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Introduction.

In the recent years Hida’s white noise calculus has been established as
a Schwartz type distribution theory on Gaussian space by many authors, for
instance, Kubo and Takenaka [20], Kubo and Yokoi [21], Kuo [22], Lee [23],
Potthoff and Streit [30], Yan [32], Yokoi [33], see also Berezansky and
Kondrat’ev [2] where a similar framework is proposed. Applications of white
noise calculus to quantum physics have been discussed also actively, see e.g.,
[1], [6], [12], and references cited therein. Meanwhile, we have started
a systematic investigation of operators on white noise functionals with a new
viewpoint of harmonic analysis. In we formulated integral kernel operators
and observed that an infinitesimal generator of rotations on white noise func-
tionals bears interesting analogies to the finite dimensional case. In we
characterized Kuo’s Fourier transform as a unique operator which intertwines
differential operators and coordinate multiplications. Furthermore, in we
determined all rotation-invariant operators on white noise functionals and obtained
a group-theoretical characterization of infinite dimensional Laplacians (Gross
Laplacian and the number operator).

In this paper we continue a further study of operators on white noise
functionals and discuss in detail how to construct such an operator from a
given behavior on the exponential vectors. We are going to explain the essence
to some extent. Let T be a topological space with a Borel measure v and let
E=8,T)cH=L*T, v)cE* be a Gelfand triple constructed in the standard
manner from an operator A on H. We think of T being a time parameter
space including multi-time parameter case where quantum field theory may be
formulated. Using the method of second quantization, we obtain a Gelfand triple :

(E) < (L) = L¥E*, p) < (E)*,

where p is the Gaussian measure on E*. Then, (L?)is (a realization of) Fock space,
(E) the space of test white noise functionals and (E)* the space of generalized
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white noise functionals. Let .L((E), (E)*) denote the space of continuous opera-
tors from (E) into (E)*, which are studied in detail.

For &= FE an exponential vector (coherent state) is by definition a function
¢: on E* given as

g0 = exp(Cx, H— 58, &), x € E¥.

Since {¢:; §=E} is linearly independent and spans a dense subspace of (E), it
is worthwhile to study the behavior of an operator &< _L((E), (E)*) on the ex-
ponential vectors. We thus consider the symbol of = :

EE D =(5¢: ¢,), & nEE,

where (-, -) denotes the canonical bilinear form on (E)*X(FE). This termi-
nology was introduced by Krée and Raczka [19] in order to characterize a
certain class of Fock space operators, see also [4], and [17]. We are then
interested in analytic properties of ©=FE. In fact, it satisfies the following
two properties :

(i) for any &, &, u, n.<FE, the function s, t — O(s§,+¢, tn,+7), s, t=R,

admits an entire holomorphic extension to CxC;
(ii) there exist constant numbers C=0, K =0 and p=R such that

10(z§, wy)| < CexpK([z[°|§15+1wl® 7]5)

for all § n=E and z, weC, where O(z&, wy) denotes the entire holo-
morphic extension of s, t+— O(s§, tn) to CXC.
Here |&],=|A?&|,, |+]|, being the norm of the Hilbert space H, is one of
the defining norms of E, see Sections 1 and 2 for further notations.

The bulk of this paper is devoted to construction of an operator S<
L(E), (Ey*) from a given function @ satisfying the conditions (i) and (ii) above.
To state the main assertion we need some more notation. As is well known, the
most fundamental operators on Fock space are annihilation and creation opera-
tors. In white noise calculus they are realized as a family of operators 9; and
0%, teT, which in fact belong to L{(E), (E)) and L((E)* (E)*), respectively.
We then consider an operator expressed in a formal integral:

El,m(’c) = STH_mI:(Sb S, tly T tm)az’kl"'a?la“”'atmdsf"dSIdtl"'dtm.'

which will be called an integral kernel operator. Mathematical treatment of
such operators expressed in terms of creation and annihilation operators (with
normal ordering) has been discussed by many authors, see e.g., Berezin
and Bogolubov et al. [6] where further references can be found. Among others,
being based on theory of nuclear spaces, Krée has developed a very general
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framework of Fock space operators which is partly similar to ours, see also a
note by Meyer [27]. Nevertheless, here are some advantages of white noise
approach. Namely, &, ,(x) is defined as an operator in .L((E), (E)*) for an
arbitrary distribution k=(Eg"*™)*. Moreover, the concrete structure offwhite
noise functionals leads us to the following

MAIN THEOREM. Assume that a C-valued function @ on EXE satisfies two
conditions (i) and (ii) above. Then, there exists a unique family of kernel distri-
butions {k;, m}7 m=o, k1, n E(EE*™)* being symmetric independently with respect
to the first | and the last m variables, such that

0¢ N= X

1

(i mt,n)pe 69), & nEE.

0
Moreover, the series

E¢= 3 Eunlting, ¢ (B),

converges in (E)*, B L((E), (E)*) and E(g, 7N=0(, p) for all & n<EE.

The proof will be divided into two steps. Modelled after the argument by
Potthoff and Streit [30], we obtain the kernel distributions individually. Then,
using a precise norm estimate of &, (k) obtained in [11], we prove the con-
vergence.

The main theorem has interesting applications. We derive an operator
version of the characterization theorem for generalized white noise functionals
due to Potthoff and Streit [30], see [Corollary 5.2. More important is that every
Ecr((E), (E)*) admits a Fock expansion, i.e., it is expressible uniquely as a
sum of integral kernel operators, see [Theorem 6.I. While, in many practical
problems (usually unbounded) operators on Fock space are defined only on the
exponential vectors owing to the fact that the exponential vectors are linearly
independent. Our characterization theorem, therefore, gives us a simple criterion
for checking when such operators are defined on white noise functionals. In
his quite recent paper Huang initiated a study of quantum probability, in
particular, quantum It6 formula within the framework of white noise cal-
culus. It is highly expected that our discussion will play an important role in
this direction as well, see also Example 7.8.

The paper is organized as follows: In Section 1 we reformulate a well
known construction of a Gelfand triple. Section 2 is devoted to a review of
construction of white noise functionals. In Section 3 we define an integral
kernel operator. In Section 4 we introduce a symbol of an operator and observe
characteristic properties. Section 5 is devoted to the proof of the main theorem.
In Section 6 we discuss Fock expansion. Finally Section 7 contains examples
of Fock expansion including integral-sum kernel operators which have played
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an interesting role in quantum probability theory, [24], [25] and [26].
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1. Preliminaries.

We assemble some general notations used throughout.

For a real vector space ¥ we denote its complexification by X.. If ¥ is a
topological vector space, the dual space X* is always assumed to carry the
strong dual topology. For two topological vector spaces ¥ and 9) let .£(%, 9)
stand for the space of continuous linear operators from X% into 9.

If ¥ and 9 are nuclear spaces, we denote simply by ¥X%9 the completion
of the algebraic tensor product ¥®a%) with respect to the z-topology. In that
case the m-topology coincides with the e-topology, see e.g., [31]. If H and K
are Hilbert spaces, we denote by HQK the completed Hilbert space tensor
product (hence HQK is again a Hilbert space). We thus use the same symbol
for different meanings, however, no confusion will occur. Let ¥ be a Hilbert
space or a nuclear space. We denote by X8 cx®" the closed subspace of sym-
metric tensor products. We also use the symbol (¥®*)% . for the same meaning
in case of dual spaces.

Let H be a real separable Hilbert space with norm |-|, and inner product
{-, ->. We shall be mostly concerned with a Gelfand triple Ec HCE* con-
structed from a standard operator on H. Here an operator A is called standard
if the domain Dom(A)c H contains a complete orthonormal basis {e;}$-, for H
such that

(S1) Aej=A2je;  with £4;>0;

(S2) XF=047°" <o for some r>0.

Given a standard operator A on H, we shall construct a Gelfand triple. For
p=R let E, be the completion of Dom(A?) with respect to the norm:

[&l, = [ APElo, & = Dom(A?).

(Here we understand that Dom(A?)=H for p<0.) We thus obtain a chain of
Hilbert spaces {E,},er With natural inclusion relations:

wCcE,ccE,c--cH=E,c--cE c--cE,c-, 0Z¢=<p,

where E, is densely and continuously imbedded in E, whenever —co <¢g< p<co.
The inner product <-, -> of H is naturally extended to a bilinear form on
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E_,XE,, p=0, and through this bilinear form we identify E_, with the dual
space E%. By definition,

(1-1) §13= D47 et E<E, peR.

PROPOSITION 1.1. Egquipped with the Hilbertian norms ||, E = Nz E,
becomes a nuclear Fréchet space. The dual space E* with the strong dual topology
is isomorphic to the inductive limit space: E*=\Upy E_,. Moreover, ECHCE*
is a Gelfand triple.

The above mentioned construction of a Gelfand triple is well known (e.g.,
[2], [7)) and is called standard in this paper. We denote the canonical bilinear
form on E*XE by -, -> again.

Let 2 be a topological space with a Borel measure v. If A is a standard
operator on H= L*£, v; R), the Gelfand triple constructed in the standard
manner is written as

(1-2) Sa(@) < L*(2,v; R) < S¥(9Q).

By construction each £=S4(2) is a function on £ determined up to y-null
functions. In this connection, suggested by [20], we formulate three hypotheses:
(H1) For each £=S4(R) there exists a unique continuous function £ on 2
such that &w)=£&(w) for v-a.e. W= Q.
When (H1) is satisfied, we always identify S,4(£2) with a space of continuous
functions on 2 and we do not use the symbol &. Under (H1) we consider two
hypotheses :
(H2) For each w2, the evaluation map d,, : £— &(w), £€S5,4(2), is continuous,
namely, 6,=S%(Q).
(H3) The map w— 0,=S8%(2), o= 2, is continuous.
We end this section with the following.

PROPOSITION 1.2. For i=1,2 let Q; be a topological space with a Borel
measure y;. Let A; be a standard operator on H,=L*Q;, v;; R) with domain
Dom(A,). Then A,QA, becomes a standard operator on H,QH, with domain
Dom(A,)® a1 Dom(A4,) and

3A1®A2<Q1><Q2) = SA1(91)®8A2(Q2)
under the identification: L*(2,X2:, viXv,; R)= L¥Q,, v;; RYQL¥Q,, v»; R).

The proof is easy and omitted. It is also proved that the properties (H1)-
(H3) are preserved under forming tensor products. The detailed discussion
will appear elsewhere.
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2. White noise functionals.

Let T be a topological space equipped with a Borel measure v and let A
be a standard operator on H=L¥T, v; R) satisfying the conditions :

(Al) Ae;=2je; with 4,ER;

(A2) 1<20§21§22§ S

(A3) D7ee A2 <oo.
Then, applying the standard construction (Proposition 1.1), we obtain a Gelfand
triple :

SuT) <= LT, v; R) < SKT),
which is from now on denoted by
2-1) Ec Hc E*

for simplicity. We further assume that E=S,(T) satisfies the hypotheses (H1)-
(H3) and fix this setup hereafter.

It follows from (Al) and (A3) that A~' is extended to a Hilbert-Schmidt
operator on H. The following two constant numbers are frequently used:

2-2) o=14"us= (%),
23 o= 14" =27
Note also

0<p<l, p<9a,
and
|E|p§p[$|p+1, EEE; ;DC—ZR

The fact that 0<p<1, which follows from (A2), is indispensable to our dis-
cussion. The norm of E$™ will be denoted also by |-|,. Then by definition

|f|p§(0"]f|p+1, fEE®n, pER

The canonical bilinear form on (E®")*X E®"* is denoted by <., -> again.
Let ¢ be the Gaussian measure on E* which is uniquely determined by the
characteristic functional:

exp(—5 613) = | o= ouan, §=E.

The probability space (E*, p) is called Gaussian space. The norm and the inner
product of L*E* p; R) are denoted by ||, and {:, -}, respectively.

We next recall the Wiener-Ité decomposition of L*(E*, p; R). For that
purpose we define: x®" :=(E®")* for x<E* and n=0 inductively as follows:
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1 x®r=1
P x®i=x
A 1 A
P x® i =x®: x®D . _(p—1Dr®: x®D;, n=2,

where t(EQE)* is defined by
(2-4) {r, Q> =& 7>, & neEE.

By definition : x®" :<(E®™)¥ . With these notation we come to a variant state-
ment of Wiener-It6 decomposition theorem.

PROPOSITION 2.1. For each ¢=L*E*, p; R) there exists a sequence f,<
H®* n=0,1, 2, ---, such that
(2-5) gx)= 3 <: 2, £, x < E¥,
n=0

where the right hand side is an orthogonal direct sum of functionsin L*E*, u; R).
Moreover,

Igli= 3 nl1fal3.

We then need the second quantized operator ['(A), where A is the operator
used for construction of E=S8,(T). Let Dom(I'(A4)) be the subspace of ¢=
L*E*, p; R) given as in [2-5) such that

(i) f»,=0 except finitely many =n;

(ii) f.=Dom(A)Raig - Raig Dom(A) (n-times).

Then, for such ¢=Dom(/'(A4)) we define

(T(AGE) = 3 <: x4 fo.

LEMMA 2.2. [I'(A) is a standard operator on L*(E*, p; R).
Proor. It is known that
Gn(x) = (noln 1)1 2 0 x®7 e%”"@e?"‘@"'%

where n=(n,, n,, --+), |n|=n,+n,+ --- =n<co, form a complete orthonormal
basis for L2%(E*, u; R). Obviously, these are eigenfunctions of ['(A) with
eigenvalues A%047:---. On the other hand, it follows from (A3) that

5% @eap)t= 1S4 = [M0-297 < e,
=0 n j=

n=0 Ng+N1+=N Jj=0
and consequently, I'(A) is standard. (Q.E.D))

Then application of the standard construction leads us to a Gelfand triple:



428 N. OBaTA

Srw(E*) < L*(E*, p; R) < SFan(E¥).
Its complexification is denoted by
(2-6) (E) < (L*) = (E)~.

An element of (E) (resp. (E)*) is called a fest (resp. generalized) white noise
functional. 1t will be crucial to our discussion in Section 4 that (E) is a nuclear
Fréchet space. The canonical C-bilinear form on (E)*X(E) is also denoted by
{-, -y and the norm of (L? is denoted by |-|,. According to our convention
we put

gl = I'(A)"¢le, ¢ € Dom(I'(A)"),  pER.

Then, by definition Sry(E*) (and therefore (E) as well) is equipped with the
Hilbertian norms ||-]|,, p=0. A simple application of Kubo-Yokoi’s continuous

version theorem yields the following

PROPOSITION 2.3. According to Proposition 2.1 let ¢=(L?) be given as
(2_7) ¢(x>: §<: x®n:y fn>; xEE*y fREHgn: n:O, 1; 27 e
n=0

Then ¢=(E) if and only if
(1) anEgn for all n=0,1, 2, --- ;
(il) Zn=on!lfali<co for all p=0.
In that case,

1913 = 3 ntlfal3

for all p=0 and, for each x € E* the right hand side of (2-7) converges absolutely
and defines a continuous function on E* which coincides with ¢(x) for p-a.e. x € E*.

In other words, Srw,(E*) (and therefore (E) as well) satisfies the hypothesis
(H1) introduced in Section 1. According to our convention there (F) is regarded
as a space of continuous functions on E* and we agree that every ¢=(E) is
pointwisely defined by an absolutely convergent series as in (2-7). It is proved
in that Sry(E*) satisfies (H2). Moreover, (H3) can be proved with further
detailed consideration.

For generalized functionals we only mention the following

PROPOSITION 2.4. For Q< (E)* there exists a unique sequence {F,}5-, satisfy-
ing

(i) F,e(EgME. for all n=0,1,2, ---;

(ii) XZn-on!|F,|2,<co for some p=0;
such that
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(2-8) (@, )= 33 niKFy, f2,

for all ¢=(E) given as in (2-7). Conversely, if {Fi}7-, satisfies (i) and (ii),
then the formula (2-8) defines a generalized functional @ <(E)*.

It is therefore convenient to adopt a formal notation:
(2-9) O(x)= 3 <: x5, Fo).

However, we do not go into a discussion about convergence of the right hand
side.

3. Integral kernel operators.

We begin with recalling a differential operator ¢, which plays a fundamental
role in the white noise calculus. For t=T and fEE%‘"“) we define §,%.f <
E&" by

5t®1f(tl) Tty tn) = f(t, tl) Tty tn): tb Tty tn & T .

According to [Proposition 2.3 let ¢<(E) be given as

(3"1) ¢(x)= §<: x®r 5 fn>7 XEE*, anEgnr n:()) l) 2}
n=0
For y=E* put

(3-2) D, ¢(x) = én(: x®m=1 . y@lf,,>, x c E*,

It then follows from [Proposition 2.3 that D,¢=(F) and D, L((E), (E)¥).
Moreover, by a direct calculation we have

—2q 1/2
10,815 = (pipiogs) 191-wolliee  $ = (B),

for any p=0 and ¢>0 with |y|_¢p.p<co. It is also noted that D, is a deriva-
tion, namely,

In fact, it is known that

(3-3) D,$(x) = lim ¢(x+0z)——¢(x) , xeE* ge ().

The operator defined by
at = D"z’ i< T B

where d,=E* denotes the Dirac function at t=T (see also (H2)), is called Hida’s
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differential operator.

We introduce an operator in .L((E), (E)*) which is expressed in a formal
integral

G8) ks s sty o 000801, B s dsudtyedim,

where k=(E§¢*™)*, The rigorous definition is outlined below, for detailed
proofs see [11]. For ¢, ¢=(E) we put

(355) 7]@5.9’)(81) Sy tl, Tty tm) = <<a->9k1“'a§klatl'"atm¢’ Sb» .

Then 74, becomes a function on T'*™ satisfying

p‘p +m)le2
(3-6) 176,010 = p_palmm)I/Z(_—_Z])ETog—p) 18114l »>0.

In particular, we observe that 74 ,€E2¢*™. Hence, for any rs(E§!+™)*
there exists a continuous linear operator &, ,(k)=.L((E), (E)*) such that

3-7 (Ern®)@, §) =<k, 16,92, @, P E(E).

Moreover, for any p>0 with |k|.,<oo it holds that

(+md/2
) Tkl sl

In view of we also employ a formal integral expression as in (3-4) for
Z; n(k). Such an operator is called an integral kernel operator with kernel
distribution k.

Since [ds, 0:]1=0 for s, t<T, it is natural to consider “partially symmetrized”
kernel distributions. For x=(Eg¢+™)* we define s; ,(k)S(E§H+™)* by

{s1, m(K), §®~--®$z®m®---®vm>
l‘m' 2 Ky §o (@) @50(1)@771-(1)@ ®77‘r(m)>;

rE@'m

3-8  1ELa®gl-, < p7PU'm ”‘Y’Z(W

where &, =+, &, 71, -, nEE. We put
(E®(l+m))sym(l m) — {’CE(E%(Hm))*; Sl.m(":>:’€} .

PROPOSITION 3.1. Let k€(EEH™Y*, Then 5, (k)=5, n(s;, (k). Moreover,
Eo n(0)=0 if and only if si. m(£)=0.

For operators in .L((E), (E)), which is a subclass of .L((E), (E)¥*), we only
mention the following result proved in [11].

PROPOSITION 3.2. Let kS (Eg4*™)*, Then 5, n(k)= L(E), (E))if and only
if kE(EE)QEE™)*.
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Here we note that L(E§™, E@)=(EZ)R(EE™)*, see e.g., [31]. For example,
re(EQE)* defined as in [2-4) belongs to EQE* and the corresponding operator
is the identity in L(E, E).

4. Symbol of an operator on white noise functionals.
First we recall exponential vectors (coherent states). For £é=FE. an ex-
ponential vector ¢ is a function on E* defined by
@ gm= B (xS mexp(x, - 36 ®),  x < B
f =0 ° * n ! 2 2 ’ 2 .
As is easily checked, ¢.=(E) and

-2 I6cls = exp(5 1813),  pER.

We then define the symbol of E=.L((E), (E)*) as a function on E X E. given
by

4-3) EE 9 =(E¢, ¢,), & neEq.

This definition is suggested by Berezin [4] and Krée and Raczka [19]. The
symbol of an integral kernel operator is given in the following

LEMMA 4.1. For r=(E@¢+m™)*,
= .
(4-4) B, n®)E 1) =<k, p¥'RQ8™e® P, & pe Ec.

Proor. The action of &, .(x) on exponential vectors is described explicitly.
Namely, for é=E, it holds that

Ez,m(ﬁ)¢5(x) = néonilc &+l : (,C®m$®m)®5®n>,

where Q. is a contraction of tensor products determined as a unique extension
of

nEHMR@REE™ =<y, £H™®, & n e Ec.
Then [4-4) follows by a simple calculation. (Q.E.D.)
For the uniqueness of the symbol we have the following

LEMMA 4.2. Let a, B=C be non-zero and let 5= L((E), (E)*). If E(aé, Bn)
=0 for all § n<E, then 5=0.

PrOOF. We need only to note that {@,;; §E} spans a dense subspace of
(E) for any non-zero complex number a<C. (Q.E.D.)
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We next prepare the following
LEMMA 4.3. For each E=_L((E), (E)*) there exist C=0 and p=0 such that
1E8¢]-p < Clidll,, ¢ € (E).

PrOOF. Since (E) is a nuclear space, it follows from the kernel theorem
that
LE), (E)*) = (E)QEN*. -

Namely, for a given £ L((E), (E)*) there exists 2(E)Q(E))* such that

4-5) (E9, §) =(2, oQ¢), ¢, P = (E).

On the other hand, it follows from Propositions [.I and that
(SrEHRSrw(E¥)* = Stwerwy(E* X E*) = \J S-p(E*XE¥),

where S_,(E*X E*) is the completion of L*(E*XE*, puXyu; R) with respect to
the norm

121-, = IT(ARQT(A)*R1,, Q& L¥E*XE*, uxXu; R).
Since (E) is simply the complexification of Sy (E*), we have
(EYQE)* = pkz)oS-p(E*XE*)c-

Therefore, for each Q=(E) ® (E))* there exists p=0 such that [2]_,<oco.
With this p=0, 4-5) is estimated as follows:

1(Z¢, o = 142, dRPY| < |21-p18R¢1, = [21l-5 ¢l Pll5 -

Consequently,
1E6]-» < 12]-5ll0ll, S (E), .

which proves the assertion. (Q.E.D.)
The S-transform of @ =(E)* is defined by
SOE) =(P, ¢e), E< Ec.
This definition is equivalent to the original one due to Kuboland Takenaka [20].
LEMMA 4.4. Let O=(E)* and &, E,E;. Then, the function
2> SO(26,+8) = (0D, ¢,4e), 2z2€C,
is an entire holomorphic function on C.

The proof is straightforward, see also [30]. With these results we may
prove important properties of the symbol of an operator f<= . L£((E), (E)*).
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THEOREM 4.5. Let Ec.L((E), (E)*). Then:

(1) For any &, &, 0, n.=Ec, the function z, w—E (28, +E, wn.+n), z, wel,
is an entire holomorphic function on CxC.

(2) There exist constant numbers C=0, K=0 and p=R such that

| (28, wn)| < CexpK(l21*1§15+ wl?lq13)
for all & neE; and z, weC.
Proor. (1) Since the symbol is expressed in terms of S-transform:
E@ n)=SE¢(n) = S(E*$)®, & n€ Ec,

the assertion is an immediate consequence of Lemma 4.4.
(2) In view of we take C=0 and p=0 such that

1Z¢l-, < Clidll,, ¢ (E).
Then, taking into account, we obtain
|£@z&, wl = (¢, Gyl

S 1Eel-plwylly

< Cliuelolunlls
= Cexpy (121181 3+ 1wl I,

as desired. ' (Q.E.D.)

5. A characterization of symbols.

More important is that the converse of is also true. Keeping
some applications in mind, we prove the following

THEOREM 5.1. Assume that a C-valued function © on EXE satisfies the
following two conditions:
(i) for any & &, 9, ).€E, the function s, t— O(sé&+§, tn.+7), s, t=R,
admits an entire holomorphic extension to CXC;
(ii) there exist constant numbers C=0, K=0 and p=R such that

16(2¢, wn)| < CexpK(|z]2& 5+ w]®7]2)

for all & neF and z, w s C, where O(2&, wyn) denotes the entire
holomorphic extension of s, t— O(s§, tn) to CXC.
Then, there exists a unique family of kernel distributions ki n<(E@%™)¥ . m>»
[, m=0,1, 2, ---, such that
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0 n= 3 (Funltnwds 6,), &7k

1, m=0

Moreover, the series

Ep= 3 Eunkng, @< (E),

I, 0
converges in (E)*, E€ L((E), (E)*) and E(&, 7)=0O(, 7) for all & n<E.
PrROOF. We put
6-1 Ve, n=e“70E 9, §&nek.

By assumption (i), for fixed &, n<E the function s, t—¥(sé, t9), s, teR, admits
an entire holomorphic extension which we denote simply by ¥ (2§, wy), z, weC.
In order to obtain the Taylor expansion we introduce differential operators:

DETE, =] Tets ),

DR¥E, ) = i\ FE wyt

n? &N = wn+7).
‘We then put
(6-2) KDy s Py &y, 0, ) = l—,l—D‘” D& DP DR (0, 0)
and

Avn(n, &) = krn(n, -, 9, & -, §).

! times m t1mes

It follows from the differentiability of ¥ that «; , becomes an (/+m)-linear
form on E. The Taylor expansion of ¥'(z§, wy) is thus given by

o0 al+m mel
6-3) U(z¢, wy) = %]: T a1 P (2¢, wy) rewmo UL
= glzoAz,m(n, §z"w'.
While, with the help of the Cauchy integral formula we obtain
_ (. 1y (¢, wn)
(5 4) Al,m(’?, E) - (2”i> S|z|=RIS]WI:R2 Zm+lu}l+l dzdu, Rl) R2 > O.

Since for &, p=E¢ and for z, wel

lzw<§, o1 = [zl1&llw!linlo

< 2(121815+ T 191D

)
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we obtain

2p
(5-5) lexp(—zwe€, 7)| = expE—(121*1€1 3+ 1wl 712).

On the other hand, by assumption (ii)

k G-6) 10(z¢, wy)| = CexpK(|zI®1&l5+|wl?Inl3).
Multiplying and (5-6), we obtain
6-7) [T (2&, wy)| = CexpK'(1z]*1&l 5+ wl?In]5),

where K'=K+p%*"/2. We then estimate (5-4) with the help of [5-7).

(5-8) ALy, &) Zsup{|¥(2, wn)|RI™R3'; [z] = Ry, |w] = Ry}
< CRi™exp(K'|&|RDR, exp(K' 7|3 RE),

where R,, R,>0 are arbitrary. With an elementary fact:

m/
2@a> 2, a>0, m=1,2 -,

H -m 2y —
mR>1(1)'1 R-™exp(aR?) = (———
(5-8) becomes

5.9 Ay ain )] = C( 2eKn;|5l§ )m/2< ZeK’ll viE >l/z

= C(I'm™) 7 *(2e K) ™21 £ b

This is also valid for /=0 or m=0 on the understanding that 0°=1. On the
other hand, the polarization formula yields

9l =1, 1<
(6-10) sup{ k(s om0, &y o0y Edl s
< T Sup (A, O15 171, S, 18, = 1)
:wlv‘—mlsup l,mﬂ;g); 7]1): y | P = .

Comb'ning [5-9), (5-10) and an obvious inequality

nn
n!

IA

e", n=20,1,2, -,

we obtain
In:lp =1,

1
(5-11) Sup{ ‘K(Y]I’ Ty 771: EI) T, Em)l ; .
1§51, =1, 1=7=m

§ C(llmm)—IIZ(ZeIiK/)(Hm)/z .

We then compute |£; n|-cp+1> Dy means of Fourier expansion, see {(1-1).
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oo

l’cl,mlg(p+l) = 2 ‘xl.m(ejl) Ty ejl+m)l22;12(1)+1)_”,2]712i£r+1)
JpnFlym=0

o0
- Jio jzz:.,_ =0 Ih‘[’m(zflpejl’ ) l;lz-)i-mefl+m)l22;12."Z]Tl2+m :
v T lem=

Since |43%¢;],=1, in view of we obtain
0 l+m
Km] 2pen < CHUm™) QKN ™ 5 27%)
=0

o CQ(llm’m>—1<2€352K/)l+’m ,
namely,

(5‘12) |:‘Cz, ml —(p+D < C(llmm)‘1/2(29352K’)<l+m>/2 ,

where [(2-2) is used. We have thus proved that «, ,=(E§"*™)* and hence,
from now on we write

’fl,m(ﬂh Tty 7]l1 Sl: Ty Em) = <’Cl,my 771@"'®7]l®§1®"'®5m>-
It is obvious from that s; n(k1, m)=k, n. It follows from that
<<El,m(xl,m)¢$» ¢77>> = Lki, m, 77®l®§®m>9<5’ = Az‘m(ﬁ, S)@<5' ”,

and therefore,

ibde

(Z ik m)Ps $7) = P 33 Aun(§, 7).

0 { 0

In view of [5-1) and [5-3) for z=w=1 we conclude that

L

i

<<El m(’fl,m)¢5, ¢r7>> = ¢& ﬂ>¢'(§’ 7}) = @(E, 77) .

I, 0

We next prove that 37 =0 &1 n(k;, n)¢ converges in (E)* for any ¢<=(E).
In fact, it follows from that

”El. m(lfl. m)¢“ - (p+q+1)

CBrgs ol mNL p—<27+q+x> +md/2 "

< 0 D (™) <—2(p+(]+1)€ 10gp> !/Cl,ml—(p+q+1)H¢Hp+q+1
=(P+q+1) 52q (+md/2

é p—(p+q+1)(llmm)1/2( —2(‘0p+(]+1>z logp) I’Cl.m]—(p+1)”¢Hp+q+1 .

In view of we obtain

IIEl m(’cl,m>¢”~(p+q+1) < Cp‘(p“Hl) (

K/e252p—(p+1)pq (Lemd/2 ]
‘(P+q+1) logp) ”¢Lp+q+1,

and therefore,

(6-13) _i 120 m(En m)Pll-cprary £ CCL7 T D)D) 100y, @ E (B,

l 0
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where

K/8252p-(p+1)pq )(l+m)/2

=2 ( —(p+g+1)logp

Obviously, C,<c for a large ¢=0 because 0<p<1. It then follows from (5-13)
that

(83)

6= 3 Finlnlp, 9 (E),

L 0

converges in (E).(p+g+1 and € LUE)pigr1, (E)-(p+g+n). In particular, the series
converges in (E)*and £ L£((E), (E)*). It is then obvious that (&, 9)=06(&, )
for all §, p<E. Q.E.D.)

Combining Theorems .5 and 5.1 we obtain a characterization of symbols
which corresponds to an operator version of Potthoff-Streit characterization
theorem for generalized white noise functionals [30].

COROLLARY 5.2. Let @ be a function on EXE with values in C. Then,
there exists a continuous operator Z< L((E), (E)¥) with O&, n)=5(&, 5) for all
& neFE if and only if O satisfies the conditions (i) and (ii) in Theorem 5.1.

6. Fock expansion.
As a remarkable application of we prove

THEOREM 6.1. For any < .L((E), (E)*) there exists a unique family of
kernel distributions ki, n<(E8*™)% 1a, my, [, m=0, 1, 2, ---, such that

(6-1) S¢p= 3 Sualciad, 6B,

l 0

where the right hand side converges in (E)*.

PrROOF. For a given = £((E), (E)*) we put ©=5. Then it follows from
that @ satisfies (i) and (ii) in [Theorem 5.1. Hence there is a
unique family of kernel distributions &, » € (E@“*™) i my [, m=20,1,2, -,
such that

OE M =1(5¢s $) = 3 (Funlkrndfs 6u), & 7€E,

1 0

Moreover, we see from that

=y
‘:’¢—l,

2

El,m(ﬁl,m)sby ¢ = (E)s

0

converges in (E)*, £’ L((E), (E)*) and 5'(§, p)=0(¢, 1) for all § nE. It is
then sufficient to prove that Z’=5. But this is already clear by
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because
EEn=06¢E n=5'¢n1n, §&neEE.
This completes the proof. (Q.E.D))

The unique expression of S L((E), (E)*) given as in [6-1) is called the
Fock expansion of £ and denoted by

=
- —

i

El, m(’fl, m) -

i 0

Since bounded operators on (L?* belong to L{(E), (E)*), we have
COROLLARY 6.2. Every bounded operator E on (L?) admits a Fock expansion.

However, the convergence of the Fock expansion of a bounded operator on
(L? can not be discussed only within the framework of Hilbert space. The
next result also illustrates this remark.

PROPOSITION 6.3. Let ks(E§¢ ™))%, [If B, (k) admits an extension to a
bounded operator on (L?), then s, n(k)=0 or [=m=0. Namely, except scalar
operators no integral kernel operator admits an extension to a bounded operator
on (L?.

Proor. The action of 5, ,(x) on exponential vectors ¢;, £ E, is described
during the proof of Lemma 4.1:

El, m(ﬁ;)gﬁg(x) — n§0%< s x@m+D : (ﬁ®m5®m)®§®n> .

Hence,
- 1
(62 15 awgels = B CE @ ngom@een;
© |
= 1e@um 13 5 DO e,

On the other hand, one may easily see that

=) !
6-3) Pty = et 3 (00!

n=o nln!

ro. [ 2 )
= 2;!( .)tl".
=7\

With this notation, becomes
(6-4) [0 n()P:llf = | £R2E°™ |3 P(1615) exp(1£13).

We now assume that &, (k) admits an extension to a bounded operator on
(L?. Then, there exists some C=0 such that

(6-5) 18 m()Pells = Cligelli = Cexp(1613), &€ Ec.
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Combining [6-4) and [6-5), we obtain

(6-6) [EQnEE™5P(1E15) £ C, &€ E..
Suppose first that /0. Since lim;_ .. Py(f)=oc0 by (6-3), is true only when
EQn&®™ = 0, §c Ec.

Then, for any &, neE,,
= Q%™ 7% =<k, 9® QE®™) = {51, m(K), P REE™).

This implies that s; »(k)=0, and therefore by [Proposition 3.1 we obtain & (k)
=0,
In order to discuss the case of m#0 we first note that

El,m(lc)* = g IC(SI; Tty Sty tl; Ty tm)a;k],“' ;kmasl'”asldsl.“dsldtl"'dtm .

Tl+m

Then, carrying out a similar argument for Z, ,(k)* instead, we conclude that
E. n(k)*=0, that is, &, »(k)=0. Consequently, Z; ,(k)=0 unless [=m=0.

(Q.E.D.)

7. Examples of Fock expansion.
Let E=L((E), (E)*) be given and let E=37,,-0 & n(ki ») be its Fock
expansion. It then follows from that

e CPEE Y=

ibde

kum, NB'REE™, &, ne Ec.

0

Hence, to find the kernel distributions of Z we need only to compute the Taylor
expansion of e““f'w’/)ﬁ(zf, wn).

Below we assemble a few examples of integral kernel operators and Fock
expansions. The proofs are omitted since the computations are carried out
easily in the above mentioned manner.

ExAaMPLE 7.1 (differential operators and translations). For y=FE* a differ-
ential operator D, is defined by [3-2) or equivalently by [(3-3). Then

Dy:50,1(3’), D’{/‘:El,o(J’)-
In particular, for t=T it holds that
ac = Eo, 1<5t), a;k = 51,0(5t> .

As is easily expected, D, is related to a translation operator. For yeFE* we
define
T,p(x)=¢(x+y), =x€E* Je(E).

It then holds that
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© 1 - o 1
= B 7500 = —D"
n=0 7’1 0
This illustrates that the Fock expansion includes Taylor expansion.

EXAMPLE 7.2 (multiplication operators). It is known (e.g., [20]) that the
pointwise multiplication induces a continuous bilinear map from (E)X(E) into
(E). Hence for ®=(E)* we may define a product ¢@=0¢<=(E)* for ¢=(E)
by the formula:

(D¢, ) = (D, ¢¢), ¢ <=(E).

Moreover, @<= (E)* is regarded as continuous linear operator from (E) into (E)*,
ie., O=L((E), (E)*). According to [2-9), we write
D(x) = i Coox®ry o>,
n=0

Then, as a multiplication operator,

-1 o= 3 (""")z ..

. m=

Here are special cases. For t<T put x(¢)=<:x%7: d,>, which may be
considered as coordinate system of white noise space. It then follows from

that
x(t) = &1,00)+5,,.0,) = 0F+0;.

It is noteworthy that {: x®%:, z> is a white noise analogue of the usual Eucli-
dean norm, for the definition of 7 see [2-4). Regarded as a multiplication operator,

(7-2) (i x®2, 1) = Ez 0(7)+2u1 1(T)+‘-fo 7).

ExaMpPLE 7.3 (Laplacians). The integral kernel operators with z being the
kernel distribution are of great importance. We put

do= 5y o0) = ST 7(s, D0dudsdt,

N=E, (t)= ST 7(s, Dota.dsdt.

These are respectively called the Gross Laplacian and the number operator. In
fact, by [Proposition 3.2 both are continuous operators from (FE) into itself.
Obviously, N* is an extension of N and 4% is given as

48 = E, (7).
With these notations we obtain an alternative expression for [7-2):

< .X@Z T> = A +2N+AG}
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which is discussed in line with a systematic study of rotation-invariant operators,

see and [28].

EXAMPLE 7.4 (projection onto the n-th chaos). Let (L*)=3%_,P.4, be the
Wiener-It6 decomposition (see also [Proposition 2.1) and let z, be the projection
onto the n-th chaos 4,. It is easy to see that x,e=.L((E), (E)) if restricted to
(E). Then,

. o (__l)l—n - .
= By o)
where
(7—3) L= . it oei,®-..®€il®éil®...@eil = (E®Zl)*.
i1 =

It is also interesting to note that
5..(4) = N(N=1)--«(N—{+1).

ExaMPLE 7.5 (Fourier-Wiener transform). Let {exp({0N)}ser be the one-
parameter group of Fourier-Wiener transform, namely, it is a one-parameter
group of unitary operators on (L?) with the number operator N being the in-
finitesimal generator. Obviously, exp(GON)= L((E), (E)). We then obtain

0 (eiﬂ__l)z

exp((dN) = EO T F1.(4),

where 4, is defined as in [(7-3).

EXAMPLE 7.6 (Weyl form of canonical commutation relation). We consider
representations of the additive group E. For é=E and ¢=(E) put

Pig(x) = gx-+8) exp(—5 (x, H— T ©),
Quix) = e 0(x).

In fact, P; and Q. belong to L((E), (E)) and are extended to unitary operators
on (L?. It is straightforward to see that

P, = P:Py, Qesy = Q:Q, P:Q, = e"“7Q, P,

for § n=E. The Fock expansions of P; and Q. are given as

—¢ hnd (_l)l 1 L+m -
Pe= et 2 Tt (3)  Eua@™),
£ 502 < Zl+m =1¢
— =& 52 = a+m)
Qe=e z.;ﬂ A T n(€ )

Moreover,
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_d —LYp._px
pe= g P, = 7DD,
. d . "
q,sz do Qﬁf 0=0——Z(DE+D$).

These operators belong to L£((E), (E)) again and satisfy the canonical com-
mutation relation.

ExXAMPLE 7.7 (Kuo’s Fourier transform). This is a white noise analogue
of a usual Fourier transform on R" introduced by Kuo. Here we omit the
explicit definition for we have not prepared necessary notations. Instead we
introduce its characteristic properties, for further details see [10].

First note that D. and ¢. are continuously extended to operators on (E)*
whenever £&E. The extensions are denoted by D. and ., respectively. Then,
the Fourier transform F=.L{(E)*, (E)*) is uniquely characterized up to constant
factor by the following properties :

(7-4) §D: =45, Si.=—-DF, EcE.

The constant factor is determined, for example, by the condition $l=4d,. A
formally written expression for would be

F0, = ix(OF, Tx ) = 10.F, teT.

Namely, § possesses typical properties of the finite dimensional Fourier transform.

Moreover, the Fourier transform is imbedded in a one-parameter group of
transformations called Fourier-Mehler transforms {&s}ocr< L(E)*, (E)*) in such
a way that §_,,.,=%. Here we only record their Fock expansion regarded as
an operator in L{(E), (E)*):

Fo = i L

Lm=0( 'm'

o .
(%e‘” Sin0> (eiﬁ_l)mEﬂ-rm,m(T@l@lm)y

where A, is defined as in [(7-3).

ExaMpPLE 7.8 (integral-sum kernel operators). This example suggests a
white noise approach to quantum probability theory. In order to describe in-
tegral-sum kernel operators we need another realization of Fock space. Let
2, be the collection of subsets ¢ T consisting of 7n points, 0<n<o. Since
the measure v is smooth by assumption, we may identify £, with the factor
space T"/S, up to v-null sets. Let A, be the measure on £, such that n!A,
is the image measure of yv™ under the canonical map T*—T"/S,. We then put

.Q:nL_pon, A= 2 An.

n=0
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Note that the correspondence f«¢ given by

e 1

(x) = PIRE X" fad, Salty, o, t) = ‘n—,f({l‘l, =y tal),
yields a Hilbert space isomorphism L%, 1; C)=(L?.
Maassen introduced an operator of the form:

Q2

(7-5) Ef(o) =S I Ha of @Uadide), o Q.

Under some regularity conditions, £ becomes an operator on L*, ) with
dense domain. Then the Fock expansion =37 -0 &1, n(k1 ») is given with the
kernel distributions :

1
Icl.’m.(sly oty Sp tly R tm) = 7—‘18({81, tty sl}7 {tly Ty tm})-

Im!
But many important operators are not expressible in the form [7=5). To cover
a wider class of operators including the number operator Meyer generalized
and introduced three-argument integral-sum kernel operators:

(7-6) Ef(o)r-g o(ay, as, o) f(@Ua,Uai(de), o2,

Qajasgvag=c

where p is a function on 2X2x 2 with some regularity conditions. The Fock
expansion of the operator (7-6) is given with the kernel distributions:

Frm(ss s S0ty oy T) = o ’%”jx(l.)(m.)

{tm! j=o 7/\j

Xp({sj+1) " SL}, {SI) Tty Sj}, {t]'+17 Tty tm})r(sh tl) T(sj) tj>'

We thus easily understand that the number operator is expressible by means
of Meyer’s operators. A detailed study of such integral-sum kernel operators
as in and (7-6) is made by Lindsay together with further generaliza-
tion.
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