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1. Introduction.

The purpose of this paper is to clarify the relation between the versal
deformation of the $E_{6}$-singularity and a family of cubic surfaces originally due
to A. Cayley.

We consider the cubic surface $S(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2})$ defined by

$\langle$1.1) $x^{s}-2yz^{2}-y^{2}+x(p_{0}w^{2}+p_{1}zw+p_{2}z^{2})+q_{0}w^{3}+q_{1}zw^{2}+q_{2}z^{2}w=0$

in $P^{3}$ with homogeneous coordinate $(x:y:z:w)$ , where $p_{0},$ $p_{1},$ $p_{2},$ $q_{0},$ $q_{1},$ $q_{2^{b}}$ are
parameters. We frequently write $pq=(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2})$ for simplicity. If
we put $w=1$ , the family of surfaces $S(pq)$ is regarded as the versal deformation
of the rational double point of type $E_{6}$ :

$x^{3}-2yz^{2}-y^{2}=0$

(cf. [S1]). On the other hand, there is a long history on the study of cubic
surfaces. Among others, we recall the 4-dimensional family of cubic surfaces
due to A. Cayley (cf. [C]). Modifying his family, we introduce a family of
cubic surfaces of $P^{3}$ with homogeneous coordinate (X: $Y:Z:W$) depending
on parameters $(\lambda, \mu, \nu, \rho)$ as follows (cf. [NS]):

(1.2) $\rho W[\lambda X^{z}+\mu\}’2+\nu Z^{2}+(\rho-1)^{2}(\lambda\mu\nu\rho-1)^{2}W^{2}+(\mu\nu+1)YZ+(\lambda\nu+1)ZX$

$+(\lambda\mu+1)XY-(\rho-1)(\lambda\mu v\rho-1)W\{(\lambda+1)X+(\mu+1)Y+(\nu+1)Z\}]+XYZ=0$ .

Since the moduli space of the cubic surfaces is 4-dimensional, the family
above has enough parameters. For this reason, writing down the defining equa-
tion (1.1) in the form (1.2), we obtain a map $\Psi:Pqarrow(\lambda, \mu, \nu, \rho)$ at least in
principle. Since the map $\Psi$ is multi-valued, we have to change the Parameter
space of $S(Pq)$ to its covering space admitting a linear $W(E_{6})$-action, where
$W(E_{6})$ is the Weyl group of type $E_{6}$ , in order to define a single-valued map to
the $(\lambda, \mu, \nu, \rho)$-space.
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Ministry of Education, Science and Culture.
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One of the motivations of the present study is a suggestion by M. Yoshida
concerning the configuration space $P_{2}^{6}$ of 6 points of $P^{2}$ which is, roughly
speaking, identified with $C^{4}$ . In a private communication, he pointed out the
possibility of the birational action of $W(E_{6})$ on the space $P_{2}^{6}$ . On the other
hand, there is another realization of $W(E_{6})$ as a group of birational transforma-
tions of $C^{4}$ related with the family of cubic surfaces (1.2). A conceptual ex-
planation of an isomorphism between two realizations of $W(E_{6})$ as groups of
birational transformations of $C^{4}$ is given in Hunt [H] as a conjecture. The
author started the present study with determining a required $W(E_{6})$-equivariant
birational map.

We are now going to explain the main result of this paper briefly. From
the definition, $W(E_{6})$ is a finite reflection group on a 6-dimensional vector space.
Let $P^{6}$ be the projective space associated to the 6-dimensional linear space.
Then $W(E_{6})$ acts on $P^{5}$ as a projective linear transformation group. Now we
recall the configuration space $P_{2}^{6}$ of 6 points of $P^{2}$ . Roughly speaking, a Zariski
open subset of $P_{2}^{6}$ consisting of 6 points in general position is identified with a
quasi-affine subset of $C^{4}$ (cf. section 4). To distinguish the coordinate system
of $C^{4}$ from $(\lambda, \mu, \nu, \rho)$ , we write $(x_{1}, x_{2}, y_{1}, y_{2})$ for the coordinate of $P_{2}^{6}$ . There
is a $W(E_{6})$-action on $P_{2}^{6}$ (cf. Theorem 4.2). On the other hand, $W(E_{6})$ is
realized as a group of birational transformations on the $(\lambda, \mu, \nu, \rho)$-space which
is naturally obtained from the study of the family (5.2) (cf. [NS]). Now we
freely use the notation in section 1 to state the main theorem. Let $t$ be the
projective coordinate of $P^{5}$ . We define two maps $\Phi_{1}$ and $\Phi_{2}$ as follows. The
map $\Phi_{1}$ : $P^{5}arrow C^{4}$ is given by

$\Phi_{1}(t)=(x_{1}(t), x_{2}(t),$ $y_{1}(t),$ $y_{2}(t))$ ,
where

$x_{1}(t)= \frac{h_{24}\cdot h_{234}\cdot h_{15}\cdot h_{135}}{h_{14}\cdot h_{134}\cdot h_{26}\cdot h_{235}}$ ,

$y_{1}(t)= \frac{h_{34}\cdot h_{234}\cdot h_{15}\cdot h_{125}}{h_{14}\cdot h_{124}\cdot h_{35}\cdot h_{235}}$ ,

$x_{2}(t)= \frac{h_{24}\cdot h_{234}\cdot h_{16}\cdot h_{136}}{h_{14}\cdot h_{134}\cdot h_{26}\cdot h_{236}}$ ,

$y_{2}(t)= \frac{h_{34}\cdot h_{234}\cdot h_{16}\cdot h_{126}}{h_{14}\cdot h_{124}\cdot h_{36}\cdot h_{236}}$ .

We note that $h,$ $h_{ij},$ $h_{ijk}$ are roots of type $E_{6}$ whose precise definition is given
in section 2. On the other hand, $\Phi_{2}$ is a map from the $(x_{1}, x_{2}, y_{1}, y_{2})$-space to
the $(\lambda, \mu, \nu, \rho)$-space defined by

$\Phi_{2}(x_{1}, X_{2}, y_{1}, y_{2})=(\lambda, \mu, \nu, \rho)$ ,
where

$\lambda=\frac{x_{2}(x_{1}-1)(y_{1}-y_{2})(y_{2}-1)}{y_{2}(x_{1}-x_{2})(x_{2}-1)(y_{1}-1)}$

$\mu=\frac{\{(y_{1}-1)(x_{2}-y_{2})-(y_{2}-1)(x_{1}-y_{1})\}x_{2}y_{2}}{x_{1}x_{2}y_{1}-x_{1}x_{2}y_{2}-x_{1}y_{1}y_{2}+x_{1}y_{2}+x_{2}y_{1}y_{2}-x_{2}y_{1}}$ ,
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$\nu=-\frac{(x_{1}y_{2}-x_{2}y_{1})(x_{2}-1)(y_{2}-1)}{(x_{1}-x_{2})(x_{2}-y_{2})(y_{1}-y_{2})}$ ,

$\rho=\frac{(x_{1}-x_{2})(x_{2}-y_{2})(y_{1}-1)}{\{(x_{1}-1)(x_{2}-y_{2})-(x_{1}-y_{1})(x_{2}-1)\}(y_{2}-1)x_{2}}$ .

Moreover, we put $\Phi_{3}=\Phi_{2}\circ\Phi_{1}$ . Then we can state the main theorem of this
paper (see Theorems 4.4, 5.5).

MAIN THEOREM. The three maPs $\Phi_{j}(j=1,2,3)$ are $W(E_{6})$-equivariant.

This in particular implies that $\Phi_{3}$ is a required modification of the multi-
valued map $\Psi$ .

We start the proof of Main Theorem with determining the 45 triple tangent
planes for the cubic surface $S(pq)$ with a generic parameter $Pq$ . To accomplish
the computation, we are indebted to Shioda [Sh] in which a concrete descrip-
tion of 27 lines on $S(pq)$ is obtained. The triple tangent planes are given their
namings in a natural manner by using three weights of a 27 dimensional ir-
reducible representation of the Lie algebra of type $E_{6}$ . For this reason, we
give their namings: $\pi(ij),$ $\pi(i_{1}i_{2}.i_{3}i_{4}.i_{6}i_{6})$ . On the other hand, it is known by A.
Cayley [C] (see also [N], [H]) that to each triple tangent plane there associates
a cross ratio which is an invariant of a given general cubic surface. Noting
this, we first define a linear transformation

$T$ : $(x : y : z : w)arrow(X : Y : Z : W)$

of $P^{3}$ in such a way that the namings of the 45 triple tangent planes for $S(Pq)$

and those for the surface (5.2) with Shlaefli’s namings (cf. section 5) are com-
patible. We next compute the cross ratios attached to some of triple tangent
planes for $S(pq)$ and those for the surface (5.2) and last compare the cross ratios
obtained in two ways. Along this idea, we can show Main Theorem.

In section 6, we will discuss a topic related with the unpublished note of
B. Hunt [H] on the mapping degree of the map $\Psi_{1}$ .

The author is indebted to Professors B. Hunt and M. Yoshida. In particular,
parts of the contents are based on the communications with B. Hunt and his
unpublished note [H].

2. The Weyl group of type $E_{6}$ .
We define the notation on the root system of type $E_{6}$ in this section basically

following B. Hunt [H].

Let $E_{R}$ be a Cartan subalgebra of a compact Lie algebra of type $E_{6},$ $i$ . $e$ .
$E_{R}\cong R^{6}$ . Let $t=(t_{1}, t_{2}, t_{3}, t_{4}, t_{\overline{o}}, t_{6})$ be a coordinate system of $E_{R}$ such that the
roots of type $E_{6}$ are:
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$\pm(t_{i}\pm t_{j})$ , 1 \leqq $i<j\leqq 5$

$\pm\frac{1}{2}(\delta_{1}t_{1}+\delta_{2}t_{2}+\delta_{3}t_{3}+\delta_{4}r_{4}+\delta_{6}t_{6}+\delta_{6}t_{6})$

(where $\delta_{j}=\pm 1$ and $\Pi_{j}\delta_{j}=1$ ). Note that compared with the notation in [B],

our variables $t_{i}=\epsilon_{i},$ $i=1,$ $\cdots$ , 5, while our coordinate $t_{6}$ is denoted $\epsilon_{6}-\epsilon_{7}-\epsilon_{8}$

in [B].

We now introduce the following 36 linear forms on $E_{R}$ :

$h=- \frac{1}{2}(t_{1}+\cdots+t_{6})$ , $h_{1j}=-t_{j-1}+h_{0}$ , $j=2,$ $\cdots$ $6$

$h_{fk}=t_{f-1}-t_{k-1}$ , $1<j<k<7$, $h_{1jk}=-t_{j-1}-t_{k-1}$ , $1<J’<k<7$

$h_{jkl}=-t_{j-1}-t_{k-1}-t_{l-1}+h_{0}$ , $1<j<k<l<7$

where

$h_{0}= \frac{1}{2}(t_{1}+\cdots+t_{5}-t_{6})$ .

Then the totality of $h,$ $h_{ij},$ $h_{ijk}$ forms a set of positive roots of type $E_{6}$ . (In

the sequel, we frequently write

$h_{ij}=h_{ji}(i\neq j)$ , $h_{ijk}=h_{ikj}=h_{jki}$ , etc. $(i<j<k)$

for simplicity.)

We introduce a positive definite quadratic form on $E_{R}$ defined by

$t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}+t_{6}^{2}+ \frac{1}{3}t_{6}^{2}$ .

This quadratic form defines an inner product on $E_{R}$ . Then it is possible to
define reflections with respect to hyperplanes. In particular, let $s$ (resp. $s_{ij}$ ,
Sijk) be the reflection on $E_{R}$ with respect to the hyperplane $h=0$ (resp. $h_{ij}=0$ ,
$h_{ijk}=0)$ . Then the Weyl group of type $E_{6}$ which is denoted by $W(E_{6})$ in this
note is the group generated by the 36 reflections defined above.

AS a system of simple roots, we take

$\alpha_{1}=h_{12}$ , $\alpha_{2}=h_{123}$ , $\alpha_{3}=h_{23}$ , $\alpha_{4}=h_{34}$ , $\alpha_{5}=h_{4\overline{o}}$ , $\alpha_{6}=h_{66}$ .
Then the Dynkin diagram is:

$\alpha_{1^{-\alpha_{3^{-\alpha_{4^{-}}}}}}$ as $-\alpha_{6}$

$1$

$\alpha_{2}$

Let $g_{j}$ be the reflection on $E_{R}$ with respect to the root $\alpha_{j}$ $(j=1, \cdots , 6)$ .
Then, from the definition,
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$g_{1}=s_{12}$ , $g_{2}=s_{123}$ , $g_{3}=s_{23}$ , $g_{4}=s_{34}$ , $g_{5}=s_{45}$ , $g_{6}=s_{56}$ .

It is easy to describe the action of $g_{j}$ on $t$ . In fact, the action $g_{2}$ is the per-
mutation between $t_{1}$ and $-t_{2}$ and so that between $t_{2}$ and $-t_{1}$ . The action
$g_{j}(j=3,4,5,6)$ is that between $t_{j-1}$ and $t_{j}$ . It is a little complicated to explain
$g_{1}$ on $t$ . We give the action of $g_{1}$ on the roots. In the below, we assume
$i,$ $j,$ $k\in\{3,4,5,6\}$ . Then

$g_{1}(h)=h$ , $g_{1}(h_{1j})=h_{2j}$ , $g_{1}(h_{zj})=h_{1j}$ , $g_{1}(h_{ij})=h_{ij}$ ,

$g_{1}(h_{1jk})=h_{2jk}$ , $g_{1}(h_{2jk})=h_{1jk}$ , $g_{1}(h_{tjk})=h_{ijk}$ .
Let $E$ be the complexification of $E_{R}$ and we extend the action of $W(E_{6}\rangle$

on $E_{R}$ to that on $E$ in a natural manner. Moreover let $P^{6}$ be the projective
space associated to $E$ . Then the $W(E_{6})$-action on $E$ induces a projective linear
action of $W(E_{6})$ on $P^{5}$ .

We next define the following 27 linear forms of $t=(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6})$ by

$a_{1}=- \frac{2}{3}t_{6}$ , $b_{1}= \frac{1}{2}(t_{1}+t_{2}+t_{3}+t_{4}+t_{6}-\frac{1}{3}t_{6})$ ,

$b_{j}=t_{j-1}+ \frac{1}{3}t_{6}$ , $j=2,$ $6$ , $c_{1f}=-t_{j-1}+ \frac{1}{3}t_{6}$ , $j=2,$ $\cdots 6$ ,

a $j=t_{j-1^{-\frac{1}{2}}}( f_{1}+t_{2}+t_{3}+t_{4}+t_{6}+\frac{1}{3}t_{6})$ , $j=2,$ $\cdots$ , 6,

$c_{ij}=-t_{i-1}-t_{j-1}+ \frac{1}{2}(t_{1}+t_{2}+t_{3}+t_{4}+t_{6}-\frac{1}{3}t_{6})$ , $1<i<j\leqq 6$ .

These are just the $W(E_{6})$-orbit of the fundamental weight $a_{1}=(4\alpha_{1}+3\alpha_{2}+5\alpha_{S}+$

$6\alpha_{4}+4\alpha_{6}+2\alpha_{6})/3$ . For simplicity, we denote by $\Omega_{27}$ the totality of the 27
weights above.

We say that a set $\{\omega, \omega’, \omega’’\}(\omega, \omega’, \omega’’\in\Omega_{27})$ is a tritangent triple (of
weights) if they are satisfied with the condition (TP):

(TP) $\omega+\omega’+\omega’’=0$ .
It is easy to show that there are 30 tritangent triples

$\{a_{i}, b_{j}, c_{ij}\}$ , $i\neq j$

and 15 tritangent triples

$\{c_{i_{1}i_{2}}, c_{i_{3}i}, c_{i_{5}i_{6}}\}$ $(\{i_{1}, i_{2}, i_{s}, i_{4}, i_{6}, i_{6}\}=\{1,2,3,4,5,6\})$ .
AS a result, there are totally 45 tritangent triples and they are transitive by
$W(E_{6})$-action.

We are going to define basic $W(E_{6})$-invariant polynomials of $t$ . Let $\epsilon_{k}$ be
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the k-th elementary symmetric polynomial of $a_{j},$ $b_{j},$ $c_{ij}$ and let $\delta_{k}$ be the k-th
power sum of $a_{j},$ $b_{j},$ $c_{ij}$ , that is,

$\delta_{k}=\sum_{j\approx 1}^{6}(a_{j}^{k}+b_{j}^{k})+\sum_{i<j}c_{ij}^{k}$ .
Then by direct computation, we obtain the following.

LEMMA 2.1.

$\epsilon_{2}=-\frac{1}{2}\delta_{2}$ , $\epsilon_{5}=\frac{1}{5}\delta_{5}$ , $\epsilon_{6}=-\frac{1}{96}(16\delta_{6}+\delta_{2}^{3})$ ,

$\epsilon_{8}=-\frac{1}{8}(\delta_{8}-\frac{2}{3}\delta_{2}\delta-\frac{1}{576}\delta_{2}^{4})$ , $\epsilon_{9}=\frac{1}{9}\delta_{9}$ ,

$\epsilon_{12}=\frac{1}{16588800}(25\delta_{2}^{6}-11520\delta_{2}^{s}\delta_{6}+95040\delta_{2}^{2}\delta_{8}+117504\delta_{2}\delta_{5}^{2}+230400\delta_{6}^{2}-1382400\delta_{12})$ .

LEMMA 2.2. Let $\sigma_{i}=\sigma_{i}(t_{1}^{2}, \cdots , t_{6}^{2})$ be the i-th elementary symmetric polynomial

of $t_{1}^{2},$ $\cdots$ , $t_{6}^{2}$ and $\sqrt{\sigma_{5}}=t_{1}\cdots t_{6}$ . Then

$\delta_{2}=2t_{6}^{2}+6\sigma_{1}$ , $\delta_{6}=-\frac{5}{54}t_{6}^{6}+\frac{5}{9}\sigma_{1}t_{6}^{3}+\frac{5}{2}(\sigma_{1}^{2}-4\sigma_{2})t_{6}+60\sqrt{\sigma_{6}}$ ,

$\delta_{6}=\frac{11}{108}t_{6}^{6}+\frac{5}{12}\sigma_{1}t_{6}^{4}+\frac{5}{4}(\sigma_{1}^{2}-4\sigma_{2})t_{6}^{2}-60\sqrt{\sigma_{5}}t_{6}+\frac{3}{4}(3\sigma_{1}^{3}-4\sigma_{1}\sigma_{2}+24\sigma_{3})$ ,

The explicit form of $\delta_{6}$ in Lemma 2.2 is already given in Hunt [H].

It is clear the subgroup generated by $g_{2},$ $g_{S},$ $g_{4},$ $g_{s}$ is identified with the
Weyl group $W(D_{4})$ of type $D_{4}$ . We put

$k_{1}=g_{1}g_{S}g_{4}g_{6}g_{2}g_{4}g_{3}g_{1}$ , $k_{2}=g_{6}g_{5}g_{4}g_{3}g_{2}g_{4}g_{6}g_{6}$ .
Then lt is easy to show the following.

LEMMA 2.3.
(i) $k_{1}^{2}=k_{2}^{2}=1$ and $k_{1}k_{2}k_{1}=k_{2}k_{1}k_{2}$ .
(ii) Both $k_{1},$ $k_{2}$ normalize $W(D_{4})$ .
(iii) The group generated by $W(D_{4})$ and $k_{1},$ $k_{2}$ is isomorPhic to $W(F_{4})$ .
In the sequel, we always identify $W(F_{4})$ with the group generated by $W(D_{4})$

and $k_{1},$ $k_{2}$ without any comment. It is easy to show that the isotropy of the
tritangent triple $\{a_{1}, b_{6}, c_{16}\}$ is $W(F_{4})$ .

3. The construction theorem of elliptic curves due to T. Shioda.

It is known that there are 27 lines on a general cubic surface and 45
tritangent planes.

We are going to construct 45 tritangent planes for a cubic surface $S(pq)$



$Ve\gamma sal$ deformation of $E_{6}$-singularity 361

( $Pq$ : generic) to each tritangent triple using the construction of 27 lines on $S(pq)$

due to T. Shioda [Sh]. Before entering into the construction, we note that
the notation here is slightly different from [Sh].

We first suppose that the line $L$ defined by

(3.1) $x=uz+rw$ , $y=dz+ew$ ,

lies on $S(pq)$ , where $u,$ $\gamma d,$ $e$ are constants such that

(3.2) $d=(u^{3}+up_{2})/2$ , $e=(3u^{2}r-d^{2}+up_{1}+rp_{2}+q_{2})/2$ .
Let $F(x, y, z, w)$ be the polynomial in the defining equation (1.1) of $S(pq)$ .
Then solving the equation

$F(uz+rw, dz+ew, z, w)=0$ ,

we obtain the relations on $r$ and $u$ as shown in [Sh, Theorem $(E_{6})$]:

(3.3) $\sum_{k=0}^{27}C_{27-k}(pq)u^{k}=0$ ,

(3.4) $r= \frac{R_{1}(pq,u)}{R_{2}(pq,u)}$ ,

where

(3.5.1) $R_{1}(Pq, u)=-64p_{0}p_{1}u-16p_{0}p_{2}^{2}u^{2}-160p_{0}p_{2}u^{4}-336p_{\theta}u^{6}+32p_{1}^{2}p_{2}u^{2}+176p_{1}^{2}u^{4}$

$-8p_{1}p_{2}^{2}u^{5}+32p_{1}p_{2}q_{2}u+80p_{1}p_{2}u^{7}-64p_{1}q_{1}+320P_{1}q_{2}u^{3}+88p_{1}u^{9}-2p_{2}^{5}u^{4}$

$-17p_{2}^{4}u^{6}+8p_{2}^{3}q_{2}u^{2}-72p_{2}^{3}u^{8}-16p_{2}^{2}q_{1}u+16p_{2}^{2}q_{2}u^{4}-134p_{2}^{2}u^{10}-160p_{2}q_{1}u^{3}$

+104 $P_{2}q_{2}u^{6}-110p_{2}u^{12}-576q_{0}u^{2}-336q_{1}u^{5}+144q_{2}^{2}u^{2}+96q_{2}u^{8}-33u^{14}$ ,

(3.5.2) $R_{2}(Pq, u)=8(48p_{0}u^{2}+8p_{1}^{2}-2p_{1}p_{2}^{2}u-20p_{1}p_{2}u^{3}-66p_{1}u^{6}-p_{2}^{4}u^{2}-8p_{2}^{S}u^{4}$

$-28p_{2}^{2}u^{6}-24p_{2}q_{2}u^{2}-60p_{2}u^{8}-24q_{1}u-96q_{2}u^{4}-39u^{10})$ ,

and certain polynomials $C_{j}(Pq)$ of $Pq$ . (In [Sh], the explicit forms of $R_{1}(Pq, u)$ ,
$R_{2}(Pq, u)$ were not written. But the determination of tbem are straightforward.)

We may take $u=a_{j},$ $b_{j},$ $c_{ij}$ as the 27 solutions of equation (3.3). Then,
comparing the coefficients of (3.3) with the definition of $\epsilon_{k}$ , we have

$C_{0}(pq)=1$ , $C_{1}(Pq)=C_{3}(Pq)=0$ , $C_{k}(Pq)=(-1)^{k}\epsilon_{k}$ $(k=2, k>3)$ .

Moreover, we have the following relations among $p_{0},$ $p_{1},$ $p_{2},$ $q_{0},$ $q_{1},$ $q_{2}$ and $\epsilon_{k}$

(cf. [Sh, (10.18)]):

$p_{2}= \frac{1}{12}\epsilon_{2}$ , $p_{1}= \frac{1}{48}\epsilon_{5}$ , $q_{2}= \frac{1}{96}(\epsilon_{6}-168p_{2}^{3})$ ,
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$p_{0}= \frac{1}{480}(\epsilon_{8}-294p_{2}^{4}-528p_{2}q_{2})$ , $q_{1}= \frac{1}{1344}(\epsilon_{9}-1008p_{1}p_{2}^{2})$ ,

$q_{0}= \frac{1}{17280}(\epsilon_{12}-608p_{1}^{2}p_{2}-4768p_{0}p_{2}^{2}-252p_{2}^{6}-- 1200P_{2}^{3}q_{2}+1248q_{2}^{2})$ .
Stressing the dependence of $r,$ $d,$ $e$ on $u$ , we put

$r=r(u)$ , $d=d(u)$ , $e=e(u)$

in the sequel and let $L(a_{j})$ (resp. $L(b_{J}),$ $L(c_{\iota_{J}})$) be the line of $P^{3}$ defined by the
equations

$x=uz+r(u)w$ , $y=d(u)z+e(u)w$

with the value $u=a_{J}$ (resp. $b_{J},$
$c_{\iota g}$).

At the present stage, we study basic properties of the function $r(u)$ of $u$ .
It follows from [Sh] that $r(a_{J}),$ $r(b_{J}),$ $r(c_{\iota_{J}})$ are polynomials of $t$ . In particular,
we have

LEMMA 3.1.

$r(a_{1})= \frac{1}{5184}(81t_{1}^{4}-54t_{1}^{2}t_{2}^{2}-54t_{1}^{2}t_{3}^{2}-54t_{1}^{2}t_{4}^{2}-54t_{1}^{2}t_{5}^{2}-90t_{1}^{2}t_{6}^{2}+81t_{2}^{4}-54t_{2}^{2}t_{3}^{2}$

$-54t_{2}^{2}t_{4}^{2}-54t_{2}^{2}t_{6}^{2}-90t_{2}^{2}t_{6}^{2}+81t_{S}^{4}-54t_{3}^{2}t_{4}^{2}-54$ ,

$-54t_{4}^{2}t_{6}^{2}-90t_{4}^{2}t_{6}^{2}+81t_{6}^{4}-90t_{5}^{2}t_{6}^{2}+73t_{6}^{4})$ ,

$r(b_{2})= \frac{1}{1296}(81t_{1}^{4}+135t_{1}^{s}t_{6}-54t_{1}^{2}t_{2}^{2}-54t_{1}^{2}t_{3}^{2}-54t_{1}^{2}t_{4}^{2}-54t_{1}^{2}r_{6}^{2}+72t_{1}^{2}t_{6}^{2}-27t_{1}t_{2}^{2}t_{6}$

$-27t_{1}t_{3}^{2}t_{6}-27t_{1}t_{4}^{2}t_{6}-27t_{1}t_{6}^{2}t_{6}+3t_{1}t_{6}^{3}+27t_{2}^{2}t_{3}^{2}+27t_{2}^{2}t_{4}^{2}+27t_{2}^{2}t_{6}^{2}-9t_{2}^{2}t_{6}^{2}$

$-162t_{2}t_{3}t_{4}t_{5}+27t_{S}^{2}t_{4}^{2}+27t_{3}^{2}t_{6}^{2}-9t_{S}^{2}t_{6}^{2}+27t_{4}^{2}t \frac{2}{o}-9t_{4}^{2}t_{6}^{2}-9t_{6}^{2}r_{6}^{2}+t_{6}^{4})$ .
Moreover, $r(c_{12})$ is obtained from $r(b_{1})$ by changing $t_{1},$ $t_{2}$ with $-t_{1},$ $-t_{2}$ .

One way to prove this lemma is to substitute $u=a_{1},$ $b_{2},$ $c_{12}$ in $R_{1}(pq, u)$ ,
$R_{2}(pq, u)$ (cf. (3.4), (3.5.1), (3.5.2)) and compute the results. To accomplish this
aim, the author needed a help of computer.

We now recall the definition of a tritangent plane for a general cubic surface
$S$ of $P^{3}$ . Let $L,$ $L’,$ $L’$ be three lines on $S$ such that $L,$ $L’,$ $L^{\chi}$ mutually in-
tersect each other. Then there is a plane $\pi$ containing $L,$ $L’,$ $L’’$ called a
tritangent plane. It is known that there are totally 45 tritangent planes for a
given general cubic surface. We are going to determine tritangent planes for
$S(Pq)$ .

THEOREM 3.2. If $\{\omega, \omega’, \omega’\}$ is a tritangent triPle, then $L(\omega),$ $L(\omega’),$ $L(\omega’’)$

are contained in a same tritangent Plane for $S(pq)$ .
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TO prove this theorem, we need preparations.
We first define

$\varphi_{ij}=a_{i}b_{j}+a_{i}c_{ij}+b_{j}c_{ij}$ , $\psi_{tj}=a_{i}b_{j}c_{if}$ .

The next lemma is a direct consequence of Lemma 3.1.

LEMMA 3.3.

$r(a_{1})+r(b_{2})+r(c_{12})= \frac{1}{4}(p_{2}-\varphi_{12})^{2}$ ,

$a_{1}r(a_{1})+b_{2}r(b_{2})+c_{12}r(c_{12})=-p_{1}+ \frac{1}{2}\psi_{12}(p_{2}-\varphi_{12})$ ,

$e(a_{1})- \frac{1}{2}r(a_{1})(p_{2}-\varphi_{12})$

$= \frac{1}{2}\{a_{1}^{2}r(a_{1})+b_{2}^{2}r(b_{2})+c_{12}^{2}r(c_{12})+\frac{1}{4}\varphi_{12}(p_{2}-\varphi_{12})^{2}-\frac{1}{4}\psi_{12}^{2}+q_{2}\}$ .

LEMMA 3.4. Let $\pi(12)$ be the Plane defined by

(3.6) $y= \frac{1}{2}(p_{2}-\varphi_{12})x+\frac{1}{2}\psi_{12}z+\tau_{12}w$ ,

where

(3.7) $\tau_{12}=e(a_{1})-\frac{1}{2}r(a_{1})(P_{2}-\varphi_{12})$ .

Then the three lines $L(a_{1}),$ $L(b_{2}),$ $L(c_{12})$ are contained in $\pi(12)$ .
PROOF. Let

(3.8) $y=\tau_{x}x+\tau_{z}z+\tau_{w}w$

be a plane, where $\tau_{x},$ $\tau_{z},$ $\tau_{w}$ are constants. If the lines $L(a_{1}),$ $L(b_{2})$ are on the
plane (3.8), we obtain

$a_{1}\tau_{x}+\tau_{z}=d(a_{1})$ , $r(a_{1})\tau_{x}+\tau_{w}=e(a_{1})$ ,

$b_{2}\tau_{x}+\tau_{z}=d(b_{2})$ , $r(b_{2})\tau_{x}+\tau_{w}=e(b_{2})$ .
Then, noting the definition of $a_{1},$ $b_{2},$ $d(a_{1}),$ $d(b_{2})$ , we have

$\tau_{x}=\frac{1}{2}(p_{2}-\varphi_{12})$ , $\tau_{z}=\frac{1}{2}\psi_{12}$ .

These imply

$\tau_{w}=e(a_{1})-r(a_{1})\tau_{x}=e(a_{1})-\frac{1}{2}r(a_{1})(P_{2}-\varphi_{12})$ .

The computation above combined with Lemma 3.3 shows that the two lines
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$L(a_{1})$ and $L(b_{2})$ actually intersect and lie on the plane (3.6).

By an argument parallel to above implies that $L(a_{1}),$ $L(b_{2}),$ $L(c_{12})$ lie on the
plane (3.6).

PROOF OF THEOREM 3.2. AS we remarked in section 2, any tritangent
triple of weights is transformed to $\{a_{1}, b_{2}, c_{12}\}$ by a certain element of $W(E_{6})$ .
This combined with Lemma 3.4 implies the required statement.

Let $\pi(ij)$ be the tritangent plane containing $L(a_{i}),$ $L(b_{j}),$ $L(c_{ij})$ and let
$\pi(i_{1}i_{2}.i_{3}i_{4}.i_{6}i_{6})$ be the tritangent plane containing $L(c_{i_{1}i_{2}}),$ $L(c_{i_{3}i_{4}}),$ $L(c_{i_{5}t_{6}})$ . Noting
Lemma 3.4, we can write down the explicit forms of the defining equations
for them. For this purpose, we first put

$\tau_{ij}=e(a_{i})-\frac{1}{2}r(a_{i})(p_{2}-\varphi_{\ell j})$ .

Then it is clear from Lemma 3.3 that

$\tau_{ij}=e(b_{j})-\frac{1}{2}r(b_{j})(p_{2}-\varphi_{ij})=e(c_{ij})-\frac{1}{2}r(c_{tj})(p_{2}-\varphi_{ij})$

and it follows from Lemma 3.4 that $\pi(ij)$ is defined by

$y= \frac{1}{2}(p_{2}-\varphi_{ij})x+\frac{1}{2}\psi_{ij}z+\tau_{ij}w$ .

On the other hand, we put

$\varphi_{i_{1}i_{2}i_{3}i_{4}i_{5}i_{6}}=c_{i_{3}i_{4}}c_{i_{5}i_{6}}+c_{i_{5}i_{6}}c_{i_{1}}c_{i_{2}}+c_{i_{1}i_{2}}c_{i_{3}i_{4}}$ , $\psi_{i_{1}i_{2}t_{3}i_{4}i_{5}i_{6}}=c_{i_{1}t_{2}}c_{i_{3}i_{4}}c_{i_{5}i_{6}}$ ,

$\tau_{t_{1}t_{2}t_{3}i_{4}i_{5}t_{6}}=e(c_{t_{1}t_{2}})-\frac{1}{2}r(c_{i_{1}i_{2}})(p_{2}-\varphi_{i_{1}i_{2}t_{3}i_{4}i_{5}t_{6}})$ .

Then $\pi(i_{1}i_{2}.i_{3}i_{4}.i_{5}i_{6})$ is defined by

$y= \frac{1}{2}(p_{2}-\varphi_{t_{1}i_{2}i_{3}i_{4}i_{5}i_{6}})x+\frac{1}{2}\psi_{t_{1234\overline{0}}}iiiii_{6}z+\tau_{t_{1}i_{I}t_{3}i_{4}t_{5}t_{6}}w$ .

REMARK 3.6. We consider the tritangent plane $\pi(16)$ . Its defining equation is

$y= \frac{1}{2}(p_{2}-\varphi_{16})x+\frac{1}{2}\psi_{16}z+\tau_{16}w$ .

It follows from the definition of $W(F_{4})$ in section 2 that $\pi(16)$ is left fixed by
$W(F_{4})$ . This in particular implies that $P_{2}-\varphi_{16},$ $\psi_{16},$ $\tau_{16}$ are $W(F_{4})$-invariant
polynomials.

We are going to define cross ratios for tritangent planes (cf. [C], [N], [H]).
We take a line on the surface $S(pq)$ , say, $L(a_{1})$ . Then there are five tritangent
planes containing $L(a_{1})$ , in fact, $\pi(1j)(j=2,3,4,5,6)$ are such tritangent planes.
From four of the five planes, say, $\pi(1j)(j=2,3,4,5)$ , it is possible to define a
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cross ratio in the following manner. Let $L$ be a line of $P^{5}$ and let $z_{j}$ be the
point on the line $L$ which is the intersection of $\pi(1j)$ with $L(j=2,3,4,5)$ .
We take $L$ so that $z_{2},$ $z_{3},$ $z_{4},$ $z_{5}$ are mutually different. Then we can define a
cross ratio from $z_{2},$ $z_{3},$ $z_{4},$ $z_{5}$ :

(3.9) $CR(1 \sim,6;2,3,4,5)=\frac{(_{Z_{2^{-}5}})(z_{3}-z_{4})}{(z_{2}-z_{4})(z_{3}-z_{5})}$ .

We put $a=^{CR_{(l}},$ $6;2,3,4,5$ ) for a moment. Then, by permutations among
2, 3, 4, 5, we obtain $\alpha,$

$1-\alpha,$ $1/\alpha,$ $1/(1-\alpha),$ $\alpha/(\alpha-1),$ $(\alpha-1)/\alpha$ .
Let $\{i_{1}, i_{2}, i_{s}, i_{4}, i_{6}, i_{6}\}$ be so taken that { $i_{1},$ $i_{2},$ $i_{3},$ $i_{4}$ , Z5, $i_{6}$ } $=\{1,2,3,4,5,6\}$ .

Then, taking $L(a_{t_{1}}),$ $\pi(i_{1}i_{j})(j=2,3,4,5,6)$ instead of $L(a_{1})$ and $\pi(1j)(j=2,3,4$ ,

5, 6), we can define $CR(i_{1}\sim, i_{6} ; i_{2}, i_{3}, i_{4}, i_{6})$ similarly.
We are going to compute cross ratios for some of four tritangent planes

for $S(pq)$ .

DEFINITION 3.7.
$x_{1}(t)=\sim CR(3,6;1,2,4,5)$ , $x_{2}(t)=CR(3,5;\sim 1,2,4,6)$ ,

$y_{1}(t)=CR(2\sim,6;1,3,4,5)$ , $y_{2}(t)=CR(2\sim,5;1,3,4,6)$ .

LEMMA 3.8.

$x_{1}(t)= \frac{h_{24}\cdot h_{234}\cdot h_{15}\cdot h_{135}}{h_{14}\cdot h_{134}\cdot h_{2\S}\cdot h_{235}}$ ,

$y_{1}(t)= \frac{h_{34}\cdot h_{234}.h_{15}\cdot h_{125}}{h_{14}\cdot h_{124}h_{35}\cdot h_{235}}$ ,

$x_{2}(t)= \frac{h_{24}\cdot h_{234}\cdot h_{16}\cdot h_{136}}{h_{14}\cdot h_{134}\cdot h_{26}\cdot h_{236}}$ ,

$y_{2}(t)= \frac{h_{34}\cdot h_{2S4}\cdot h_{16}\cdot h_{126}}{h_{14}\cdot h_{124}\cdot h_{36}\cdot h_{236}}$ .

PROOF. It is possible to take $L:z=w=0$ as a generic line. Then it follows
from the definition that $\pi(ij)\cap L=\{(1:\varphi_{tj} : 0:0)\}$ . Noting this, we find that

$x_{1}(t)= \frac{(\varphi_{31}-\varphi_{ 6})(\varphi_{3l}-\varphi_{34})}{(\varphi_{31}-\varphi_{34})(\varphi_{32}-\varphi_{35})}$

$y_{1}(t)=\frac{(\varphi_{21}-\varphi_{26})(\varphi_{23}-\varphi_{24})}{(\varphi_{21}-\varphi_{24})(\varphi_{23}-\varphi_{25})}$ ,

$x_{2}(t)= \frac{(\varphi_{31}-\varphi_{36})(\varphi_{32}-\varphi_{34})}{(\varphi_{31}-\varphi_{34})(\varphi_{32}-\varphi_{36})}$ ,

$y_{2}(t)= \frac{(\varphi_{21}-\varphi_{26})(\varphi_{23}-\varphi_{24})}{(\varphi_{21}-\varphi_{24})(\varphi_{23}-\varphi_{26})}$ .

On the other hand, it is easy to show that

$\varphi_{ij}-\varphi_{ik}=\pm h_{jk}\cdot h_{ijk}$ .
These imply the lemma.

By an argument similar to the proof of Lemma 3.8, we can show the
following.

THEOREM 3.9. If { $i_{1},$ $i_{2},$ $i_{3},$ $i_{4}$ , Z5, $i_{6}$ } $=\{1,2,3,4,5,6\}$ , then
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$\sim CR(i_{3}, i_{6} ; i_{1}, i_{2}, i_{4}, i_{6})=\pm\frac{h_{i_{l}\ell_{4}}\cdot h_{i_{2}i_{3}i_{4}}\cdot h_{t_{1}t_{5}}\cdot h_{t_{1}i_{3}i_{5}}}{h_{i_{1}i_{4}}\cdot h_{i,t_{3}i_{4}}\cdot h_{i_{2}t_{5}}\cdot h_{i_{2}t_{3}t_{5}}}$ .

The following lemma will be used in the subsequent sections. Since its
proof is straightforward, we omit it.

LEMMA 3.10.

$x_{1}(t)-1=- \frac{h_{123}\cdot h_{346}\cdot h_{12}\cdot h_{45}}{h_{14}\cdot h_{235}\cdot h_{26}\cdot h_{134}}$ , $x_{2}(t)-1=- \frac{h_{123}\cdot h_{346}\cdot h_{12}\cdot h_{46}}{h_{14}\cdot h_{236}\cdot h_{26}\cdot h_{134}}$ ,

$y_{1}(t)-1=- \frac{h_{123}\cdot h_{13}\cdot h_{246}\cdot h_{46}}{h_{14}\cdot h_{235}\cdot h_{124}\cdot h_{36}}$ , $y_{2}(t)-1=- \frac{h_{123}\cdot h_{13}\cdot h_{246}\cdot h_{46}}{h_{14}\cdot h_{236}\cdot h_{124}\cdot h_{36}}$ ,

$x_{1}(t)-y_{1}(t)= \frac{h_{15}\cdot h_{234}\cdot h_{123}\cdot h_{23}.h_{146}\cdot h_{45}}{h_{14}\cdot h_{235}\cdot h_{124}\cdot h_{28}h_{134}\cdot h_{35}}$ ,

$x_{2}(t)-y_{2}(t)= \frac{h_{16}\cdot h_{234}\cdot h_{123}\cdot h_{23}\cdot h_{146}\cdot h_{46}}{h_{14}\cdot h_{236}\cdot h_{124}\cdot h_{26}\cdot h_{134}\cdot h_{36}}$ ,

$y_{1}(t)-y_{2}(t)= \frac{h_{234}\cdot h_{123}\cdot h_{13}\cdot h_{266}\cdot h_{34}\cdot h_{66}}{h_{14}\cdot h_{235}\cdot h_{236}\cdot h_{124}\cdot h_{35}\cdot h_{36}}$ ,

$x_{1}(t)-x_{2}(t)= \frac{h_{234}\cdot h_{123}\cdot h_{366}\cdot h_{12}\cdot h_{24}\cdot h_{b6}}{h_{14}\cdot h_{235}\cdot h_{236}\cdot h_{25}\cdot h_{2}\cdot h_{134}}$

4. The configuration space of 6 points in $P^{2}$ .
The purpose of this section is to define a $W(E_{6})$-equivariant map from $P^{6}$

to the configuration space $P_{2}^{6}$ of 6 points in $P^{2}$ by using $x_{1}(t),$ $x_{2}(t),$ $y_{1}(t),$ $y_{2}(t)$

introduced in the previous section.
For this purpose, we first introduce the linear space $W$ of $3\cross 6$ matrices:

$W=\{X=|(\begin{array}{llllll}x_{11} x_{12} x_{13} x_{14} x_{15} x_{16}x_{21} X_{22} x_{23} x_{24} x_{25} x_{26}x_{31} x_{32} x_{33} x_{34} x_{35} x_{36}\end{array});x_{ij}\in C (1\leqq i\leqq 3,1\leqq j 6)\}$ .

Then $W$ admits a left $GL(3, C)$-action and a right $GL(6, C)$-action in a natural
way. For a moment, we identify $(C^{*})^{6}$ with the maximal torus of $GL(6, C)$

consisting of diagonal matrices and consider the action of $GL(3, C)\cross(C^{*})^{6}$ on
$W$ instead of $GL(3, C)\cross GL(6, C)$ .

For simplicity, we write $X=(X_{1}, X_{2})$ for the matrix $X\in W$ , where both $X_{1}$ ,
$X_{2}$ are $3\cross 3$ matrices. For any $3\cross 3$ matrix $Y=(y_{ij})_{1\leq i,j\leqq 3}$ with the condition
$y_{ij}\neq 0$ (l$i, $j\leqq 3$), we define a $3\cross 3$ matrix

$\sigma(Y)=(\frac{1}{y_{ij}})_{1\leq i,j\leq 3}$

following a suggestion of M. Yoshida. Moreover, we put
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$D(i_{1}, i_{2}, i_{3})=\det(\begin{array}{lll}x_{1t_{1}} x_{1t_{2}} x_{1i_{3}}x_{zt_{1}} x_{2i_{l}} X_{2t_{\theta}}x_{3i_{1}} x_{3i_{l}} x_{3i_{3}}\end{array})$

for a given matrix $X\in W$ .
Using these notation, we define subsets $W’,$ $W_{0}$ of $W$ by

$W’=\{X\in W;D(i_{1}, i_{2}, i_{3})\neq 0(1\leqq i_{1}<i_{2}<i_{3} 6)\}$

$W_{0}=\{(X_{1}, X_{2})\in W’ ; (I_{3}, Cof(X_{1}^{-1}X_{2})), (I_{3}, \sigma(X_{1}^{-1}X_{2}))\in W’\}$ ,

where Cof(Y) $=(\det Y)^{t}Y^{-1}$ is the cofactor matrix of a given square matrix Y.
It is clear that the action of $GL(3, C)\cross(C^{*})^{6}$ on $W$ naturally induces that

on each of $W’,$ $W_{0}$ . In the sequel, we mainly consider the quotient space of $W_{0}$

under the action of $GL(3, C)\cross(C^{*})^{6}$ , that is,

$W_{Q}=GL(3, C)\backslash W_{0}/(C^{*})^{6}$ .
It is clear from the definition that for any element $X\in W_{0}$ , there are $(g, h)$

$\in GL(3, C)\cross(C^{*})^{6}$ and $(x_{1}, X_{2}, y_{1}, y_{2})\in C^{4}$ such that

$gXh=(\begin{array}{llllll}1 0 0 1 1 10 1 0 1 x_{1} X_{2}0 0 1 1 y_{1} y_{2}\end{array})$ .

In particular $(x_{1}, x_{2}, y_{1}, y_{2})$ is uniquely determined for $X\in W_{0}$ . In this sense,
$W_{Q}=GL(3, C)\backslash W_{0}/(C^{*})^{6}$ is identified with an open subset of $C^{4}$ .

Changes of column vectors of $X\in W_{0}$ induce birational transformations on
$C^{4}$ with coordinate system $(x_{1}, x_{2}, y_{1}, y_{2})$ . Let $s_{j}$ (l$j\leqq 5) be the birational
transformation on $C^{4}$ corresponding to the change of the j-th column vector
and $(j+1)$-column vector of $X\in W_{0}$ . Moreover $W_{Q}$ admits an involution $s_{R}$

induced from the action on $W_{0}$ defined by

$s_{R}$ :$\sim$

$(X_{1}, X_{2})arrow(I_{3}, \sigma(X_{1}^{-1}X_{2}))$

for any $(X_{1}, X_{2})\in W_{0}$ .
LEMMA 4.1. The birational transformations $s_{j}(1\leqq j\leqq 5)$ and $s_{R}$ on $C^{4}$ are

given by

$s_{1}$ : $(x_{1}, x_{2}, y_{1}, y_{2}) arrow(\frac{1}{x_{1}},$ $\frac{1}{x_{2}},$
$\frac{y_{1}}{x_{1}}\frac{y_{2}}{x_{2}})$ ,

$s_{2}$ : ( $x_{1}$ , X2, $y_{1},$ $y_{2}$ ) $arrow(y_{1}, y_{2}, x_{t}, x_{2})$ ,

$s_{3}$ : $(x_{1}, X_{2}, y_{1}, y_{2}) arrow(\frac{x_{1}-y_{1}}{1-y_{1}},$ $\frac{x_{2}-y_{2}}{1-y_{2}},$ $\frac{y_{1}}{y_{1}-1},$ $\frac{y_{2}}{y_{2}-1})$ ,
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$s_{4}$ : $(x_{1}, X_{2}, y_{1}, y_{2}) arrow(\frac{1}{x_{1}},$ $\frac{x_{2}}{x_{1}}\frac{1}{y_{1}}\frac{y_{2}}{y_{1}})$ ,

$s_{5}$ : $(x_{1}, X_{2}, y_{1}, y_{2})arrow(x_{2}, x_{1}, y_{2}, y_{1})$ ,

$s_{R}$ : $(x_{1}, x_{2}, y_{1}, y_{2})arrow(1/x_{1},1/x_{2},1/y_{1},1/y_{2})$ .
The proof of this lemma is straightforward.
We define 15 hypersurfaces $T_{j}$ : $f_{j}=0$ (l$j$15), of $C^{4}$ , where

$f_{1}=x_{1}y_{2}-x_{2}y_{1}-x_{1}+x_{2}+y_{1}-y_{2}$ , $f_{2}=y_{1}-1$ , $f_{3}=x_{1}-1$ ,

$f_{4}=y_{2}-1$ , $f_{6}=x_{2}-1$ , $f_{6}=y_{1}-y_{2}$ , $f_{7}=x_{1}-x_{2}$ , $f_{8}=x_{1}-y_{1}$ ,

$f_{9}=x_{2}-y_{2}$ , $f_{10}=x_{1}y_{2}-x_{2}y_{1}$ , $fi_{1}=x_{2}$ , $f_{12}=x_{1}$ , $f_{13}=y_{2}$ , $f_{14}=y_{1}$ ,

$f_{15}=x_{1}y_{2}(1-y_{1})(1-x_{2})-x_{2}y_{1}(1-x_{1})(1-y_{2})$ .
It follows from the definition that $s_{1},$

$\cdots$ , $s_{6},$ $s_{R}$ are biregular outside the
union $T$ of the hypersurfaces $T_{j}$ (l$j\leqq 15). For a moment, let $\tilde{G}$ be the grouP

generated by $s_{1},$
$\cdots$ , $s_{6},$ $s_{R}$ .

The following theorem which seems known shows a concrete correspondence
between $W(E_{6})$ and the group $\tilde{G}$ defined above.

THEOREM 4.2. The correslondence
$g_{1}arrow s_{1}$ , $g_{2}arrow S_{R}$ , $g_{3}arrow S_{2}$ , $g_{4}arrow s_{3}$ , $g_{5}arrow s_{4}$ , $g_{6}arrow s_{5}$

induces a group isomorphism of $W(E_{6})$ to the grouP $\tilde{G}$ .

PROOF. From the construction of $s_{j},$ $j=1,2,3,4,5$ , it is easy to show the
relations:

$S_{j}S_{k}=s_{k}s_{j}(|j-k|>1)$ , $s_{j}s_{k}s_{j}=s_{k}s_{j}s_{k}(|j-k|=1)$ .

Therefore it suffices to show

$s_{j}s_{R}=s_{R}s_{j}(j=1,2,4,5)$ , $s_{3}s_{R}s_{3}=s_{R}s_{3}s_{R}$ ,

which are easy to check.

REMARK. In [DO], it is stated that there is a $W(E_{6})$-action on $W_{Q}$ . See
also [$N$ , Appendix], [H].

We are going to define cross ratios for 5 points in $P^{2}$ following [H]. Let
$\xi_{i}=[\xi_{1i} : \xi_{2i} : \xi_{si}]$ (l$i\leqq 5) be five points of $P^{2}$ in a general position and let $l$

be a line of $P^{2}$ . We denote by $P_{t}=[1:z_{t} : w_{i}]$ the intersection of $l$ and the
line passing through the points & and $\xi_{i}$ . We take 1 so that the four points
$P_{i}(i=2,3,4,5)$ are mutually different. Then we define
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(4.1) $CR( \xi_{2}, \xi_{3}, \xi_{4}, \xi_{6} ; \xi_{1})=\frac{(z_{2}-z_{4})(z_{3}-z_{5})}{(z_{2}-z_{6})(z_{3}-z_{4})}$

which is in fact a cross ratio of $z_{2},$ $z_{3},$ $z_{4},$ $z_{6}$ .
NOW we consider a matrix of the form

$X=(\begin{array}{llllll}1 0 0 1 1 10 1 0 1 x_{1} X_{2}0 0 1 1 y_{1} y_{2}\end{array})$

which is a representative of a point of $W_{Q}$ as explained before. From the
matrix $X$ , we define six points $\xi_{i}$ $(i=1, \cdots , 6)$ in $P^{2}$ in a usual manner, that is,

$\xi_{1}=[1:0:0]$ , $\xi_{2}=[0:1 : 0]$ , $\xi_{3}=[0:0:1]$ ,

$\xi_{4}=[1:1:1]$ , $\xi_{6}=[1:x_{1} : y_{1}]$ , $\xi_{6}=[1:x_{2} : y_{2}]$ .

Then we can compute $CR(\xi_{i_{2}}, \xi_{i_{3}}, \xi_{i_{4}}, \xi_{i_{5}} ; \xi_{i_{1}})$ explicitly for various $i_{1},$ $i_{2},$ $i_{3},$ $i_{4}$ ,
$i_{5}$ . In particular, the next lemma is a direct consequence of its definition.

LEMMA 4.3.

$x_{1}=CR(\xi_{2}, \xi_{1}, \xi_{4}, \xi_{5} ; \xi_{3})$ , $x_{2}=CR(\xi_{2}, \xi_{1}, \xi_{4}, \xi_{6} ; \xi_{3})$ ,

$y_{1}=CR(\xi_{1}, \xi_{3}, \xi_{4}, \xi_{6} ; \xi_{2})$ , $y_{2}=CR(\xi_{1}, \xi_{3}, \xi_{4}, \xi_{6} ; \xi_{2})$ .

From the equations.

(4.2) $CR(\xi_{i_{I}}, \xi_{t_{3}}, \xi_{t_{4}}, \xi_{i_{5}} ; \xi_{t_{1}})=CR(i_{1}\sim, i_{6} ; i_{2}, i_{3}, i_{4}, i_{6})$ ,

we obtain various equalities. In particular, by computing the cases
$(i_{1}, i_{2}, i_{3}, i_{4}, i_{6}, i_{6})=(3,2,1,4,5,6),$ $(3,2,1,4,6,5),$ $(2,1,3,4,5,6),$ $(2,1,3,4,6,5)$ ,

we have

(4.3) $x_{1}=x_{1}(i)$ , $x_{2}=x_{2}(t)$ , $y_{1}=y_{1}(t)$ , $y_{2}=y_{2}(t)$ ,

where $x_{1}(t),$ $x_{2}(t),$ $y_{1}(t),$ $y_{2}(t)$ are the functions on $P^{5}$ (cf. Definition 3.7).

The linear action of $W(E_{6})$ on $E$ defined in section 2 induces a projective
linear action of $W(E_{6})$ on $P^{5}$ under the identification $P^{5}=P(E)$ . On the other
hand, in virtue of Theorem 4.2, we obtain a birational action of $W(E_{6})$ on $C^{4}$

with coordinate $(x_{1}, x_{2}, y_{1}, y_{2})$ .

THEOREM 4.4. Let $\Phi_{1}(t)$ be a maP from $P^{6}$ to $C^{4}$ with coordinate $(x_{1},$ $x_{2},$ $y_{1}$ ,
$y_{2})$ defined by

$\Phi_{1}(t)=(x_{1}(t), x_{2}(t),$ $y_{1}(t),$ $y_{2}(t))$ .

Then $\Phi_{1}(t)$ is $W(E_{6})$-equivariant.
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PROOF. Noting the definition of $g_{j}$ and that of birational transformations
$s_{J},$ $s_{R}$ , we can check the claim. The most complicated case is the implication

$\Phi_{1}(g_{4}(t))=(\frac{x_{1}(t)-y_{1}(t)}{1-y_{1}(t)},$ $\frac{x_{2}(t)-y_{2}(t)}{1-y_{2}(t)}\frac{y_{1}(t)}{y_{1}(t)-1}\frac{y_{2}(t)}{y_{2}(t)-1})$

which follows from Lemma 3.10.

5. Relations with a family of cubic surfaces due to A. Cayley.

The purpose of this section is to show a relation between the versal family
of the $E_{6}$-singularity and the family of cubic surfaces originally due to A. Cayley.

We first recall the definition of the family of cubic surfaces due to Cayley
[C]:

(5.1) $w_{1}[x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{1}^{2}+(mn+ \frac{1}{mn})y_{1}z_{1}+(nl+\frac{1}{nl})z_{1}x_{1}+(lm+\frac{1}{lm})x_{1}y_{1}$

$+w_{1} \{(l+\frac{1}{l})x_{1}+(m+\frac{1}{m})y_{1}+(n+\frac{1}{n})z_{1}\}]+kx_{1}y_{1}z_{1}=0$ .

(We use the homogeneous coordinate $(x_{1} : y_{1} : Z_{1} : w_{1})$ instead of (X: $Y$ : $Z:W$)

in [C].)
Modifying his family, we introduce a family of cubic surfaces of $P^{3}$ with

homogeneous coordinate (X: $Y:Z:W$) depending on parameters $(\lambda, \mu, \nu, \rho)$ as
follows (cf. [NS]):

(5.2) $\rho W[\lambda X^{2}+\mu Y^{2}+\nu Z^{2}+(\rho-1)^{2}(\lambda\mu\nu\rho-1)^{2}W^{2}$

$+(\mu\nu+1)YZ+(\lambda\nu+1)ZX+(\lambda\mu+1)XY$

$-(\rho-1)(\lambda\mu\nu\rho-1)W\{(\lambda+1)X+(\mu+1)Y+(\nu+1)Z\}]+XYZ=0$ .

The relation between (5.1) and (5.2) is given as follows (cf. [NS]):

(X, $Y,$ $Z,$ $W$) $=(mnx_{1},$ $nly_{1},$ $lmz_{1},$ $- \frac{lmn}{\rho(\rho-1)(\lambda\mu\nu\rho-1)}w_{1})$ ,

$\lambda=l^{2}$ , $\mu=m^{2}$ , $\nu=n^{2}$ , $k=- \frac{(\rho-1)(\lambda\mu\nu\rho-1)}{lmn\rho}$ .

In [ $C$ , pp. 376-378], there is a list of the defining equations of 45 tritangent
planes and their namings for the surface (5.1). (See also [$N$ , p. 10], where
those of 45 tritangents are given for (5.2).) For our purpose, we change their
namings into those due to Schlaefli following Hunt [H]. For the sake of con-
venience, we write the list in [H]. (Below, the left-hand side is Schlaefli’s
notation and the right-hand side is Cayley’s.)
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(12) $-\zeta$ , (13) $-z$ , (14) $-z$ , (15) $-\overline{z}$ , (16) $-w$
(21) $-\overline{r}$, (23) $-\overline{n}$ , (24) $-\overline{m}_{1}$ , (25) $-\overline{q}_{1}$ , (26) $-\overline{x}$

(31) $-n$ , (32) $-r$ , (34) $-q_{1}$ , (35) $-m_{1}$ , (36) $-x$

(41) $-1_{1}$ , (42) $-h$ , (43) $-\overline{g}$ , (45) $-1$ , (46) $-x$

(51) $-\overline{p}_{1}$ , (52) $-\overline{\theta}$ , (53) $-f$ , (54) $-P$ (56) $-\xi$

(61) $-\overline{y}$ , (62) $-\overline{r}_{1}$ , (63) $-\overline{n}_{1}$ , (64) $-\overline{1}$ , (65) $-\overline{p}$ ,

$(123456)-\theta$ , $(123546)-\overline{h}$ , $(123645)-r_{1}$ ,

$(132456)-\overline{f}$ , $(132546)-g$ , $(132645)-n_{1}$ ,

$(142356)-p_{1}$ , $(142536)-q$ , $(142635)-m$ ,

$(152346)-\overline{1}_{1}$ , $(152436)-\overline{m}$ , $(152634)-\overline{q}$ ,

$(162345)-y$ , $(162435)-y$ , $(162534)-\eta$ .

In particular,

(5.3) (46): $X=0$ , (162435): $Y=0$ , (13): $Z=0$ , (16): $W=0$ .
We recall the surface $S(Pq)$ and its 45 tritangent planes which are written

by

$\pi(ij)(i\neq j)$ , $\pi(i_{1}i_{2}.i_{3}i_{4}.i_{5}i_{6})$ .
Then, it follows from the definition that there is a projective linear map $T(x$ :
$y$ : $z:w$ )$=(X:Y:Z:W)$ such that $T$ induces a transformation of the 45 tri-
tangent planes for $S(pq)$ to those for (5.2) defined by

$\pi(ij)arrow(ij)$ ,

$\pi(i_{1}i_{2}.i_{3}i_{4}.i_{5}i_{6})arrow(i_{1}i_{2}i_{3}i_{4}i_{\overline{o}}i_{6})$

for all $(ij)$ and $\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\}$ . Then (5.3) implies that $T$ is defined by

(5.4) $\{$

$X=c_{x}\{(P_{2}-\varphi_{46})x/2-y+\psi_{46}z/2+\tau_{46}w\}$ ,

$Y=c_{y}\{(p_{2}-\varphi_{162435})x/2-y+\psi_{162435}z/2+\tau_{162435}w\}$ ,

$Z=c_{z}\{(p_{2}-\varphi_{13})x/2-y+\psi_{13}z/2+\tau_{13}w\}$ ,

$W=c_{w}\{(p_{2}-\varphi_{16})x/2-y+\psi_{16}z/2+\tau_{16}w\}$

for some constants $c_{x},$ $c_{y},$ $c_{z},$ $c_{w}$ depending on $t$ . (Concrete expression of $c_{x}$ ,
$c_{y},$ $c_{z},$ $c_{w}$ will be given in section 7.)

By taking cross ratios for tritangents planes, we can obtain a map of $P^{5}$
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to the $(\lambda, \mu, \nu, \rho)$-space. We are going to determine the map in question.
For this purpose, we first recall the definitions of the tritangent planes (31),

(32), (34), (35), (36), (21), (23), (24), (25), (26) (cf. $[N$ , p. 10]):

$\lambda X+\mu Y+\lambda\mu\nu\rho Z+(\lambda\mu\nu\rho-1)(\lambda\mu\rho-\lambda\rho-\mu\rho+1)W=0$ , (21)

$\lambda X+Y+\lambda\nu\rho Z-(\rho-1)(\lambda\mu\nu\rho-1)W=0$ , (23)

$\lambda\rho X+Y+\lambda\nu\rho Z-\lambda\rho(\rho-1)(\lambda\mu\nu\rho-1)W=0$ , (24)

$\lambda\nu\rho X+1’-+\lambda\nu\rho Z-\rho(\lambda\mu\nu\rho-1)(\lambda\mu\rho-\lambda-\mu+1)W=0$ , (25)

$\lambda X-(\lambda\rho-1)(\lambda\mu v\rho-1)W=0$ , (26)

$X+\mu J^{\nearrow}+\mu\nu\rho Z-(\rho-1)(\lambda\mu\nu\rho-1)W=0$ , (31)

$X+Y+v\rho Z-(\rho-1)(\mu\nu\rho+\lambda\nu\rho-\nu\rho-1)W=_{d}^{r}0$ , (32)

$\lambda\rho X+Y+\nu\rho Z-\rho(\rho-1)(\lambda\mu\nu\rho+\lambda\nu-\lambda-\nu)W=0$ , (34)

$\lambda\nu\rho X+1^{r}+\nu\rho Z-\nu\rho(\rho-1)(\lambda\mu v\rho-1)W=0$ , (35)

$X-(\rho-1)(\mu\nu\rho-1)W=0$ . (36)

Let $L$ be a line of $P^{3}$ and we put

$w_{2.j}=L\cap(2j)(j=1,3,4,5,6)$ , $w_{3.j}=L\cap(3j)(j=1,2,4,5,6)$ .

We take $L$ so that $w_{2.j}(j=1,3,4,5,6)$ are mutually different and that $w_{3,j}(j=$

$1,2,4,5,6)$ are mutually different. Identifying $L$ with $P^{1}=C\cup\{\infty\}$ , we regard
$w_{2,j},$ $w_{3,j}$ as points of $C\cup\{\infty\}$ . Then we have the following lemma.

LEMMA 5.1.

(5.5) $\frac{(w_{2,1}-w_{2,5})(w_{2.3}-w_{24})}{(w_{2.1}-w_{2.4})(w_{2,3}-w_{2,5})}=\frac{(\mu\nu\rho-1)(\rho-1)}{(\mu\rho-1)(\nu\rho-1)}$ ,

(5.6) $\frac{(w_{2,1}-w_{2.6})(w_{2.3}-w_{2.4})}{(w_{2,1}-w_{2.4})(w_{2.3}-w_{2.6})}=\frac{\mu(\rho-1)}{(\mu p-1)}$ ,

(5.7) $\frac{(w_{3.1}-w_{3,5})(w_{3.2}-w_{3.4})}{(w_{3,1}-w_{3.4})(w_{3.2}-w_{3.5})}=\frac{(\lambda\rho-1)(\lambda\mu\nu\rho-1)}{(\lambda\mu\rho-1)(\lambda\nu\rho-1)}$ ,

(5.8) $\frac{(w_{3,1}-w_{3.6})(w_{3,2}-w_{3,4})}{(w_{3.1}-w_{3.4})(w_{3.2}-w_{3.6})}=\frac{\mu(\lambda\rho-1)}{\lambda\mu\rho-1}$ .

PROOF. We may take the line $Y=Z=0$ as $L$ and put $w_{2,j}=(v_{2j} : 0:0:1)$ ,
$w_{3,j}=(v_{3.j} : 0:0:1)$ . Then, from the definition, we have

$v_{2.1}=-(\lambda\mu\nu\rho-1)(\lambda\mu\rho-\lambda\rho-\mu\rho+1)/\lambda$ , $v_{2.3}=(\rho-1)(\lambda\mu\nu\rho-1)/\lambda$ ,

$v_{2.4}=(\rho-1)(\lambda\mu\nu\rho-1)$ , $v_{2,5}=(\lambda\mu\nu\rho-1)(\lambda\mu\rho-\lambda-\mu+1)/(\lambda\nu)$ ,
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$v_{2.6}=(\lambda p-1)(\lambda\mu\nu p-1)/\lambda$ , $v_{3.1}=(p-1)(\lambda\mu\nu\rho-1)$ ,

$v_{3.2}=(p-1)(\mu\nu\rho+\lambda\nu\rho-\nu p-1)$ , $v_{3.4}=(\rho-1)(\lambda\mu\nu\rho+\lambda\nu-\lambda-\nu)/\lambda$ ,

$v_{3,5}=(\rho-1)(\lambda\mu\nu\rho-1)/\lambda$ , $v_{3.6}=(\rho-1)(\mu\nu\rho-1)$ .
Noting these, we obtain the lemma by direct computation.

It is clear from the definition that the left-sides of (5.5), (5.6), (5.7), (5.8)

are cross ratios of tritangent planes (26), (25), (36), (35), respectively. Therefore,
if the map $T$ has the required properties, we obtain the following relations:

$CR(3 \sim,6;1,2,4,5)=\frac{(\lambda\rho-1)(\lambda\mu\nu\rho-1)}{(\lambda\mu\rho-1)\lambda\nu p-1)}$ , $CR(3,5; \sim 1,2,4,6)=\frac{\mu(\lambda\rho-1)}{\lambda\mu\rho-1}$ ,

$\sim CR(2,6;1,3,4,5)=\frac{(\mu\nu p-1)(p-1)}{(\mu p-1)(\nu\rho-1)}$ , $\sim CR(2,5;1,3,4,6)=\frac{\mu(\rho-1)}{(\mu\rho-1)}$ .
At the present stage, we need a simple lemma to continue the discussion.

LEMMA 5.2. The relations in (i) and (ii) on $(x_{1}, x_{2}, y_{1}, y_{2})$ and $(\lambda, \mu, \nu, \rho)$

are equivalent.
(i)

$\lambda=\frac{x_{2}(x_{1}-1)(y_{1}-y_{2})(y_{2}-1)}{y_{2}(x_{1}-x_{2})(x_{2}-1)(y_{1}-1)}$ ,

$\mu=\underline{\{(y_{1}-1)(x_{2}-y_{2})-(y_{2}-1)(x_{1}-y_{1})\}x_{2}y_{2}}$

$x_{1}x_{2}y_{1}-x_{1}x_{2}y_{2}-x_{1}y_{1}y_{2}+x_{1}y_{2}+x_{2}y_{1}y_{2}-x_{2}y_{1}$

$\nu=-\frac{(x_{1}y_{2}-x_{2}y_{1})(x_{2}-1)(y_{2}-1)}{(x_{1}-x_{2})(x_{2}-y_{2})(y_{1}-y_{2})}$ ,

$\rho=\frac{(x_{1}-x_{2})(x_{2}-y_{2})(y_{1}-1)}{\{(x_{1}-1)(x_{2}-y_{2})-(x_{1}-y_{1})(x_{2}-1)\}(y_{2}-1)x_{2}}$ .
(ii)

$x_{1}= \frac{(\lambda\rho-1)(\lambda\mu\nu\rho-1)}{(\lambda\mu p-1)(\lambda\nu p-1)}$ $x_{2}= \frac{(\lambda\rho-1)\mu}{\lambda\mu\rho-1}$ ,

$y_{1}= \frac{(\mu\nu\rho-1)(p-1)}{(\mu p-1)(\nu\rho-1)}$ , $y_{2}= \frac{(p-1)\mu}{\mu\rho-1}$ .

Let $\Phi_{2}$ be a birational transformation of $C^{4}$ defined by

$\Phi_{2}(x_{1}, X_{2}, y_{1}, y_{2})=(\lambda, \mu, \nu, \rho)$ ,

where $\lambda,$

$\mu,$ $\nu,$ $\rho$ are rational functions of $(x_{1}, x_{2}, y_{1}, y_{2})$ defined in Lemma 5.2 (i).
Then Lemma 5.2 shows that $\Phi_{2}$ is birational.

TO continue the argument, we recall the $W(E_{6})$-action on the family (5.2)
of cubic surfaces given in [NS]. In particular, the $W(E_{6})$-action in [NS] pre-
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serves the parameter space. In fact, we define the following six birational
transformations on the $(\lambda, \mu, \nu, \rho)$-space:

$\tilde{g}_{1}$ : $\{$

$\lambdaarrow\lambda\mu\nu\rho^{2}(1-\lambda)/(\lambda\mu\nu\rho^{2}-1)$

$\muarrow(\lambda\mu\rho-1)(\lambda\mu\nu\rho-1)/(\mu(\lambda\rho-1)(\lambda\nu\rho-1))$

$\nuarrow(\lambda\nu\rho-1)(\lambda\mu\nu\rho-1)/(\nu(\lambda\rho-1)(\lambda\mu\rho-1))$

$parrow(\lambda\rho-1)(\lambda\mu\nu\rho^{2}-1)/(\rho(\lambda-1)(\lambda\mu\nu p-1))$

$\tilde{g}_{2}$ : $(\lambda, \mu, \nu, \rho)arrow(\lambda, 1/\mu, \nu, \mu\rho)$

$\tilde{g}_{3}$ : $(\lambda, \mu, \nu, p)arrow(1/\lambda, \mu, \nu, \lambda\rho)$

$\tilde{g}_{4}$ : $(\lambda, \mu, \nu, \rho)arrow(\lambda\rho, \mu\rho, \nu\rho, 1/p)$

$\tilde{g}_{\overline{o}}$ : $(\lambda, \mu, \nu, \rho)arrow(\lambda, \mu, 1/\nu, \nu\rho)$

$\tilde{g}_{6}$ : $(\begin{array}{l}\lambdaarrow(\lambda\nu\rho-1)(\lambda\mu\nu\rho-1)/(\lambda(\nu\rho-1)(\mu\nu\rho-1))\muarrow(\mu\nu\rho-1)(\lambda\mu\nu\rho-1)/(\mu(\nu\rho-1)(\lambda\nu p-1))\nuarrow\lambda\mu\nu\rho^{2}(1-\nu)/(\lambda\mu\nu\rho^{2}-1)\rhoarrow(\nu\rho-1)(\lambda\mu\nu\rho^{2}-1)/(\rho(\nu-1)(\lambda\mu\nu\rho-1)).\end{array}$

Then the correspondence

$g_{j}arrow\tilde{g}_{j}$ , $j=1,$ $\cdots$ $6$

induces an isomorphism between $W(E_{6})$ and the group of birational transforma-
tions on the $(\lambda, \mu, \nu, \rho)$-space generated by $\tilde{g}_{j},$ $j=1,$ $\cdots$ , 6. In this manner, the
$(\lambda, \mu, \nu, \rho)$-space admits a $W(E_{6})$-action.

LBMMA 5.3. The maP $\Phi_{2}$ is $W(D_{4})$-equivariant.

PROOF. It suffices to show the $W(D_{4})$-equivariance $\Phi_{2}^{-1}$ whose explicit form
is obtained by Lemma 5.2 (ii).

The lemma follows from Lemma 4.1 and the definition of $\tilde{g}_{2},\tilde{g}_{3},\tilde{g}_{4},\tilde{g}_{6}$ given
before the lemma.

We define another map $\Phi_{3}$ from $P^{6}$ to the $(\lambda, \mu, \nu, \rho)$-space as a composi-
tion of $\Phi_{1}$ and $\Phi_{2}$ : $\Phi_{3}(t)=\Phi_{2}(\Phi_{1}(t))$ .

LEMMA 5.4. We define $\lambda(t),$ $\mu(t),$ $\nu(t),$ $\rho(t)$ by

$\Phi_{3}(t)=(\lambda(t), \mu(t),$ $\nu(t),$ $\rho(t))$ .
Then

$\lambda(t)=\frac{h_{34}\cdot h_{346}\cdot h_{26}\cdot h_{256}h_{13}\cdot h_{136}\cdot h_{24}\cdot h_{246}}{h_{24}\cdot h_{245}\cdot h_{36}\cdot h_{356}h_{12}\cdot h_{126}\cdot h_{34}\cdot h_{346}}$ ,
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$\mu(t)=\frac{h_{4\text{\’{o}} 6}\cdot h_{235}.\cdot h_{134}\cdot h_{126}}{h\cdot h_{16}h_{24}\cdot h_{36}}\cdot\frac{h_{16}\cdot h_{136}\cdot h_{24}\cdot h_{234}}{h_{14}\cdot h_{134}\cdot h_{26}\cdot h_{236}}$ ,

$\nu(t)=\frac{h_{25}\cdot h_{236}\cdot h_{46}\cdot h_{346}h_{16}\cdot h_{166}\cdot h_{24}\cdot h_{246}}{h_{24}\cdot h_{234}\cdot h_{56}\cdot h_{356}h_{14}\cdot h_{146}\cdot h_{26}\cdot h_{266}}$ ,

$\rho(t)=\frac{h_{24}\cdot h_{246}\cdot h_{36}\cdot h_{S66}}{h_{23}\cdot h_{236}\cdot h_{46}\cdot h_{456}}\cdot\frac{h_{14}\cdot h_{146}\cdot h_{23}\cdot h_{286}}{h_{13}\cdot h_{136}\cdot h_{24}\cdot h_{246}}$ .

PROOF. Since $\lambda,$

$\mu,$ $\nu,$ $\rho$ are contained in a $W(D_{4})$-orbit, it suffices to show
the formula for $\lambda(t)$ . But it is easy to prove

$\lambda(t)=\frac{h_{34}\cdot h_{346}\cdot h_{26}.h_{266}}{h_{24}\cdot h_{245}\cdot h_{36}h_{366}}\cdot\frac{h_{13}\cdot h_{1S6}\cdot h_{24}\cdot h_{246}}{h_{12}\cdot h_{126}\cdot h_{34}\cdot h_{346}}$

by using Lemma 3.10. Hence the lemma follows.

THEOREM 5.5. The maPs $\Phi_{j}(\int=2,3)$ are $W(E_{6})$-equivariant.

PROOF. The $W(E_{6})$-equivariance of $\Phi_{2}$ is straightforward by using Lemma
5.2. Noting that $\Phi_{3}=\Phi_{1^{\circ}}\Phi_{2}$ , we imply the theorem.

6. A Conjecture of B. Hunt.

It is known (cf. [B]) that there is a unique $W(E_{6})$-invariant homogeneous
polynomial of $t=(t_{1}, \cdots , t_{6})$ of degree 5 up to a constant factor. For example,
we take $\delta_{s}(t)$ as such a polynomial.

Let $I_{6}$ be the hypersurface in $P^{\overline{o}}$ defined by $\delta_{6}(t)=0$ . Since $\delta_{s}(t)$ is $W(E_{6})-$

invariant, so is $I_{6}$ . Moreover, sinc$e\dim I_{6}=4$ , the restrictions $\Phi_{1}|I_{5},$ $\Phi_{s}|I_{6}$ are
generically finite maps from $I_{6}$ to $C^{4}$ . In [H], B. Hunt stated conjectures on
these maps which turn out to be one conjecture below.

CONJECTURE 6.1 $([H])$ . Both $\Phi_{1}|I_{6},$ $\Phi_{3}|I_{6}$ are generically bijective.

Since $\Phi_{2}$ is birational, it suffices to show Conjecture 6.1 for one of $\Phi_{1}|I_{6}$ ,
$\Phi_{3}|I_{6}$ . Noting the definition of $\Phi_{1}(t)$ , we find that Conjecture 6.1 is rewritten
as follows:

PROBLEM 6.2. Let $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ be constants. At least assume that $(x_{1},$ $x_{2}$ ,
$y_{1},$

$y_{2})$ is outside the set $T$ (for the definition of $T_{f}$ see section 3). Using $x_{1},$ $x_{2}$ ,
$y_{1},$ $y_{2}$ , we define four polynomials of $t$ by

$f_{1}=h_{24}\cdot h_{234}\cdot h_{16}\cdot h_{136}-x_{1}\cdot h_{14}\cdot h_{134}\cdot h_{26}\cdot h_{236}$ ,

$f_{2}=h_{24}\cdot h_{234}\cdot h_{16}\cdot h_{136}-x_{2}\cdot h_{14}\cdot h_{134}\cdot h_{26}\cdot h_{2S6}$ ,

$g_{1}=h_{S4}\cdot h_{234}\cdot h_{16}\cdot h_{125}-y_{1}\cdot h_{14}\cdot h_{124}\cdot h_{S6}\cdot h_{2S6}$ ,

$g_{2}=h_{34}\cdot h_{z34}\cdot h_{16}\cdot h_{126}-y_{2}\cdot h_{14}\cdot h_{124}\cdot h_{S6}\cdot h_{236}$ .
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Then how many solutions are there for the simultaneous equations of $t$ defined by

(6.1) $f_{1}=f_{2}=g_{1}=g_{2}=\delta_{\overline{o}}=0$

with the condition $\Phi_{1}(t)\not\in TP$

Needless to say, there is a gap between Conjecture 6.1 and Problem 6.2,
that is, conjecture 6.1 claims that for generic $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ , equation (6.1) has
a unique projective solution. Since it is not clear whether Conjecture 6.1 is
true or not, we reformulate it as a problem.

From now on, we are going to explain results related with Problem 6.2
and the moduli of cubic surfaces. We consider the hypersurface $H$ in $P^{5}$ defined
by $\lambda(t)-1=0$ , that is,

(6.2) $P(t)=h_{345}\cdot h_{26}\cdot h_{256}\cdot h_{13}\cdot h_{136}\cdot h_{246}-h_{246}\cdot h_{36}\cdot h_{356}\cdot h_{12}\cdot h_{126}\cdot h_{346}=0$ .

For the polynomial $P(t)$ , we have the following elementary but interesting lemma.

LEMMA 6.3. The polynomial $P(t)$ of equation (6.2) is decomPosed into two
factors:

$P(t)=h_{23}\cdot P_{5}(t)$ ,

where $P_{5}(t)$ is homogeneous of degree 5 and

$P_{6}(t_{1}, t_{2}, t_{S}, t_{4}, t_{6}, t_{6})=- \frac{1}{60}\delta_{6}(t_{1}, t_{2}, t_{3}, t_{4}, t_{6}, -3t_{\overline{o}})$ .

PROOF. By direct computation, we have

$8P_{5}(t)=t_{1}^{4}t_{5}-2t_{1}^{2}t_{2}^{2}t_{5}-2t_{1}^{2}t_{3}^{2}t_{b}-2t_{1}^{2}t_{4}^{2}t_{6}+2t_{1}^{2}t_{5}^{3}-2t_{1}^{2}t_{6}t_{6}^{2}-8t_{1}t_{2}t_{3}t_{4}t_{6}+t_{2}^{4}t_{6}-2t_{2}^{2}t_{3}^{2}t_{6}$

$-2t_{2}^{2}t_{4}^{2}t_{5}+2t_{2}^{2}t \frac{3}{o}-2t_{2}^{2}t_{5}t_{6}^{2}+t_{3}^{4}t_{5}-2t_{3}^{2}t_{4}^{2}t_{5}+2t_{3}^{2}t_{5}^{3}-2t_{3}^{2}t_{6}t_{6}^{2}+t_{4}^{4}t_{6}+2t_{4}^{2}t_{5}^{3}-2t_{4}^{2}t_{5}t_{6}^{2}$

$-3t_{5}^{5}+2t_{6}^{3}t_{6}^{2}+f_{6}t_{6}^{4}$ ,

Since this implies in particular that PS $(t)$ is symmetric witb respect to $t_{1},$ $t_{2},$ $t_{3}$ ,
$t_{4},$ $t_{6}$ , we can prove the lemma by comparing $P_{6}$ with the definition of $\delta_{6}$ .

From this remarkable relation, we easily imply the following (cf. [H], [N]).

PROPOSITION 6.4. (i) There are 45 hyPersurfaces in $P^{6}$ as the $W(E_{6})$-orbit
of H. Moreover, the isotropy subgroup of $H$ in $W(E_{6})$ is isomorphic to the Weyl
group of type $F_{4}$ .

(ii) The intersection $H\cap I_{6}$ is decomPosed into two irreducible comPonents.
One is defined by $t_{6}=t_{6}=0$ and therefore is isomorPhic to $P^{3}$ . The other is defined
by an equation of degree 24.

(iii) If $t\in H$, then $\Phi_{2}(t)=(1,1,1,1)$ , that is, $\lambda(t)=\mu(t)=\nu(t)=\rho(t)=1$ .
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PROOF. (i) It follows from Lemma 6.3 that $P_{6}(t)$ is $W(D_{4})$-invariant. We
now recall the definition of $k_{1},$ $k_{2}\in W(E_{6})$ (cf. section 2). By direct computation,
we can show

$P_{5}(k_{1}(t))=-P_{6}(t)$ , $P_{6}(k_{2}(t))=P_{\overline{o}}(t)$ .
Since $W(F_{4})$ is generated by $W(D_{4})$ and $k_{1},$ $k_{2}$ , we conclude that the hypersurface
$I_{6}$ is $W(F_{4})$-invariant. Then (i) follows.

(ii) It is clear from Lemma 2.2 and Lemma 6.3 that $t_{5}=t_{6}=0$ implies $\delta_{s}(t)$

$=P_{5}(t)=0$ .
TO find the second irreducible component of $I_{6}\cap H$, we assume $t_{5}\neq 0$ and

erase $t_{6}$ from the equations $\delta_{5}(t)=P_{5}(t)=0$ .
Since the computation is very complicated, we only reproduce here the outline

of its proof. We first introduce symmetric polynomials of $t_{1},$ $t_{2},$ $t_{3},$ $t_{4}$ by

$s_{2}=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}$ , $s_{4}=t_{1}^{2}(t_{2}^{2}+t_{3}^{2}+t_{4}^{2})+t_{2}^{2}(t_{3}^{2}+t_{4}^{2})+t_{3}^{2}t_{4}^{2}$ , $s_{4}’=t_{1}t_{2}t_{3}t_{4}$ .
Using $s_{2},$ $s_{4},$

$s_{4}’$ , we define the polynomial $R(t)$ of degree 24 by

$R(t)=c_{10}t_{5}^{20}+c_{9}t^{8} \frac{1}{0}+c_{8}t_{5}^{16}+c_{7}t_{5}^{14}+c_{6}t_{5}^{12}+c_{5}t_{5}^{10}+c_{4}t_{5}^{8}+c_{3}t_{6}^{6}+c_{2}t_{6}^{4}+c_{1}t_{5}^{2}+c_{0}$ ,

where

$c_{10}=1728s_{2}^{2}$ , $c_{9}=432s_{2}(-21s_{2}^{2}+20s_{4})$ ,

$c_{8}=27(4800s_{4^{2}}’+761s_{2}^{4}-1736s_{2}^{2}s_{4}+400s_{4}^{2})$ ,

$c_{7}=8s_{2}(-46656s_{4^{2}}’-3217s_{2}^{4}+12852s_{2}^{2}s_{4}-10368s_{4}^{2})$ ,

$c_{6}=2(-190080s_{4}^{\prime 2}s_{2}^{2}-336960s_{4^{2}}’s_{4}+9251s_{2}^{6}-55955s_{2}^{4}s_{4}+91368s_{2}^{2}s_{4}^{2}-28080s_{4}^{s})$ ,

$c_{5}=2s_{2}(825360s_{4^{2}}’s_{2}^{2}-1582848s_{4}^{\prime z}s_{4}-3256s_{2}^{6}+27143s_{2}^{4}s_{4}-72496s_{2}^{2}s_{4}^{2}+61776s_{4}^{3})$ ,

$c_{4}=-59833728s_{4}^{\prime 4}-1370994s_{4}^{;2}s_{2}^{4}+5809680s_{4^{2}}’s_{2}^{2}s_{4}-4732128s_{4}^{\prime 2}s_{4}^{2}-193s_{2}^{8}$

$+3054s_{2}^{6}s_{4}-12981s_{2}^{4}s_{4}^{2}+10120s_{2}^{2}s_{4}^{3}+21168s_{4}^{4}$ ,

$c_{3}=2s_{2}(-2191104s_{4}^{J4}+199476s_{4^{2}}’s_{2}^{4}-1263024s_{4}^{\prime z}s_{2}^{2}s_{4}+1990080s_{4}^{J2}s_{4}^{2}$

$+496s_{2}^{8}-7327s_{2}^{6}s_{4}+40443s_{2}^{4}s_{4}^{2}-98824s_{2}^{2}s_{4}^{3}+90160s_{4}^{4})$ ,

$c_{2}=-907200s_{4}^{\prime 4}s_{\mathfrak{g}}^{2}+2491776s_{4^{4}}’s_{4}-54714s_{4^{2}}’s_{2}^{6}+554274s_{4^{2}}’s_{2}^{4}s_{4}$

$-1854576s_{4^{2}}’s_{2}^{2}s_{4}^{2}+2051616s_{4^{2}}’s_{4}^{S}-256s_{2}^{10}+4640s_{2}^{8}s_{4}-33505s_{2}^{6}s_{4}^{2}$

$+120460s_{2}^{4}s_{4}^{3}-215600s_{2}^{2}s_{4}^{4}+153664s_{4}^{6}$ ,

$c_{1}=6s_{4^{2}}’s_{2}(-4968s_{4^{2}}’s_{2}^{2}+14688s_{4^{2}}’s_{4}-26s_{2}^{6}+285s_{2}^{4}s_{4}-1032s_{2}^{2}s_{4}^{2}+1232s_{4}^{3})$ ,

$c_{0}=27s_{4^{4}}’(192s_{4^{2}}’+s_{2}^{4}-8s_{2}^{2}s_{4}+16s_{4}^{2})$ .
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Moreover,

$N(t)=-2\{(5s_{2}^{5}-1602s_{2}^{4}t_{6}^{2}-34s_{2}^{3}s_{4}+4134s_{2}^{s}t_{6}^{4}+10037s_{2}^{2}s_{4}t_{5}^{2}-3005s_{2}^{2}t_{5}^{6}$

$+56s_{2}s_{4}^{2}-12820s_{2}s_{4}t_{6}^{4}+828s_{2}t_{6}^{8}-15764s_{4}^{2}t_{6}^{2}+1980s_{4}t_{5}^{6}-360t_{5}^{10})t_{5}^{2}$

$-(s_{2}^{2}+164s_{2}t_{6}^{2}-4s_{4}+7368t_{6}^{4})s_{4^{2}}’\}s_{4}’t_{6}$ ,

$D(t)=-\{3(31s_{l}^{s}+650s_{2}^{2}t_{5}^{2}-92s_{2}s_{4}+2320s_{2}t_{6}^{4}-1752s_{4}t_{6}^{2}+5648t_{6}^{6})s_{4^{2}}’t_{5}^{2}$

$+2(2464s_{4}^{2}-2055s_{4}t_{6}^{4}+187t_{6}^{8})s_{2}^{2}t_{5}^{4}-4(1687s_{4}^{2}-415s_{4}t_{6}^{4}+12t_{6}^{8})s_{2}t_{5}^{6}$

$-(1465s_{4}-1044t_{6}^{4})s_{2}^{4}t_{6}^{4}+15(269s_{4}-61t_{5}^{4})s_{2}^{3}t_{5}^{6}-16s_{4}^{;4}+144s_{2}^{6}t_{5}^{4}$

$-599s_{2}^{5}t_{6}^{6}-5488s_{4}^{3}t_{6}^{4}+2072s_{4}^{2}t_{5}^{8}-120s_{4}t_{5}^{12}\}$ .

Then assuming $t_{6}\neq 0$ , from the equations

$P_{6}(t)=\delta_{6}(t)=0$ ,

we obtain

$t_{6}=N(t)/D(t)$ , $R(t)=0$ .
The equation $R(t)=0$ defines the hypersurface of $I_{5}$ stated in Proposition 6.4(ii).

(iii) follows from direct computation.

REMARK 6.5. It follows from Proposition 6.4 (i) that there is a natural 1-1
correspondence between the $W(E_{6})$-orbit of $H$ and the 45 exceptional divisors of
Naruki’s cross ratio variety [N].

If we consider the equation $\lambda-1=0$ in the $(x_{1}, \chi_{2}y_{1}, y_{2})$-space, we obtain
a hypersurface $H_{0}$ defined by

(6.3) $x_{2}(x_{1}-1)(y_{1}-y_{2})(y_{2}-1)-y_{2}(x_{1}-x_{2})(x_{2}-1)(y_{1}-1)=0$ .
NOW we formulate a problem simplified from Problem 6.2, noting Proposition
6.4 (ii). Namely, we consider Problem 6.2 in the case $t_{6}=t_{6}=0$ and $t_{1}=1$ . (The

condition $t_{1}=1$ is not essential. From the homogeneity, we may assume $t_{j}=1$

for some $j.$ )

PROBLEM 6.2’. Define four Polynomials of $t_{2},$ $t_{3},$ $t_{4}$ by

$f_{10}=(t_{2}+t_{3}-i_{4}+1)^{2}(r_{2}+t_{4})(t_{3}-1)-x_{1}(t_{2}+t_{3})(t_{2}-t_{3}+t_{4}+1)^{2}(t_{4}-1)$ ,

$f_{20}=(t_{2}+t_{3}+t_{4}+1)(t_{2}+t_{3}-t_{4}+1)(t_{3}-1)t_{2}$

$+x_{2}(t_{2}+t_{3})(t_{2}-t_{3}+t_{4}+1)(t_{2}-t_{3}-t_{4}+1)$ ,

$g_{10}=(t_{2}+i_{3}-t_{4}+1)^{2}(r_{2}-t_{3})(t_{4}+1)-y_{1}(t_{2}-t_{3}+r_{4}+1)^{2}(r_{2}-t_{4})(r_{3}+1)$ ,



Versal deformation of $E_{6}$-singularity 379

$g_{20}=(t_{2}+t_{3}+t_{4}+1)(t_{2}+t_{3}-t_{4}+1)(t_{2}-t_{3})$

$-y_{2}(t_{2}-t_{3}+t_{4}+1)(t_{2}-t_{3}-t_{4}+1)(t_{3}+1)t_{2}$ ,

where $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}$ are constants with the condition (6.3) and $(x_{1}, x_{2}, y_{1}, y_{2})\not\in T$ .
(In particular, we assume that $x_{1}$ is a rational function of $x_{2},$ $y_{1},$ $y_{2}.$ ) Then how
many solutions are there for equations (6.4) of $t_{2},$ $t_{3},$ $t_{4}$ below

(6.4) $f_{10}=f_{20}=g_{10}=g_{20}=0$

under the condition $t\not\in T^{p}$

It is possible to give an answer to Problem 6.2’. In fact, erasing $t_{3},$ $t_{4}$ from
(6.4), we obtain an equation for $t_{2}$ defined by

(6.5) $\sum_{j=0}^{9}b_{j}tf=0$ ,

where

$b_{9}=(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})^{2}(x_{2}y_{2}-2y_{2}+1)y_{2}^{4}$ ,

$b_{8}=3(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})^{2}(x_{2}y_{2}-2x_{2}+1)y_{2}^{4}$ ,

$b_{6}=-4(x_{2}^{2}y_{1}y_{2}-x_{2}^{2}y_{2}+x_{2}y_{1}^{2}+x_{2}y_{1}y_{2}^{2}-4x_{2}y_{1}y_{2}+x_{2}y_{1}+x_{2}y_{2}^{2}-y_{1}^{2}y_{2}+y_{1}y_{2})$

$\cross(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})(x_{2}y_{2}-2x_{2}+1)y_{2}^{3}$ ,

$b_{\text{\’{o}}}=-6(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})$

$\cross(x_{2}y_{2}-2y_{2}+1)x_{2}y_{1}y_{2}^{2}$ ,

$b_{4}=6(x_{2}y_{1}y_{2}-x_{2}y_{2}-2y_{1}y_{2}+y_{1}+y_{2}^{2})(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})$

$\cross(x_{2}y_{2}-2x_{2}+1)x_{2}y_{1}y_{2}^{2}$ ,

$b_{s}=4(x_{2}^{2}y_{1}y_{2}-x_{2}^{2}y_{2}+x_{2}y_{1}^{2}+x_{2}y_{1}y_{2}^{2}-4x_{2}y_{1}y_{2}+x_{2}y_{1}+x_{2}y_{2}^{2}-y_{1}^{2}y_{2}+y_{1}y_{2})$

$\cross(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})(x_{2}y_{2}-2y_{2}+1)x_{2}y_{1}y_{2}$ ,

$b_{1}=-3(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})^{2}(x_{2}y_{2}-2y_{2}+1)x_{2}^{2}y_{1}^{2}$ ,

$b_{0}=-(x_{2}y_{1}+x_{2}y_{2}^{2}-2x_{2}y_{2}-y_{1}y_{2}+y_{2})^{2}(x_{2}y_{2}-2x_{2}+1)x_{2}^{2}y_{1}^{2}$ ,

$b_{7}=b_{2}=0$ .
Moreover, if $t_{2}$ is a solution of (6.5), $t_{3},$ $t_{4}$ are uniquely determined by (6.4).

It is provable that equation (6.5) for $t_{2}$ is irreducible of degree 9 and that
for generic $x_{2},$ $y_{1},$ $y_{2},$ $(6.5)$ has no multiple factor. As a consequence, we obtain
the following.

THEOREM 6.6. The restriction of $\Phi_{1}$ to the subspace $t_{5}=t_{6}=0$ is generically
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9 to 1.

The author is not sure whether Theorem 6.6 induces the invalidity of Con-
jecture 6.1 or not.

7. Miscellaneous results and concluding remarks.

7.1. After the manuscript was written up, T. Shioda pointed out that The-
orem 3.2 can be proved by using his theory of Mordell-Weil lattices.

On the other hand, B. Hunt pointed out that the $W(E_{6})$-equivariance of the
map $\Psi_{2}$ is a special case of a $ge$neral result of E. Looijenga on a relation be-
tween double ratios of root systems and geometric double ratios on del Pezzo
surfaces (cf. $[H$ , p. 15]).

7.2. In section 5, we defined a linear map $T$ (cf. (5.4)). We are going to
determine the constants $c_{X},$ $c_{y},$ $c_{z},$ $c_{w}$ .

We first note that the tritangent plane (36) for the surface (5.2) is defined
by (cf. [N])

$X-(\rho-1)(\mu\nu\rho-1)W=0$ .
This combined with (5.4) implies

$c_{x} \{\frac{1}{2}(p_{2}-\varphi_{46})x-y+\frac{1}{2}\psi_{46}z+\tau_{46}w\}$

$-(p-1)( \mu\nu\rho-1)c_{w}\{\frac{1}{2}(p_{2}-\varphi_{16})x-y+\frac{1}{2}\psi_{16}z+\tau_{16}w\}$

$=c \{\frac{1}{2}(p_{l}-\varphi_{36})x-y+\frac{1}{2}\psi_{36}z+\tau_{36}w\}$

for a constant $c$ . Comparing the coefficlents of $x,$ $y$ , we obtain

$c_{x}(p_{2}-\varphi_{46})-(\rho-1)(\mu\nu\rho-1)c_{w}(p_{2}-\varphi_{16})=c(p_{2}-\varphi_{36})$ ,

$c_{x}-(\rho-1)(\mu\nu p-1)c_{w}=c$ .
Solving the equations above, we obtain

(7.1) $c_{x}=( \rho-1)(\mu\nu p-1)\frac{\varphi_{36}-\varphi_{16}}{\varphi_{36}-\varphi_{46}}c_{w}$ .

In the same way, we obtain

(7.2) $c_{y}=( \rho-1)(\lambda\nu p-1)\frac{\varphi_{162345}-\varphi_{16}}{\varphi_{162346}-\varphi_{162435}}c_{w}$ ,

(7.3) $c_{z}=( \rho-1)(\lambda\mu\rho-1)\frac{\varphi_{16}-\varphi_{14}}{\varphi_{1\S}-\varphi_{14}}\varphi_{w}$ .

By direct computation, we have
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$\frac{\varphi_{36}-\varphi_{16}}{\varphi_{36}-\varphi_{46}}=-\frac{h_{13}\cdot h_{245}}{h_{34}\cdot h_{125}},$ $\frac{\varphi_{162345}-\varphi_{16}}{\varphi_{162345}-\varphi_{162435}}=-\frac{h_{236}.h_{456}}{h_{25}h_{34}},$ $\frac{\varphi_{16}-\varphi_{14}}{\varphi_{13}-\varphi_{14}}=-\frac{h_{46}\cdot h_{146}}{h_{34}\cdot h_{134}}$

$\rho-1=\frac{h_{23}\cdot P_{5}}{h_{245}\cdot h_{36}\cdot h_{356}\cdot h_{12}\cdot h_{126}\cdot h_{346}}$ , $\mu\nu\rho-1=\frac{h_{125}\cdot P_{\overline{o}}}{h\cdot h_{1\S}\cdot h_{14}\cdot h_{256}\cdot h_{26}\cdot h_{56}}$ ,

$\lambda\nu\rho-1=\frac{h_{25}\cdot P_{5}}{h_{12}\cdot h_{126}\cdot h_{234}\cdot h_{356}\cdot h_{\overline{o}6}\cdot h_{456}}$ , $\lambda\mu\rho-1=\frac{h_{134}\cdot P_{5}}{h\cdot h_{12}\cdot h_{15}\cdot h_{36}\cdot h_{46}\cdot h_{346}}$ .

(The polynomial $P_{5}$ is the one defined in section 6.)

From these equations, it is possible to determine $c_{X},$ $c_{y},$ $c_{z},$ $c_{w}$ . (Since $T$ is
projective linear, we may assume that $c_{w}=1.$ )

7.3. The polynomial (3.3) of $u$ is related with a 27-dimensional irreducible
representation of the Lie algebra $\underline{e}_{6}$ of type $E_{6}$ . By an argument parallel to
[S1], the following statement seems provable.

Let $(\pi, V)$ be an irreducible representation of $\underline{e}_{6}$ such that $\dim V=27$ . Let
$x$ be a subregular nilpotent element of $\underline{e}_{6}$ , that is, $x$ is nilpotent such that its
centralizer $Z_{\underline{e}_{6}}(x)$ has dimension $rank\underline{e}_{6}+2=8$ . Moreover, let $h,$ $y$ be elements
of $\underline{e}_{6}$ such that $\{x, h, y\}$ is a TDS. Let $e_{1},$

$\cdots$ , $e_{8}$ be a basis of $Z_{\underline{e}_{6}}(y)$ . Taking
$v=\Sigma_{j=1}^{8}w_{j}e_{j}\in Z_{\underline{e}_{6}}(y)$ , we consider the characteristic polynomial

$\chi(\Lambda;w_{1}, \cdots w_{8})=\det(\Lambda-\pi(x+v))$ .

Since $\deg_{\Lambda}\chi(\Lambda ; w_{1}, \cdots , w_{8})=27$ , we Put

(7.4) $\chi(\Lambda;w_{1}, \cdots w_{8})=\Lambda^{27}+C_{1}\Lambda^{26}+C_{2}\Lambda^{25}\cdots+C_{26}\Lambda+C_{27}$

for some $C_{j}$ $(j=1,2, \cdot.. , 27)$ . Then from (7.4), we obtain a lot of equations
with respect to $w_{i}$ and $C_{j}$ . These equations are reduced to a unique equation
which turns out to be equation (1.1) (with $w=1$ ) of Introduction by a certain
change of variables.

In the argument above, the role of 27 weights $a_{j},$ $b_{j},$ $c_{ij}$ is clear. But what
are the roles of 27 lines and 45 tritangent planes?

7.4. It is possible to give an interpretation of the 76 divisors of Naruki’s
cross ratio variety (cf. [N]) in terms of root system $\Delta$ of type $E_{6}$ . We are going
to explain this briefly.

We first define a linear subspace $CR(P)$ of $P^{2}$ with coordinate $(\xi_{1} : \xi_{2} : \xi_{3})$

defined by the equation $\xi_{1}+\xi_{2}+\xi_{3}=0$ . Clearly $CR(P)$ is equal to $P^{1}$ , but it is
convenient to use $CR(P)$ for our purpose.

Let $Z$ be the Zariski open subset of $P^{5}$ defined by

$h \cdot\prod_{kj<}h_{fk}\cdot\prod_{kt<J<}h_{ijk}\neq 0$ .

We first define a cross ratio map of $Z$ to $CR(P)$ by
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$tarrow$ $(h_{j_{3}j_{5}}h_{j_{3}j_{4}j_{5}}h_{j_{2}j_{6}}h_{j_{2}j_{4}j_{6}} : -h_{j_{2}j_{5}}h_{j_{2}j_{4}f_{5}}h_{j_{3}j_{6}}h_{j_{3}j_{4}j_{6}} : h_{j_{2}j_{3}}h_{j_{2}j_{3}j_{4}}h_{j_{5}j_{6}}h_{j_{4}j_{5}j_{6}})$ .
By permutations of indices among 1, 2, 3, 4, 5, 6, we obtain 30 maps of the form
above. We need another cross ratio map defined by

$tarrow(h_{j_{1}j_{3}j_{5}}h_{j_{2}j_{4}j_{5}}h_{j_{2}j_{3}j_{6}}h_{j_{1}f_{4}j_{6}} : -h_{j_{2}f_{3}j_{5}}h_{j_{1}j_{4}j_{5}}h_{j_{1}j_{3}j_{6}}h_{j_{2}j_{4}j_{6}} : h_{j_{1}j_{2}}h_{f_{3}j_{4}}h_{j_{5}f_{6}}h)$ .

In this case, by permutations of indices among 1, 2, 3, 4, 5, 6, we obtain 15
maps of the form above. As a result, we obtain 45 $(=30+15)$ cross ratio
maps of $Z$ to $CR(P)$ .

Taking the product of these maps, we define a map $cr_{E_{6}}$ of $Z$ to $CR(P)^{45}$ .
Let $C_{E_{6}}’=cr_{E_{6}}(Z)$ and let $C_{E_{6}}$ be its Zariski closure in $CR(P)^{45}$ .

THEOREM 7.4.1 $([N])$ . (i) $C_{E_{6}}$ is 4-dimensional and non-singular.
(ii) The $W(E_{6})$-action on $C_{E_{6}}$ is biregular.
(iii) $C_{E_{6}}-C_{E_{6}}’$ is a divisor with normal crossings. There are 76 irreducible

comPonents of $C_{E_{6}}-C_{E_{6}}’$ each of which is smooth.

In [N], $C_{E_{6}}$ is denoted $C$ and $C_{E_{6}}’$ is equal to $M$. The variety $C_{E_{6}}$ is called
Naruki’s cross ratio variety in [H].

We are now going to give a root system theoretic interpretation of the 76
divisors of $C_{E_{6}}-C_{E_{6}}’$ . Let $\varphi$ be one of root forms $h,$ $h_{jk},$ $h_{ijk}$ . The $n$ taking
the limit $\varphiarrow 0$ in $C_{E_{6}}$ , we obtain a hypersurface $Y_{\varphi}$ in $C_{E_{6}}$ . In this way, we
obtain 36 divisors of $C_{E_{6}}$ . Clearly these correspond to positive roots of the root
system $\Delta$ . In the sequel, such a hypersurface is called a hypersurface of the
1st kind. Any hypersurface of the 1st kind admits a biregular $\Sigma_{6}$-action induced
by the $W(E_{6})$-action and is isomorphic to the 3-dimensional Terada model. Here
the $n$ -dimensional Terada model means the $n$ -dimensional nonsingular variety
$T_{n}$ constructed in [T] which plays an important role in the study of Appell-
Lauricella hypergeometric function $F_{D}(z_{1}, \cdots . z_{n})$ .

On the other hand, we take an $A_{2}$-subroot system of $\Delta$ , for example, $\Delta_{1}=$

$\{\pm h_{12}, \pm h_{23}, \pm h_{13}\}$ . Then, we put

$u= \frac{h_{23}}{h_{12}}$

and substitute
$h_{23}=uh_{12}$ , $h_{13}=(1+u)h_{12}$

in $C_{E_{6}}’$ . Next taking the limit $h_{12}arrow 0$ , we obtain a hypersurface $X_{1}$ in $C_{E_{6}}$ which
depends on the choice of the $A_{2}$-subroot system $\Delta_{1}$ .

There are two other $A_{2}$-subroot systems $\Delta_{2}=\{\pm h_{45}, \pm h_{66}, \pm h_{46}\},$ $\Delta_{3}=$

$\{\pm h_{123}, \pm h, \pm h_{456}\}$ . The triple $\{\Delta_{1}, \Delta_{2}, \Delta_{3}\}$ is characterized by the properties
that they are mutually orthogonal and span the linear space $E$ . Then we
can construct a hypersurface $X_{2}$ (resp. $X_{3}$ ) of $C_{E_{6}}$ from $\Delta_{2}$ (resp. $\Delta_{3}$ ) by an
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argument similar to do $X_{1}$ .
Using the notation above, we can show the following.
$( i )$ $X_{1}$ equals $X_{2},$ $X_{s}$ and is isomorphic to $T_{1}xT_{1}\cross T_{1}$ .
(ii) There are totally 40 divisors of the form $X_{1}$ corresponding to subroot

systems of $\Delta$ whose types are $A_{2}+A_{2}+A_{2}$ .
A hypersurface constructed in this manner is called a hypersurface of the

$2^{nd}$ kind.
In [N], hypersurfaces of the 1st kind and hypersurfaces of the $2^{na}$ kind

are called $A_{1}$-divisors and non-normality divisors, respectively.
It is easy to describe the intersection relation among the 76 divisors in

terms of root systems.

Since the Terada model is constructed in connection with Appell-Lauricella
hypergeometric function, it is interesting to study the generalized hypergeometric
function of type $(3,6)$ as a function on Naruki’s cross ratio variety (cf. [MSY]).
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