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1. Introduction.

Let $(M, g)$ be a smooth closed Riemannian $n$-manifold, and $P$ a principal
$G$ -bundle over $(M, g)$ with compact Lie group $G$ . Let $C$ be the space of all
smooth connections on $Parrow M$ compatible with the metric on $P$. The space
$C$ is an affine space. For a connection $A\in C$ , we denote by $d_{A}$ and $\delta_{A}$ the
covariant exterior derivative and its formal adjoint respectively.

The Yang-Mills functional $J:Carrow R$ is defined by

$J(A)= \frac{1}{2}\int_{K}|F_{A}|^{2}d\mu_{g}$ , (1)

where $F_{A}$ is the curvature of a connection $A$ , and $d\mu_{g}$ is the volume element
induced from a Riemannian metric $g$ . $A$ is called a Yang-Mills connection if $A$

is a critical point of the Yang-Mills functional $J$ , that is, $A$ satisfies the Yang-
Mills equation

$\delta_{A}F_{A}=0$ , (2)

which is the Euler-Lagrange equation for the Yang-Mills functional $J$ .
In dimension 4, it is well-known that the Yang-Mills functional is invariant

under conformal changes of metric on the base manifold, but in general it is
not invariant under this action.

In this paper, using the above fact we will show “some existence” result
for Yang-Mills connections in higher dimensions:

THEOREM 1.1. Let $(M, g)$ be a smooth closed Riemanman manifold of dimen-
sion $n\geqq 5,$ $P$ a smooth principal $G$ -bundle over $(M, g)$ with compact group $G$ .
Then there exists a connection $A_{0}\in C$ and a metric $\tilde{g}$ on $M$ which is conformally
equivalent to the original metric $g$ such that $A_{0}$ is a Yang-Mills connection on
the principal bundle $P$ over $(M,\tilde{g})$ .

The idea of a proof of this Theorem here is essentially due to J. Eells-
M. J. Ferreira for harmonic maps ([1]). In section 2, we will state some known
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facts about the connections on principal fiber bundles, and in section 3, we will
give a proof of the above theorem.

2. Preliminaries.

In this section we describe known results concerning connections on principal
fiber bundles and fix the notation that will be used in this paper.

Let $(M, g)$ be a smooth closed Riemannian $n$ -manifold and $\pi$ : $Parrow M$ a smooth
principal $G$ -bundle with compact Lie group $G$ . We denote by $--$ the Lie alge-
bra of $G$ . Let $\pi_{ad}$ : $G_{P}arrow M$ be the bundle of groups over $M$, with total space
$G_{P}=P\cross_{ad}G$ and fiber $G$ associated to $\pi$ : $Parrow M$ via the adjoint action ad: $Garrow$

Aut $(G)$ of $G$ onto itself. We denote by $\pi_{Ad}$ : $\Xi_{P}arrow M$ the vector bundle over
$M$, with total space $\Xi_{P}=P\cross_{Ad}\Xi$ , associated to the principal fiber bundle
$\pi$ : $Parrow M$ via the adjoint representation Ad: $Garrow Aut(_{-}^{-})$ .

For a given number $1\leqq p<\infty,$ $2p>n$ , we define the gauge transformation
group $L_{2}^{p}\mathcal{G}$ to be the group of principal fiber bundle automorphisms which is
naturally isomorphic to the group $L_{2}^{p}(G_{P})$ of $L_{2}^{p}$-sections of $\pi_{ad}$ : $G_{P}arrow M$ , where
$L_{k}^{p}$ is a Sobolev space whose derivatives of order less than or equal to $k$ are
in $L^{p}$ . The group $L_{2}^{p}\mathcal{G}$ has a smooth Banach manifold structure, and the group
operations are smooth (see [7]). The Lie algebra of $L_{2}^{p}\mathcal{G}$ may be identified
with $L_{2}^{p}(_{-P}^{-})$ .

Given $x_{0}\in M$, we define $L_{2}^{p}\mathcal{G}_{0}$ as the subgroup of $L_{2}^{p}\mathcal{G}$ consisting of those
principal fiber bundle automorphisms which fix fiber of $\pi:Parrow M$ over $x_{0}$ .

Let $C$ be the affine space of smooth connections on $P$. Taking a base con-
nection $A_{0}\in C$ , we have

$C=\{A_{0}+A;A\in\Omega^{1}(\Xi_{p})\}$ , (3)

where $\Omega^{1}(E_{P})$ is a $--P$-valued 1-form on $M$ . So we can define the $L_{k}^{p}$-Sobolev
space $L_{k}^{p}C$ of connection as follows:

$L_{k}^{p}C=\{A_{0}+A;A\in L_{k}^{p}(\Omega^{1}(\Xi_{P}))\}$ , (4)

which is independent of the choice of a base connection $A_{0}$ because $C$ is an
affine space.

Taking a basis $\{E_{a}\}$ of $E_{P}$, for $\Phi=\Sigma_{a}\Phi_{a}\otimes E_{\alpha}\in\Omega^{k}(M)\otimes_{-P}^{-},$ $\Psi=\Sigma_{b}\Psi_{b}\otimes E_{b}$

$\in\Omega^{t}(M)\otimes_{-p}^{-}$, we define $[\cdot, \cdot]:\Omega^{k}(_{-P}^{-})\cross\Omega^{\iota}(_{-P}^{-})arrow\Omega^{k+l}(\Xi_{P})$ by

$[ \Phi, \Psi]=\sum_{a.b}\Phi_{a}\wedge\Psi_{b}\otimes[E_{a}, E_{b}]$ , (5)

where $[\cdot, ]$ in the right hand side is the natural Lie bracket on $\Xi_{P}$ induced
by Lie algebra E.

If $2p\geqq n$ , then the curvature $F_{A}$ of connection $A\in L$ ” $C$ is locally given by
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$F_{A}=dA+ \frac{1}{2}[A, A]\in L^{p}(\Omega^{2}(\Xi_{P}))$ , (6)

where we use Sobolev embedding theorem $Lc_{>}L^{2p}$ . Since we assume $G$ is
compact, by using Haar measure on $G$ , there exists an adjoint $G$ -invariant inner
product $(\cdot, \cdot)$ on E. Using this inner product $(\cdot, \cdot)$ on $--$ we can define the
fiber metric $(\cdot, )$ on $\Xi_{P}$ . So we get a fiber metric $(\cdot, \cdot)$ on $\Omega^{k}(\Xi_{P})\cong\Omega^{k}(M)$

$\otimes_{-P}^{-}$ using the Riemannian metric $g$ . We use the same notations for these
inner products.

The Yang-Mills functional $J:Carrow R$ is defined by

$J(A)= \frac{1}{2}\int_{M}|F_{A}|^{2}d\mu_{g}$ , (7)

where the norm . $|$ is induced by the above inner product $(\cdot, \cdot)$ on $\Omega^{2}(_{-P}^{-})$ .
The Yang-Mills functional is invariant under the action of gauge transforma-
tions, $i$ . $e$ . for all $\varphi\in \mathcal{G}$ , and $A\in C$ ,

$J(A)=J(\varphi^{*}A)$ . (8)

If 2$P>n$ , then the gauge transformation group $L_{2}^{p}\mathcal{G}$ acts smoothly on the space
$L^{p}{}_{1}C$ of $L_{1}^{p}$-connections on $P$, sending $A\in L^{p}{}_{1}C$ to $\varphi^{*}A\in L^{p}{}_{1}C$ for $\varphi\in L_{2}^{p}\mathcal{G}$ . Note
that by Sobolev embedding theorem, $L_{2}^{p}c_{arrow}C^{0}$ , the action of gauge transforma-
tions does not change the topology of principal fiber bundle provided 2 $P>n$ .
But in general this action is not free. If $x_{0}$ is some chosen point of $M$, then
the subgroup $L_{2}^{p}\mathcal{G}_{0}$ acts smoothly and freely on $L_{1}^{p}C$ . For this action, the fol-
lowing slice theorem holds (see [5]):

THEOREM 2.1 (slice theorem). Let $M$ be a closed manifold of dimension
$n\geqq 2,$ $\pi:Parrow M$ a principal fiber bundle with compact structure group. If $P$ is a
real number satisfying $1<p<\infty$ and $2p>n$ , then the orbit space $L_{1}^{p}C/L_{2}^{p}\mathcal{G}_{0}$

admits a umque smooth Banach mamfold structure.

We shall also use the following result, which is used in proving the above
slice theorem (see [5]):

PROPOSITION 2.2. Let $M,$ $P$, and $p$ be as in Theorem 2.1. Then for all
$A\in L^{p}{}_{1}C$ , there exists a neighborhood of $c_{U}$ of $A$ in $L^{p}{}_{1}C$ such that if $A’\in V$ , then
there exists a gauge transformation $\varphi\in L_{2}^{p}\mathcal{G}$ such that $\varphi^{*}A\in^{c}U$ and

$\delta_{A}(\varphi^{*}A’-A)=0$ . (9)

The following result which we will also use has been proved in [8].

THEOREM 2.3 (Uhlenbeck’s weak compactness theorem). Let $M,$ $P$, and $P$

as in Theorem 2.1, and $\{A_{i}\}_{i\Rightarrow 1}^{\infty}\subset L^{p}{}_{1}C$ a sequence of $L_{1}^{p}$-connections. If $L^{p}$-norm
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of curvatures $Fi$ of $A_{i}$ satisfy

$\int_{M}|F_{A_{i}}|^{p}d\mu_{g}\leqq K$

for some constant $K$, then there exists a subsequence of $\{A_{i}\}$ (by renumbering we
also use $A_{i}$ ), and a sequence of gauge transformations $\varphi_{i}\in L_{2}^{p}\mathcal{G}$ such that $\{\varphi_{i}^{*}A_{i}\}_{i=1}^{\infty}$

converges weakly in $L_{1}^{p}C$ .

3. Proof of Theorem.

In this section, we will give a proof of Theorem stated in Introduction.
The idea of this proof is essentially due to [1].

Let $(M,\tilde{g})$ be a smooth closed Riemannian $n$ -manifold, and $P$ a principal
fiber bundle over $M$ . We denote $L^{p}$ and $L_{k}^{p}$ -norm by $||\cdot||_{p}$ and $||\cdot||_{k,p}$ respec-
tively. The Yang-Mills functional is

$J(A; \tilde{g})=\frac{1}{2}\int_{M}|F_{A}|_{\zeta}^{2}d\mu_{\tilde{g}}$ . (10)

Note that the norm . $|$ of curvature $F_{A}$ depends on the metric $\tilde{g}$ . By putting
$\tilde{g}=f^{2/(n-4)}g,$ $f\in C^{\infty}(M),$ $f>0,$ $J(A;\tilde{g})$ is written on $(M, g)$ as

$J(A; \tilde{g})=\frac{1}{2}\int_{M}f|F_{A}|^{2}d\mu_{g}$ . (11)

NOW we consider a new functional $J_{p}$ : $Carrow R$ defined by

$J_{p}(A)= \frac{1}{p}\int_{M}(1+|F_{A}|^{2})^{p/2}d\mu_{g}$ (12)

If there exists a smooth critical point $A_{0}\in C$ of the functional $J_{p}$ , then $A_{0}$

satisfies the Euler-Lagrange equation for $J_{p}$ :

$\delta_{A_{0}}\{(1+|F_{A_{0}}|^{2})^{p/2-1}F_{A_{0}}\}=0$ . (13)

So if we put
$f=(1+|F_{A_{0}}|^{2})^{p/2-1}$ ,

then for all $A_{t}:=A_{0}+t\phi,$ $\phi\in\Omega^{1}(\Xi_{P}),$ $t\in R$ , and noting that

$F_{A_{t}}=F_{A_{0}}+td_{A_{0}} \phi+\frac{1}{2}t^{2}[\phi, \phi]$ , (14)

we get

$\frac{d}{dt}J(A_{t} ; \tilde{g})|_{t=0}=\frac{1}{2}\int_{M}(1+|F_{A_{0}}|^{2})^{p/2-1}\frac{d}{dt}|F_{A_{t}}|^{2}|_{t\Leftarrow 0}d\mu_{g}$

$= \int_{M}(1+|F_{A_{0}}|^{2})^{p/2-1}(F_{A_{0}}, d_{A_{0}}\phi)d\mu_{g}$
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$= \int_{M}(\delta_{A_{0}}\{(1+|F_{A_{0}}|^{2})^{p/2-1}F_{A_{0}}\}, \phi)d\mu_{g}$

$=0$ . (15)

Therefore $A_{0}$ is a Yang-Mills connection on $\pi:Parrow(M,\tilde{g})$ . So it suffices to
show that for a suitable real number $p$ , there exists a critical point $A_{0}\in C$ of
the functional $J_{p}$ .

From now on we will show the existence of a smooth critical point of the
functional $J_{p}$ . First we prepare a general ideas of the Palais-Smale condition
for the functional $J_{p}$ . Recall a sequence $\{A_{i}\}_{i=1}^{\infty}\subset L^{p}{}_{1}C$ is called a Palais-Smale
sequence for the functional $J_{p}$ if $J_{p}(A_{i})$ is bounded and $||\nabla J_{p,A_{i}}||^{*}arrow 0$ , as $iarrow\infty$ ,
where for $B\in\Omega^{1}(_{-P}^{-})$ ,

$\nabla J_{p.A}(B)=\int_{M}(1+|F_{A}|^{2})^{p/2-1}(F_{A}, d_{A}B)d\mu_{g}$ , (16)

and $||\cdot||^{*}$ denotes the dual norm of $L^{p}{}_{1}C,$ $i$ . $e$ .

$|| \nabla J_{p.A}||^{*}=\sup\{|\nabla J_{p.A}(B)| ; B\in L_{1}^{p}(\Omega^{1}(\Xi_{P})), ||B||_{1.p}=1\}$ . (17)

The functional $J_{p}$ : $L^{p}{}_{1}Carrow R$ is also invariant under the gauge transformation
group. We conclude that the functional

$\overline{J}_{p}$ : $L^{p}{}_{1}C/L_{2}^{p}\mathcal{G}_{0}arrow R$ (18)

induced by the functional $J_{p}$ satisfies the Palais-Smale condition if and only if
for every Palais-Smale sequence $\{A_{i}\}_{i=1}^{\infty}\subset L^{p}{}_{1}C$ , there exist a subsequence $\{A_{i}\}_{i=1}^{\infty}$

and a sequence $\{\varphi_{i}\}_{i=1}^{\infty}\subset L_{2}^{p}\mathcal{G}_{0}$ such that $\varphi_{i}^{*}A_{i}$ converges strongly in $L^{p}{}_{1}C$ as
$iarrow\infty$ .

The quotient group $L_{2}^{p}\mathcal{G}/L_{2}^{p}\mathcal{G}_{0}$ is isomorphic to the compact structure group
$G$ . Let $t\varphi_{i}\}_{i=1}^{\infty}\subset L_{2}^{p}\mathcal{G}$ . So after passing to a subsequence if necessary, we can
find a strongly convergent sequence $t\psi_{i}\}_{i=1}^{\infty}\subset L_{2}^{p}\mathcal{G}$ such that $\varphi_{i}\psi_{i}\in L_{2}^{p}\mathcal{G}_{0}$ for all
$i\in N$. Therefore we conclude that the functional $\overline{J}_{p}$ : $L^{p}{}_{1}C/L_{2}^{p}\mathcal{G}_{0}arrow R$ satisfies the
Palais-Smale condition if and only if every Palais-Smale sequence in $L^{p}{}_{1}C$ has a
subsequence which is gauge equivalent to a strongly convergent sequence in
$L^{p}{}_{1}C$ .

First we assume 2 $p>n$ .

PROPOSITION 3.1. Let 2$p>n$ . Then the functional $\overline{J}_{p}$ : $L^{p}{}_{1}C/L_{2}^{p}\mathcal{G}_{0}arrow R$ satisfies
the Palais-Smale condition.

PROOF. Let $\{A_{i}\}_{i=1}^{\infty}\subset L^{p}{}_{1}C$ be a Palais-Smale sequence with $J_{p}(A_{i})\leqq K$.
Then from the boundedness of $J_{p}(A_{i})$ , we get $L^{p}$-bounds of the curvatures
$F_{A_{i}}$ . By Uhlenbeck’s weak compactness theorem, there exist a subsequence $\{A_{i}\}_{i=1}^{\infty}$

and a sequence of gauge transformations $\{\varphi_{i}\}_{i\approx 1}^{\infty}\subset L_{2}^{p}\mathcal{G}$ such that $\varphi_{i}^{*}A_{i}$ con-
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verges weakly to some $A_{0}\in L^{p}{}_{1}C$ . For simplicity, we denote $\varphi_{i}^{*}A_{i}$ by $A_{i}$ . Since
$\{A_{i}\}_{i=1}^{\infty}\subset L^{p}{}_{1}C$ is a bounded Palais-Smale sequence, we get for all $A_{i}$ and $A_{j}$ ,

$(\nabla J_{p.A_{i}}-\nabla J_{p.A_{j}})(A_{i}-A_{j})$

$\leqq|\nabla J_{p,A_{i}}(A_{i}-A_{j})|+|\nabla J_{p.A_{j}}(A_{i}-A_{j})|$

$\leqq||\nabla J_{p.A_{i}}||^{*}||A_{i}-A_{j}||_{1.p}+||\nabla J_{p.A_{j}}||^{*}||A_{\ell}-A_{j}||_{1.p}arrow 0$ (19)

as $i,$ ] $arrow\infty$ .
TO obtain Proposition 3.1, we need the following:

LEMMA 3.2. For all $A_{1}$ and $A_{2}\in L^{p}{}_{1}C$ satisfying $J_{p}(A_{1}),$ $J_{p}(A_{2})\leqq K$ , we have

$(\nabla J_{p.A_{1}}-\nabla J_{p.A_{2}})(A_{1}-A_{2})$

111; $C||F_{A_{1}}-F_{A_{2}}||_{p}^{p}-C||F_{A_{1}}-F_{A_{2}}||_{p}^{2}||A_{1}-A_{2}||_{2p}^{2p-4}-C(K)||A_{1}-A_{2}||_{2p}^{2}$ , (20)

where $C$ is a constant independent of $A_{1}$ and $A_{2}$ , and $C(K)$ depends on the geo-
metry of $(M, g)$ and the bounded constant $K$.

PROOF. Note that if we write for $0\leqq t\leqq 1$ ,

$A_{t}=tA_{1}+(1-t)A_{2}=A_{2}+t(A_{1}-A_{2})$ ,
then we have

$F_{A_{\zeta}}=tF_{A_{1}}+(1-t)F_{A_{2}}+ \frac{1}{2}(t^{2}-t)[A_{1}-A_{2}, A_{1}-A_{2}]$ . (21)

Using this we get

$\int_{M}(1+|F_{A_{1}}|^{2})^{p/2-1}(F_{A_{1}}, d_{A_{1}}(A_{1}-A_{2}))d\mu_{g}$

$- \int_{M}(1+|F_{A_{2}}|^{2})^{p/2-1}(F_{A_{2}}, d_{A_{2}}(A_{1}-A_{2}))d\mu_{g}$

$= \int_{M}\int_{0}^{1}\frac{d}{dt}((1+|F_{A_{t}}|^{2})^{p/Z-1}F_{A_{t}}, d_{4_{t}}(A_{1}-A_{2}))dtd\mu_{g}$

$= \int_{M}\int_{0}^{1}(p-2)(1+|F_{A_{t}}|^{2})^{p/2-2}$

$\cross(F_{A_{t}},$ $F_{A_{1}}-F_{A_{2}}+(t- \frac{1}{2})[A_{1}-A_{2}, A_{1}-A_{2}])(F_{A_{t}}, d_{A_{t}}(A_{1}-A_{2}))dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(F_{A_{1}}-F_{A_{2}}, d_{A_{t}}(A_{1}-A_{2}))dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1((i-\frac{1}{2})[A_{1^{-A_{2}}}},$ $A_{1}-A_{2}],$ $d_{A_{t}}(A_{1}-A_{2}))dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(F_{A_{t}}, [A_{1}-A_{2}, A_{1}-A_{2}])dtd\mu_{g}$
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$=(p-2) \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-2}|(F_{A_{t}}, d_{A_{t}}(A_{1}-A_{2})|^{2}dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(d_{A_{t}}(A_{1}-A_{2}), d_{A_{t}}(A_{1}-A_{2}))dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(F_{A_{t}}, [A_{1}-A_{2}, A_{1}-A_{2}])dtd\mu_{g}$

$\geqq\int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(d_{A_{t}}(A_{1}-A_{2}), d_{A_{t}}(A_{1}-A_{2}))dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(F_{A_{i}}, [A_{1}-A_{2}, A_{1}-A_{2}])dtd\mu_{g}$

$= \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}|F_{A_{1}}-F_{A_{2}}+(t-\frac{1}{2})[A_{1}-A_{2}. A_{1}-A_{2}]|^{2}dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(F_{A_{t}}, [A_{1}-A_{2}, A_{1}-A_{2}])dtd\mu_{g}$

$= \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}|F_{A_{1}}-F_{A_{2}}|^{2}dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{P/2-1}(t-\frac{1}{2})^{2}|[A_{1}-A_{2}, A_{1}-A_{2}]|^{2}dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(2t-1)(F_{A_{1}}-F_{A_{2}}, [A_{1}-A_{2}, A_{1}-A_{2}])dtd\mu_{g}$

$+ \int_{M}\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}(F_{A_{t}}, [A_{1}-A_{2}, A_{1}-A_{2}])dtd\mu_{g}$

$=:I+II+III+IV$ . (22)

Note that $II\geqq 0$ , and

$|III|$ , IV $| \leqq C(K)(\int_{M}|A_{1}-A_{2}|^{2p}d\mu_{g})^{1/p}$

Moreover for $q\geqq 1$ ,

$(1+|F_{A_{t}}|^{2})^{q/2}\geqq|F_{A_{t}}|^{q}$

$=|F_{A_{2}}+t(F_{A_{1}}-F_{A_{2}})+ \frac{1}{2}(t^{2}-t)[A_{1}-A_{2}, A_{1}-A_{2}]|^{q}$

111 $C|F_{A}a+t(F_{A_{1}}-F_{A_{2}})|^{q}-C|[A_{1}-A_{2}, A_{1}-A_{2}]|^{q}$ . (23)

Using the following well known inequality:

$\int_{0}^{1}|x+ty|^{q}dt\geqq C|y|^{q}$ , (24)
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for all $x,$ $y\in V$ , where $V$ is a finite dimensional vector space, we get

$\int_{0}^{1}(1+|F_{A_{t}}|^{2})^{p/2-1}dt\geqq C|F_{A_{1}}-F_{A_{2}}|^{p-2}-C|[A_{1}-A_{2}, A_{1}-A_{2}]|^{p-}$

$\geqq C|F_{A_{1}}-F_{A_{2}}|^{p-2}-C|A_{1}-A_{2}|^{2p-4}$ (25)

So we obtaln Lemma 3.2. $\blacksquare$

From Lemma 3.2 and (19), if $\{A_{i}\}_{i=1}^{\infty}\subset L^{p}{}_{1}C$ is a Palais-Smale sequence, then
there exist a subsequence of $\{A_{i}\}_{i\Leftarrow 1}^{\infty}$ and a sequence $t\varphi_{i}\}_{i=1}^{\infty}\subset L_{2}^{p}\mathcal{G}$ such that
$\varphi_{i}^{*}A_{i}arrow A_{0}$ strongly in $L^{p}{}_{1}C$ . Therefore, the functional $J_{p}$ satisfies the Palais-
Smale condition on $L^{p}{}_{1}C$ provided 2$p>n$ . This completes the proof of Proposi-
tion 3.1. $\blacksquare$

Assume $p>n$ . By the Sobolev embedding theorem $L_{1}^{p}\subset_{arrow}C^{1-n/p}$ , a weak
solution $A_{0}\in L^{p}{}_{1}C$ of (13) is H\"older continuous. From Theorem 1.11.1 of Morrey
in [6], $A_{0}\in L^{p}{}_{2}C$ . On account of Theorem 5.6.3 in [6] and Proposition 2.2,
there exists a gauge transformation $\varphi\in L_{z}^{p}\mathcal{G}$ such that $\varphi^{*}A_{0}\in L^{p}{}_{2}C$ and so
Sobolev embedding theorem $L^{p_{{}_{2}C_{arrow}}}C^{1,1-n/p}$ , it has H\"older continuous first deriva-
tives. From this and again using Theorem 5.6.3 in [6], we get smoothness of
$\varphi^{*}A_{0}$ (see [6]), which proves Theorem.

REMARKS 3.3. (1) This proof is also valid even in $\dim M=2$ or 3 for the
Yang-Mills functional. And in these cases, the regularity theorem has been
proved in [8]. For details, see [9].

(2) In general, the critical point $A_{0}$ is neither energy minimizing nor stable
critical point for the functional $J(A,\tilde{g})$ . Moreover a critical point $A_{0}$ and a
Riemannian metric $\tilde{g}$ may not be uniquely determined.
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