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$G$-s-cobordant manifolds are not necessarily
$G$-homeomorphic for arbitrary compact

Lie groups $G$

By Katsuo KAWAKUBO
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\S 1. Introduction.

The classical $h$-cobordism theorem and the $s$-cobordism theorem have played
an important role in numerous aspects of geometric topology, including the
classification of manifolds by surgery [35], [22], [3], [28], [21], [36], [34],

[43], [5], [9], [23], [42].
In [1], we discussed equivariant versions of these theorems.
Let $G$ be a comPact Lie grouP and $X$ a finite G-CW complex. S. Illman

[14] defined the equivariant Whitehead group $Wh_{G}(X)$ of $X$ and the equivariant
Whitehead torsion $T_{G}(f)$ for a $G$-homotopy equivalence $f:Xarrow Y$ between finite
G-CW-complexes $X,$ $Y$ as an element of $Wh_{G}(X)$ . When $\tau_{G}(f)=0,$ $f$ is called
a simple G-homotopy equivalence.

Let $W$ be a compact smooth $G$-manifold whose boundary $\partial W$ is the disjoint
union XIIY of two closed $G$-invariant submanifolds. If the inclusion maps

$i_{X}$ : $Xarrow W$ and $i_{Y}$ : $Yarrow W$

are $G$-homotopy equivalences, then the triad $(W;X, Y)$ is called a $G$-h-
cobordism.

When $G$ is a finite group, $W$ admits a unique smooth $G$-triangulation [15].
Accordingly the equivariant Whitehead torsion $r_{G}(i_{X})$ is well-defined. On the
other hand the investigation of T. Matumoto and M. Shiota [26] enables us to
define the equivariant Whitehead torsion $\tau_{G}(i_{X})$ even when $G$ is a compact Lie
group. Notice that $\tau_{G}(i_{X})$ is often written as $\tau_{G}(W, X)$ .

A G-h-cobordism $(W;X, Y)$ is called a G-s-cobordism when $\tau_{G}(i_{X})$ vanishes.
The two $G$-manifolds $X$ and $Y$ are then called G-s-cobordant.

We say that the G-s-cobordism theorem holds for a G-s-cobordism $W;X,$ $Y\rangle$

if $W$ is G-diffeomorphic to the product. $X\cross I$ rel $X$ where $I$ is the interval
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$[0,1]$ with trivial G-action.
Let $H,$ $K$ be isotropy groups appearing in $W$ and

$W^{H}= \prod_{\lambda}W_{\lambda}^{H}$ , $W^{K}=IIW_{\mu}^{K}\mu$

be the decompositions to connected components of respective fixed point sets.
We now consider two conditions.

$(*1)$ (Gap hypothesis) If $W_{p\infty}^{K\supset}W_{\lambda}^{H}$ , then $\dim W_{p}^{K}-\dim W_{\lambda}^{H}\geqq\dim G+3$ for
any pair of components $W_{\mu}^{K}$ and $W_{\lambda}^{H}$ .

$(*2)$ If $H$ is a maximal isotropy group, then $\dim W_{\lambda}^{H}$ ldim $G+6$ for any
components $W_{\lambda}^{H}$.

Then we have

THEOREM 1.1 [1]. Let $G$ be a compact Lie group and $(W;X, Y)$ a $G$-s-
cobordism. If $W$ satisfies the conditions $(*1)$ and $(*2)$ above, then we have a G-
diffeomorphism

$W\cong X\cross I$ $relX$.
In particular, $X$ is G-diffeomorphic to Y.

On the other hand, we have shown in [20] that G-s-cobordism theorems
do not hold in general for many comPact Lie groups $G$ if the condition $(*1)$ is
not satisfied. The G-s-cobordisms $(W;X, Y)$ provided there as counterexamples
are such that $X$ is $G$-diffeomorphic to $Y$ , but $W$ is not $G$-homeomorphic to
$X\cross I$.

In the present paper, we show that G-s-cobordant manifolds are not neces-
sarily $G$-homeomorphic. Namely we have

THEOREM 1.2. Let $G$ be an arbitrary non-trivial comPact Lie group. Then
there exists a G-s-cobordism $(W;X, Y)$ such that $X$ is not G-homeomorphic to Y.
In Particular, $W$ is not G-homeomorphic to $X\cross I$.

REMARK 1.3. Similar results related with Theorem 1.1 were also obtained
in [7], [30], [6], [2], [39], [38], [19].

REMARK 1.4. In the non-equivariant case, Milnor has given examples of
$h$-cobordant manifolds which are not diffeomorphic [29]. Moreover F. T.
Farrell and W. C. Hsiang have shown that $h$-cobordant manifolds are not neces-
sarily homeomorphic [10]. It is needless to say that these $h$-cobordant mani-
folds are not s-cobordant.

REMARK 1.5. In the equivariant case, W. Browder and F. Quinn have
shown that there is a $Z_{8^{-}}h$-cobordism $(W;S_{1}^{n}, S_{2}^{n})$ such that $W$ is not $Z_{a^{-}}$

homeomorphic to $S_{1}^{n}\cross I[7]$ . But $S_{1}^{n}$ and se are $Z_{2}$-homeomorphic in this case.
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REMARK 1.6. By combining the results of S. Illman [15], T. Matumoto
[25], I. M. James and G. B. Segal [17], C. H. Giffen [11] and D. W. Sumners
[41], we get a $Z_{p^{-}}h$-cobordism $(W_{1} ; X_{1}, Y_{1})$ such that $X_{1}$ and $Y_{1}$ are not $Z_{p^{-}}$

homeomorphic (see \S 4). Unfortunately, however, we do not know whether the
$Z_{p^{-}}h$-cobordism is a $Z_{p^{-}}s$-cobordism or not. Therefore the consideration in \S 4
is indispensable even for $G=Z_{p}$ .

The present investigation was carried out while the author was visiting
the University of Helsinki. The author would like to express his gratitude to
Professor S. Illman for stimulating conversations and to the Academy of Fin-
land for inviting him as a guest professor. Thanks are also due to Professors
T. Matumoto and M. Shiota for enlightening him on G-CW complex structures
on G-manifolds.

\S 2. Induced transformation groups.

We first introduce basic notations. Let $G$ be a compact Lie group. When-
ever $H$ is a closed subgroup of $G,$ $(H)$ denotes the conjugacy class of $H$ in $G$ .
Let $X$ be a $G$-space. We shall denote the isotropy group at $x\in X$ by $G_{x}$ ,
namely $G_{x}=\{g\in G|gx=x\}$ , and the $G$ orbit of $x$ by $G(x)$ , namely $G(x)=$

$\{gx\in X|g\in G\}$ . A $G$-space $X$ is called a semi-free $G$-space when $G_{x}$ is either
$G$ or the unit group $\{e\}$ for every $x\in X$ . The orbit space of a $G$-space $X$ is
denoted by $X/G$ . For a subgroup $H$ of $G$ , we shall put $X^{H}=\{x\in X|G_{x}\supset H\}$ ,
$X(H)=\{x\in X|(G_{x})=(H)\}$ .

In the following, we introduce the notion of induced transformation groups.
Let $G$ be a compact Lie group and $H$ a closed subgroup of $G$ . Let $X$ be

an $H$-space. Consider the space $G\cross X$ and define an $H$-action $\phi:H\cross(G\cross X)arrow$

$G\cross X$ by

$\phi(h, (g, x))=(gh^{-1}, hx)$ for $h\in H,$ $g\in G,$ $x\in X$ .
We define $G\cross_{H}X$ to be the orbit space of $G\cross X$ under this $H$-action. Let
$\pi:G\cross Xarrow G\cross HX$ be the natural projection and denote $\pi(g, x)=[g, x]$ . Now
define a $G$-action $\phi:GG\cross HXarrow G\cross H$ by $\phi(g’, [g, x])=[g’g, x]$ .

The space $G\cross HX$ together with this $G$-action is called an induced trans-
formation grouP.

LEMMA 2.1. For a closed subgroup $K$ of $H$, we have

$(G \cross X)(K)=G\cross\{,\bigcup_{K’HH,(\leqq H}X(K’)\}$

where the union is taken over all the closed subgroups $K’$ of $H$ such that $K’$ is
conjugate to $K$ in $G$ .
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PROOF. Lemma 2.1 follows immediately from the following relation;

$G_{C.xJ}=gH_{x}g^{-1}$ .
PROPOSITION 2.2. If $X$ is an H-space, then there is a canonical homeomor-

Phism
$f:(G\cross X)/GHarrow X/H$

with $f((c\cross\pi^{X)(H)}/G)=X^{H}$.
PROOF. Set $f(G([g, x]))=H(x)$ . Then it is easy to see that $f$ is a well-

defined continuous map. Conversely define a map

$f’$ : $X/Harrow(G\cross X)/GH$

by setting
$f’(H(x))=G([e, x])$ .

Then one verifies easily that $f’$ is also a well-defined continuous map and that

$f\cdot f’=f’\cdot f=$ identity.

Hence both $f$ and $f’$ are homeomorphisms.
In view of Lemma 2.1, we have

$(G \cross X)(H)=G\cross\{,\bigcup_{K’HH,(K)\leqq H}X(K’)\}$
.

Since there exists an element $g$ of $G$ such that $gK’g^{-1}=H$, we have

$g^{-1}Hg=K’\subset H$ .
Then it is shown in [4] that $g$ belongs to the normalizer $N(H)$ of $H$ in $G$ .
Hence $K’$ exactly coincides with $H$. Thus we have

$K’ \leqq H\bigcup_{(K)}X(K’)=X(H)=X^{H}$
.

It follows that

$(G\cross X)(H)/GH=(G\cross X^{H})/GH$

Obviously we have
$f((G\cross X^{H})/G)=X^{H}H$

This makes the proof of Proposition 2.2 complete.
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\S 3. Equivariant Whitehead torsions of induced transformation groups.

Denote by $D$“ the $n$ -dimensional open disk with trivial $H$-action. Each H-
cell of an H-CW complex has the form $H/K\cross D^{n}$ where $K$ is a closed sub-
group of $H$. Making use of the canonical G-homeomorphism

$G\cross(H/K\cross D^{n})H=G/K\cross D^{n}$ ,

we have

LEMMA 3.1 [14]. If $X$ is a finite H-CW complex, then $G\cross XH$ is a finite
G-CW complex.

Each element of $Wh_{H}(X)$ is represented by a finite H-CW pair (V, $X$) such
that $X$ is an $H$-deformation retract of $V$ . The element represented by such a
pair (V, $X$ ) is denoted by $\tau_{H}(V, X)$ and is called the equivariant Whitehead
torsion of (V, $X$). Then it is easy to see that $c\cross HX$ is a G-deformation
retract of $G\cross HV$ . Hence the G-CW pair $(G\cross HV, G\cross HX)$ represents an ele-
ment of $Wh_{g}(G\cross HX)$ and we have

LEMMA 3.2. [14]. The assignment $\tau_{H}(V, XGV, G\cross HX)$ gives a
well-defined homomorphism

$i_{*}:$
$Wh_{H}(X)arrow Wh_{G}(G\cross X)H$

Suppose hereafter that $H$ is a fmite subgroup of a compact Lie group $G$ .
Let $(W;X, Y)$ be a smooth H-h-cobordi$sm$ . Namely $W$ is a compact H-

manifold with boundary $\partial W=X$IIY (disjoint union) and the inclusions

$i_{X}$ : $Xarrow W$ and $i_{Y}$ : $Yarrow W$

are $H$-homotopy equivalences.
According to [15], $W$ and $X$ admit unique smooth $H$-triangulations and

hence the equivariant Whitehead torsion $\tau_{H}(W, X)$ is well-defined. Consider
the induced transformation groups $G\cross HW$ and $G\cross HX$. Then it follows from
Lemma 3.1 that $G\cross HW$ and $G\cross HX$ have the induced G-CW complex structures.
Hence we have a homomorphism

$i_{*}:$
$Wh_{H}(X)arrow Wh_{G}(G\cross X)H$

by Lemma 3.2.
On the other hand, $G\cross rX$ ha $s$ the induced smooth $G$-manifold structure as

follows. Since the map
$\phi:H\cross(G\cross X)arrow G\cross X$
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defined by $\phi(h, (g, x))=(gh^{-1}, hx)$ for $h\in H,$ $g\in G,$ $x\in X$ gives a smooth free
$H$-action, the orbit space $G\cross_{H}X$ of $G\cross X$ under this action is naturally given
a smooth structure so that the $G$-action on $G\cross_{H}X$ is smooth. Similar for
$G\cross HW$ . Hence the equivariant Whitehead torsion $\tau_{G}(G\cross_{H}W, G\cross_{H}X)_{MS}$ in the
sense of Matumoto and Shiota [26] is defined.

We now claim the following

LEMMA 3.3. The G-CW complex structure in Lemma 3.1 coincides with that
of Matumoto and Shiota, and we have

$i_{*}\tau_{H}(W, X)=\tau_{G}(G\cross WHG\cross X)_{MS}H$

PROOF. In the following, the reader is referred to [12], [13], [26], [27],
[32], [33]. T. Matumoto and M. Shiota defined the equivariant Whitehead
torsion $\tau_{G}(c_{\cross H}W, G\cross_{H}X)_{MS}$ by using a subanalytic triangulations of the orbit
spaces $(G\cross HW)/G$ and $(G\cross_{H}X)/G$ . Notice that the orbit space $X/H$ is endowed
with a canonical triangulation [15]. Concerning the induced G-CW complex
structure on $G\cross HX$, the orbit space $(c_{\cross H}x)/G$ is endowed with a canonical
triangulation and we have a canonical isomorphism of simplicial complexes:

$x/H\cong(G\cross X)/GH$

Hereafter we identify $X/H$ with $(G\cross_{H}X)/G$ by this canonical isomorphism.
Recall that every Lie group $G$ has a unique real analytic structure. More-

over every smooth $G$-manifold $X$ is equivariantly diffeomorphic to a real analytic
$G$-manifold. When both $G$ and $X$ are compact, such a real analytic G-manifold
structure is unique.

According to [26], the smooth $G$-manifold $G\cross_{H}X$ admits a G-CW complex
structure which induces a subanalytic triangulation on the orbit space
$(G\cross HX)/G$ .

Consider the following commutative diagram

$G\cross XX\downarrow\pi_{1}\downarrow\pi_{s}\underline{\pi_{2}}$

$G\cross Xarrow H\pi_{4}(G\cross X)/G=X/HH$

where $\pi_{2}$ is the projection to the second factor and the other $\pi_{i}$ are orbit maps.
Since Zl: $G\cross Xarrow c_{\cross H}X$ is a finite covering, there is a local analytic sec-

tion for the projection $\pi_{1}$ . Obviously Z2 is an analytic map. Moreover it is
easy to see that the orbit space $X/H$ is a subanalytic set and the projection
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$\pi_{3}$ : $Xarrow X/H$ is a subanalytic map.
Putting all this together, we have that $\pi_{4}$ is locally a composite of two

analytic maps and a subanalytic map. Notice that a map $f:Aarrow B$ between
compact subanalytic sets $A,$ $B$ is subanalytic if $f$ is locally subanalytic.

Since all the spaces in the diagram above are compact, we can conclude
that the map Z4 is subanalytic.

Namely the triangulation of the orbit space $(G\cross HX)/G$ is nothing but the
subanalytic triangulation of [26].

Thus we have shown that the induced G-CW complex structure on $G\cross_{H}X$

gives the G-CW complex structure in the sense of [26].

Similar for $G\cross HW$ and the induced G-CW pair $(G\cross HW, G\cross_{H}X)$ represents
the equivariant Whitehead torsion $\tau_{G}(G\cross HW, G\cross HX)_{MS}$ in the sense of Matu-
moto and Shiota [26].

This makes the proof of Lemma 3.3 complete.

COROLLARY 3.4. If $\tau_{H}(W, X)=0$ , then we have $\tau_{G}(c_{\cross H}W, G\cross_{H}X)_{MS}=0$ .
PROOF. This is an immediate consequence of Lemmas 3.2 and 3.3.

\S 4. Construction of counterexamples.

We start by recalling a theorem of Sumners. Let $S$“ and $B^{n}$ denote the
$n$ -sphere and the $n$ -ball respectively. For a ball pair $(B+\S, kB"+1)$ , we denote
by $\partial(B"+\S kB^{n+1})$ the boundary sphere pair. Denote by $Z_{P}$ the cyclic group of
order $p$ . A manifold pair $(M, N)$ is said to admit a $Z_{p}$-action if there exists
a semi-free $Z_{p}$-action on $M$ such that the fixed point set is $N$.

THEOREM OF SUMNERS [41]. FOr each pair $(n, p)$ with $n\geqq 2$ and $p\geqq 2$,
there are infinitely many knots $(s+tkS^{n})$ and ball pairs $(B^{n+s}, kB"+1)$ satisfying
the following conditions:

(i) $(s+2kS^{n})=\partial(B^{n+s}, kB^{n+1})$

(ii) $(B^{n+s}, kB^{n+1})$ admit $Z_{p}$-actions.

Let $(s+gkS^{n})=\partial(B"+skB^{n+1})$ be one of the non-trivial knots in Theorem
of Sumners (see also [11], [8]). Choose an arbitrary point $x$ from the interior
of $kB"+1$ Let $D(x)$ be a $Z_{p}$-invariant closed tubular neighbourhood of $x$ in
$B^{n+s}$ satisfying

$D(x)\subset IntB"+\S$

where Int $B^{n+\theta}$ denotes the interior of $B^{n+s}$ . Then we put

$W_{1}=B^{n+9}$–Int $D(x)$ , $X_{1}=\partial B^{n+S}=S"+$ $Y_{1}=\partial D(x)$

where $\partial B+\S$ and $\partial D(x)$ denote the boundaries of $B^{n+s}$ and $D(x)$ respectively.
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It follows from the uniqueness of tubular neighbourhoods that $W_{1}$ is diffeo-
morphic to $S^{n+g}\cross I$ and the fixed point set $W_{1}^{z_{P}}$ is diffeomorphic to $X_{1}^{z_{P}}\cross I=$

$S^{n}\cross I$. Hence the following inclusion maps

$X_{1}arrow W_{1}$ , $Y_{1}arrow W_{1}$ , $X_{1}^{z_{P}}arrow W_{1}^{z_{P}}$ , $Y_{1}^{z_{P}}arrow W_{1}^{z_{P}}$

are homotopy equivalences. Since $W_{1},$ $X_{1}$ and $Y_{1}$ have $Z_{p}$-triangulations [15],
$X_{1}$ and $Y_{1}$ are $Z_{p}$-deformation retracts of $W_{1}$ by [25] and [17]. Namely the
triad $(W_{1} ; X_{1}, Y_{1})$ is a $Z_{p^{-}}h$-cobordism.

Next we consider the following triad

$(W_{ai}X_{g}, Y_{2})=(W_{1} ; X_{1}, Y_{1})\cross S^{s\iota+1}=(W_{1}\cross S^{g\iota+1} ; X_{1}\cross S^{2i+1}, Y_{1}\cross S^{t\iota+1})$

where $S^{8l+1}$ is the $(2k+1)$-sphere with trivial $Z_{p}$-action.
Let $G$ be an arbitrary compact Lie group including $Z_{p}$ as a subgroup.

Finally we consider the following triad consisting of induced transformation
grouPs

$(W;X, Y)=G\cross(W_{2} ; X_{f}, Y_{g})=(G\cross W_{8}$ ;$G\cross X_{f}z_{p}z_{p}z_{p}c_{Z_{p}^{\cross Y_{2})}}$ .

Then we have

THEOREM 4.1. The triad $(W;X, Y)$ is a G-s-cobordism such that $X$ is not
G-homeomorphic to Y.

PROOF. It follows from the Product formula for equivariant Whitehead
torsion [16] that the inclusion map $X,arrow W$, is a simple $Z_{p}$-homotopy equivalence.
In another word, the triad ($W_{1}$ ; $X_{1}$, Y2) is a $Z_{p^{-}}s$-cobordism. By virtue of
Corollary 3.4, it follows that the triad $(W;X, Y)$ is a G-s-cobordism.

In the following we shall show that $X$ is not $G$ -homeomorphic to Y. To
see this, we suppose tentatively that there exists a $G$-homeomorphism $f:Xarrow Y$ .
Since $f$ is a $G$-homeomorphism, $f$ induces a homeomorphism

$\overline{f}:X_{g}/Z_{p}arrow Y_{g}/Z_{p}$

with
$\overline{f}(X_{1}^{z_{p}})=Y_{g}^{z_{p}}$

by Proposition 2.2. Consequently, we have a homeomorphism
$\overline{f}_{0}$ : $X_{t}/Z_{p}-X_{l}^{z_{P}}arrow Y_{g}/Z_{p}-Y_{z^{Z_{p}}}$ .

Since $Z_{p}$ acts trivially on $S^{t\iota+1}$ , there are canonical homeomorphisms
$h_{1}$ : $X_{1}/Z_{p}-X_{1}^{z_{P}}arrow(x_{1}/Z_{p}-X_{1}^{z_{p}})\cross S^{3k+1}$

$h_{g}$ : $Y_{i}/Z_{p}-Y_{l}^{z_{P}}arrow(Y_{1}/Z_{p}-Y_{\iota^{Z_{p}}})\cross S^{3i+1}$ .
Thus we get a homeomorphism
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$\varphi=h_{g}\cdot\overline{f}_{0}\cdot h_{1^{-1}}$ : $(X_{1}/Z_{p}-X_{1}^{z_{p}})\cross S^{8l+1}arrow(Y_{1}/Z_{p}-Y_{1}^{z_{p}})\cross S^{tl+1}$ .
AS a consequence, $\varphi$ induces an isomorphism

$\varphi_{*}:$ $\pi_{i}(X_{1}/Z_{p}-X_{1}^{z_{P}})\oplus\pi_{i}(S^{l+1})arrow\pi_{i}(Y_{1}/Z_{p}-Y_{1}^{z_{p}})\oplus\pi_{i}(S^{k+1})$

of homotopy groups. Since the $Z_{p}$-action on $Y_{1}$ is linear, one verifies easily
that $Y_{1}/Z_{p}-Y_{1}^{z_{p}}$ is homotopy equivalent to the circle $S^{1}$ .

We now consider two cases.
In case $k=0$ : When $i=1$ , the isomorphism $\varphi*above$ has the form

$\varphi_{*}:$ $\pi_{1}(X_{1}/Z_{p}-X_{1}^{z_{p}})\oplus Zarrow Z\oplus Z$

where $Z$ denotes the group of integers. It follows from the fundamental
theorem of abelian groups that $\pi_{1}(X_{1}/Z_{p}-X_{1}^{z_{p)}}$ is isomorphic to $Z$ . When
$i\geqq 2$ , we have $\pi(Y_{1}/Z_{p}-Y_{1}^{z_{P}})\cong\pi_{i}(S^{1})\cong 0$ . Therefore we have $\pi_{i}(X_{1}/Z_{p}-X_{1}^{z_{P)}}$

$\cong 0$ for $i\geqq 2$ . Note that $Z_{p}$ acts freely and smoothly on $X_{1}-X_{1}^{z_{p}}$ . Hence we
have the principal fiber bundle:

$Z_{p}arrow X_{1}-X_{1}^{z_{p}}arrow X_{1}/Z_{p}-X_{1}^{z_{p}}$ ,

which yields the following homotopy exact sequence

$...arrow\pi_{i}(Z_{p})arrow\pi_{i}(X_{1}-X_{1}^{z_{p}})arrow\pi_{i}(X_{1}/Z_{p}-X_{1}^{z_{P)}}arrow\cdots$ .
AS a consequence, we have isomorphisms

$\pi_{i}(X_{1}-X_{1}^{z_{p)\cong}}\{$

$Z$ for $i=1$

$0$ for $i\geqq 2$ .
Obviously $X_{1}-X_{1}^{z_{P}}$ has the homotopy type of a finite CW complex. Thus we
can conclude that $X_{1}-X_{1}^{z_{P}}$ is homotopy equivalent to the circle $S^{1}$ by the
theorem of J. H. C. Whitehead [44]. But this contradicts the choice of the knot
$(X_{1}, X_{1}^{z_{p}})=(S^{n+}, kS")$ [41] (see also [40], [24], [37]).

In case $k\geqq 1$ : When $i=1$ , the isomorphism $\varphi*above$ has the form

$\varphi_{*}:$ $\pi_{1}(X_{1}/Z_{p}-X_{1}^{z_{p)}}arrow\pi_{1}(Y_{1}/Z_{p}-Y_{1}^{z_{p)}}\cong Z$ .
Since $\pi_{i}(Y_{1}/Z_{p}-Y_{\iota^{z_{p}}})\cong\pi_{i}(S^{1})\cong 0$ for $i\geqq 2$ , we have an isomorphism

$\varphi_{*}:$
$\pi_{i}(X_{1}/Z_{p}-X_{1}^{z_{p}})\oplus\pi_{\ell}(S^{2l+1})arrow\pi_{i}(S^{8i\star 1})$ for $i\geqq 2$ .

It] follows from Serre [31] that $\pi_{i}(S^{g\iota+1})$ is finitely generated. Therefore by
the isomorphism $\varphi*above\pi(X_{1}/Z_{p}-X_{1}^{z_{P)}}$ is a subgroup of a finitely generated
abelian group. It is well-known that a subgroup of a finitely generated abelian
group is also a finitely generated abelian group. Hence we can apply the
fundamental theorem of abelian groups and conclude that
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$\pi_{1}(X_{1}/Z_{p}-X_{1}^{z_{p)}}\cong 0$ for $i\geqq 2$ .
By making use of the homotopy exact sequence above, we have again isomor-
phisms

$\pi_{i}(X_{1}-X_{1}^{z_{p}})\cong\{$

$Z$ for $i=1$

$0$ for $i\geqq 2$ .
Thus we can conclude that $X_{1}-X_{1}^{z_{P}}$ is homotopy equivalent to the circle $S^{1}$ in
this case too. But this contradicts also the choice of the knot $(X_{1}, X_{1}^{z_{p}})=$

$(S^{n+2}, kS^{n})[41]$ .
This makes the proof of Theorem 4.1 complete.

PROOF OF THEOREM 1.2. Let $G$ be an arbitrary non-trivial compact Lie
group. When $G$ is of positive dimension, there is a maximal torus $T^{i}$ of posi-
tive dimension. Hence an arbitrary cyclic group $Z_{p}$ is a subgroup of $G$ .
When $G$ is a finite group, there is a cyclic subgroup $Z_{p}$ of $G$ with $p\geqq 2$ . Thus
for an arbitrary non-trivial compact Lie group $G$ , there is a cyclic subgroup $Z_{p}$

of $G$ with $p\geqq 2$ . Therefore Theorem 4.1 yields Theorem 1.2.

\S 5. Concluding remarks.

Stable equivalence of $G$-manifolds is discussed in [18], [1]. If we stabilize
a G-s-cobordism with respect to spheres or disks of suitable G-representation
spaces, then the conditions $(*1)$ and $(*2)$ are automatically satisfied and we have
a stable G-s-cobordism theorem.

On the other hand, it follows from the product formula for equivariant
Whitehead torsion [16] that any G-h-cobordism can be altered into a $G$-s-
cobordism by multiplying it by the unit sphere $S(V)$ of an arbitrary unitary
complex representation space $V$ of $G$ in the case where $G$ is finite. It turns
out that if we make use of the unit sphere $S(V)$ of a suitable unitary repre-
sentation space $V$ of $Z_{p}$ instead of the sphere $S^{2S+1}$ with trivial action in \S 4,
then the G-s-cobordism theorem holds.

In the following we shall give such an example. Let $(W_{1} ; X_{1}, Y_{1})$ be the
$Z_{p^{-}}h$-cobordism in \S 4 with $\dim W_{1}\geqq 5$ . Denote by $V$ a unitary representation
space of $Z_{p}$ such that $Z_{p}$ acts freely on the unit sphere $S(V)$ . Let $G$ be a
compact Lie group including $Z_{p}$ as a subgroup. Then the G-s-cobordism
theorem holds for the triad $G\cross z_{p}(W_{1} ; X_{1}, Y_{1})\cross S(V)$ by Theorem 1.1. In parti-
cular $G\cross z_{p}X_{1}\cross S(V)$ is $G$-diffeomorphic to $G\cross_{z_{p}}Y_{1}\cross S(V)$ .

This example shows that it is essential to show in the proof of Theorem
4.1 that $G\cross z_{p}X_{1}\cross S^{2h+1}$ is not $G$-homeomorphic to $G\cross z_{p}Y_{1}\cross S^{2h+1}$ , even if they
have factors of $S^{2i+1}$ .
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