2}(ct)=f_{2}(t)$ .
If $c=1$ , these two sextuples are said to be isomorphic.

We can also construct a Liouville surface whose underlying manifold is
diffeomorphic to $R^{2}$ from each sextuple $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2}, r_{1}, r_{2})\in Q_{2}$ in the following
way. Let $T$ be a cylinder $R/\alpha_{1}Z\cross(-r_{2}, r_{2})$ . We shall regard $T$ as a Riemann
surface by taking the complex coordinate $z=x_{1}+\sqrt{-1}x_{2}$ as above. Let $\tau$ be
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an involution on $T$ defined by $zarrow-z$ . We now consider the quotient space
$R=T/\{id, \tau\}$ . Note that $\tau$ has two fixed points $z=0,$ $\alpha_{1}/2$ . Let $Z_{0}$ be one of
these points. By taking $(z-z_{0})^{2}$ as a local coordinate around the point $z=z_{0}$ ,

the quotient space $R$ can be regarded as a 1-dimensional complex manifold.
Clearly the quotient mapping $\Phi$ : $Tarrow R$ is holomorphic. If $r_{2}=\infty$ , then $R$ is
isomorphic to $C$ as a complex manifold. If $r_{2}$ is finite, then $R$ is isomorphic
to the unit disk. By the condition (3.2) we have a unique Riemannian metric
$g$ on $R$ such that

$\Phi^{*}g=(f_{I}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$ ,

and we also have a unique $C^{\infty}$ function $F$ on $T^{*}R$ such that

$F\circ\Phi=F$, $F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ .

Then $(R, g, F)$ is also a Liouville surface which satisfies the condition (L.4).

THEOREM 3.1. The construcfions above give the one-to-one corresPondence
between the equivalence classes (resP. isomorphism classes) of sextuPles in $Q_{i}$ and
the equivdence classes (resP. isomorPhism classes) of Liouville surface with $\#\Re=$

$i(i=1,2)$ .
PROOF. It is clear that equivalent (resp. isomorphic) sextuples yield equi-

valent (resp. isomorphic) Liouville surfaces. Therefore we shall give the in-
versecorrespondence. Let $(S, g, F)$ be a Liouville surface which satisfies the
condition (L.4). As in the proof of [2, Proposition 1.1], two functions $E,$ $F\in$

$C^{\infty}(T^{*}S)$ can be expressed in $S\backslash \Re$ as follows:

$E= \frac{1}{2}(V_{1}^{2}+V_{2}^{2})$ , $F=f_{2}V_{1}^{2}-fiV_{2}^{2}$ , $f_{1},$ $f_{2}\in C^{\infty}(S\backslash \Re)$ ,

where $V_{\iota}(i=1,2)$ are fibrewise linear functions defined locally only in a simply
connected domain. But their squares are globally well-defined, and $V_{1}^{2},$ $V_{2}^{2}\in$

$C^{\infty}(T^{*}(S\backslash \Re))$ . Furthermore, if we consider $V_{i}(i=1,2)$ as vector fields, then
$V_{1}f_{2}=V_{2}f_{1}=0$ . Let $L$ denote the geodesic given in Theorem 2.1. $L$ divides
$S$ into two domains whose closure we denote by $D_{1}$ and $D_{2}$ . Then $D_{1}$ and $D_{2}$

are isomorphic to a half plane. Since $F$ is indefinite in $S\backslash L$ and since $f_{1}$ and
$f_{2}$ have no common zeros except $\Re$ , we may assume that both $f_{1}$ and $f_{2}$ are
positive on $S\backslash L$ .

Case 1: $7l=tp_{1}$ }. The point $p_{1}$ divides $L$ into two parts, say $L_{1}$ and $L_{2}$ ,

where $F$ is semidefinite. We note that $F$ has different sign on $L_{1}$ and $L_{2}$ .
(If not, take two points $q_{1}\in L_{1}$ and $q_{2}\in L_{2}$ near $p_{1}$ . Let $v_{1},$ $v_{2}$ and $v$ be the
tangent vectors at $q\in D_{1}\backslash L$ to geodesics from $q$ to $q_{1},$ $q_{2}$ and $p_{1}$ respectively.
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Then $v_{1}$ and $v_{2}$ are near $v$ , and $v$ is between them. If $F$ has the same sign
in $L_{1}$ and $L_{2}$ , then so do $F(v_{1})$ and $F(v_{2})$ . Since $F(v)=0$ , it follows that $F$ is
semidefinite at $q.$ ) We suppose that $F\geqq 0$ on $L_{1}$ , and $F\leqq 0$ on $L_{2}$ , i.e., $f_{1}=0$ ,
$f_{2}>0$ on $L_{1}$ , and $f_{1}>0,$ $f_{2}=0$ on $L_{2}$ . Put $f_{1}(p_{1})=f_{2}(p_{1})=0$ . Then $f_{1}$ and $f_{2}$

become continuous in S. $V_{i}$ are $C^{\infty}$ in $D_{1}\backslash 7l(i=1,2)$ , and vector fields $X_{i}=$

$\sqrt{f_{1}+f_{2}}V_{i}$ are continuous in $D_{1}$ if we put $X_{i}(p_{1})=0(i=1,2)$ . We choose $V_{i}$

so that $X_{i}$ point inward of $D_{1}$ on $L_{i}(i=1,2)$ .

LEMMA 3.2. Consider the ordinary difierential equafion

$\frac{dc_{i}(t)}{dt}=X_{i}(c_{i}(t))$

with the initial condition $c_{i}(0)=q\in D_{1}\backslash L(i=1,2)$ . Tlhen tl ere are constants $0<$

$a_{\ell}<\infty$ and $0<b_{\ell}\leqq\infty(i=1,2)$ such that
(i) the solution $c_{t}(t)$ exists on $[-a_{i}, b_{i})$ ,

(ii) $c_{i}((-a_{i}, b_{i}))\subset D_{1}\backslash L,$ $c_{i}(-a_{t})\in L_{t}$ ,

(iii) $\lim_{tarrow b_{i}}d(c_{\iota}(t), p_{1})=\infty$ ,

(iv) $a_{i}+b_{i}(\leqq\infty)$ does not depend on the initial point $q$ ,

where $d( , )$ denotes the distance function defined by the Riemannian metric.

PROOF. Let $(r, \theta)$ be the normal polar coordinate system centered at $p_{1}$

such that $L_{1}=\{\theta=\pi, 0<r\},$ $L_{2}=\{\theta=0,0<r\}$ , and $D_{1}\backslash L=\{0<\theta<\pi, 0<r\}$ . Since
the vectors $X_{1},$ $X_{2}$ are linearly independent of, and not orthogonal to the vectors
defined by $F=0$ on $D_{1}\backslash L$ , it is easily follows that $\theta(c_{1}(t))$ (resp. $\theta(c_{2}(t))$ ) is a
decreasing function (resp. an increasing function), and $r(c_{i}(t))(i=1,2)$ are in-
$creas:ng$ functions. Therefore $c_{\iota}(t)(i=1,2)$ can be extended until they reach
$L$ when $t$ decreases. Since $X_{1}f_{2}=0$ (resp. $X_{2}f_{1}=0$), and since $f_{2}=0$ on $L_{2}$ (resp.
$f_{1}=0$ on $L_{1}$), it follows that $c_{1}(t)$ (resp. $c_{2}(t)$ ) does not pass a neighborhood of
the closure of $L_{2}$ (resp. $L_{1}$). Hence there are constants $a_{i}(i=1,2)$ with the
conditions (i) and (ii) above. We shall prove (iii) and (iv) only for $i=1$ . Let
$\gamma_{2}(t)(-a_{2}<t<b_{2}’)$ be the solution of the equation $dc_{2}/dt=X_{2}$ with $\gamma_{2}(0)=q_{0}\in D_{1}\backslash L$ .
We suppose that $\gamma_{2}$ comes to $L_{2}$ at $t=-a_{2}$ . Let $c_{1}^{\tau}(t)$ be the solution of $dc_{1}/dt$

$=X_{1}$ with $c_{1}^{\tau}(0)=\gamma_{2}(\tau)(-a_{2}<\tau\leqq b_{2}’)$ . We denote by $-a_{1}^{\tau}$ the time when $c_{1}^{\tau}$ arrives
at $L_{1}$ . Suppose $[-a_{1}^{\tau}, b_{1}^{\tau})$ be the maximum interval such that $c_{1}^{\tau}$ is defined. Let
$\omega_{i}$ be a closed 1-form on $D_{1}\backslash \Re$ defined by $\omega_{i}(X_{j})=\delta_{ij}$ . Let $\Gamma(t)(a\leqq t\leqq b)$ be a
curve in $D_{1}\backslash X$ with $\Gamma(a)\in L_{1},$ $\Gamma(b)\in\gamma_{2}|_{[-a_{2}.b_{2}’]}$ . Then the integral

$\int_{\Gamma}\omega_{1}$

does not depend on the choice of $\Gamma$ . Hence
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$\int_{c_{1}^{\tau}|[-a_{1}^{\tau}.0]}\omega_{1}=0-(-a_{1}^{\tau})$

does not depend on $\tau$ . Since $X_{1}f_{2}=X_{2}f_{1}=0$ and $[X_{1}, X_{2}]=0,$ $f_{1}(c_{1}^{\tau}(t))$ does not
depend on $\tau$ , and $f_{2}(c_{1}^{\tau}(t))$ does not depend on $t$ . Since the Riemannian metric
$g$ is complete, we have

$\infty=\lim_{tarrow b_{1}^{\tau}}d(p_{1}, c_{1}^{\tau}(t))$

$\leqq d(p_{1}, c_{1}^{\tau}(-a_{1}^{\tau}))+1ength(c_{1}^{\tau}|_{I-a_{1}^{\tau}.b_{1}^{\tau})})$

$=d(p_{1}, c_{1}^{\tau}(-a_{1}^{\tau}))+ \int_{-\alpha_{1}^{\tau}}^{b_{1}^{\tau}}\frac{c^{\tau}tc^{\tau}t}{f_{1}(1())+f_{2}(1())}dt$ .

Therefore $b_{1}^{\tau}$ is independent of $\tau$ . Hence so does $a_{1}^{\tau}+b_{1}^{\tau}$ . $\blacksquare$

Let $r_{i}=a_{i}+b_{i}$ and $x_{i}(q)= \int_{\Gamma_{i}}\omega_{i}(i=1,2)$ , where $I_{i}^{7}$ is a curve from $L_{i}$ to

$q$ in $D_{1}\backslash \Re$ and $\omega_{i}$ is a 1-form defined in the proof of Lemma 3.2. We put
$x_{i}(p_{1})=0(i=1,2)$ . Then the functions $(x_{1}, x_{2})$ can be regarded as a local coor-
dinate system with $X_{i}=\partial/\partial x_{i}(i=1,2)$ . Moreover, we can prove the next lemma
in the same way as [2, Lemma 3.3].

LEMMA 3.3. Functions $(x_{1}, x_{2})$ give a homeomorphism from $D_{1}$ to $[0, r_{1})\cross$

$[0, r_{2})$ whech is a diffeomorPhesm from $D_{1}\backslash \Re$ to $[0, r_{1})\cross[0, r_{2})\backslash \{(0,0)\}$ .

We now continue the proof of Theorem 3.1. In the similar way to the
case of $D_{1}$ , we can define vector fields $X_{i}$ and functions $x_{l}(i=1,2)$ on $D_{2}$ such
that they coincide with those on $D_{1}$ along the common boundary $L$ . Then $x_{i}$

$=const$ defines a simple curve and the coordinate functions $(x_{1}, x_{2})$ on $D_{1}$ and
$D_{2}$ define a map $\Phi$ : $(-r_{1}, r_{1})\cross(-r_{2}, r_{2})arrow S$ such that

(1) $\Phi$ maps $[0, r_{1})\cross[0, r_{2})$ homeomorphically onto $D_{1}$ , and

$x_{i}\circ\Phi(y_{1}, y_{2})=y_{i}(i=1,2)$ for $(y_{1}, y_{2})\in[0, r_{1})\cross[0, r_{2})$ ,

(2) $\Phi$ maps $[0, r_{1})\cross(-r_{2},0]$ homeomorphically onto $D_{2}$ , and

$x_{1}\circ\Phi(y_{1}, y_{2})=y_{1}$ ,

$x_{2^{Q}}\Phi(y_{1}, y_{2})=-y_{2}$ for $(y_{1}, y_{2})\in[0, r_{1})\cross(-r_{2},0]$ ,

(3) $\Phi(-y_{1}, -y_{2})=\Phi(y_{1}, y_{2})$ .
From Lemma 3.3, we see that the map $\Phi$ is $C^{\infty}$ except $(0,0)$ and is a two-fold
covering of $S\backslash \Re$ . It follows from the definition of the coordinates $(x_{1}, x_{2})$ that

$\Phi^{*}g=(\Phi^{*}f_{1}+\Phi^{*}f_{2})(dy_{1}^{2}+dy_{2}^{2})$

holds on $(-r_{1}, r_{1})\cross(-r_{2}, r_{2})\backslash \Phi^{-1}(\Re)$ . Since the map $\Phi$ is continuous on $(-r_{1}$ ,
$r_{1})\cross(-r_{2}, r_{2})$ and conformal except at $\Phi^{-1}(\Re)$ with respect to the conforma}
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structure induced from the inclusion $(-r_{1}, r_{1})\cross(-r_{2}, r_{2})\subset C,$ $\Phi$ is of class $C^{\infty}$

on $(-r_{1}, r_{1})\cross(-r_{2}, r_{2})$ . We can see as in the proof of [2, Theorem 3.1] that
the functions $\Phi^{*}f_{1}$ and $\Phi^{*}f_{2}$ satisfy the condition (3.1). This completes the
proof of Case 1.

Case 2: $\Re=\{p_{1}, p_{2}\}$ . In this case the geodesic is divided by $p_{1}$ and $p_{2}$

into three parts $L_{1},$ $L_{2}$ and $L_{3}$ , where $p_{1}$ separates $L_{1}$ and $L_{2}$ , and $p_{2}$ separates
$L_{2}$ and $L_{3}$ . Then $F$ is semidefinite on $L$ and has different sign on $L_{\iota}$ and
$L_{i+1}(i=1,2)$ . Suppose $F\geqq 0$ on $L_{1}$ and $L_{3}$ , and $F\leqq 0$ on $L_{2}$ . Then

$f_{1}=0$ , $f_{2}>0$ on $L_{1}$ and $L_{3}$ ,

$f_{1}>0$ , $f,$ $=0$ on $L_{2}$ .
Since $F=0$ at 97, $f_{1}$ and $f_{2}$ become continuous on $S$ if we put $f_{1}|fi=f_{2}|X=0$ .

AS in Case 1, we can define vector fields $X_{i}=\sqrt{}\overline{f_{1}+f_{2}}V_{i}$ on $D_{1}$ . We choose
the direction of $X_{1}$ (resp. $X_{2}$) so that $V_{1}$ (resp. $V_{2}$) points inward of $D_{1}$ on $L_{1}$

(resp. $L_{2}$).

LEMMA 3.5. Consider the ordinary differential equation

$\frac{dc_{i}(t)}{dt}=X_{i}(c_{i}(t))$

with the initial condition $c_{t}(O)=q\in D_{1}\backslash L(i=1,2)$ . Then there are constants $0<a_{1}$ ,
$a_{2},$ $b_{1}<\infty$ and $0<b_{2}\leqq\infty$ such that

$(i)$ the solution $c_{1}(t)$ exists on $[-a_{1}, b_{1}]$ , and $c_{1}((-a_{1}, b_{1}))\subset D_{1}\backslash L,$ $c_{1}(-a_{1})$

$\in L_{1},$ $c_{1}(b_{1})\in L_{3}$ ,

(ii) the solution $c_{2}(t)$ exists on $[-a_{2}, b_{2})$ , and $c_{2}((-a_{2}, b_{2}))\subset D_{1}\backslash L,$ $c_{2}(-a_{2})$

$\in L_{2},$
$\lim_{tarrow b_{2}}d(c_{2}(t), p_{1})=\infty$ ,

(iii) the value $a_{i}+b_{i}(\leqq\infty)(i=1,2)$ does not depend on the initial point $q$ .

PROOF. Let $(r_{i}, \theta_{i})$ denote the polar coordinates centered at $p_{\ell}(i=1,2)$ .
In these coordinates $L_{1}=\{\theta_{1}=\pi, 0<r_{1}\},$ $L_{2}=\{\theta_{1}=0,0<r_{1}<d(p_{1}, p_{2})\},$ $L_{3}=\{\theta_{1}=$

$0,$ $d(p_{1}, p_{2})<r_{1}\},$ $D_{1}\backslash L=\{0<\theta_{1}<\pi, 0<r_{1}\}$ . $\theta_{1}(c_{1}(t))$ is a decreasing function and
$\theta_{1}(c_{2}(t))$ is an increasing function since both $X_{1}$ and $X_{2}$ are independent of the
vectors $v$ with $F(v)=0$ and not orthogonal to them except on L. $r_{1}(c_{i}(t))(i=$

$1,2)$ are increasing functions on $D_{1}$ and $r_{2}(c_{1}(t))$ is a decreasing function. Hence
it is clear that $a_{1},$ $a_{2}$ and $b_{1}$ exist and satisfy the conditions required above.
Let [ $-a_{2},$ $b,)$ be the maximal interval where the solution of the equation $dc_{2}/dt$

$=X_{2}$ with $c_{2}(0)=q$ exists. Then, as in the proof of Lemma 3.2, we can prove
that $a_{2}+b$ , does not depend on the initial condition $c_{2}(0)=q$ , and that $\lim_{tarrow 0_{2}}d(c_{2}(t)$ ,

$p_{1})=\infty$ . $\blacksquare$
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Let $r_{1}=\infty,$ $r_{2}=a_{2}+b_{2},$ $\alpha_{1}=2(a_{1}+b_{1})$ and $x_{i}(q)= \int_{\Gamma_{i}}\omega_{i}(i=1,2)$ , where $\Gamma_{i}$ is

a curve from $L_{i}$ to $q$ in $D_{1}\backslash \Re$ and $\omega_{i}$ is a 1-form defined in the proof of
Lemma 3.2. And we put $x_{1}(p_{1})=x_{2}(p_{1})=x_{2}(p_{2})=0,$ $x_{1}(p_{2})=\alpha_{1}/2$ . Then the func-
tions $(x_{1}, x_{2})$ can be regarded as a local coordinate system with $X_{i}=\partial/\partial x_{i}(i=$

$1,2)$ . Moreover, we can prove the next lemma in the same way as [2, Lemma
3.3].

LEMMA 3.6. Functions $(X_{1}, x_{2})$ give a homeomorphesm from $D_{1}$ to $[0, \alpha_{1}/2]$

$\cross[0, r_{2})$ whuch is a diffeomorphism from $D_{1}\backslash \Re$ to $[0, \alpha_{1}/2]\cross[0,$ $r,)\backslash \{(0,0)$ ,
$(\alpha_{1}/2,0)\}$ .

We now continue the proof of Theorem 3.1. In the similar way to the
case of $D_{1}$ , we can define vector fields $X_{\iota}$ and functions $x_{i}(i=1,2)$ on $D_{2}$ such
that they coincide with those on $D_{1}$ along the common boundary $L$ . Then $x_{i}$

$=const$ defines a simple curve. Let $\Gamma=\Gamma(\alpha_{1})$ denote the group of parallel
translations of $R^{2}$ generated by $(\alpha_{1},0)$ . Then the coordinate functions $(x_{1}, x_{2})$

on $D_{1}$ and $D_{2}$ define a map $\Phi$ : $R\cross(-r_{2}, r_{2})/\Gammaarrow S$ such that
(1) $\Phi$ maps $[0, \alpha_{1}/2]\cross[0, r_{2})$ homeomorphically onto $D_{1}$ , and

$x_{1}\circ\Phi(y_{1}, y_{2})iy_{1}$ $mod \alpha_{1}Z$ ,

$x_{2^{o}}\Phi(y_{1}, y_{2})=y_{2}$

for $(y_{1}, y_{2})\in[0, \alpha_{1}/2]\cross[0, r_{2})$ ,
(2) $\Phi$ maps $[0, \alpha_{1}/2]\cross(-r_{2},0]$ homeomorphically onto $D_{2}$ , and

$x_{1}\circ\Phi(y_{1}, y_{2})\equiv y_{1}$ $mod \alpha_{1}Z$ ,

$x_{2}\circ\Phi(y_{1}, y_{2})=-y_{2}$

for $(y_{1}, y_{2})\in[0, \alpha_{1}/2]\cross(-r_{2},0]$ ,
(3) $\Phi([-y_{1}, -y_{2}])=\Phi([y_{1}, y_{2}])$ , where $[y_{1}, y_{2}]$ denotes the equivalence

class which contains $(y_{1}, y_{2})$ .
Lemma 3.6 yields that the map $\Phi$ is $C^{\infty}$ except $[0,0]$ and $[\alpha_{1}/2,0]$ , and is

a two-fold covering of $S\backslash 7l$ . It follows from the definition of the coordinates
$(x_{1}, x_{2})$ that

$\Phi^{*}g=(\Phi^{*}f_{1}+\Phi^{*}f_{2})(dy_{1}^{2}+dy_{2}^{2})$

holds on $R\cross(-r_{2}, r_{2})/\Gamma\backslash \Phi^{-1}(\Re)$ . Since the map $\Phi$ is continuous on $R\cross(-r_{2}, r_{2})/$

$\Gamma$, and conformal except at $\Phi^{-1}(\Re)$ with respect to the conformal structure
induced from the inclusion $R\cross(-r_{2}, r_{2})\subset C,$ $\Phi$ is of class $C^{\infty}$ on $R\cross(-r_{2}, r_{2})/\Gamma$ .

We can see as in the proof of [2, Theorem 3.1] that the functions $\Phi^{*}f_{1}$

and $\Phi^{*}f_{2}$ satisfy the condition (3.2). This completes the proof of Case 2. $\blacksquare$

AS in [2], Theorem 2.1 implies the following corollaries.
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COROLLARY 3.7 ([2, Corollary 3.4]). Let $(S, g, F)$ be a noncompact complete
Liouville surface and $L$ the geodesic given in Thecrem 2.1. Then the reflection
with respect to $L$ is an isometry.

COROLLARY 3.8 ([2, Corollary 3.6]). Let $(S, g, F)$ be a noncompact complete

Liouville surface which corresPonds to a sextuPle $(\alpha_{1}, \alpha_{2}, f_{1}, f_{2}, r_{1}, r_{2})$ . If $(S, g)$

is analytic, then $f_{1},$ $f_{2}$ and $F$ are also analytic. If $\alpha_{1}<\infty$ , then

$f_{1}(t+\alpha_{1}/2)=f_{1}(t)$

for any $t\in R$ . If we extend $f_{1}$ as a holomorphic function about the real axis,

then
$f_{2}(t)=-f_{1}(\sqrt{}\overline{-1}t)$

for $t\in R$ near $0$ .
We are now in position to consider the case $\#\Re=0$ . In the first part of

the proof of Theorem 2.1, we have essentially proved

PROPOSITION 3.9 ([2, Proposition 3.8]). Let $(S, g, F)$ be a noncompact com-
plete Liouville surface with STZ $=\emptyset$ . Then there is a global coordinate system $(x_{1}$ ,
$x_{2})$ on the umversal covering $sPaceS$ of $S$ with

$-\infty\leqq-a_{1}<x_{1}<b_{1}\leqq\infty$ , $-\infty\leqq-a_{2}<x_{2}<b_{2}\leqq\infty$ ,

$i$ . $e.,\tilde{S}$ is diffeomorphic to $(-a_{1}, b_{1})\cross(-a_{2}, b_{2})$ . And if $S$ is not simply connected,
then its fundamental grouP is a cyclic group generated by one of the following
transformations:

$(x_{1}, x_{2})arrow(x_{1}, x_{2})+(c_{1}, c_{2})$

$(x_{1}, x_{2})arrow(x_{1}, -x_{2})+(c_{1}, c_{2})$

$(x_{1}, x_{2})arrow(-x_{1}, x_{2})+(c_{1}, c_{2})$ .
In this coordinate system, $g$ and $F$ are expressed as

$g=(f_{1}(x_{1})+f_{2}(x_{2}))(dx_{1}^{2}+dx_{2}^{2})$

$F= \frac{1}{f_{1}(x_{1})+f_{2}(x_{2})}(f_{2}(x_{2})\xi_{1}^{2}-f_{1}(x_{1})\xi_{2}^{2})$ ,

where $(x, \xi)$ is the canonical coordinate system on $T^{*}S$ .
Next Lemma is also valid in our case.

LEMMA 3.10 ([2, Lemma 3.9]). $f_{1}$ and $f_{2}$ are not constant.

We shall now consider complete Llouville surfaces whose underlying mani-
folds are diffeomorphic to a cylinder witb the help of conformal structure.



Noncompact Liouville surfaces 473

Let $z=x_{1}+\sqrt{}\overline{-1}x_{2}$ be the natural coordinate of $C=R^{2}$ . Let $\Gamma$ denote the group
of parallel translations of $R^{2}$ generated by $(1, 0)$ . Set

$\Omega_{r}=\{z\in C;0<x_{2}<r\}$ , $0<r\leqq\infty$ ,

and set $S_{r}-\Omega_{r}/\Gamma,$ $S_{0}=C/\Gamma$ . Then cylinders $S_{r}$ and $S_{0}$ have natural conformal
structures induced from the Riemannian metric $dx_{1}^{2}+dx_{2}^{2}$ . As is easily seen,
$S_{r}$ (O<r$ $\infty$ ) and $S_{0}$ are not mutually conformally isomorphic, and every cylinder
with a conformal structure is isomorphic to one of them.

Let $\mathcal{A}_{0}$ be the set of pairs of lines in $R^{2}$ which pass the origin and are
mutually orthogonal. For $l=(l_{1}, l_{2})\in \mathcal{A}_{0}$ , let $\pi_{i}$ : $Carrow l_{i}$ denote the orthogonal
Projection, and Put $\Gamma_{i}=\pi_{i}(\Gamma)(i=1,2)$ . For each $l=(l_{1},1_{2})$ , we denote by $\mathscr{F}(1)$

the set of pairs $(f_{1}, f_{2})$ of functions with the following properties: $f_{i}$ is a $C^{\infty}$

function on $l_{i}$ which is invariant under the action of $\Gamma_{i}(i=1,2);f_{1}+f_{2}>0$ ;
If $\Gamma_{i}=\{0\}$ , i.e., $\partial/\partial x_{2}$ is tangent to $l_{i}$ , then

$\int_{0}^{\infty}\sqrt{}\overline{f_{1}+f_{2}}dx_{2}=\int_{-\infty}^{0}\sqrt{}\overline{f_{1}+f_{2}}dx_{2}=\infty$ .

Here the functions $f_{i}$ are identified with $\pi_{i}^{*}f_{i}$ . We put

$\ovalbox{\tt\small REJECT}_{0}=\{(l, f);l\in \mathcal{A}_{0}, f\in \mathscr{F}(l)\}$ .

For $r\in(O, \infty]$ we denote by $\ovalbox{\tt\small REJECT}_{r}$ the set of pairs $f=(f_{1}, f_{2})$ of $C^{\infty}$ functions
with the following properties: $f_{1}$ is a non-constant function on $R=\{(x_{1})\}$ with
period 1; $f_{2}$ is a non-constant function on the interval $\{x_{2} ; 0<x_{2}<r\}$ ; $f_{1}+f_{2}>0$ ;

$\int_{a}^{b}\sqrt{}\overline{f_{1}(x_{1})+f_{2}(x_{2})}dx_{2}arrow\infty$ as $aarrow 0$ or $barrow r$ .

For each $(1, f)\in\ovalbox{\tt\small REJECT}_{0}$ we assign a Liouville surface whose underlying Rie-
mannian manifold is conformally isomorphic to $S_{0}$ as follows. Let $(y_{1}, y_{2})$ be
an orthonormal coordinate system on $C=R^{2}$ so that $\partial/\partial y_{i}$ is tangent to $l_{i}(i=$

$1,2)$ . Put
$g=(f_{1}(y_{1})+f_{2}(y_{2}))(dy_{1}^{2}+dy_{2}^{2})$ ,

$F= \frac{1}{f_{1}(y_{1})+f_{2}(y_{2})}(f_{2}(y_{2})\eta_{1}^{2}-f_{1}(y_{1})\eta_{2}^{2})$ ,

where $(y, \eta)$ is the associated canonical coordinate system on $T^{*}C$ . Clearly $g$

and $F$ are invariant under the action of $\Gamma$ . By regarding them as a Riemannian
metric on $C/\Gamma=S_{0}$ and a function on $T^{*}S_{0}$ respectively, we obtain a Liouville
surface $(S_{0}, g, F)$ .

In the same way, for each $f=(f_{1}, f,)\in\ovalbox{\tt\small REJECT}_{r}$ we can assign a Liouville surface
whose underlying Riemannian manifold is conformally isomorphic to $S_{r}$ .

We say that two elements $(1, f)$ and $(m, h)$ of $\ovalbox{\tt\small REJECT}_{0}$ are equivalent if there
are a conformal transformation $\varphi$ of $C$ with $\varphi_{0}(\Gamma)=\Gamma$ and a constant $a\in R$
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such that one of the following conditions is satisfied:

(1) $\varphi_{0}(l_{i})=m_{i},$ $\varphi^{*}h_{i}=f_{i}+(-1)^{i}a,$ $(i=1,2)$ ,

(2) $\varphi_{0}(l_{1})=m_{2},$ $\varphi_{0}(l_{2})=m_{1},$ $\varphi^{*}h_{1}=f_{2}+a,$ $\varphi^{*}h,$ $=f_{1}-a$ .

Here $\varphi_{0}$ stands for the linear part of $\varphi$ . Similarly, two elements $f$ and $h$ of
di $r$ are said to be equivalent if there are a conformal transformation $\varphi$ of $C$

with $\varphi_{0}(\Gamma)=\Gamma$ and $\varphi(\Omega_{r})=\Omega_{r}$ and a constant $a\in R$ sucb that

$\varphi^{*}h_{i}=f_{i}+(-1)^{i}$ a $(i=1,2)$ .

It is easy to see that mutually equivalent elements give mutually equivalent
Liouville surfaces. Let $B_{0}$ (resp. $\ovalbox{\tt\small REJECT}_{r}$ ) denote the set of all equivalence classes
in $\ovalbox{\tt\small REJECT}_{0}$ (resp. $\ovalbox{\tt\small REJECT}_{\tau}$ ).

THEOREM 3.11. The assignment above gives the one-to-one correspondence
between the set $B_{0}$ (resP. $B_{r}$ ) and the set of eqluvalence classes of comPlete
Liouville surfaces whose underlying Riemannian manifolds are conformally isomor-
Phic to the cylinder $S_{0}$ (resP. $S_{r}$ ).

PROOF. In view of Proposition 3.9, it is clear that the assignment described
above is surjective. And the theorem can be proved by the same argument
with that of [2, Theorem 3.11]. $\blacksquare$

Next we shall consider the case where the underlying manifold is diffeomor-
phic to the M\"obius band. For $r\in[0, \infty)$ we put

$c_{r} \sim(z)=\overline{z}+\tau/\overline{-1}r+\frac{1}{2}$ , $z\in C$ .

Clearly $\tilde{c}_{r}$ induces a conformal transformation $c_{r}$ of $S_{r}$ satisfying $c_{r}^{2}=id$ , (0$
$r<\infty)$ . Put

$M_{r}=S_{r}/\{id, c_{r}\}$ , $(0\leq r<\infty)$ .

Then $M_{r}$ is diffeomorphic to the M\"obius band which possesses the conformal
structure induced from that on $S_{r}$ .

For $r\in[0, \infty)$ we define a subset $C_{r}$ of $B_{r}$ as follows. $C_{0}$ is the set of all
elements of $B_{0}$ whose representatives $(l, f)$ satisfy $l_{1}=\{x_{2}=0\},$ $l_{2}=\{x_{1}=0\}$ ,
$f_{1}(x_{1}+1/2)=f_{1}(x_{1})$ and $f_{2}(-x_{2})=f_{2}(x,)$ . For $r>0,$ $C_{r}$ is the set of all elements
of $\ovalbox{\tt\small REJECT}_{r}$ whose representatives $f$ satisfy $f_{1}(x_{1}+1/2)=f_{1}(x_{1})$ and $f_{2}(r-x_{2})=f_{2}(x_{2})$ .

AS we have already seen, an element of $C_{r}$ induces a Liouville surface
whose underlying manifold is diffeomorphic to a cylinder $S_{r}$ , and the mapping
$c_{r}$ acts on it as an automorphism of a Liouville surface. Hence, dividing it by
the action of {id, $c_{r}$ }, we get a complete Liouville surface whose underlying
Riemannian manifold is conformally isomorphic to $M_{r}$ , and we have
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PROPOSITION 3.12. The asstgnment above gives $a$ one-to-one correspondence
between the set $C_{r}$ and the equivalence classes of complete Liouville surfaces
whose underlying Riemannian manifolds are conformally isomorphic to $M_{r}$ .

Finally we shall consider silnply connected Liouville surfaces with #En $=0$ .
For $0\leqq r_{1}\leqq r_{2}\leqq\infty$ , let

$\mathcal{H}_{r_{1}.r_{2}}=\{$

$\{(x_{1}, x_{2});-\infty<x_{1}<+\infty, -\infty<x_{2}<+\infty\}$ if $r_{1}=r,$ $=0$ ,

$\{(x_{1}, x_{2});-\infty<x_{1}<+\infty, 0<x_{2}<r_{2}\}$ if $r_{1}=0<r_{2}$ ,

$\{(x_{1}, x_{2});0<x_{1}<r_{1},0<x_{2}<r_{2}\}$ if $0<r_{1}\leqq r_{2}$ .

For $0\leqq r_{1}\leqq r_{2}\leqq\infty$ , we denote by $\tilde{9}_{r_{1}.r_{8}}$ the set of pairs $f=(f_{1}, f_{2})$ of $C^{\infty}$ func-
tions on $\mathcal{H}_{r_{1}.r_{S}}$ with the following properties: $f_{i}$ is a non-constant function
with a single variable $x_{i}(i=1,2);(f_{1}+f_{2})(dx_{1}^{2}+dx_{2}^{2})$ defines a complete Rie-
mannian metric on $\mathcal{H}_{r_{1}.r_{2}}$ .

We say that two elements $(f_{1}, f_{2})$ and $(h_{1}, h,)$ of $\Phi_{r_{1}.r_{2}}$ are equivalent if
there is a conformal transformation $\varphi$ of $\mathcal{H}_{r_{1}.r_{8}}$ such that

$\varphi^{*}h_{i}=f_{i}+(-1)^{\ell}a(i=1,2)$ if $r_{1}\leqq r_{2}$ ,

$\varphi^{*}h_{1}=f_{2}+a$ , $\varphi^{*}h_{2}=f_{1}-a$ , if $r_{1}=r_{2}$

for some constant $a\in R$ . Let $9_{r_{1}.r_{g}}$ denote the set of all equivalence classes
in $\tilde{9}_{r_{1}.r_{2}}$ .

For each $(f_{1}, f_{2})\in\Phi_{r_{1}.r_{\mathfrak{g}}}$ we assign a Liouville surface

$(\mathcal{H}_{r_{1}.r_{2}}, (f_{1}+f_{2})(dx_{1}^{2}+dx_{2}^{2})$ , $\frac{1}{f_{1}+f_{2}}(f,\xi_{1}^{2}-f_{1}\xi_{2}^{2}))$ .

It is easy to see that mutually equivalent elements give mutually equivalent
Liouville surfaces and we have

THEOREM 3.13. The assignment above gives the one-to-one corresPondence
between the set

$9_{0.0}\cup 9_{0.1}\cup 9_{1.1}\cup\bigcup_{1<r_{2}\leqq\infty}9_{1.r_{2}}\cup 9_{\infty.\infty}$

and the set of equivalence classes of simPly connected comPlete Liouville surfaces
with #C77 $=0$ .

4. Quadratic surfaces in the hyperbolic 3-space.

In this section we show that quadratic surfaces in the hyperbolic 3-space
$H^{3}(-1)$ of constant sectional curvature $-1$ are also Liouville surfaces as Euclid-
ean ones. We restrict ourselves to hyperboloids of two sheets and elliptic
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paraboloids, but the similar computation shows that all such surfaces are Liou-
ville surfaces.

Let $M$ denote a hyperboloid of two sheets in $R^{3}$ defined by a quadratic
equation

$\frac{x_{0}^{2}}{a_{0}}+\frac{x_{1}^{2}}{a_{1}}+\frac{x_{2}^{2}}{a_{2}}=1$

with $a_{0}<a_{1}<0<a_{2}$ . Then elliptic coordinates $(u_{1}, u_{\underline{q}})\in(-\infty, a_{0}]\cross[a_{0}, a_{1}]$ are
given by

$x_{0}^{2}= \frac{a_{0}(u_{1}-a_{0})(u_{2}-a_{0})}{(a_{1}-a_{0})(a_{2}-a_{0})}$

$x_{1}^{2}= \frac{a_{1}(u_{1}-a_{1})(u_{2}-a_{1})}{(a_{0}-a_{1})(a_{2}-a_{1})}$

$x_{2}^{2}= \frac{a_{2}(u_{1}-a,)(u_{2}-a_{2})}{(a_{0}-a_{2})(a_{1}-a_{2})}$ .

We adopt a half-space $\{(x_{0}, x_{1}, x_{2});x_{1}>0\}$ with the Riemannian metric $g_{-1}=$

$(dx_{0}^{2}+dx_{1}^{2}+dx_{2}^{2})/x_{1}^{2}$ as the hyperbolic 3-space $H^{3}(-1)$ . Let $S$ be the connected
component of $M\cap H^{3}(-1)$ with $0<x_{2}$ . Then we have

PROPOSITION 4.1. The first fundamental form of $S\subset H^{3}(-1)$ in the elliptic
coordinates is given by

$ds^{2}= \frac{(a_{0}-a_{1})(a_{2}-a_{1})}{a_{1}}(\frac{-1}{a_{1}-u_{1}}+\frac{1}{a_{1}-u_{2}})(U_{1}du_{1}^{2}+U_{2}du_{2}^{2})$

where $U_{i}=U_{i}(u_{i})=(-1)^{\ell}u_{i}/f(u_{i});f(u_{i})=4(a_{0}-u_{i})(a_{1}-u_{i})(a_{2}-u_{i})$ .

THEOREM 4.2. In the elliptic coordinates $(u_{1}, u_{2})$ on $S$ , the geodesics are
characterized by

$\sqrt{U_{1}}\dot{u}_{1}/\frac{-1}{a_{1}-u_{1}}\mapsto+\frac{1}{a_{1}-\gamma}\mp\sqrt{U_{2}}\dot{u}_{2}/\sqrt{\frac{11}{a_{1}-u_{2}a_{1}-\gamma}}=0$ ,

together with the condition $ds^{2}(u, u)=const$ . Here $\gamma$ is a constant with value in
$(-\infty, a_{0})$ or $(0_{0}, a_{1})$ .

The constant $\gamma$ is called the parameter of the geodesic.

PROOF. Choose $\gamma\in(-\infty, a_{0})$ or $(a_{0}, a_{1})$ . On the subdomain of those $(u_{1}, u_{2})$

$\in(-\infty, a_{0})\cross(a_{0}, a_{1})$ which satisfy $u_{1}<\gamma<u_{2}$ , we introduce new coordinates
$u_{1}’,$ $u_{2}’$ by

$du_{1}’=\sqrt{\frac{-1}{a_{1}-u_{1}}+\frac{1}{a_{1}-\gamma}}\sqrt{}\overline{U_{1}}du_{1}\pm\sqrt{\frac{11}{a_{1}-u_{2}a_{1}-\gamma}}\sqrt{U_{2}}du_{2}$ ,
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$du_{2}’=\sqrt{U_{1}}du_{1}/\sqrt{\frac{-1}{a_{1}-u_{1}}+\frac{1}{a_{1}-\gamma}}\mp\sqrt{}/\overline{U_{2}}du_{2}/\sqrt{\frac{11}{a_{1}-u_{2}a_{1}-\gamma}}$ .

In these coordinates, the $1_{A}^{7}ne$ element is given by

$ds^{2}= \frac{(a_{0}-a_{1})(a_{2}-a_{1})}{a_{1}}\{du_{1}^{\prime 2}+(\frac{-1}{a_{1}-u_{1}}+\frac{1}{a_{1}-\gamma})(\frac{11}{a_{1}-u_{2}a_{1}-\gamma})du_{2}^{\prime 2}\}$ .

Hence $u_{1}’$-curves are geodesics. Our equation is equivalent to $du_{2}’/dt=0$ . $\blacksquare$

COROLLARY 4.3. Define

$F(u, \dot{u})=\frac{(a_{0}-a_{1})(a_{2}-a_{1})}{a_{1}}(\frac{-1}{a_{1}-u_{1}}+\frac{1}{a_{1}-u_{2}})(\frac{U_{1}\dot{u}_{1}^{2}}{a_{1}-u}+\frac{U_{2}\dot{u}_{2}^{2}}{a_{1}-u_{1}})$ .

Then $F(u,\dot{u})=const=1/(a_{1}-\gamma)$ if $u(t)=(u_{1}(t), u_{2}(t))$ is a geodesic with parameter
$\gamma$ parametrized by arc length, $i$ . $e.,$ $(S, ds^{2}, F)$ is a Liouville surface with

$\Re=\{(0, \sqrt{a_{1}(a_{0}-a_{1})/\backslash (a_{2}-a_{1})}\sqrt{a_{2}(a_{0}-a,)/(a_{1}-a_{2})})\}$ .

Next we shall study the elliptic paraboloid in $H^{3}(-1)$ Let $M$ denote a
surface in $R^{3}$ defined by a quadratic equation

$\frac{x_{0}^{2}}{a_{0}}+\frac{x_{1}^{2}}{a_{1}}=2x_{2}$

with $0<a_{0}<a_{1}$ . Then elliptic coordinates $(u_{1}, u,)\in[a_{0}, a_{1}]\cross[a_{1}, \infty)$ are given
by

$x_{0}^{2}= \frac{a_{0\backslash }^{(}u_{1}-a_{0})(u_{2}-a_{0})}{a_{1}-a_{0}}$

$x_{1}^{2}= \frac{a_{1}(u_{1}-a_{1})(u_{2}-a_{1})}{a_{0}-a_{1}}$

$x_{2}^{2}= \frac{u_{1}+u_{2}-a_{0}-a_{1}}{2}$ .

We adopt a half-space $\{(x_{0}, x_{1}, x_{2});x_{0}>0\}$ with the Riemannian metric $g_{-1}=$

$(dx_{0}^{2}+dx_{1}^{2}+dx_{2}^{2})/x_{0}$ as the hyperbolic 3-space $H^{3}(-1)$ . Put $S=M\cap H^{3}(-1)$ .
Then we have

PROPOSITION 4.4. Th $e$ first fundamental form of $S\subset H^{3}(-1)$ in the elliptic
coordinates is given by

$ds^{2}= \frac{a_{1}-a_{0}}{a_{0}}(\frac{1}{u_{1}-a_{0}}+\frac{-1}{u_{2}-a_{0}})(U_{1}du_{1}+U_{2}du_{2}^{2})$ ,

where $U_{i}=U_{i}(u_{i})=(-1)^{i}u_{i}/f(u_{i});f(u_{\ell})=4(a_{0}-u_{t})(a_{1}-u_{i})$ .
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THEOREM 4.5. In the elliptic coordinates $(u_{1}, u_{2})$ on $S$ , the geodesics are
characterized by

$\sqrt{}\overline{U_{1}}\dot{u}_{1}/\sqrt{\frac{11}{u_{1}-a_{0}\gamma-a_{0}}}\mp\sqrt{U_{2}}\dot{u}_{2}/\sqrt{\frac{-1}{u_{2}-a_{0}}+\frac{1}{\gamma-a_{0}}}=0$

together with the condition $ds^{2}(u,\dot{u})=const$ . Here $\gamma$ is a constant with value in
$(a_{0}, a_{1})$ or $(a_{1}, \infty)$ .

The constant $\gamma$ is called the parameter of the geodesic.

PROOF. Choose $r\in(0_{0}, a_{1})$ or $(a_{1}, \infty)$ . On the $subdoma^{i}\sim n$ of those $(u_{1}, u_{2})$

$\in(a_{0}, a_{1})\cross(a_{1}, \infty)$ which satisfy $u_{1}<\gamma<u_{2}$ , we introduce new coordinates $u_{1}’$ ,
$u_{2}’$ by

$du_{1}’=\sqrt{\frac{11}{u_{1}-a_{0}\gamma-a_{0}}}\nwarrow^{/}\overline{U_{1}}du_{1}\pm\sqrt{\frac{-1}{u_{2}-a_{0}}+\frac{1}{\gamma-a_{0}}}\sqrt{}\overline{U_{2}}du_{2}$ ,

$du_{2}’=\sqrt{U_{1}}du_{1}/\sqrt{\frac{1}{u_{1}-a_{0}}\frac{1}{\gamma-a_{0}}}\mp\sqrt{}\overline{U_{2}}du_{2}/\sqrt{\frac{-1}{u_{2}-a_{0}}+\frac{1}{\gamma-a_{0}}}$ .

In these $COord;_{nates}$ , the line element is given by

$ds^{2}= \frac{a_{1}-a_{0}}{a_{0}}\{du_{1}^{\prime 2}+(\frac{-1}{u_{2}-a_{0}}+\frac{1}{\gamma-a_{0}})(\frac{1}{u_{1}-a_{0}}-\frac{1}{\gamma-a_{0}})du_{2}^{\prime 2}\}$ .

Hence $u_{1}’$-curves are geodesics. Our equation is equivalent to $du_{2}’/dt=0$ . $\blacksquare$

$coROLLARY4.6$ . Define

$F(u, \dot{u})=a_{1}-a_{0}a_{0}(\frac{-1}{u_{2}-a_{0}}+\frac{1}{u_{1}-a_{0}})(\frac{U_{1}\dot{u}_{1}^{2}}{u_{2}-a_{0}}+\frac{U_{2}\iota i_{2}^{2}}{u_{1}-a_{0}})$ .

Then $F(u,\dot{u})=const=1/(\gamma-a_{0})$ , if $u(t)=(u_{1}(t), u_{2}(t))$ is a geodesic with parameter
$\gamma$ parametrized by arc length, $i$ . $e.,$ $(S, ds^{2}, F)$ is a Liouville surface with $\Re=$

$\{(\sqrt{a_{0}(a_{1}-a_{0})}, 0, (a_{1}-a_{0})/2)\}$ .
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