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1. Introduction.

The purpose of this paper is to clarify the relation between the versal
deformation of the E¢singularity and a family of cubic surfaces originally due
to A. Cayley.

We consider the cubic surface S(po, D1, D2, Go, G, G») defined by

1.1) x2—=2yz"— ¥ + x(pow?+ przw+ p.2%)+qow+ g zw?+g.2°w =0

in P? With homogeneous coordinate (x: y:z: w), where po, D1, Dz, Go, g1, §2-are
parameters. We frequently write pg=(po, P1, D2 Go, G1, ¢2) for simplicity. If
we put w=1, the family of surfaces S(pq) is regarded as the versal deformation
of the rational double point of type E:

x3—2yz*—y* =0

(cf. [SI]). On the other hand, there is a long history on the study of cubic
surfaces. Among others, we recall the 4-dimensional family of cubic surfaces
due to A. Cayley (cf. [C]). Modifying his family, we introduce a family of
cubic surfaces of P*® with homogeneous coordinate (X: Y : Z: W) depending
on parameters (4, g, v, o) as follows (cf. [NS]):

1.2) oWLAX >+ pY  +vZ°+(p—1)*(Apyp—1)PW2+(uv+1)Y Z+(v+1)ZX
+Ap+DXY —(o—1)Apvo— LW {A+ D)X +(u+1)Y ++1)Z} ]+ XY Z = 0.

Since the moduli space of the cubic surfaces is 4-dimensional, the family
above has enough parameters. For this reason, writing down the defining equa-
tion (1.1) in the form (1.2), we obtain a map ¥': pg—(4, g, v, p) at least in
principle. Since the map ¥ is multi-valued, we have to change the parameter
space of S(pg) to its covering space admitting a linear W(E,)-action, where
W(Es) is the Weyl group of type E,, in order to define a single-valued map to
the (4, g, v, p)-space.

*) Partially supported by Grant-in-Aid for Scientific Research (No. 04640135), the
Ministry of Education, Science and Culture.
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One of the motivations of the present study is a suggestion by M. Yoshida
concerning the configuration space P§ of 6 points of P? which is, roughly
speaking, identified with C*. In a private communication, he pointed out the
possibility of the birational action of W(E,) on the space P§. On the other
hand, there is another realization of W(E;) as a group of birational transforma-
tions of C* related with the family of cubic surfaces (1.2). A conceptual ex-
planation of an isomorphism between two realizations of W(E,) as groups of
birational transformations of C* is given in Hunt [H] as a conjecture. The
author started the present study with determining a required W(E,)-equivariant
birational map.

We are now going to explain the main result of this paper briefly. From
the definition, W(E,) is a finite reflection group on a 6-dimensional vector space.
Let P°® be the projective space associated to the 6-dimensional linear space.
Then W(E;) acts on P® as a projective linear transformation group. Now we
recall the configuration space P§ of 6 points of P?. Roughly speaking, a Zariski
open subset of P§ consisting of 6 points in general position is identified with a
quasi-affine subset of C* (cf. section 4). To distinguish the coordinate system
of C* from (4, g, v, p), we write (x;, x5, ¥:, ¥,) for the coordinate of P;. There
is a W(E-action on P§ (cf. [Theorem 4.2). On the other hand, W(E) is
realized as a group of birational transformations on the (4, g, v, p)-space which
is naturally obtained from the study of the family (5.2) (cf. [NS]). Now we
freely use the notation in section 1 to state the main theorem. Let ¢t be the
projective coordinate of P°. We define two maps @, and @, as follows. The
map @,: P*—C* is given by

D.(t) = (x:(), x:(t), 1), y:(1)),

where
h24'h234‘h15'h135 h24'h234'h16'h136
X t = ) X t = ’
1( ) h14‘h134‘h25'h235 2( ) h14'h134'h26'h236
h34'h234‘h15'h125 h34'h234°h16'h126
1) = s 1) =
yl( ) h14'h124'h35'h235 3’2( )

PygrPiga- Pae Roge
We note that 4, h;j, hq;, are roots of type E, whose precise definition is given

in section 2. On the other hand, @, is a map from the (x;, x;, y,, ¥.)-space to
the (4, p, v, p)-space defined by
Qz(xlr X2, Y1, y2) = (29 Y, v, P)’
where
1 = Xx=1D(31—3:)(y.—1)
Vo(X1—x2)(X,—1)(31—1)’

{(yi—=D(x2—y2)—(:—D)(x1—30)} X232
XX Y1 X1 XY~ X1 V1Yot X1 Yo+ X2 V1Yo X2 Y1 ’

ﬂ:‘:
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- _ (%12—%591)(x,—1)(3;—1)
(X1 =X )(Xa—Y2)(Y1—Y2)
(X1 —x2)(X2— Y2 )(¥:—1)
{01 =1D)(xe—=y2)— (21— y)(xe—D}(y2—D)xs

p:

Moreover, we put @;=@,-®P,. Then we can state the main theorem of this
paper (see Theorems 4.4, 5.5).

MAIN THEOREM. The three maps @; (j=1, 2, 3) are W(E,)-equivariant.

This in particular implies that @, is a required modification of the multi-
valued map 7.

We start the proof of Main Theorem with determining the 45 triple tangent
planes for the cubic surface S(pg) with a generic parameter pg. To accomplish
the computation, we are indebted to Shioda in which a concrete descrip-
tion of 27 lines on S(pq) is obtained. The triple tangent planes are given their
namings in a natural manner by using three weights of a 27 dimensional ir-
reducible representation of the Lie algebra of type E,. For this reason, we
give their namings: 7 (¢f), 7(4:7,.75%..75%s). On the other hand, it is known by A.
Cayley (see also [N], [H]) that to each triple tangent plane there associates
a cross ratio which is an invariant of a given general cubic surface. Noting
this, we first define a linear transformation

T:(x:y:iz:wy—>X:Y: Z: W)

of P? in such a way that the namings of the 45 triple tangent planes for S(pq)
and those for the surface (5.2) with Shlaefli’s namings (cf. section 5) are com-
patible. We next compute the cross ratios attached to some of triple tangent
planes for S(pq) and those for the surface (5.2) and last compare the cross ratios
obtained in two ways. Along this idea, we can show Main Theorem.

In section 6, we will discuss a topic related with the unpublished note of
B. Hunt [H] on the mapping degree of the map ¥,.

The author is indebted to Professors B. Hunt and M. Yoshida. In particular,
parts of the contents are based on the communications with B. Hunt and his
unpublished note [H].

2. The Weyl group of type E,.

We define the notation on the root system of type E, in this section basically
following B. Hunt [H].
Let Er be a Cartan subalgebra of a compact Lie algebra of type FE, i.e.

Er=R°¢. Let t=(, t,, ts, ts, 15, ts) be a coordinate system of Ejp such that the
roots of type E; are:
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+({titty), 15/<j£5

1
+ 7(511‘1 40,34 0sts+0uts 405t s+ 0t 6)
(where §;==+1 and IJ;6,=1). Note that compared with the notation in [B],
our variables #;=¢;, =1, ---, 5, while our coordinate ?; is denoted &,—&,—¢;

in [B].

We now introduce the following 36 linear forms on Eg:
1 .
h:—'é—(t1+"'+t6); hiyj=—tjat+h, j=2--,6

hjr =t;1—te_y, 1<j<b<?, hjp=—tja—tia, 1<j<k< 7
hjpr = —tja—teoi—tioathe, 1< <b<ILT

where
1
ho = -2'(t1+"'+t5—t6) .

Then the totality of &, hyj, hy;, forms a set of positive roots of type E,. (In
the sequel, we frequently write :

hij=h; @+ 7]), hijé = he; = hj, etc. G < k)

for simplicity.)

We introduce a positive definite quadratic form on Ej defined by

1
l‘?+t%+t§+ti+t§+—§t§-

This quadratic form defines an inner product on Ep Then it is possible to
define reflections with respect to hyperplanes. In particular, let s (resp. sy,
si;x) be the reflection on Ex with respect to the hyperplane A=0 (resp. 4,;=0,
hi;+=0). Then the Weyl group of type E; which is denoted by W(FE,) in this
note is the group generated by the 36 reflections defined above.

As a system of simple roots, we take

ar = Ris, @ = higs, @3 = hy3, @i = hgy, s = hy, = hse.

Then the Dynkin diagram is:

441 Qs Ay as Qg

24

Let g, be the reflection on Ep with respect to the root e; (j=1, ---, 6).
Then, from the definition, :
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g1 = S12, g2 = Si23, Zs — S23, Ja4— Ss¢» 85— Ss5, ¢ = Sse-

It is easy to describe the action of g, on ¢. In fact, the action g, is the per-
mutation between ¢, and —?, and so that between ¢, and —¢,. The action
g; (j=3, 4, 5, 6) is that between t;_; and t,."It is a little complicated to explain
g: on t. We give the action of g, on the roots. In the below, we assume
i, j, k{3, 4,5, 6}. Then

gh)y="nh, gi(hy) =hy,  gi(hs) = hy;,  gi(hiy) = hyy,
g1(h11k) = h‘&jk; g1(h2jk) = hljk, gl(hijk) = hijk .

Let E be the complexification of Er and we- extend the action of W(Es)
on Ep to that on E in a natural manner. Moreover let P°® be the projective
space associated to E. Then the W(E,)-action on E induces a projective linear
action of W(E,) on P°. ’

We next define the following 27 linear forms of t=(t,, ¢, ts, t4, {5, £s) DY

2 1 1 '
a=—%te  b=3(httttttort— ),
1 : 1 .
bi=tjatgte  J= 2, ,6, = —tiatgtle 7= 2,-,6,

1 .
a; = tj—l_%‘(t1+t2+ts+t4+ts+ ‘gts), 7=2 .6

1 1 o
cy= —tia—tiat 5 (httbhtttt—5t),  1<i<j<6.

These are just the W(E,)-orbit of the fundamental weight a,=(4a,+3a;+5as+

6a,+4as+2a¢)/3. For simplicity, we denote by £,, the totality of the 27
weights above.

We say that a set {0, o, 0"}(w, o', @ € £2,;) is a tritangent triple (of
weights) if they are satisfied with the condition (TP):

(TP) 0+ +0" = 0.
It is easy to show that there are 30 tritangent triples
{as, bj, ci3}, 1#7
and 15 tritangent triples
{Ciyig Cigip Cigigh ({7, 25, 25, 14, s, 26} = {1, 2, 3, 4, 5, 6}).

As a result, there are totally 45 tritangent triples and they are transitive by
W (E,)-action.

We are going to define basic W(E,)-invariant polynomials of . Let &, be
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the k-th elementary symmetric polynomial of a,, b;, ¢;; and let d, be the %-th
power sum of a;, b;, ¢;;, that is,

= S (a3 + 3 ek,
J=1 1<J

Then by direct computation, we obtain the following.

LEMMA 2.1.
=L, e= b, en= — (16360
o = D) 29 35—5 59 6 — 9% 6 2)s
(5 2 5 da— 8 ) = 1s
8 2V 576 2 9 9 9
1

€12 = m(zsag— 115200305+ 950400305+ 1175040,0% 423040008 — 13824000,,).

LEMMA 2.2. Let o;=ai(%, -+, t2) be the i-th elementary symmetric polynomial
Of t%l Y t% and '\/_0'—5—:1'1"‘1‘5. Then

3, = 260, Go= — 2134 25812 (5 4V 60V,
54 9 2
11 5 5 — 3
0s = 108t‘*+1201t‘ Z(a%—‘laz)t%—ﬁox/oﬁts—!-Z(Sai’—4alaz+24aa),

The explicit form of J; in is already given in Hunt [H].
It is clear the subgroup generated by g, gs, g« gs is identified with the
Weyl group W(D,) of type D,. We put

ki = 818:84858:848:81, ke = g¢8584838:8:858¢-
Then it is easy to show the following.
LEMMA 2.3.
(i) k%: E:"—l and klkzklzkzklkz.

(ii) Both ky, ks normalize W(D,).
(iii) The group generated by W(D,) and ki, k. is isomorphic to W(F,).

In the sequel, we always identify W(F,) with the group generated by W(D,)
and k,, k, without any comment. It is easy to show that the isotropy of the
tritangent triple {a,, bs, cis} is W(F.).

3. The construction theorem of elliptic curves due to T. Shioda.

It is known that there are 27 lines on a general cubic surface and 45
tritangent planes.

We are going to construct 45 tritangent planes for a cubic surface S(pgq)
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(pq: generic) to each tritangent triple using the construction of 27 lines on S(pq)
due to T. Shioda [Sh]. Before entering into the construction, we note that
the notation here is slightly different from [Sh].

We first suppose that the line L defined by

3.1 X = uz+‘rw, y=dz+tew,
lies on S(pg), where u, r, d, e are constants such that
(3.2 d=W+up,)/2, e = QBur—d’+up+rp.+gq.)/2.

Let F(x, v, z, w) be the polynomial in the defining equation (1.1) of S(pgq).
Then solving the equation

Fluz+rw, dz+ew, z, w) =0,

we obtain the relations on » and u as shown in [Sh, Theorem (E4)]:

(3.3) 3 Curstpoyut =0,

. Rl(pq; u)
34 "= Rubg, 1)’
where

(3.5.1) Ry(pq, u) = —64pp1u—16 po piu®—160 p, pou*—336 pou’+32 p2 p,u®+ 176 piu*
—8p1 P2us+32 Py poqau~+80 Dy pou” —64 p1g: 4320 prgou®+88 pru’—2 piut
—17 phut+8p3g.u—72 p3ut—16 p3g, u+16 p3g,u* — 134 p5u**—160 p,q, u®
+104 poq.u®—110 p,u*2—576g,u*—3364; u°+144g5u*+ 9649, u® —33u**,
(3.5.2) Ru(pq, u) = 8(48pou*+8pi—2p: piu—20p; pouu®—66 pyu’— pju*—8 piu*
—28 p3u’—24 poq,u®—60 put—249, u—96¢.u*—39u'?),

and certain polynomials C,(pg) of pq. (In [Sh], the explicit forms of R,(pgq, w),

R:(pq, u) were not written. But the determination of them are straightforward.)
We may take u=a,, b; c¢;; as the 27 solutions of equation 3.3). Then,

comparing the coefficients of with the definition of ¢,, we have

Co(pg) =1, Cipg)= Ca(pg) =0, Cu(pg)=(—D*ex (k=2 k>3).

Moreover, we have the following relations among p,, pi, D2 qo, g1, g» and &,
(cf. [Sh, (10.18)]):

1 1 1
by = ‘1‘2‘52, b= 21_855; g2 = %(56_168#3),



362 J. SEKIGUCH!
Po = gos (e~ 204P4—528pug), g1 = 1oz (ea— 1008579,
480 1344
Qo = o (ere— 608D py— 4768 py pi—252 51200 piga-+124845).
Stressing the dependence of 7, d, e on u, we put
r = r(u), d =d(u), e =e(u)

in the sequel and let L(a;) (resp. L(b,), L(c,,)) be the line of P® defined by the
equations

x = uz+r(u)w, y = d(w)z+e(w)w

with the value u=a, (resp. b, c.,).

At the present stage, we study basic properties of the function r(u) of u.
It follows from [Sh] that r(a,), #(b,), #(c,,) are polynomials of ¢. In particular,
we have

LEMMA 3.1.
r(a,) = 51%ﬁSlti—541:%t%—54t§t§——54t%t§—54z‘%t§—90t§t§+81t§—54t§t§

— 541315 — 541515 — 901512+ 81¢3 — 545t —54t5: —90¢5ta 4-8114
—5415t8— 901512 4- 815 — 9055+ 731¢),

1
1296
— 27,15t — 271,858 — 2Tt 838 6+ 3t 113 4- 271585+ 2Tt 515 4 2Te 52— Ot 312

P(bs) = e (81144 135831, — 541313 — 54123 — DAL —5AL 2 +- T2133 — 271,13t

— 16215t 3t 15+ 278383+ 27122 — Ot3t24- 271212 — 01212 — Q212 +-14) .
Moreover, r(cis) is obtained from r(b,) by changing ti, t, with —t,, —t,.

One way to prove this lemma is to substitute w=a,, b,, ¢1; in R,(pg, u),
Ry(pq, u) (cf. (3.5.1), (3.5.2)) and compute the results. To accomplish this
aim, the author needed a help of computer.

We now recall the definition of a tritangent plane for a general cubic surface
S of P3. Let L, L’, L” be three lines on S such that L, L/, L” mutually in-
tersect each other. Then there is a plane x containing L, L/, L” called a
tritangent plane. It is known that there are totally 45 tritangent planes for a
given general cubic surface. We are going to determine tritangent planes for

S(pq).

THEOREM 3.2. If {o, o', 0"} is a tritangent triple, then L(w), L(w’), L(w”)
are contained in a same tritangent plane for S(pg).
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To prove this theorem, we need preparations.
We first define

©@i; = ab;+a;c;j+bjcyy, $i; = aibjcy;.
The next lemma is a direct consequence of Lemma 3.1.

LEMMA 3.3.

r(a)+r(b)+r(ci,) = %(pz—%z)z,

a17(a1)+bor(bo)+c1o7(C12) = —p1+‘%‘¢12(p2"§012),
1

e(al)""z_r(al)(pz“‘ﬂmz)

1 1 1
= "2—{a%r(al)'f'bgr(bz)'['C¥27’<612)+ 711012(?2“1012)2“‘ y %2+02} .

LEMMA 3.4. Let n(12) be the plane defined by

(3.6) y= %(Pz—so;z)er%gbmz%—mw,

where

3.7 Tio = e(a,)——;—r(al)(pz—gom).

Then the three lines L(a,), L(b,), L(cy;) are contained in m(12).
PrROOF. Let

(3.8) V=T X+ T2t T W

be a plane, where 7., 7, T, are constants. If the lines L(a,), L(b,) are on the

plane [3.8), we obtain
a7 +7, = d(a), r(a)tz+t, = e(ay),
b271‘+tz = d<b2); r(b2)7x+1‘w - e(bz).

Then, noting the definition of a, b,, d(a,), d(b,), we have

1 1
Tz = ‘2‘(1)2—?12), T: = '§°¢12 .

These imply
r0 = o(@)—r(@r. = da)— 5 @) (h—gio).

The computation above combined with shows that the two lines
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L(a,) and L(b,) actually intersect and lie on the plane (3.6).
By an argument parallel to above implies that L(a,), L(b,), L(c;.) lie on the
plane [3.6).

PROOF OF THEOREM 3.2. As we remarked in section 2, any tritangent
triple of weights is transformed to {a., b:;, ¢} by a certain element of W(E,).
This combined with implies the required statement.

Let #(ij) be the tritangent plane containing L(a;), L(b;), L(c;;) and let
T(i1is.0s%a.05%6) be the tritangent plane containing L(c;,s,), L(ci4:,), L(ciz,). Noting
we can write down the explicit forms of the defining equations
for them. For this purpose, we first put

2y = @)= 3@ )(h—ge).
Then it is clear from that
1y = elb)— g 0N 1) = elci)— 5 (e Ppi)
and it follows from that n(7) is defined by
y= %(Pz—’sou)x-i——;—gbijz-l—n,-w.
On the other hand, we put

Diyigigigigic — Cigiy,Cigig™T CigigCiiCin T CiyigCigiys Diyigigisisic = CiyigCigi,Cisigs

1 1
Y= 5 (P2'¢i1i2i3i4isie)x + ) ¢i1i2i3i4i5i62+Ti1i2i3i4i5i6w .
REMARK 3.6. We consider the tritangent plane n(16). Its defining equation is

1 1
Y= ‘2_(p2_901e)x+—2'¢162+‘51ew .

It follows from the definition of W(F,) in section 2 that #(16) is left fixed by
W(F,). This in particular implies that p,— i, ¢1e, 716 are W(F,)-invariant
polynomials.

We are going to define cross ratios for tritangent planes (cf. [C], [NJ, [HJ).
We take a line on the surface S(pgq), say, L(a,). Then there are five tritangent
planes containing L(a,), in fact, n(15) (j=2, 3, 4, 5, 6) are such tritangent planes.
From four of the five planes, say, #(15) (=2, 3, 4, 5), it is possible to define a
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cross ratio in the following manner. Let L be a line of P® and let z; be the
point on the line L which is the intersection of x(15) with L (j=2, 3, 4, 5).
We take L so that z,, z;, 24, zs are mutually different. Then we can define a
cross ratio from z,, zs, 24, 25:

(39) 6\]/?(1’ 6; 2’ 3’ 4’ 5) — (22“25)(23—‘24)

(2:—24)(23—25) ’

We put a= C"T?(l, 6; 2, 3,4,5) for a moment. Then, by permutations among
2,3, 4,5 we obtain a, 1—a, 1/a, 1/1—a), a/(a—1), (a—1)/a.

Let {7, 25, s, 24, 75, 2} be so taken that {7, 4, 7, 14, 75, 7} = {1, 2, 3, 4, 5, 6}.
Then, taking L(a.,), 7(ii;)(j=2, 3, 4, 5, 6) instead of L(a,) and =n(1))(j=2, 3, 4,
5, 6), we can define 673(:'1, le; 0y, 73, la, ;) Similarly.

We are going to compute cross ratios for some of four tritangent planes
for S(pg).

DEFINITION 3.7.
%) =CRG, 6; 1,2, 4,5, x(t)=CR@3,5; 1,24, 6),
9.(6)=CR® 6; 1,345, @ =CRE2H5;1346).

LEMMA 3.8.
h24'h234'h15’h135 h24'h234'h16'h136
x.(f) = , Xo(f) = ,
1( ) h14' h134' h25'h235 2( ) h14' h184' hzs' h236
h34'h234'h15'h125 h34'h234'h16'h126
t) = , t) = .
yl( ) h14'h124'h85°h235 yz( ) h14'h124'h36'h236

PRroOoOF. It is possible to take L :z=w=0 as a generic line. Then it follows
from the definition that z(G/))NL={(1: ¢;;: 0: 0)}. Noting this, we find that

— (§031—g035>(903z—§034) _ (9031—9036>($032—‘9034)
#(8) (@31“@34)(@32‘@35) ’ xall) = (§031—S034>(<P32—§Das) ’

((P21—(P25)(§023"§024) (9021—(P26)(9023—(P24)
1(8) = ’ 2\l) = .
20 (¢21“§024)(§023~§Dzs) yi(t) (?21—§024)(§023"§Dze)

On the other hand, it is easy to show that
Qij—@ir = £hjp-hp.
These imply the lemma.

By an argument similar to the proof of we can show the
following.

THEOREM 3.9. If {7, 75, 75, 74, 75, 4} = {1, 2, 3, 4, 5, 6}, then
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hi2i4 : hizi.‘xh' hilis -h
hi'li4'hi1i3i4'h h

N e e e iyigis
CR(ZS, 16; zly ZZ, Z4: Z5) = i .

igig® Mbigigip

The following lemma will be used in the subsequent sections. Since its
proof is straightforward, we omit it.

LEMMA 3.10.
h123'h345'h12'h45 h123°h346°h12'h46
H—1=— H—1=— ,
XI( ) h14'hzsa' hza' h134 ’ xZ( ) h14’ hzsa' hze' h134
yl(t)—l N hlzs‘h1a'h245’h45 h123'h13'h24s'h46

’ H—1=— ’
h14'h235‘h124'h35 yz( ) h14'h236‘h124'h36

hls'h234'h123'hzs‘h145°h45

h14'h235'h124'h25'h134'h35 ’

hus' h234 ’ hma' hzs' hus‘ h4s

h14 ° hzss' h124 : hze' h134 * has ’

h234 * h123 * h13‘ hzss' h34‘ hss

h14 * hzss‘ hzss' h1z4' hss : h3s ’

h234 ) h123 ‘ hsss * h12 ° h24 : hse
hn * h235 ° hzae * h25 ¢ h26 * h134 )

X () —y.(f) =

xo(t)—p.(t) =

Yi(B)—3a(t) =

x1(D)—x,(t) =

4. The configuration space of 6 points in P2

The purpose of this section is to define a W(E,)-equivariant map from P°
to the configuration space P§ of 6 points in P? by using x,(t), x,(), y:(t), ()
introduced in the previous section.

For this purpose, we first introduce the linear space W of 3X6 matrices:

X X1z X1z X4 X35 Xys
W:{X:: Xo1 Xgg Xaog Xoa Xog Xog ;xijEC(1§i§3,1§j§6>}-

X31 X2 Xzz Xag Xaz X

Then W admits a left GL(3, C)-action and a right GL(6, C)-action in a natural
way. For a moment, we identify (C*)* with the maximal torus of GL(6, C)
consisting of diagonal matrices and consider the action of GL(3, C)X(C*)® on
W instead of GL(3, C)XGL(6, C).

For simplicity, we write X=(X,, X,) for the matrix XW, where both X,,
X, are 3X3 matrices. For any 3X3 matrix Y =(9:,)is:, ;s With the condition
;%0 (1=, j=£3), we define a 3X3 matrix

1
0(Y> - ( y” )151,1‘53

following a suggestion of M. Yoshida. Moreover, we put
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X1iy X1y X
D@y, 15, 1) = det| Xas, Xagy Xagy

Xai; X3y, Xsig

for a given matrix XeW,
Using these notation, we define subsets W’, W, of W by

W ={XeW; D, i, i) =0 (1 £, < iy < s < 6)}
W, ={(X,, X)) e W; (I, Cof(X1'X>), (Is, a(X7' X)) € W'},

where Cof(Y)=(detY )Y ! is the cofactor matrix of a given square matrix Y.

It is clear that the action of GL(3, C)X(C*)* on W naturally induces that
on each of W/, W,. In the sequel, we mainly consider the quotient space of W,
under the action of GL(3, C)x(C*)%, that is,

Wo = GL(3, C\W,/(C*)*.

It is clear from the definition that for any element XeW,, there are (g, k)
eGL(3, C)X(C*)* and (x,, x5, ¥1, y.)€C* such that

0 01 1 1

In particular (x,, x,, ¥1, y.) is uniquely determined for X&W,. In this sense,
Wo=GL(3, C)\W,/(C*)® is identified with an open subset of C*.

Changes of column vectors of XeW, induce birational transformations on
C* with coordinate system (x;, x,, 31, ¥2). Let s;(1<j7<5) be the birational
transformation on C* corresponding to the change of the j-th column vector
and (j+1)-column vector of X W, Moreover W, admits an involution sg
induced from the action on W, defined by

Sr: (Xi, Xo) — (L, 0(X7'X2)
for any (X, X, eW,.
LEMMA 4.1. The birational transformations s; (1§j§5) and sr on C* are

given by

. 1 1y e
S1. (xl, Xy, V1, yZ) _‘_—)(xl s xz, xl’ x2>;
Szt (X1, Xoy Y1, Y2) —> (Y1, Vo, X1, X2),

<x1—y1 X2—)2 Y1 Ve )
1=y, " 1=y, " y:—17 y,—1/°

Sst (X1, X2y Y1, Vo)
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. 1 Xo 1 Ve
Sy, (xI, -xZ; yl; yZ)—_)(xly x},’ yl’ yl)’
S5t (X1, Xa, Y1, Yo) —> (X2, X1, Yo, V1),

SR: (xly x2} yl; y2) I (l/xly 1/x2, l/yly 1/y2)'

The proof of this lemma is straightforward.
We define 15 hypersurfaces T,: f,=0 (1<s7<15), of C*, where

fi=xy— %)= X1+ Xt 1= e, fo=31—1, fi=x-—1,

fe=y=1 fe=x—1 fe=31—2, [i=x1—% [fo=x1—01,
fo=x=ys fro=x10e— %Y1, fu=1%s fro=2%1, fis=2s [fra=1,
f1s = 19 (1=y )1 —x5)— x23:(1—x1)(1—y5) .

It follows from the definition that s,, ---, s;, sz are biregular outside the
union T of the hypersurfaces T; (1<7<15). For a moment, let G be the group
generated by s;, «+, S5, Sz.

The following theorem which seems known shows a concrete correspondence
between W(E,) and the group G defined above.

THEOREM 4.2. The correspondence
g1—>81, g2—>Sr Z3s—>S82 HBi1—>S83 Ls—>84 ¢S5
induces a group isomorphism of W(E;) to the group G.

PRrRoOOF. From the construction of s;, j=1, 2, 3, 4, 5, it is easy to show the
relations:

S;Se = 8ps; (|7j—Fk| > 1), S;SeS; =SS Sk (|/—k| =1).
Therefore it suffices to show
s;se=35SgrS; (=1, 2,4,5), S3SpSs = SrSiSR,
which are easy to check.

REMARK. In [DO], it is stated that there is a W(E,)-action on Wy,. See
also [N, Appendix], [H].

We are going to define cross ratios for 5 points in P? following [H]. Let
&i=[&:: & &) (1£7<5) be five points of P? in a general position and let /
be a line of P?.. We denote by P,=[1: z;: w;] the intersection of [ and the
line passing through the points & and &,. We take / so that the four points
P, (=2, 3, 4, 5) are mutually different. Then we define
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@n CR(E,, & &, &; &) = G20@—2)

(2a—25)(2s—24)’

which is in fact a cross ratio of z,, zs, 2., 2s.
Now we consider a matrix of the form

1001 1 1
X: 0 1 O 1 X1 Xg
0 011 vyi v

which is a representative of a point of W, as explained before. From the
matrix X, we define six points &; (=1, ---, 6) in P? in a usual manner, that is,

£,=[1:0:0], &=0[0:1:0], &=[0:0:1],
c=[1:1:1], & =C[1:%: y], &E=[L: x:: v:].

Then we can compute CR(;,, &, &:,, &5 &) explicitly for various 2, 2, 7, i,
5. In particular, the next lemma is a direct consequence of its definition.

LEMMA 4.3.

0 =CR(, &1, &1, &5 &), 2= CR(&y, &, &4, 65 &),
Y1 =CR(, &, 64, 655 62, 32=CR(E, &, &, &65 &2)-
From the equations.
4.2) CR(Eyy Eiy Eipy E1y3 E1) = CRG,y do3 1o, vy iy 75),
we obtain various equalities. In particular, by computing the cases
(41, 13, s, 14, 75, 16) = (3,2,1,4,5,6), (3,2,1,4,6,5), (2,1,3,4,5,6), (2,1,3,4,6,5),
we have
(4.3) x1 = x:(), Xe=%5(8), 1 =3:(8),  ya= D),

where x,(1), x,(), y:1(t), y.(t) are the functions on P® (cf. Definition 3.7).

The linear action of W(E,) on E defined in section 2 induces a projective
linear action of W(FE,) on P® under the identification P*=P(E). On the other
hand, in virtue of [Theorem 4.2, we obtain a birational action of W(E,) on C*
with coordinate (x;, x,, ¥1, ¥2).

THEOREM 4.4. Let @,(t) be a map from P° to C* with coordinate (x,, X3, Y1,
ys) defined by

Dy(t) = (1,(t), %), 310), 9:)).
Then @,(t) is W(E)-equivariant. ‘
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PrROOF. Noting the definition of g, and that of birational transformations
s,, Sr, we can check the claim. The most complicated case is the implication

A XBO)=31(8)  xo(D)—ya(t) () ¥2(t)
P:(84®) ”( 1=y ° 1—p,() * ».()-1" y2<t>—~1>’

which follows from Lemma 3.10

5. Relations with a family of cubic surfaces due to A. Cayley.

The purpose of this section is to show a relation between the versal family
of the E.-singularity and the family of cubic surfaces originally due to A. Cayley.
We first recall the definition of the family of cubic surfaces due to Cayley

[Cl:

1 1 1
G.1) wl[x§+y"{+23+ w?+(nzn+W)ylzl+<nl+ n—l>zlx1+(lm+ 7771) X101

+w, {(l+%)x1+(m +7—i—)y1+(n+%)zl}] thayz =0,

(We use the homogeneous coordinate (x;: y,: z,: w,) instead of (X:Y :Z:W)
in [C].)

Modifying his family, we introduce a family of cubic surfaces of P® with
homogeneous coordinate (X: Y : Z: W) depending on parameters (4, g, v, p) as

follows (cf. [NS]):

(5.2)  PW[AX 4 pY >+ Z+(p—1Y(Apvp—1)W*
v+ )Y Z+(Av+1)ZX +Ap+1)XY
—(p—1)Auvo—1)W{A+DX+(p+ 1Y +0+1DZ} ]+ XY Z = 0.

The relation between (5.1) and (5.2) is given as follows (cf. [NS]):

Imn
X, Y, Z W) = (mnxl, nly,, lmz,, — o(o—DGp—D) w1>,

_ (p=D@gyp—D)
Imnp )

A=1, @=m, y = n?, k=

In [C, pp. 376-378], there is a list of the defining equations of 45 tritangent
planes and their namings for the surface (5.1). (See also [N, p. 10], where
those of 45 tritangents are given for (5.2).) For our purpose, we change their
namings into those due to Schlaefli following Hunt [H]. For the sake of con-
venience, we write the list in [H]. (Below, the left-hand side is Schlaefli’s
notation and the right-hand side is Cayley’s.)
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(12)e—L, (1A3)e—12z, (14)e—12z, (15)e—2Z, (16)— w
Rh—7t, @)—n, —m, [B)e—a, [B)—%
BD«—n, BZ«—r, Ble—aq, EBlj—m, [B6)x
(41) 1, (42)——h, U)H<—>7g, “@5) 1, (46) «— x
Gl)e—Dp;, (G2)e—0d, (GH«—1f, Gh«—p, 6§
(61) —— 7§, (62)——T;, (63)<—n,, (64)«—1, (65)<D,
(123456) — 6, (123546) «—— h, (123645) «—— 1,
(132456) — f,  (132546) «—— g, (132645) «— n,,
(142356) «— p,, (142536) — q, (142635) —— m,
(152346) —— 1,, (152436) «—— T, (152634) «——q,
(162345) «——y, (162435) —— v, (162534) — 7.

In particular,

(5.3) (46): X =0, (162435): V' =0, (13): Z=0, (16): W =0.

We recall the surface S(pg¢) and its 45 tritangent planes which are written
by

(i) G+#)), T(d12s.2504.2506) -

Then, it follows from the definition that there is a projective linear map 7T(x :
yiz:w)=(X:Y: Z:W) such that T induces a transformation of the 45 tri-
tangent planes for S(pg) to those for (5.2) defined by

w(iy) —> (1),
for all (zj) and {7y, 7, 75, 74, 75, 2s}. Then (5.3) implies that T is defined by
X = ¢ {(Pe—ue)x /12—y +Piez /24145 w},
5.4 Y = ¢y {(po—@re2435) X /12— Y+ P1604552/ 2+ Tr62435 0},
1 Z = ¢ {(Pe—13)X /12—y +h1sz/2+ 1130},
W = col{(po—@re)x/2—y+P162/2+ 116w}

for some constants ¢, ¢y, ¢, ¢, depending on ¢. (Concrete expression of c¢g,
¢y, €, €y Will be given in section 7.)
By taking cross ratios for tritangents planes, we can obtain a map of P?
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to the (4, g, v, p)-space. We are going to determine the map in question.
For this purpose, we first recall the definitions of the tritangent planes [31),
(32}, [(34), [(35), [(36), [2D), (23}, (24}, (25}, [(26) (cf. [N, p. 10D):

AX+pY +ApvpZ +(Apypo—1)(App—p—po+1LW =0, 21
AX4Y +2v0Z —(p—DApwo—LW =0, 23)
A0X+Y +AvpZ—2p(p—1)Apvp—1)W =0, (24)
wpX+Y +wpZ—p(Apvp—1)App—2i—p+1)W =0, (25)
AX—(Rp—D(Apvp— LW =0, (26)
X+pY+pmoZ—(o—D)Auvp—1W =0, (31)
X+Y +vpZ—(p—1) v+ vp—vp—1)W =0, (32)
20X+Y +vpZ — p(o—1)Apwp-+Av—2—v)W =0, (34)
wpX+Y +vpZ—vp(p—1)Appp—1W =0, (35)
X—(o—1)(go—DW =0. (36)

Let L be a line of P® and we put
we,;=LN2j) (17=1,345,6), w.,;=LNE3))G=12456).

We take L so that w, ; (=1, 3, 4, 5, 6) are mutually different and that w, ; (j=
1,2, 4,5, 6) are mutually different. Identifying L with P'=C\U {oo}, we regard
W, ;, Ws,; as points of C\U{}. Then we have the following lemma.

LEmMMA 5.1.

(5.5) (Wa,1—Wa,5) (W, 3— Wy, 4) — (ﬂvp—l)(p—l)

(We,1— W, (W, 3— Wa,5) (/Jp—l)(vp—l) ’
(Wo,1—Ws, 6)(Wa, s—Ws,0) _ p(p—1)

5.6 -

5.6) (We,1—Wa, o)(Wa, 35— W, ¢) (#P“l) ’

(5.7) (Ws,1— Wy, 5)(Ws, o—Ws,4) _ (Ap—D(Apyp—1)
(Ws,1—Ws, ) (Ws,2— Ws,5) App—1)(Avp—1) "’

.8) (Ws,1—ws, 6)(Ws,2— W3, 4) _ ,u(lp—l)

<w3.l_ws.4>(w3,2—w3,6)_ R,up—l )

PrROOF. We may take the line Y=Z2=0 as L and put w, ;=(v,;:0:0:1),
Wy, ;=(Vs,;: 0: 0: 1). Then, from the definition, we have

Vo1 = —(Apvpo—D(App—2p—pp+1)/2,  ves = (p—1)(Apvp—1)/2,
va,s = (p—DAmvp—1), v, s=(Apvpo—D(App—2—p+1)/(Av),
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Vo, = (Ap—1)Apvp—1)/2, V3,1 = (p—1)Apvp—1),
a2 = (0—1(pvp+Avp—vp—1),  vss=(p—DAgvp+v—2—v)/2,
vs,s = (o—1)Apvp—1)/4, V3,6 = (o—1)(pyvo—1).

Noting these, we obtain the lemma by direct computation.

It is clear from the definition that the left-sides of [5.5), [5.6), [(5.7), [(5.8)
are cross ratios of tritangent planes [26), [25), (36}, [35), respectively. Therefore,
if the map T has the required properties, we obtain the following relations:

~ (Ap—DUpvp—1) =% ¢Ap—1)
CR(3,6;1,24,5) = , CR(3,5;1,24 6 =272
3, )= Gup=1we—=1) ( )= Fpo—1

~ _ (mo—1)(p=D) g, . _ =1
CR(2, 6;1,3,4,5) = (eo—TDvo—1)’ CR(2Z,5;1,3,4,6)= 2o=1)"

At the present stage, we need a simple lemma to continue the discussion.

LEMMA 5.2. The relations in (i) and (i) on (X1, X, Y1, ¥2) and (4, g, v, )
are equivalent.

(i)
1= (X1 —1)(¥1—3:)(y.—1)
Vo X1 —x) (X, —1)(3,—1)’
_ {1 —1)(x:—=92)— (22— 1)(x1— 1)} X295
#= X1XeY1—X1XYe— X1 V1V X1V F+XoY1Y2— X2V ’
_ (X1Y2—2%291)(x2—1)(y,—1)
(X1—= %) (X2 =Y ) (31— 2)
_ (1= x)(Xa—y2)(y:1—1)
O ==y — (1= y)(x:— D} 3a— D)y
(i)
o= (Ap—1D)(Apvp—1) v — (Ao—Dp
YT Quoe—1Dvp—1)"’ T App—1"
_ (o—D(p—1) _ (o=Dp

' (ep—Dp—D "’ 7T Tpp—1 -
Let @, be a birational transformation of C* defined by
¢2(x1, X2, V1, yZ) = (2, ‘U, v, P):

where 2, g, v, p are rational functions of (x;, x,, ¥, ¥.) defined in Lemma 5.2(i).
Then shows that @, is birational.

To continue the argument, we recall the W(E,)-action on the family (5.2)
of cubic surfaces given in [NS]. In particular, the W(E)-action in pre-
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serves the parameter space. In fact, we define the following six birational
transformations on the (4, g, v, p)-space:

A—> 2pyp*(1—2)/(Apyp®—1)
) { ¢ —> App—)Apyvp—1)/((2p—1)(Avp—1))
g 1 v —> (wp—1)Apyp—1)/((Ap— 1) App—1))
p —> (Ap—1)(Apyp*—1)/(p(A—1)(Apvp—1))
g2 (4, v, 0)—> (4, 1/p, v, pp)
gst (4, o, v, o) —> (L/4, p, v, 20)
82 (4, g, v, p) —> (Ao, po, v, 1/0)
gs: (4, v, 0)—> (4, p, 1/, vp)
A —> (vp—1)(Auvp—1)/(Avp—1)(pvp—1))
. { ¢ —> (up—DApvo—1)/(plvp—1)2vp—1))
g 1 v —> Apyp*(1—v)/(Apvp*—1)
p —> (wo—1)(Apvp*—1)/(p(v—1)(Apvp—1)).
Then the correspondence ‘
gi—>&, Jj=1-,6

induces an isomorphism between W(E,) and the group of birational transforma-
tions on the (4, #, v, p)-space generated by §;, j=1, ---, 6. In this manner, the
(4, p, v, p)-space admits a W(E)-action.

LEMMA 5.3. The map @, is W(D,)-equivariant.

ProOF. It suffices to show the W(D,)-equivariance @3! whose explicit form
is obtained by Lemma 5.2/(ii).

The lemma follows from and the definition of g,, §;, 2., &5 given
before the lemma.

We define another map @, from P°® to the (4, g, v, p)-space as a composi-
tion of @, and @,: @;(t)=0,(D,(t)).

LEMMA 5.4. We define A(t), p(t), v(t), p(t) by
Dy(t) = (A1), p(t), v(t), p(1)).
Then

h54'h345°h26'h256 hlS'h136°h24'h246

At) = : ,
() h24'h2‘45'h36'h356 h12'h126'h34'h348
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h455 ° hzss * h134 ¢ h126 . hlG ’ h1ss * h24 * hzu
h'hIS'hZA'hSG h14'h134'h26'h236 ’

h25 * hzss : h4s * h34e . hls ° h156 * h24 ° h246

h24 ° h234 * hss : hsss hu * h14s ¢ hza ‘ h256 ’

(t) — h24 ° h245 ¢ has ° hsss . h14 * hue ° hzs : hzss

e hzs'hzss'h4a‘h4ss hls‘hlss‘h24‘h24e )

p@) =

v(t) =

Proor. Since 4, g, v, p are contained in a W(D,)-orbit, it suffices to show
the formula for A(z). But it is easy to prove

hs4‘h345‘hzs'hzas N hls'hlss'h24'hz4s
h24'h245'has‘hase hlz'hlze'hs4'hz4e

by using Lemma 3.10. Hence the lemma follows.

At) =

THEOREM 5.5. The maps @;(j=2, 3) are W(E,)-equivariant.

PrROOF. The W(E,)-equivariance of @, is straightforward by using
5.2. Noting that @;=@,-®,, we imply the theorem.

6. A Conjecture of B. Hunt.

It is known (cf. [B]) that there is a unique W(E)-invariant homogeneous
polynomial of ¢t=(¢, ---, ts) of degree 5 up to a constant factor. For example,
we take 05(t) as such a polynomial.

Let I; be the hypersurface in P® defined by d5(t)=0. Since 05() is W(Es)-
invariant, so is I;. Moreover, since diml;=4, the restrictions @,|[;, @,|Is are
generically finite maps from /s to C*. In [H], B. Hunt stated conjectures on
these maps which turn out to be one conjecture below.

CONJECTURE 6.1 ([H]). Both @,|Is, @s|I; are generically bijective.

Since @, is birational, it suffices to show Conjecture 6.1 for one of @,|[;,
@.|I;. Noting the definition of @,(f), we find that Conjecture 6.1 is rewritten
as follows:

PROBLEM 6.2. Let xi, X,, ¥1, ¥ be constants. At least assume that (xi, x,,
Y1, ¥2) is outside the set T (for the definition of T, see section 3). Using xi, xs,
Y1, Yo, We define four polynomials of t by

f1=has hogs-hig-higs— %1 Rige Bysse hose Ross,
fo=hos-hoga+ hig- higg— %o+ hyg- Rygss hoge Roge,
81 = Nas-Rogs-his- Rigs— Y1+ Ayg Riges Page Rogs,
8o = has hpgs-hig-hige— Yo Rias Puga Rgge Roge .
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Then how many solutions are there for the simultaneous equations of t defined by
6.1) fi=fe=81=8.=06:=0
with the condition @,(t)&T?

Needless to say, there is a gap between Conjecture 6.1 and Problem 6.2,
that is, conjecture 6.1 claims that for generic x,, xs, y:, ¥:» equation has
a unique projective solution. Since it is not clear whether Conjecture 6.1 is
true or not, we reformulate it as a problem.

From now on, we are going to explain results related with Problem 6.2
and the moduli of cubic surfaces. We consider the hypersurface H in P® defined
by A(t)—1=0, that is,

(62) P(t) = h345 * hze ‘ hzss ' h13 ’ hlse * hz4e_h245 * has * hzss ’ h12 * h126 * h34s = 0 .
For the polynomial P(¢), we have the following elementary but interesting lemma.

LEMMA 6.3. The polynomial P(t) of equation (6.2) is decomposed into two
factors:

PU) - hzs'Ps(t),
where Py(t) is homogeneous of degree 5 and

1
PS(tly tZ, t3) t4) tEy tG) = *6665(1‘1’ tZ) t3) t4) tGy _Stﬁ)-

PROOF. By direct computation, we have
8P5(t) = tits— 2135t s — 20315t s — 20215t s+ 20313 — 2438512 — 8t 1 Lot ot of s+ 1515 — 20515 5
— 2513t 238 — 215t s12 4185 — 20515t s+ 24508 — 2t 24 t4t 5+ 20342 — 2128512
— 342441515 .

Since this implies in particular that Py(¢) is symmetric with respect to #y, t,, ts,
4, t, We can prove the lemma by comparing P, with the definition of J;.

From this remarkable relation, we easily imply the following (cf. [HJ, [NJ).

PROPOSITION 6.4. (i) There are 45 hypersurfaces in P® as the W(E,)-orbit
of H. Moreover, the isotropy subgroup of H in W(Es) is isomorphic to the Weyl
group of type F,.

(ii) The intersection HNI; is decomposed into two irreducible components.
One is defined by t;=ts=0 and therefore is isomorphic to P®. The other is defined
by an equation of degree 24.

(ii) If teH, then Qy(t)=(1, 1, 1, 1), that is, At)=pt)=v(@)=p@E)=1.
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Proor. (i) It follows from that Py(t) is W(D,)-invariant. We
now recall the definition of %,, 2,&W(E,) (cf. section 2). By direct computation,
we can show

P(ki@®) = —PR(0),  P(kst)) = B(¥).

Since W(F,) is generated by W(D,) and k,, k., we conclude that the hypersurface
Iy is W(F,)-invariant. Then (i) follows.

(ii) It is clear from Lemma 2.2 and [Lemma 6.3 that #;=t,=0 implies 0s(¢)
=Py()=0.

To find the second irreducible component of I;\H, we assume ;%0 and
erase t; from the equations d;(¢)=Ps(t)=0.

Since the computation is very complicated, we only reproduce here the outline
of its proof. We first introduce symmetric polynomials of £, ¢, s, ts by

S = ti+1+H13+12, s = B+ HEGE D HE, i = Littats.
Using s, si, si, we define the polynomial R(¢t) of degree 24 by
R(E) = CrotP+ otk et et et R eot 0 cati cati+ et eitih ¢,
where
c1o = 17285, co = 432s,(—2153+20s,),
¢s = 27(4800s:2+ 76155 —1736s35,+400s%),
¢ = 85,(—466565:2—3217s4-+12852s%s,—10368s%),
cs = 2(—190080s:252—336960s%s,+9251 5§ —55955s4s,+913685352—28080s2),
s = 25,(825360s;2s3— 1582848525, — 325655+ 27143s4s5,— 724965352 +617765s3),
¢s = —59833728s4* —1370994s:%55+5809680s: 555, —47321285:%s5—193s§
+3054s8s,—12981s8s5+10120s3s5+21168s4,
c3 = 25,(—2191104s4*+ 1994765255 — 1263024 s:%s3s,+1990080s ;%55
+49655§—7327s8s,+4044358s5—98824 5353 +90160s3),
¢ = —907200s4*s34249177654*s,—547145,%s§+554274s4>s3s,
—1854576s:%s5s5+205161655%s§—25653°+4640s5s,—33505s§s3
+120460s3si—215600s3s5+153664s8,
€1 = 654%5,(—4968s,255+14688s:%5,— 2655+ 285545, —1032s3s2+1232s2),
Co = 2751*(1925;2+s4—8s%s,+16s3).
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Moreover,

N(t) = —2{(5s3—1602s3t2—34s3s4+4134s5tt+10037s5s,¢2—300553¢¢
4565555 —128205,5,t5+828s,18— 15764552 +1980s 4§ —360¢1°)12
—(s%+164s,t2—4s,+T7368t4)s:2} sits,

D(t) = — {3(31534-650s3t3—92s,5,+2320s 28 — 17525, +-564818)s %
+2(246455—2055s 14+ 1871%)s3t4—4(1687s5— 415524+ 12t8)s,1¢
—(1465s,—1044¢%)s8t8+15(269s,—61¢4)s3te — 1653  + 144551t
—599s528 —5488s3t+2072s5t8—120s,t3%} .

Then assuming ¢;#0, from the equations
Pyt) = ds() = 0,

we obtain
te= N()/D(t), R(@)=0.

The equation R(t)=0 defines the hypersurface of I; stated in [Proposition 6.4{ii).
(iii) follows from direct computation.

REMARK 6.5. It follows from |Proposition 6.4(i) that there is a natural 1-1
correspondence between the W(E,)-orbit of H and the 45 exceptional divisors of
Naruki’s cross ratio variety [N].

If we consider the equation A—1=0 in the (x,, x;, v, y:)-Space, we obtain
a hypersurface H, defined by

6.3 Xo(X1—=1)Y1— Yo )(Ye—1)— yolx1—x2)(x2—1)(y:—1) = 0.

Now we formulate a problem simplified from Problem 6.2, noting
6.4 (ii). Namely, we consider Problem 6.2 in the case t;=t;=0 and #,=1. (The
condition #,=1 is not essential. From the homogeneity, we may assume ¢,=1
for some j.)

PROBLEM 6.2’. Define four polynomials of ts, ts, ts by
fro = (tatts—ta+1)°(ta 1) ts—1)— x1(ts+1s)(ta—Fs+ 1+ 1)%E—1),
f20 = (attstta+ 1)t +ts—t+ 1)t — 1),
+xo(tatts)(te—ts+ta+ 1)t —ts—2+1),
810 = (tatts—ti+ 1 (fa—ta)(Ea+1)— 31l —ta 1+ 1)t —t)(E:+1),
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820 — (tz+t3+t4+1)(t2+t3“t4+1)(fz—ts)
—Yo(te—ts+ti+ 1)t —ts—t+1)ts+ 1),

where xi, X5, ¥1, Yo are constants with the condition and (%1, X2, Y1, V)&ET.
(In particular, we assume that x, is a rational function of x,, vi, ¥..) Then how
many solutions are there for equations of ty, ts, t, below

(6-4) flo:f'zo:glozgzozo
under the condition t&T?

It is possible to give an answer to Problem 6.2’. In fact, erasing t;, ¢, from
we obtain an equation for ¢, defined by

(6.5) 2bH=0,
where
by = (%29192— %2¥2—2Y1Y2+ Y1+ 31 (x:9:.—2y,+1)y%,
bs = 3(x2Y1Y2—X2Y2—2Y1Y2+ Y1+ 38)(X2y2—2x,+1)y%,
b = —4(x3:1Y2—X5Yo+ %2y i+ X2 Y1 V53— 4X2 Y1V F X2 Y1+ X2 Y5 — 3yt 3172)
X (X2 Y1V X2Y2—2Y1 Y2+ Y1+ Y3 X2y —2%,+1)33,
bs = —6(x2y1Y2e—X2Y2—2Y1YVa+ Y1+ ) (Xe Y1+ X0Y5—2XY2— V1Yot 2)
X(%2y2—2Y2+1)x2313%,
by = 6(x231Y2—%2Y2—2Y1Y2+ Y1+ YK Y1+ X2 95—2X5Y2—Y1Y2+Y2)
X(XoY2—2%,+1)x:153,
bs = 4(x3y1Y:— x5yt %231+ %03198—4%2Y1 Y2+ %0 Y1+ X598 — Y12+ 31 32)
X(Xe Y1+ 22Y5—2X2Y2— V1Yot Yo )(X2Y2—2Y,+1)%231 Y5,
by = —3(%2y1+X2Y8—2%0Ye— 1Y+ ¥2) X2y — 2y + )xiy1,
bo = —(%:31+ %238 —2%,32— Y192+ ¥2) (%22 — 2%+ 1)x31,
b, =b,=0.

Moreover, if ¢, is a solution of [6.5), ts, t, are uniquely determined by [(6.4).

It is provable that equation for t, is irreducible of degree 9 and that
for generic x;, yi, ys, (6.5) has no multiple factor. As a consequence, we obtain
the following.

THEOREM 6.6. The restriction of @, to the subspace t;=ts=0 is generically
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91t 1.

The author is not sure whether [Theorem 6.6 induces the invalidity of Con-
jecture 6.1 or not.

7. Miscellaneous results and concluding remarks.

7.1. After the manuscript was written up, T. Shioda pointed out that The-
orem 3.2 can be proved by using his theory of Mordell-Weil lattices.

On the other hand, B. Hunt pointed out that the W(E,)-equivariance of the
map ¥, is a special case of a general result of E. Looijenga on a relation be-
tween double ratios of root systems and geometric double ratios on del Pezzo
surfaces (cf. [H, p. 15]).

7.2. In section 5, we defined a linear map T (cf. |5.4)). We are going to
determine the constants ¢z, ¢y, ¢z Cw.
We first note that the tritangent plane for the surface (5.2) is defined

by (cf. [NJ)
X—(o—1)pyo—1 )W =0.

This combined with implies

1 1
Cx{'z‘"(pz—(ﬂe)x-y“'795462‘{"?4610}
(o= 1o —Dew{ (b ro)r— 3+ 5 szt tiow)
0 uyo w g \Pe P16 5 e 16

= C{%—(Pz—fpas)x—ﬁ-%¢3sz+rssw}
for a constant ¢. Comparing the coefficients of x, y, we obtain
Cz(pa—se)—(0—1)(pvo—1)cw(Pe—@16) = c(P2—s6)
cz—(p—1)(pvp—1)c, = c.

Solving the equations above, we obtain

7.1 z = _1 __1 SDSG—SDIG w-

(7.1) ¢z = (p—1)(pvp )———%6_%6 ¢

In the same way, we obtain

(7.2) cy = (p—l)(lup—l) PDi1e2345— P16 .
P1e2345— P162435

7.3 , = —D(Ano—1 P16 P14 .

(7.3) ¢ = (p—1)(App )_¢1a—<p14(p

By direct computation, we have
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P3e—P1s - _ his Ross Pre2345— Pig —_ hase Rase P16 P14 - _ hag* s
P36 Pas hys+ Ryss ’ P1e2345— P162435 hos-has P13 P14 has-hiss
p—l———- has- Py lJp-—l’—-— hyss- Ps
hoss- Pag- Psses hige Bige- Rass # hehighis-hose hog hse’
hzs'Ps h134'P5
Avp—1 = , Appo—1= .
ve hm'hlzs’h234'h356'h56'h456 #o h’hlz'hls'hse'h4s'hs4s

(The polynomial P; is the one defined in section 6.)
From these equations, it is possible to determine c., ¢,, ¢, ¢». (Since T is
projective linear, we may assume that ¢, =1.)

7.3. The polynomial of u is related with a 27-dimensional irreducible
representation of the Lie algebra ¢, of type F,. By an argument parallel to
[SI], the following statement seems provable.

Let (zr, V) be an irreducible representation of ¢, such that dimV=27. Let
x be a subregular nilpotent element of ¢, that is, x is nilpotent such that its
centralizer Ze(x) has dimension ranke.+2=8. Moreover, let i, y be elements
of ¢¢ such that {x, &, y} is a TDS. Let ¢, -+, ¢s be a basis of Z¢(y). Taking
v=2%-1w;e;EZ(y), we consider the characteristic polynomial

X5 wy, -, wy) = det(A—nm(x4v)).
Since degX(A4; w,y, -+, ws)=27, we put
(7.4) X(A;5 wy, -, wy) = AT+ C A4 Co A% -+ +Core A+ Cy,

for some C,;(j=1, 2, -+, 27). Then from we obtain a lot of equations
with respect to w; and C;. These equations are reduced to a unique equation
which turns out to be equation (1.1) (with w=1) of Introduction by a certain
change of variables.

In the argument above, the role of 27 weights a,, b;, ¢;; is clear. But what
are the roles of 27 lines and 45 tritangent planes?

7.4. It is possible to give an interpretation of the 76 divisors of Naruki’s
cross ratio variety (cf. [N]) in terms of root system 4 of type E,. We are going
to explain this briefly.

We first define a linear subspace CR(P) of P? with coordinate (§,: & : &)
defined by the equation &, +&,+&;=0. Clearly CR(P) is equal to P!, but it is
convenient to use CR(P) for our purpose.

Let Z be the Zariski open subset of P?® defined by

h-TThe+ TI hije #0.
i<k 1<k

We first define a cross ratio map of Z to CR(P) by
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t = (NyyishsgsisPanishiniase s —Rissshisiasshissshissais s Pinishisigisisishissie) -
By permutations of indices among 1, 2, 3, 4, 5, 6, we obtain 30 maps of the form
above. We need another cross ratio map defined by

t——>(hhigishjzhjshjzjsjehhju'e: —hjzjgj5hj1j4j5hiljgjehjgj4je: hjljzhighhjajeh)‘
In this case, by permutations of indices among 1, 2, 3, 4, 5, 6, we obtain 15
maps of the form above. As a result, we obtain 45 (=30+415) cross ratio
maps of Z to CR(P).

Taking the product of these maps, we define a map crg, of Z to CR(P)*.
Let Cz,=crg(Z) and let Cg, be its Zariski closure in CR(P)*.

THEOREM 7.4.1 ([N]). (i) Cg, is 4-dimensional and non-singular.

(ii) The W(E)-action on Cg, is biregular.

(iii)y Cg,—Cg, is a divisor with normal crossings. There are 76 irreducible
components of Cg,—Cg, each of which is smooth.

In [N7], Cg, is denoted C and Cg, is equal to M. The variety Cg, is called
Naruki’s cross ratio variety in [H]J.

We are now going to give a root system theoretic interpretation of the 76
divisors of Cg,—Cpg,. Let ¢ be one of root forms A, A, hi;,. Then taking
the limit ¢—0 in Cg,, we obtain a hypersurface ¥V, in Cg,. In this way, we
obtain 36 divisors of Cg,. Clearly these correspond to positive roots of the root
system 4. In the sequel, such a hypersurface is called a hypersurface of the
1** kind. Any hypersurface of the 1%¢ kind admits a biregular X¢-action induced
by the W(E,)-action and is isomorphic to the 3-dimensional Terada model. Here
the n-dimensional Terada model means the n-dimensional nonsingular variety
T, constructed in which plays an important role in the study of Appell-
Lauricella hypergeometric function Fp(z;, -+, zn).

On the other hand, we take an A,-subroot system of 4, for example, 4,=
{+hys, +hes, +hy}. Then, we put

_ has

o

and substitute
hag = uhy,, his = (1+u)hi,

in Cg,. Next taking the limit £,,—0, we obtain a hypersurface X, in Cg, which
depends on the choice of the A,-subroot system 4,.

There are two other A,-subroot systems 4, = {+h., +hs, +he}, 4=
{2 hiss, £h, £hyet. The triple {4,, 4,, 4s} is characterized by the properties
that they are mutually orthogonal and span the linear space E. Then we
can construct a hypersurface X,(resp. X;) of Cg, from 4, (resp. 4;) by an
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argument similar to do X,.

Using the notation above, we can show the following.

(i) X, equals X,, X, and is isomorphic to T, xXT,XT,.

(ii) There are totally 40 divisors of the form X, corresponding to subroot
systems of 4 whose types are A,+A,+A,.

A hypersurface constructed in this manner is called a hypersurface of the
27¢ kind.

In [N], hypersurfaces of the 1%¢ kind and hypersurfaces of the 2"¢ kind
are called A;-divisors and non-normality divisors, respectively.

It is easy to describe the intersection relation among the 76 divisors in
terms of root systems.

Since the Terada model is constructed in connection with Appell-Lauricella
hypergeometric function, it is interesting to study the generalized hypergeometric
function of type (3,6) as a function on Naruki’s cross ratio variety (cf. [MSY]).
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