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Introduction.

Let $Ho1(M, N)$ be the Douady space of compact complex manifolds $M$ and
$N$, that is $Ho1(M, N)$ is the set of all holomorphic maps of $M$ into $N$. Then
$Ho1(M, N)$ has a complex analytic space structure whose underlying topology is
the compact-open topology. Moreover, the evaluation map of $Ho1(M, N)\cross N$

into $N$ sending $(f, p)$ to $f(p)$ is holomorphic. (See Douady [2].)

The main PurPose of this paper is to study concretely the structure of
$Ho1(M, N)$ for a projective algebraic manifold $M$ and a compact C-hyperbolic
manifold $N$. A complex manifold $N$ is said to be $C$ -hyperbolic or Carath\’eodory
hyperbolic if there exists a regular covering $\tilde{N}$ of $N$ whose Carath\’eodory pseudo-
distance is actually a distance (see Kobayashi [12], p. 129). A typical example
of $C$ -hyperbolic manifolds is a quotient space $N=\Omega/\Gamma$, where $\Omega$ is a bounded
domain in the $n$ -dimensional complex Euclidean sPace $C^{n}$ and $\Gamma$ is a fixed-point-
free discrete subgroup of the analytic automorphism group $Aut(\Omega)$ of $\Omega$ . Every
submanifold of a $C$ -hyperbolic manifold is also $C$-hyperbolic.

Throughout this paper, we assume that $M$ is a projective algebraic manifold
over the complex number field $C$ , and $N$ is a compact $C$ -hyperbolic manifold.
(By Noguchi and Sunada [19], Lemma 2.3, for a $C$ -hyperbolic projective algebraic
manifold $N$, it is sufficient to only assume that $M$ is a compact complex $space.\rangle$

Since a compact $C$-hyperbolic manifold $N$ is complete hyperbolic, $Ho1(M, N)$ is
a compact complex analytic space with finitely many irreducible components
(see Kobayashi [12], Theorem 3.2 in Chap. V).

In Section 1, we obtain the following main result:

THEOREM 1. Let $M$ be a projective algebraic manifold with universal covering
transformation grouP $G$ , and let $N$ be a compact C-hyperbolic manifold with uni-
versal covering transformation group $\Gamma$. If holomorPhic maps $f_{1},$ $f_{2}$ : $Marrow N$

induces the same surjective monodromy $(fi)_{*}=(f_{2})_{*}:$ $Garrow\Gamma$ and if $f_{1}(M)\cap f_{2}(M)$
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$\neq\emptyset$ , then $f_{1}=f_{2}$ .

In Section 2, we shall study the structure of the Douady space $Ho1(M, N)$ .
In order to state our results, we fix the following notations. Let $\Pi:\tilde{N}arrow N$ be
a covering such that the Carath\’eodory pseudo-distance on $\tilde{N}$ is actually a
distance. Denote by $\Gamma$ the covering transformation group of II: $\tilde{N}arrow N$ .

Let $X$ be an irreducible component of $Ho1(M, N)$ . Take the universal
covering $\rho:\tilde{X}arrow X$ of $X$ with covering transformation group $H$ and the universal
covering $\pi:\tilde{M}arrow M$ of $M$ with covering transformation group $G$ . We set

$F(f, p)=f(p)$

for all $(f, p)\in X\cross M$. Then $F:X\cross Marrow N$ is a holomorphic map, which is
lifted to a holomorphic map $F:\tilde{X}\cross\tilde{M}arrow\tilde{N}$. Let $F_{*}:$ $H\cross Garrow\Gamma$ be a homomor-
phism such that

$F\circ(h, g)=\hat{F}_{*}(h, g)\circ F$

for all $(h, g)\in H\cross G$ . We put

$\hat{\Gamma}=\hat{F}_{*}(H\cross G)$ and $\hat{N}=\tilde{N}/\hat{\Gamma}$ .

Since $\hat{\Gamma}$ is a subgroup of $\Gamma$, the quotient space $\hat{N}$ is a complex manifold. Note
that $\hat{N}$ is not necessarily compact.

Let $\hat{\Pi}$ : $\tilde{N}arrow\hat{N}$ be the canonical projection, and let $F:X\cross Marrow\hat{N}$ be the
holomorphic map satisfying

$\hat{F}\circ(\rho, \pi)=\Pi^{\wedge}\circ F$ .

For any $f\in X$ , we obtain a holomorphic map $\hat{f}:Marrow\hat{N}$ given by

$f(\cdot)=F(f, \cdot)$ .

For every point $p\in M$, we define the holomorphic map $\hat{p}$ : $Xarrow\hat{N}$ by

$p(f)=f(p)=F(f, p)$

for all $f\in X$ .
NOW we have the following assertions:

PROPOSITION 1. For any point $p\in M$, the holomorphic map $p:Xarrow p(M)$ is
c-biholomorphic.

THEOREM 2. For any fixed point $f_{0}$ of a component $X$ of $Ho1(M, N),$ com-
plex spaces $F(X\cross M)$ and $X\cross f_{0}(M)$ are $c$-biholomorphically equivalent.

THEOREM 3. For any component $X$ of $Ho1(M, N)$ ,

$\dim X+rankX\leqq\dim N$ .
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If $\dim X+rankX=\dim N$, then $X\cross f_{0}(M)$ is biholomorphically equivalent to $\hat{N}$,
where $f_{0}\in X$ . In particular, $X$ and $f_{0}(M)$ are nonsingular, and $F$ is a finite
index subgroup of $\Gamma$ so that the canonical projection $\hat{\Pi}_{0}$ : $\hat{N}=N/Farrow N=N/\Gamma$ is
a surjective finite holomorphic map.

THEOREM 4. Let $N$ be a compact complex manifold represented by a quotient
space $\Omega/\Gamma$ such that $\Omega$ is a bounded domain in $C^{n}$ and $\Gamma$ is a fixed-point-free
discrete subgroup of $Aut(\Omega)$ . Let $\ell(\Omega)$ be the maximum dimension of all complex
spaces included in the boundary $\partial\Omega$ of $\Omega$ . If a holomorphic map $f$ : $Marrow N$ is of
rank $>\ell(\Omega)$ , then $f$ is rigid. Moreover, $\dim X\leqq\ell(\Omega)$ for any component $X$ of
$Ho1(M, N)$ with $X\neq Const$ , the component of $Ho1(M, N)$ whose elements are con-
stant maps.

These assertions are analogous to Noguchi’s results [18] for the case where
$N=\Gamma\backslash D,$ $D$ is a symmetric bounded domain, and $\Gamma$ is a torsion-free discrete
subgroup of $Aut(D)$ such that either $\Gamma$ is co-compact or an arithmetic discrete
subgroup of the identity component of $Aut(D)$ . In this case, every component
$X$ of $Ho1(M, N)$ is smooth. However, in our case, $X$ may have singular points.
Actually, in Section 3, using a Kodaira surface, we construct a C-hyperbolic
projective algebraic manifold $N$ of dimension 3 such that $N$ is not biholomor-
phically equivalent to a product of complex manifolds and such that for a certain
compact Riemann surface $C$ the Douady space $Ho1(C, N)$ has a l-dimensional
component with singular points.

\S 1. Rigidity of holomorphic maps in $Ho1(M, N)$ .
Let $M$ be a projective algebraic manifold over the complex number field $C$ .

Denote by $\pi:\tilde{M}arrow M$ the universal covering of $M$ whose covering transforma-
tion group is $G$ .

Let $N$ be a compact $C$-hyperbolic manifold. Take a covering $\Pi:\tilde{N}arrow N$ such
that the Carath\’eodory pseudo-distance on $\tilde{N}$ is actually a distance. Denote by
$\Gamma$ the covering transformation group of $\Pi:\tilde{N}arrow N$.

For any holomorphic map $f$ : $Marrow N$, the Monodromy Theorem implies that
there exists a holomorphic map $f:\tilde{M}arrow\tilde{N}$ with $f\circ\pi=\Pi\circ\tilde{f}$ . We have the fol-
lowing commutative diagram:

$\tilde{f}$

$\tilde{M}-\tilde{N}$

$\tau_{c}\downarrow G$

$f$

$\Pi\downarrow\Gamma$

$M-N$ .

This holomorphic map $\tilde{f}$ is called a lift of $f$ . Note that $\tilde{f}$ is not unique,
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for we may replace $f$ by $\tilde{f}_{1}=\gamma_{0}\circ f\circ g_{0}$ , where $g_{0}\in G$ and $\gamma_{0}\in\Gamma$. A lift $f$ of $f$

induces a group homomorphism $\tilde{f}_{*}:$ $Garrow\Gamma$ such that

$f\circ g=P*(g)\circ f$

for any $g\in G$ . We call $\tilde{f}_{*}$ a monodromy of $f$ . If a lift $\tilde{f}$ is replaced by $\tilde{f}_{1}=$

$\gamma_{0}\circ\tilde{f}\circ g_{0}$ , then $\tilde{f}_{1}$ induces a homomorphism $(\tilde{f}_{1})_{*}$ such that

$(\tilde{f}_{1})_{*}(g)=\gamma_{0^{\circ}}f_{*}(g_{0}\circ g\circ g_{0}^{-1})\circ\gamma_{0}^{-1}$

for each $g\in G$ .
NOW, we have the following rigidity theorem of holomorphic maps.

THEOREM 1. Let $M$ be a $pro_{J^{ective}}$ algebraic manifold with universal cover-
ing transformation grouP $G$ , and let $N$ be a comPact C-hyperbolic manifold with
covering transformation grouP $\Gamma$. If holomorPhic maPs $f_{1},$ $f_{2}$ : $Marrow N$ induces
the same surjective monodromy $(f|)_{*}=(f_{2})_{*}:$ $Garrow\Gamma$ and if $f_{1}(M)\cap f_{2}(M)\neq\emptyset$ ,

then $f_{1}=f_{2}$ .
REMARK. In Theorem 1, the surjectivity of $(f_{i})_{*}:$ $Garrow\Gamma$ is necessary. For

example, take a compact Riemann surface $R$ of genus $g(\geqq 2)$ such that $R$ has
a biholomorphic involution $T$ with no fixed points. Then $T$ acts on $N_{0}=R\cross$

$R$ by

$T(p, q)=(T(P), T(q))$

for any $P,$ $q\in R$ . Let $\langle T\rangle$ be the subgroup of $Aut(N_{0})$ generated by $T$ . Set
$N=N_{0}/\langle T\rangle$ . Then $N$ is a 2-dimensional compact complex manifold and the
canonical projection $P:N_{0}arrow N$ is an unramified finite covering. Let $\pi:\Deltaarrow R$

be the universal covering with covering transformation group $G$ , where $\Delta$ is
the unit disc in the comPlex plane. Then $\Pi_{0}=(\pi, \pi):\tilde{N}=\Delta\cross\Deltaarrow N_{0}$ is the
universal covering with covering transformation group $\Gamma_{0}=G\cross G$ . Let $\Gamma$ be
the covering transformation group of II: $\tilde{N}arrow N$ .

Fix a point $p_{0}\in R$ and set $\varphi_{1}(P)=(p_{0}, p)$ , and $\varphi_{2}(p)=(T(p_{0}), p)$ for any $p\in$

$R$ . Then $\varphi_{1},$ $\varphi_{2}$ are distinct holomorphic maps of $R$ into $N_{0}$ . Take $z_{1},$
$z_{2}\in\Delta$

with $\pi(z_{1})=Po$ and $\pi(z_{2})=T(p_{0})$ . Then the holomorphic map $\tilde{\varphi}_{i}$ : $\Deltaarrow\tilde{N}$ sending
$z$ to $(z_{i}, z)$ is a lift of $\varphi_{i}$ for $i=1,2$ . Moreover, they induce the same homo-
morphism $x=(\tilde{\varphi}_{i})_{*}:$ $Garrow\Gamma_{0}$ such that $\chi(g)=(1, g)$ for each $g\in G$ , where 1 is the
unit of $G$ . Since $\Gamma_{0}=G\cross G$ , the homomorphism $\chi$ is not surjective.

We set $f_{t}=P\circ\varphi_{i}$ for $i=1,2$ . Then $\tilde{\varphi}_{i}$ is a lift of $f_{i}$ for each $i=1,2$ and
$x=(\tilde{\varphi}_{1})_{*}=(\tilde{\varphi}_{2})_{*}$ . On the other hand, $f_{1},$ $f_{2}$ are distinct holomorphic maps $R$

into $N$ and $f_{1}(R)=f_{2}(R)$ . Hence, this example shows that the assumption of
surjectivity of $(f_{i})_{*}$ in Theorem 1 is necessary.

By using the following two lemmas, the proof of Theorem 1 is reduced to
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the case where $M$ is a projective algebraic curve, that is, a compact Riemann
surface.

LEMMA 1. Let $R$ be a comPact Riemann surface with universal covering
transformation group $G$ , and let $N$ be a comPact C-hyperbolic manifold with
covering transformation grouP $\Gamma$. If holomorphic maps $f_{1},$ $f_{2}$ : $Rarrow N$ induce the
same monodromy $(fi)_{*}=(f_{2})_{*}:$ $Garrow\Gamma$ and if $f_{1}(\tilde{R})\cap P_{2}(R)\neq\emptyset$ for the universal
covering surface ft of $R$ , then $f_{1}=f_{2}$ .

PROOF. The Uniformization Theorem for Riemann surfaces lmplies that
the universal covering surface $\tilde{R}$ of $R$ is biholomorphically equivalent to the
Riemann sphere $\hat{C}$ , the complex plane $C$ , or the unit disc $\Delta=\{z\in C||z|<1\}$ . If
$\tilde{R}$ is biholomorphically equivalent to $\hat{C}$ or $C$ , then $f_{1},$ $f_{2}$ are constant maps, for
$\tilde{N}$ is $C$-hyperbolic. Since $fi(R)\cap f_{2}(\tilde{R})\neq\emptyset$ , we have $fi=f_{2}$ , and hence $f_{1}=f_{2}$ .

NOW, assume that $\tilde{R}$ is biholomorphically equivalent to $\Delta$ . In this case, we
can use the same method as the proof of Theorem 1 in [6]. Take two points
$z_{1},$

$z_{2}\in\Delta$ with $fi(z_{1})=f_{2}(z_{2})$ . Let $x=(fi)_{*}=(f_{2})_{*}$ . We obtain

(1) $\{$

$f_{1}\circ g=x(g)\circ f_{1}$

$f_{2^{\circ g=^{\chi(g)0}}}f_{2}$

for all $g\in G$ .
Assume that $\tilde{f}_{1}\neq f_{2}$ on $\Delta$ . Since $\tilde{N}$ is $C$ -hyperbolic, there exists a bounded

holomorphic function a on $\tilde{N}$ such that $\alpha\circ fi\neq\alpha\circ f_{2}$ on $\Delta$ . Then $A_{1}=\alpha\circ f_{1}$ and
$A_{2}=\alpha 0\tilde{f}_{2}$ are bounded holomorphic functions on $\Delta$ .

Since $G$ is of divergence type, almost every boundary point $\zeta\in\partial\Delta$ is an
angular limit point of $G$ , that is, there exists a sequence $\{g_{n}\}_{n=1}^{\infty}$ of $G$ such
that $g_{n}(z)arrow\zeta$ through a Stolz domain with vertex at $\zeta$ as $narrow\infty$ for each $z\in K$,

where $K$ is a compact subset in $\Delta$ . Apply Fatou’s theorem to bounded holo-
morphic functions $A_{1},$ $A_{2}$ . For almost every boundary point $\zeta\in\partial\Delta$ , there exist
two complex numbers $b_{1}(\zeta),$ $b_{2}(\zeta)$ such that $A_{1}(z)$ and $A_{2}(z)$ converge uniformly
to $b_{1}(\zeta)$ and $b_{2}(\zeta)$ , respectively as $zarrow\zeta$ through a fixed Stolz domain with vertex
at $\zeta$ . Hence, for almost every boundary point $\zeta$ , there exists a sequence $\{g_{n}\}_{n=1}^{\infty}$

of $G$ such that

$\lim_{narrow\infty}A_{1}\circ g_{n}(z_{1})=b_{1}(\zeta)$ ,

$\lim_{narrow\infty}A_{2}\circ g_{n}(z_{2})=b_{2}(\zeta)$ .

By relation (1) and $fi(z_{1})=f_{2}(z_{2})$ , we have $b_{1}(\zeta)=b_{2}(\zeta)$ . Hence, $A_{1}$ and $A_{2}$ have
the same boundary value for almost all $\zeta\in\partial\Delta$ , which implies $A_{1}=A_{2}$ on $\Delta$ . This
contradicts $A_{1}\neq A_{2}$ on $\Delta$ . Therefore, $f_{1}=f_{2}$ on R. $\blacksquare$

LEMMA 2. Let $M$ be a projective algebraic manifold. For any two points
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$p_{1},$ $p_{2}\in M$, there exists a non-singular, connected, 1-dimensional analytic subset $R$

of $M$ such that $R$ contains $p_{1}$ and $p_{2}$ , and such that $R$ is biholomorphically equi-
valent to the Riemann sphere $\hat{C}$ or the inclusion map $c:R\circ M$ induces a surjective
homomorpllism $c_{*}:$ $\pi_{1}(R)arrow\pi_{1}(M)$ between the fundamental groups of $R$ and $M$.

PROOF. We will prove this lemma by the induction of dimension of $M$.
If $M$ is of 1-dimension, then we can take $R=M$. Assume that $M$ is of dimen-
sion $n(\geqq 2)$ and embedded in a complex projective space $P^{k}(C)$ with $k>n$ . We
may assume that $p_{1}\neq P_{2}$ . Then we can take $P_{1}=[1,0,0, \cdots 0]$ and $P_{2}=[0,1$ ,
$0$ , $\cdot$ .. , $0$] in $P^{k}(C)$ . If $M$ contains the complex projective line $L_{0}$ in $P^{k}(C)$

which meets $p_{1}$ and $p_{2}$ , then we take $R=L_{0}$ .
NOW, assume that $M$ contains no complex Projective lines meeting $p_{1}$ and

$p_{2}$ . Let $\mathcal{L}$ be the set of all hyperplanes $H$ in $P^{k}(C)$ such that $H$ contains $p_{1}$

and $p_{2}$ . Then any element $H$ of $\mathcal{L}$ is represented by an equation

$a_{2}z_{2}+\cdots+a_{k}z_{k}=0$

in $P^{k}(C)$ , where $[a_{2}, \cdots a_{k}]\in P^{k-2}(C)$ . Since $M$ does not contain $L_{0}$ , the in-
tersection $B=M\cap L_{0}$ consists of finite points. By Bertini’s Theorem, the in-
tersection $M\cap H$ is smooth away from $B$ for the generic element $H$ of $\mathcal{L}$ . (See

Griffiths and Harris [5], p. 137.) We shall prove that $M\cap H$ is also smooth at
every point of $M\cap H\cap B$ for the generic element $H$ of $X$ .

Take any point $x=[x_{0}, x_{1},0, \cdots , O]\in B$ . We may assume that $x_{0}\neq 0$ . Then
$\zeta=z_{i}/z_{0}$ $(i=1, \cdots , k)$ are local coordinates at $x\in P^{k}(C)$ . There exist holomorphic
functions $f_{i}$ $(i=1, \cdots , k-n)$ defined on a neighborhood $U$ of $x\in P^{k}(C)$ such that
$M\cap U=\{\zeta\in U|f_{i}(\zeta)=0(i=1, \cdots , k-n)\}$ and $\det(\partial f_{i}/\partial\zeta_{j})_{1\leqq i.j\leq k-n}$ does not vanish
on $U$ . Let $f_{k-n+1}(\zeta)=a_{2}\zeta_{2}+\cdots+a_{k}\zeta_{k}$ . Then

$M\cap H\cap U=\{\zeta\in U|f_{i}(\zeta)=0, i=1, \cdots , k-n+1\}$

and

$\det(\partial f_{i}/\partial\zeta_{j})_{1\xi i.j\leq k-n+1}=\sum_{j2}^{k-+1}a_{j}\Delta_{j}(\zeta)$ ,

where each $\Delta_{j}$ is a holomorphic function on $U$ .
Since $\Delta_{k-n+1}=\det(\partial f_{i}/\partial\zeta_{j})_{1\xi i,j\leqq k-n}$ , the function $\Delta_{k-n+1}$ does not vanish on

$U$ . Hence

$\{$ [ $a_{2},$
$\cdots$ , a $k$ ] $\in P^{k-2}(C)|\sum_{j2}^{k-+1}$ a $j\Delta j(\zeta)=0\}$

is of dimension $<k-2$ . Therefore, $M\cap H$ is smooth at $x$ for the generic
element $H$ of $X$ . This implies that $M\cap H$ is non-singular for the generic ele-
ment $H$ of $X$ .

Take an element $H$ of $X$ such that $M\cap H$ is non-singular. By Lefschetz’s
Theorem, the pair $(M, M\cap H)$ is $(n-1)$-connected. (See Milnor [16], Theorem
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7.4, or Lamotke [15], Theorem (8.11).) Hence, $M\cap H$ is connected and the
inclusion map $c:M\cap HcM$ induces a surjection $c_{*}:$ $\pi_{1}(M\cap H)arrow\pi_{1}(M)$ providing
that $n=\dim M\geqq 2$ . Therefore, for the generic element $H$ of $\mathcal{L}$ , the hyperplane
section $M\cap H$ is a non-singular, connected, $(n-1)$-dimensional analytic subset
of $M$ such that $t*:\pi_{1}(M\cap H)arrow\pi_{1}(M)$ is surjective. This completes the proof
of Lemma 2. $\blacksquare$

REMARK. This lemma is proved in Zaidenberg and Lin [22], Lemma 1,
p. 130.

LEMMA 3. Let $M$ be a projective algebraic manifold with universal covering
transformation grouP $G$ , and let $N$ be a comPact $C$ -hyPerbolic manifold with
covering transformatim grouP $\Gamma$. If holomorPhic maPs $f_{1},$ $f_{2}$ : $Marrow N$ induce the
same monodromy $(f_{1})_{*}=(f_{2})_{*}:$ $Garrow\Gamma$ and $f_{1}(\tilde{M})\cap F_{2}(\tilde{M})\neq\emptyset$ , then $f_{1}=f_{2}$ .

PROOF. Take two points $\beta_{1},\tilde{p}_{2}\in\tilde{M}$ with $f_{1}(p_{1})=f_{2}(\beta_{2})$ , and set $p_{1}=\pi(p_{1})$ ,
$p_{2}=\pi(\beta_{2})$ . Let $R$ be a compact Riemann surface as in Lemma 2. If $R$ is of
genus $1, then $f_{1},$ $f_{2}$ are constant on $R$ . Since $R$ contains $p_{1}$ and $p_{2}$ , we have
$f_{1}=f_{2}$ on $R$ .

NOW, assume that $R$ is of genus $>1$ . Then the inclusion map $\iota:Rc,$ $M$

induces a surjection $c_{*}:$ $\pi_{1}(R)arrow\pi_{1}(M)$ . We set $R=\pi^{-1}(R)$ , which is a non-
singular, connected, 1-dimensional analytic subset of $\tilde{M}$ . By definition, $R$ is
invariant under $G$ and the quotient space $R/G$ is biholomorphically equivalent
to $R$ . Let $\pi_{0}$ : $\Deltaarrow\hat{R}$ be the universal covering of $\hat{R}$ , where $\Delta$ is the unit disc.
Then $\hat{\pi}=\pi\circ\pi_{0}$ : $\Deltaarrow R$ is the universal covering of $R$ with covering transforma-
tion group $H$. Note that

$H=$ { $h\in Aut(\Delta)|\pi_{0}\circ h=g\circ\pi_{0}$ for some $g\in G$ } ,

and that $\pi_{0}$ induces a surjective homomorphism $(\pi_{0})_{*}:$ $Harrow G$ sending $h\in H$ into
$(\pi_{0})_{*}(h)=g\in G$ , where $g$ is uniquely determined by the relation $\pi_{0}\circ h=g\circ\pi_{0}$ .

Set $\varphi_{i}=f_{i}\circ\pi_{0}$ for $i=1,2$ . Then $\varphi_{i}$ : $\Deltaarrow\tilde{N}$ is a lift of $f_{i}|R:Rarrow M$ and
satisfies

$\varphi_{i}\circ h=(f_{i})_{*}((\pi_{0})_{*}(h))\circ\varphi_{i}$

for all $h\in H$ . Let $(\varphi_{i})_{*}=(f_{i})_{*}\circ(\pi_{0})_{*}$ . Holomorphic maps $\varphi_{1},$ $\varphi_{2}$ : $\Deltaarrow\tilde{N}$ induce
the same homomorphism $(\varphi_{1})_{*},$ $(\varphi_{2})_{*}:$ $Harrow\Gamma$, and $\varphi_{1}(\Delta)\cap\varphi_{2}(\Delta)\neq\emptyset$ . Hence,
Lemma 1 implies that $fi=f_{2}$ on $R$ and $f_{1}=f_{2}$ on $R$ .

Let $P$ be an arbitrary point on $M$. By Lemma 2, we can take a non-singular,
connected, 1-dimensional analytic subset $R’$ of $M$ such that $R’$ contains $P$ and
$p_{1}$ , and such that $R’$ is biholomorphically equivalent to $\hat{C}$ or the inclusion map
$c:R’cM$ induces a surjective homomorphism $C*:\pi_{1}(R’)arrow\pi_{1}(M)$ . If $R’$ is of
genus ;Sl, then $f_{1},$ $f_{2}$ are constant on $R’$ . Hence, $f_{1}(p)=f_{1}(p_{1})=f_{2}(p_{2})=f_{2}(p)$ .
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NOW, assume that $R’$ is of genus $>1$ . Since $\beta_{1}\in\hat{R}’=\pi^{-1}(R’)$ and $f_{1}(\tilde{p}_{1})=$

$\tilde{f}_{2}(\tilde{p}_{1})$ , the same reasoning as above implies that $f_{1}=f_{2}$ on $R’$ . In particular,
$f_{1}(p)=f_{2}(p)$ . Since $P$ is arbitrary, we have $f_{1}=f_{2}$ on M. $\blacksquare$

PROOF OF THEOREM 1. Take $tWO$ pOintS $p_{1},$ $p_{2}\in M$ with $f_{1}(p_{1})=f_{2}(p_{2})$ .
Let $P_{i}\in\tilde{M}$ such that $\pi(\beta_{i})=p_{i}$ for $i=1,2$ . There exists an element $\gamma_{0}\in\Gamma$ with
$f_{2}(\tilde{p}_{2})=\gamma_{0}\circ f_{1}(\tilde{p}_{1})$ . Since $(f_{1})_{*}:$ $Garrow\Gamma$ is surjective, we find an element $g_{0}\in G$

with $\gamma_{0}=(f_{1})_{*}(g_{0})$ . We have $f_{2}(\beta_{2})=fi^{\circ}g_{0}(\beta_{1})$ . Hence, $f_{1}(\tilde{M})\cap f_{2}(\tilde{M})\neq\emptyset$ , and
Lemma 3 implies that $f_{1}=f_{2}$ on $M$. This completes the proof of Theorem 1.

COROLLARY 1. Let $M$ be a $pro_{J}ective$ algebraic manifold with universal
covering transformation grouP $G$ , and let $N$ be a comPact $C$ -hyPerbolic manifold
with covering transformation grouP $\Gamma$. If $sur_{J}ective$ holomorPhic maps $f_{1},$ $f_{2}$ :
$Marrow N$ induce the same monodromy $(fi)_{*}=(f_{2})_{*}:$ $Garrow\Gamma$, then $f_{1}=f_{2}$ . In particular,

if $sur_{J}ective$ holomorphic maps $f_{1},$ $f_{2}$ : $Marrow N$ are homotoPic, then $f_{1}=f_{2}$ .

PROOF. Let $\Gamma_{0}=(f_{1})_{*}(G)$ and $N_{0}=\tilde{N}/\Gamma_{0}$ . Let $\Pi_{0}$ : $\tilde{N}arrow N_{0}$ be the canonical
projection. Take holomorphic maps $\varphi_{i}$ : $Marrow N_{0}$ satisfying $\varphi_{i}\circ\pi=\Pi_{0}\circ f_{i}$ for $i=1$ ,

2. Since $M$ is compact, the Proper Mapping Theorem implies that $\varphi_{1}(M)$ is a
compact analytic subset of $N_{0}$ . Since $f_{1}$ is surjective, $\dim\varphi_{1}(M)=\dim f_{1}(M)=$

$\dim N_{0}$ . Hence, $\varphi_{1}(M)=N_{0}$ , and $N_{0}$ is compact. Similarly, we have $\varphi_{2}(M)=N_{0}$ .
Then $\varphi_{1},$ $\varphi_{2}$ : $Marrow N_{0}$ are surjective holomorphic maps which induce the same
surjective homomorphism $(fi)_{*}=(f_{2})_{*}:$ $Garrow\Gamma_{0}$ . By Theorem 1, we have $\varphi_{1}=\varphi_{2}$ ,

and hence $f_{1}=f_{2}$ . $\blacksquare$

NOW, we have the following well-known finiteness Theorem of surjective
holomorphic maps of $M$ to N. (Cf. Kalka, Shiffman and Wong [9], Kobayashi
and Ochiai [13], Noguchi and Sunada [19], and Urata [20].)

COROLLARY 2. Let $M$ be a projective algebraic manifold, and let $N$ be a
comPact $C$ -hyPerbolic manifold. Then there exist finitely many surjective holomor-
phic maps of $M$ to $N$.

PROOF. Assume that there exist infinitely many distinct surjective bolomor-
phic maPs $\{f_{n}\}_{n=1}^{\infty}$ of $M$ to $N$ . Fix a point $\tilde{x}_{0}\in\tilde{M}$ and take a relatively compact
fundamental set $K_{0}$ for $\Gamma$. There exists a unique lift $f_{n}$ : $\tilde{M}arrow\tilde{N}$ of $f_{n}$ with
$f_{n}(x_{0})\in K_{0}$ for each $n$ . We may assume that $f_{n}(\tilde{x}_{0})arrow\tilde{y}_{0}\in\tilde{N}$ as $narrow\infty$ .

Let $d_{\overline{M}}$ be the Kobayashi pseudo-distance of $\tilde{M}$ and $d_{i\nabla}$ the Kobayashi
pseudo-distance of $\tilde{N}$. Since $\tilde{N}$ is $C$-hyperbolic and $N=\tilde{N}/\Gamma$ is compact, $d_{\nabla}$ is
a complete distance. (See Kobayashi [12], Theorem 4.7 in Chap. 4.)

Let $\{g_{1}, , g_{\ell}\}$ be a finite system of generators of $G$ . We set

$\delta=ma^{Xd_{M}(g_{i}(x_{0})},$
$x_{0})$ .
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The distance decreasing property of Kobayashi pseudo-distances gives

$d_{\overline{N}}(f_{n}\circ g_{i}(\tilde{x}_{0}), f_{n}(\tilde{x}_{0}))\leqq dff(g_{\ell}(\tilde{x}_{0}),\tilde{x}_{0})\leqq\delta$

for all $n=1,2$ , $\cdot$ .. , and $i=1,2,$ $\cdots$ $\ell$ . Since $d_{R}$ is a complete distance on $\tilde{N}$,

the set $K_{0}$ is a relatively compact subset of $\tilde{N}$, and $7_{n}(x_{0})\in K_{0}$ for each $n$ , we
may assume that $\{f_{n}\circ g_{i}(\tilde{x}_{0})\}_{n=1}^{\infty}$ converges to a point $z_{i}\in\tilde{N}$ as $narrow\infty$ for each
$i=1,2,$ $\ell$ .

Since $1\tilde{V}$ is complete hyperbolic, $\tilde{N}$ is taut (see Eisenman [3] or Kiernan [11]).

Hence, from the relation $f_{n}\circ g_{i}=(f_{n})_{*}(g_{i})\circ f_{n}$ , we may assume that $\{(f_{n})_{*}(g_{i})\}_{n=1}^{\infty}$

converges uniformly to a holomorphic map $\gamma_{i}$ defined in $\tilde{N}$ on compact subsets
of $\tilde{N}$ as $narrow\infty$ . Therefore, H. Cartan’s Theorem implies that $\gamma_{i}\in Aut(\tilde{N})$ for
each $i=1,2$ , $\cdot$ .. , $\ell$ (cf. Narasimhan [17], Chap. 5, Theorem 4). Since $\Gamma$ is dis-
crete, there exists a positive integer $n_{0}$ such that $(f_{n})_{*}(g_{i})=\gamma_{i}$ for all $n\geqq n_{0}$ and
$i=1,2$ , , $\ell$ . Hence, $(f_{n})_{*}=(f_{n_{0}})_{*}$ for all $n\geqq n_{0}$ . By Corollary 1, we have
$f_{n}=f_{n_{0}}$ for all $n\geqq n_{0}$ . This is a contradiction. $\blacksquare$

\S 2. The structure of $Ho1(M, N)$ .
We shall study concretely the structure of the Douady space $Ho1(M, N)$ of

a projective algebraic manifold $M$ and a compact $C$ -hyperbolic manifold $N$ .
Let Const be the set of all constant maps of $M$ into $N$. Then Const is an

irreducible component of $Ho1(M, N)$ and it is biholomorphically equivalent to $N$.
Take a covering $\Pi:\tilde{N}arrow N$ such that the Carath\’eodory pseudo-distance on

$\tilde{N}$ is actually a distance. Denote by $\Gamma$ the covering transformation group of
$\Pi:1\tilde{V}arrow N$.

Let $X$ be an irreducible component of $Ho1(M, N)$ which is distinct from
Const. We may assume that $X$ is reduced. (See Grauert and Remmert [4], pp.
20-21.) Take the universal covering $\rho:\tilde{X}arrow X$ of $X$ with covering transforma-
tion group $H$, and the universal covering $\pi:\tilde{M}arrow M$ of $M$ with covering trans-
formation group $G$ . Then $(\rho, \pi):\tilde{X}\cross\tilde{M}arrow X\cross M$ is the universal covering of
$X\cross M$ with covering transformation group $H\cross G$ , where $H\cross G$ is the direct
product of $H$ and $G$ . We set

$F(f, p)=f(p)$

for all $(f, p)\in X\cross M$. Then $F:X\cross Marrow N$ is a holomorphic map, which is lifted
to a holomorphic map $F:\tilde{X}\cross\tilde{M}arrow\tilde{N}$ . We obtain the following commutative
diagram:

$\tilde{F}$

$\tilde{X}\cross\tilde{M}-\tilde{N}$

$(\rho, \pi)\downarrow H\cross GF\Pi\downarrow\Gamma$

$X\cross M-N$ .
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Let $\hat{F}_{*}:$ $H\cross Garrow\Gamma$ be a homomorphism such that

$F\circ(h, g)=F_{*}(h, g)\circ fl$

for all $(h, g)\in HXG$ . We put

$\hat{\Gamma}=\tilde{F}_{*}(H\cross G)$ and $\hat{N}=\tilde{N}/\hat{\Gamma}$ .

Since $\hat{\Gamma}$ is a subgroup of $\Gamma$, the quotient space $\hat{N}$ is a complex manifold. Note
that $\hat{N}$ is not necessarily compact.

Let $\hat{\Pi}$ : $\tilde{N}arrow\hat{N}$ be the canonical projection, and let $F:X\cross Marrow\hat{N}$ be the
holomorpbic map satisfying

$F\circ(\rho, \pi)=\Pi^{\wedge}\circ F$ .
We have the following commutative diagram:

$\tilde{F}$

$\tilde{X}\cross\tilde{M}-\tilde{N}$

$(_{\rho,\tau t})\downarrow H\underline{\cross G\tilde{F}\Pi\wedge}\downarrow\hat{\Gamma}X\cross M\hat{N}$

.
For any $f\in X$ , we have a holomorphic map $f:Marrow\hat{N}$ given by

$f(\cdot)=F(f, \cdot)$ .

For every point $p\in M$, we define the holomorphic map $\hat{p}$ : $Xarrow\hat{N}$ by

$p(f)=f(p)=F(f, p)$

for all $f\in X$ .
We fix these notations throughout this section.
Note that the Proper Mapping Theorem implies that both $\hat{f}(M)$ and $\hat{p}(X)$

are compact analytic subsets of $\hat{N}$, and hence they are compact complex spaces.
NOW we have the following lemma.

LEMMA 4. If $f_{1},$ $f_{2}\in X$ satisfy $f_{1}(M)\cap f_{2}(M)\neq\emptyset$ , then $fi=f_{2}$ . In Par-
ticular, $f_{1}=f_{2}$ .

PROOF. Take two poins $(f_{1}, \beta_{1})$ and $(f_{2},\tilde{p}_{2})$ of $\tilde{X}\cross\tilde{M}$ such that $(\rho, \pi)(f_{1}, \beta_{1})$

$=(f_{1}, p_{1})$ and $(\rho, \pi)(f_{2}, p_{2})=(f_{2}, p_{2})$ . The assumption $\hat{F}(f_{1}, p_{1})=F(f_{2}, p_{2})$ implies
that there exists an element $(h_{0}, g_{0})\in H\cross G$ satisfying $F(f_{2},\tilde{p}_{2})=F_{*}(h_{0}, g_{0})0$

$F_{(}f_{1},$ $\beta_{1})=\hat{F}(h_{0}(f_{1}), g_{0}(\tilde{p}_{1}))$ . Define $\varphi_{1},$ $\varphi_{2}$ : $\tilde{M}arrow\tilde{N}$ by

$\varphi_{1}(\tilde{P})=F(h_{0}(f_{1}), p)$ ,

$\varphi_{2}(\beta)=\tilde{F}(f_{2}, p)$

for any $\tilde{p}\in\tilde{M}$ . Then $(\varphi_{1})_{*}=(\varphi_{2})_{*}:$
$carrow F$ and $\varphi_{2}(\tilde{P}_{2})=\varphi_{1}(g_{0}(\beta_{1}))$ . Hence, Lemma
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3 implies that $\varphi_{1}=\varphi_{2}$ on $\tilde{M}$ . Therefore, $F(f_{1}, \cdot)=\hat{F}(f_{2}$ , $\cdot$ $)$ on M. $\blacksquare$

LEMMA 5. For any Point $P\in M$, the holomorPhic maP $p$ : $Xarrow\hat{N}$ is $in_{J}ecti^{\wedge}oe$ .
If $p_{1},$ $p_{2}\in X$ satisfy $p_{1}(X)\cap p_{2}(X)\neq\emptyset$ , then $P_{1}=P_{2}$ .

PROOF. The first assertion of this Lemma is clear from Lemma 4.
The second assertion is proved as follows: Take two elements $f_{1},$ $f_{2}\in X$

with $p_{1}(f_{1})=P_{2}(f_{2})$ . Then we have $f_{1}(p_{1})=f_{2}(p_{2})$ . By Lemma 4, we get $fi=f_{2}$ ,
and hence $p_{1}(f_{1})=P_{2}(f_{1})$ . The rigidity theorem due to Borel and Narasimhan
([1], Theorem 3.6 and its remark) shows $p_{1}=p_{2}$ . $\blacksquare$

Since $X$ may have singular points, we extend the notion of holomorphic
maps on complex spaces after Whitney. Let $X$ and $Y$ be complex spaces. We
say that a map $f:Xarrow Y$ is continuous weakly holomorphic, or $c$-holomorphic
for short, if it is continuous on $X$ and is holomorphic at every regular point
of $X$ (see Whitney [21], p. 149). A map $f:Xarrow Y$ is said to be c-biholomorphic
if it is homeomorphic, and both $f$ and $f^{-1}$ are $c$-holomorphic. Two complex
spaces $X$ and $Y$ are $c$-biholomorphically equivalent if there exists a c-biholomor-
Phic maP between them. We give a tyPical example of $c$-biholomorphically
equivalent comPlex sPaces which are not biholomorphically equivalent: Let $X$

be the comPlex Plane, and let $Y$ be the comPlex sPace $\{(z, w)\in C^{2}|w^{2}=z^{3}\}$ .
Define the map $f:Xarrow Y$ by $f(t)=(t^{2}, t^{3})$ . Then $f$ is homeomorphic and holo-
morphic. The inverse map $f^{-1}$ is given by $f^{-1}(z, w)=w/z$ , and hence it is not
holomorPhic at the singular Point $(0,0)$ of $Y$ . Clearly $f^{-1}$ is $c$-holomorphic, and
$X,$ $Y$ are $c$-biholomorphically equivalent.

NOW we have the following assersion.

PROPOSITION 1. For any point $P\in M$, the holomorPhic maP $\hat{p}$ : $Xarrow p(M)$ is
$c$-biholomorphic.

PROOF. From Lemma 5 we see that $p:Xarrow P(M)$ is homeomorhic. Since
$\hat{p}$ is holomorphic, it is clear that the graph of the inverse map $\hat{p}^{-1}$ is an analytic
subset of $\hat{p}(M)\cross X$ . Hence $\hat{p}^{-1}$ is c-holomorphic (see Whitney [21], p. 149). $\blacksquare$

COROLLARY. If $N$ is a projective algebraic C-hyperbolic manifold, then any
component $X$ of $Ho1(M, N)$ is c-biholomorphically equivalent to a projeciive alge-
braic variety.

PROOF. Let $\hat{\Pi}_{0}$ : $\hat{N}=\tilde{N}/\hat{\Gamma}arrow N=\tilde{N}/\Gamma$ be the canonical projection. Then
$\hat{\Pi}_{0}\circ\hat{p}(X)$ is a projective algebraic variety and $\hat{\Pi}_{0}|\hat{p}(X):\hat{p}(X)arrow\Pi_{0^{\circ}}\hat{p}(X)$ is a
finite holomorphic map. Thus $\hat{p}(X)$ is also a projective algebraic variety. Hence
Proposition 1 implies that $X$ is $c$-biholomorphically equivalent to a projective
algebraic variety. $\blacksquare$
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PROPOSITION 2. For any two Points $f_{1},$ $f_{2}\in X,$ comPlex sPaces $f_{1}(M),$ $f_{2}(M)$

are c-biholomorphically equivalent.

PROOF. First, we define tbe map $\Phi$ : $\hat{f}_{1}(M)arrow\hat{f}_{2}(M)$ by

$\Phi(x)=f_{2}(p)$ , $p\in f_{1}^{-1}(x)$ .

This map $\Phi$ is well-defined. In fact, for any $p,$ $q\in f_{1}^{-1}(x)$ , Lemma 5 implies
that $\hat{P}=\hat{q}$ , and so $\hat{f}_{2}(p)=\hat{f}_{2}(q)$ .

Second, we show that $\Phi$ is continuous on $\hat{f}_{1}(M)$ . Assume that $\Phi$ is not
continuous at $x_{0}\in\hat{f}_{1}(M)$ . Then there exists an infinite sequence $\{x_{n}\}$ converging
to $x_{0}$ in $\hat{f}_{1}(M)$ such that $\{\Phi(x_{n})\}$ does not converge to $\Phi(x_{0})$ . We find a
neighborhood $U$ of $\Phi(x_{0})$ in $\hat{f}_{2}(M)$ and a subsequence $\{\Phi(x_{n_{j}})\}$ such that $\Phi(x_{n_{j}})$

$\not\in U$ for all $n_{j}$ . For each $n_{j}$ , take a point $p_{n_{j}}\in M$ with $\hat{f}_{1}(p_{n_{j}})=x_{n_{j}}$ . Since $M$

is compact, we may assume that $\{p_{n_{j}}\}$ converges to a point $p_{0}\in M$. Because
$\hat{f}_{1}$ is continuous and $\{x_{n_{j}}\}$ converges to $x_{0}$ , we have $\hat{f}_{1}(p_{0})=x_{0}$ , and so $\Phi(x_{0})=$

$\hat{f}_{2}(P_{0})$ . By the continuity of $\hat{f}_{2}$ , we obtain $\Phi(x_{n_{j}})=\hat{f}_{2}(p_{n_{j}})arrow\hat{f}_{2}(p_{0})=\Phi(x_{0})$ . This
is a contradiction.

Third, we prove that $\Phi$ is $c$-holomorphic. It is sufficient to see that the
graph $G_{\Phi}$ of $\Phi$ is an analytic subset of $\hat{f}_{1}(M)\cross\hat{f}_{2}(M)$ . By the definition of $\Phi$ ,

we get
$G_{\Phi}=\{(f_{1}(p), f_{2}(p))\in f_{1}(M)\cross f_{2}(M)|p\in M\}$ .

Since $\hat{f}_{1}\cross\hat{f}_{2}$ : $Marrow\hat{f}_{1}(M)\cross\hat{f}_{2}(M)$ is holomorphic, and $M$ is a compact complex
sPace, the Proper Mapping Theorem shows that $G_{\Phi}$ is an analytic subset of
$\hat{f}_{1}(M)\cross\hat{f}_{2}(M)$ .

Finally, we define the map $\Psi:f_{2}(M)arrow\hat{f}_{1}(M)$ by

$\Psi(y)=f_{1}(p)$ , $p\in f_{2}^{-1}(y)$ .

By the same reasoning as above, we see that $\Psi$ is a $c$-holomorphic map. It is
clear that $\Psi$ is the inverse map of $\Phi$ . $\blacksquare$

THEOREM 2. For any fixed point $f_{0}\in X,$ comPlex sPaces $\hat{F}(X\cross M)$ and $X\cross$

$f_{0}(M)$ are c-biholomorphically equivalent.

PROOF. Define the map $\Phi:X\cross\hat{f}_{0}(M)arrow\hat{F}(X\cross M)$ by

$\Phi(f, x)=f(p)$ , $p\in f_{\overline{0}^{1}}(x)$ .

This map $\Phi$ is well-defined. In fact, for any $P,$ $q\in f^{-1}(x)$ , Lemma 5 implies
that $\hat{p}=\hat{q}$ , and hence $\hat{f}(p)=\hat{f}(q)$ .

Next, we show that $\Phi$ is continuous on $X\cross\hat{f}_{0}(M)$ . Assume that $\Phi$ is not
continuous at $(f, x)\in X\cross\hat{f}_{0}(M)$ . Then there exists an infinite sequence $\{(f_{n}, x_{n})\}$

converging to $(f, x)$ in $X\cross f_{0}(M)$ such that $\{\Phi(f_{n}, x_{n})\}$ does not converge to
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$\Phi(f, x)$ . We find a neighborhood $U$ of $\Phi(f, x)$ in $fi(X\cross M)$ and a subsequence
$\{\Phi(f_{n_{j}}, x_{n_{j}})\}$ such that $\Phi(f_{n_{j}}, x_{n_{j}})\not\in U$ for all $n_{j}$ . For each $n_{j}$ , take a point
$p_{n_{j}}\in M$ with $\hat{f}_{0}(p_{n_{j}})=x_{n_{j}}$ . Since $M$ is compact, we may assume that $\{p_{n_{j}}\}$

converges to a point $q\in M$ . Because $\hat{f}_{0}$ is continuous and $\{x_{n_{j}}\}$ converges to $x$ ,

we have $\hat{f}_{0}(q)=x$ , and so $\Phi(f, x)=\hat{f}(q)$ . By the continuity of $F$ , we obtain
$\Phi(f_{n_{j}}, x_{n_{j}})=F(f_{n_{j}}, p_{n_{j}})arrow\hat{F}(f, q)=\Phi(f, x)$ . This is a contradiction.

In order to prove that $\Phi$ is $c$-holomorphic, it is sufficient to see that the
graph $G_{\Phi}$ of $\Phi$ is an analytic subset of $X\cross\hat{f}_{0}(M)\cross\hat{F}(X\cross M)$ . By the definition
of $\Phi$ , we get

$G_{\Phi}=\{(f, f_{0}(p), F(f, p))\in X\cross\hat{f}_{0}(M)\cross F(X\cross M)|f\in X, p\in M\}$ .

Since $id\cross f_{0}\cross F:X\cross Marrow X\cross\hat{f}_{0}(M)\cross\hat{F}(X\cross M)$ is holomorphic, and $X\cross M$ is a
compact complex space, the Proper Mapping Theorem shows that $G_{\Phi}$ is an
analytic subset of $X\cross\hat{f}_{0}(M)\cross F(X\cross M)$ .

Finally, the inverse map $\Psi$ of $\Phi$ is given by

$\Psi(y)=(f, f_{0}(p))$ , $(f, P)\in F^{-1}(y)$ .

By the similar reasoning as above, we see that $\Psi$ is a $c$-holomorphic map and
it is the inverse map of $\Phi$ . $\blacksquare$

From Theorem 2, $\dim f(M)$ , the dimension of the complex space $\hat{f}(M)$ , is
independent of $f\in X$ . We call $\dim f(M)$ the rank of $X$ and denote it by rankX.

THEOREM 3. For any component $X$ of $Ho1(M, N)$ ,

$\dim X+rankX$ $ $\dim N$ .

If $\dim X+rankX=\dim N$, then $X\cross\hat{f}_{0}(M)$ is biholomorPhically equivalent to $\hat{N}$,
where $f_{0}\in X$ . In particular, $X$ and $f_{0}(M)$ are nonsingular, and $\hat{\Gamma}$ is a finite
index subgrouP of $\Gamma$ so that the canomcal projection $\hat{\Pi}_{0}$ : $\hat{N}=N/\hat{\Gamma}arrow N=\tilde{N}/\Gamma$ is a
surjective finite holomorPhic map.

PROOF. Theorem 2 implies that $X\cross f_{0}(M)$ is $c$-biholomorphically equivalent
to the analytic subset $F(X\cross M)$ . Thus we have $\dim X+\dim\hat{f}_{0}(X)=\dim\hat{F}(X\cross$

$M)\leqq\dim\hat{N}=\dim N$, and hence $\dim X+rankX\leqq\dim N$.
If $\dim X+rankX=\dim N$, then we get $\dim\hat{F}(X\cross M)=\dim\hat{N}$ . Thus $\hat{F}(X\cross M)$

is a non-empty, open and closed subset of $\hat{N}$. Since $\hat{N}$ is a connected complex
manifold, we see that $F(X\cross M)=\hat{N}$ and $X\cross\hat{f}_{0}(M)$ is biholomorphically equi-
valent to $\hat{N}$ . Hence both $X$ and $\hat{f}_{0}(M)$ are nonsingular. Since $\hat{N}$ is a compact
complex manifold and $\dim\hat{N}=\dim N$, we see that the canonical projection $\hat{\Pi}_{0}$ :
$\hat{N}=\tilde{N}/\hat{\Gamma}arrow N=\tilde{N}/\Gamma$ is a surjective finite holomorphic map. In Particular, $\hat{\Gamma}$ is
a finite index subgroup of $\Gamma$ . $\blacksquare$
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This theorem also proves Corollary 2 to Theorem 1.

THEOREM 4. Let $N$ be a comPact complex manifold $rePresented$ by a quotient
space $\Omega/\Gamma$ such that $\Omega$ is a bounded domain in $C^{n}$ and $\Gamma$ is a fixed-Point-free
discrete subgrouP of $Aut(\Omega)$ . Let $l(\Omega)$ be the maximum dimension of all complex

sPaces included in the boundary $\partial\Omega$ of $\Omega$ . If a holomorphic map $f:Marrow N$ is of
rank $>\ell(\Omega)$ , then $f$ is rigid. Moreover, $\dim X\leqq l(\Omega)$ for any component $X$ of
$Ho1(M, N)$ with $X\neq Const$ .

PROOF. For the first assertion it is sufficient to show that $\dim X=0$ for
any component $X$ of $Ho1(M, N)$ which contains $f$ . Assume that $\dim X>0$ .
Since $N$ is projective algebraic, Corollary to Proposition 1 implies that $X$ is c-
biholomorphically equivalent to a Projective algebraic variety. Thus we have
a 1-dimensional irreducible analytic subset $R$ of $X$ . Let $\sigma$ : $R_{0}arrow R$ be the nor-
malization of $R$ . Then $R_{0}$ is a compact Riemann surface of genus $>1$ . In
fact, if $R_{0}$ is of genus $1, then for a point $p_{0}\in M$, the holomorphic map $\hat{p}_{0}$ :
$Xarrow\hat{N}$ is constant on $R$ , which contradicts Lemma 5. Hence the universal
covering surface of $R_{0}$ is the unit disc $\Delta$ . Denote by $H_{0}$ the universal covering
transformation group of $R_{0}$ .

Define the holomorphic map $\Phi$ : $R_{0}\cross Marrow N$ by $\Phi(\varphi, p)=F(\sigma(\varphi), p)=\sigma(\varphi)(p)$

for any $(\varphi, p)\in R_{0}\cross M$. Let $\tilde{\Phi}=(\tilde{\Phi}_{1}, \cdots , \tilde{\Phi}_{n}):\Delta\cross\tilde{M}arrow\Omega$ be a lift of $\Phi$ . From
Lemma 5 we can take a point $t_{0}\in\Delta$ so that $\tilde{\Phi}(\cdot,\tilde{p})$ is injective in a neighbor-
hood of $t_{0}$ for any $\tilde{p}\in\tilde{M}$ .

Let $r$ be the rank of $f$ . Since $\tilde{\Phi}(t, \cdot)$ is of rank $r$ for any $t\in\Delta$ , we may
assume that there exist holomorphic local coordinates $z_{1},$

$\cdots$ , $z_{m}$ around a point
$\tilde{p}_{0}\in\tilde{M}$ such that

$\det(\frac{\partial\tilde{\Phi}_{j}}{\partial z_{k}}(t_{0}, p_{0}))_{1\leqq j.k\xi\gamma}\neq 0$ .

For any $t\in\Delta$ we set

$d(t)= \det(\frac{\partial\Phi_{j}}{\partial z_{k}}(t, p_{0}))_{1\leqq j,k\leqq r}$

Then $d(t)$ is a bounded holomorphic function on $\Delta$ .
Take a neighborhood $K$ of $t_{0}$ which is relatively compact in $\Delta$ . For almost

every boundary point $\tau\in\partial\Delta$ , there exists a sequence $\{h_{J}\}_{j=1}^{\infty}$ of $H_{0}$ satisfying
the following conditions:

(1) $h_{j}(t)arrow\tau$ through a Stolz domain with vertex at $\tau$ as $jarrow\infty$ for any $t\in K$ .
(2) $\tilde{\Phi}(h_{j}(t),\tilde{p}_{0})arrow\zeta\in\overline{\Omega}$ as $J^{arrow\infty}$ for any $t\in K$ .
(3) $d(h_{j}(t))arrow d_{0}\in C$ as $J^{arrow\infty}$ for any $t\in K$ .
(4) the sequence { $\tilde{\Phi}_{*}($ ( $h_{j}$ , id))} $\infty j=1$ of $\Gamma$ converges uniformly on compact

sets of $\Omega$ to a holomorphic map $T:\Omegaarrow\overline{\Omega}$ .
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It is proved that the range of $T$ is contained in $\partial\Omega$ as follows: From
conditions (2) and (4), we have

$\zeta=\lim_{jarrow\infty}$ di $(h_{j}(t), \beta_{0})=\tau\circ\Phi(r,\tilde{p}_{0})$ ,

where $\zeta\in\overline{\Omega}$ is independent of $t\in K$ . If $T(\Omega)\not\subset\partial\Omega$ , H. Cartan’s theorem (Nara-

simhan [17], Theorem 4, p. 78) implies that $T$ is an analytic automorphism of
$\Omega$ . Thus $T\circ\tilde{\Phi}(t,\tilde{p}_{0})$ depends on $t$ because $\Phi(t,\tilde{p}_{0})$ is injective in a neighborbood
of $t_{0}$ . We have a contradiction.

NOW we define a holomorphic map $A:ltli-\partial\Omega$ by

$A( \tilde{p})=\lim_{jarrow\infty}\hat{\Phi}(h_{j}(f_{0}),\tilde{p})=T\circ\Phi(t_{0},\tilde{p})$ .

Then $A$ is of rank $\leqq\ell(\Omega)$ . Hence, by the assumption that $l(\Omega)<r$ and condition
(3), we obtain $d_{0}=0$ . This means that the bounded holomorphic function $d$ on
the unit disk $\Delta$ has boundary value $0$ for almost all $\tau\in\partial\Delta$ . Thus $d=0$ on $\Delta$ ,

which contradicts the condition $d(t_{0})\neq 0$ . Therefore, we have $\dim X=0$ .
In order to prove the second assertion, assume that some component $X$ of

$Ho1(M, N)$ with $X\neq Consi$ satisfies $\dim X>\ell(\Omega)$ . Consider the Douady sPace
$Ho1(X, N)$ . Take a point $f_{0}\in X$ . For any $p\in M$ we have a holomorphic map
$\hat{p}$ : $Xarrow\hat{N}$. By Theorem 2 these maps $\hat{p}’ s$ are parametrized by an analytic subset
$f_{0}(M)$ of $\hat{N}$. Hence there exists a component $Y$ of Hol(X, $N$ ) such that $Y$ in-
cludes all $\Pi_{0^{\circ}}\hat{p}$ , where $\Pi_{0}$ is the canonical projection of $\hat{N}=\Omega/\hat{\Gamma}$ to $N=\Omega/\Gamma$.
Note that $\dim Y>0$ because $X\neq Const$ . On the other hand, from Lemma 5 the
holomorphic $p:Xarrow\hat{N}$ is injective. Thus, $\Pi_{0^{\circ}}p$ is of rank $\dim X>l(\Omega)$ . By the
first assertion of this theorem, $\Pi_{0^{\circ}}p$ is rigid. This is a contradiction. $\blacksquare$

\S 3. An example.

In Imayoshi [8], we saw some typical examples of 2-dimensional compact
C-hyperbolic manifolds $N$ and Douady spaces $Ho1(M, N)$ . In this section, using
a Kodaira surface in Kodaira [14], we construct a 3-dimensional $C$ -hyperbolic
projective algebraic manifold $N$ such that $N$ is not biholomorphically equivalent
to a Product of complex manifolds, and such that for a certain comPact Rie-
mann surface $C$ the Douady space $Ho1(C, N)$ has a 1-dimensional component
with singular points.

Fix a complex torus $T$ , i.e., a compact Riemann surface of genus 1. Note
that a torus has the canonical additive group structure. Construct a 2-sheeted
ramified covering $\pi_{R_{0}}$ : $R_{0}arrow T$ so that $\pi_{R_{0}}$ is ramified over two Points $t_{1},$ $t_{2}\in T$ .
By Riemann-Hurwitz relation, $R_{0}$ is a compact Riemann surface of genus 2.
After Kas [10], Example1, let us construct a Kodaira surface $M$ as follows:
Let $R$ be a compact Riemann surface of genus 3 such that $R$ is a 2-sheeted
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unramified covering of $R_{0}$ with covering projection $\pi_{R}$ . Taking a certain com-
pact Riemann surface $S$ of genus 9, which is a 4-sheeted unramified covering
surface of $R$ , we can construct a Kodaira surface $M$. This 2-dimensional
compact complex manifold $M$ has a holomorphic map $\Phi$ : $Marrow S\cross R$ which makes
$M$ an $r$-sheeted cyclic branched covering of $S\cross R$ such that $P_{S}=P_{1}\circ\Phi$ : $Marrow S$

and $P_{R}=P_{2}\circ\Phi$ : $Marrow S$ are both non-trivial regularly fibered surfaces, where $P_{1}$

and $P_{2}$ are the projections of $SxR$ onto the first and second factors, respectively.
We have the following commutative diagram:

Hence, the universal covering space $\tilde{M}$ is biholomorphically equlvalent to a
bounded domain in $C^{2}$ , and so $M$ is a $C$-hyperbolic projective algebraic manifold.
Moreover, $\tilde{M}$ is biholomorphically equivalent to neither a 2-dimensional polydisc
nor a 2-dimensional strongly pseudoconvex domain (see Imayoshi [7], Corollary
1 to Theorem 1, and Theorems 2, 3).

NOW we take a 2-sheeted ramified covering $\pi_{A}$ : $Aarrow T$ which ramified over
$t_{j}’\in T,$ $j=1,$ $\cdots$ , $2m$ . We also construct a 3-sheeted ramified covering $\pi_{B}$ : $Barrow T$

such that $\pi_{B}$ is ramified over $t_{k}’’\in T,$ $k=1,$ $\cdots$ , $2n$ and these branch numbers are
all 2. We may assume that $\{t_{J}’-t_{k}’’|1\leqq j\leqq 2m, 1\leqq k\leqq 2n\}$ does not meet $\{t_{1}, t_{2}\}$ .
We set

$\rho=\pi_{R_{0}}\circ\pi_{R}\circ P_{R}$ : $Marrow T$ ,

$\Pi=\pi_{A}-\pi_{B}$ : $A\cross Barrow T$ ,

$N=\{(a, b, p)\in A\cross B\cross M|\pi_{A}(a)-\pi_{B}(b)=\rho(p)\}$ .

We shall see that $N$ satisfies the following assertions:
(1) $N$ is a 3-dimensional $C$ -hyperbolic projective algebraic manifold.
(2) $N$ is not biholomorphically equivalent to a product of complex manifolds.
(3) $N$ contains a submanifold which is biholomorphically equivalent to a

product of Riemann surfaces.
(4) There exists a compact Riemann surface $C$ such that $Ho1(C, N)$ has a

1-dimensional irreducible component with singular points.
In order to prove assertion (1), we consider a compact analytic subset of

$A\cross B\cross R$ defined by

$Z=\{(a, b, x)\in A\cross BxR|\pi_{A}(a)-\pi_{B}(b)=\pi_{R_{0}}\circ\pi_{R}(x)\}$ .
Since $\pi_{R_{0}}\circ\pi_{R},$ $\pi_{A}$ , and $\pi_{B}$ are ramified over $\{t_{1}, t_{2}\},$ $\{t_{j}’\}_{j=1}^{2m}$ , and $\{t_{k}’’\}_{k=1}^{2n}$ , respec-
tively, the analytic subset $Z$ is non-singular. We see that $Z$ is connected as
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follows: Take any points $(a_{0}, b_{0}, x_{0}),$ $(a_{1}, b_{1}, x_{1})\in Z$ . Since $A\cross B$ is connected,
we have a continuous curve $C_{0}$ : $[0,1]arrow A\cross B$ with $C_{0}(0)=(a_{0}, b_{0}),$ $C_{0}(1)=(a_{1}, b_{1})$ .
Then $D_{0}=\Pi\circ C_{0}$ is a continuous curve on $T$ . Thus we find a continuous curve
$E_{0}$ on $R$ with $D_{0}=\pi_{R_{0}}\circ\pi_{R}\circ E_{0}$ . Consequently, we obtain a continuous curve $F_{(\rangle}$

on $Z$ defined by $F_{0}(t)=(C_{0}(t), E_{0}(t))$ . Therefore, $Z$ is connected, and hence it
is a 2-dimensional compact complex manifold.

By the same reasoning as the case of $Z$ , the compact analytic subset $N$ of
$A\cross B\cross M$ is non-singular. We define a holomorphic map $\Psi:Narrow Z$ by

$\Psi(a, b, p)=(a, b, P_{R}(p))$

for all $(a, b, p)\in N$. It is easy to see that $\Psi$ is of rank 2 at every point of $N$

because $P_{R}$ is of rank 1 at an arbitrary point of $M$, and $\pi_{R}\circ\pi_{R}0’\pi_{A},$ $\pi_{B}$ are ramified
over $\{t_{1}, t_{2}\}$ , $\{t_{j}’\}_{j=}^{2m_{1}}$ , $\{t_{k}’’\}_{k=1}^{2n}$ , respectively. For every $(a, b, x)\in Z$ the fiber
$\Psi^{-1}(a, b, x)$ of $\Psi$ over $(a, b, x)$ is biholomorphically equivalent to the fiber
$P_{R}^{-1}(x)$ of $P_{R}$ over $x\in R$ . In particular, every fiber $\Psi^{-1}(a, b, x)$ is non-singular
and connected. Hence $N$ is connected and is a complex manifold. Since $A\cross$

$B\cross M$ is a C-hyperbolic projective algebraic manifold, its submanifold $N$ is also
$C$ -hyperbolic projective algebraic.

Let us prove assertion (2). Assume that there exists a biholomorphic map
$F:N_{1}\cross N_{2}arrow N$, where $N_{1}$ is a compact Riemann surface and $N_{2}$ is a 2-dimen-
sional compact complex manifold. Let $P_{A},$ $P_{B},$ $P_{M}$ be projections of $N\subset A\cross$

$B\cross M$ to $A,$ $B,$ $M$, respectively. We put $F_{A}=P_{A}\circ F,$ $F_{B}=P_{B^{\circ}}F,$ $F_{M}=P_{M^{\circ}}F$. It
is seen that $F_{M}(\cdot, q_{2}):N_{1}arrow M$ is constant for every $q_{2}\in N_{2}$ . In fact, suppose
that $F_{M}(\cdot, q_{2}):N_{1}arrow M$ is non-constant for some $q_{2}’\in N_{2}$ . Then $F_{M}(\cdot, q_{2}):N_{1}arrow$

$M$ is non-constant for every $q_{2}\in N_{2}$ . From Imayoshi [6], Theorem 9, the set
$\{F_{M}(\cdot, q_{2})|q_{2}\in N_{2}\}$ is finite. Thus we get $\dim F_{M}(N_{1}xN_{2})=1$ , which contradicts
$F_{M}$ is surjective. We see that $F_{A}(\cdot, q_{2}):N_{1}arrow A$ is constant for every $q_{2}\in N_{2}$

or $F_{B}(\cdot, q_{2}):N_{1}arrow B$ is constant for every $q_{2}\in N_{2}$ . In fact, assume that $F_{A}(\cdot, q_{2})$ :
$N_{1}arrow A$ is non-constant for some $q_{2}’\in N_{l}$ and $F_{B}(\cdot, q_{2}):N_{1}arrow B$ is nonconstant for
some $q_{2}’’\in N_{2}$ . Then both $F_{A}(\cdot, q_{2}):N_{1}arrow A$ and $F_{B}(\cdot, q_{2}):N_{1}arrow B$ are non-constant
for every $q_{2}\in N_{2}$ . By de Franchis’ theorem (see, for example Imayoshi [6],

Theorem 2), the sets $\{F_{A}(\cdot, q_{2})|q_{2}\in N_{2}\}$ and $\{F_{B}(\cdot, q_{2})|q_{2}\in N_{2}\}$ are finite. Hence
we obtain $\dim F_{A}\cross F_{B}(N_{1}\cross N_{2})=1$ , which contradicts $F_{A}\cross F_{B}$ is surjective. Thus
we may assume that $F_{A}(\cdot, q_{2}):N_{1}arrow A$ is constant for every $q_{2}\in N_{2}$ . Then by
the relation $\pi_{A}\circ F_{A}(\cdot, q_{2})-\pi_{B}\circ F_{B}(\cdot, q_{2})=\rho\circ F_{M}(\cdot, q_{2})$ on $N_{1}$ , we conclude that
$F_{B}(\cdot, q_{2})$ is also constant. This is a contradiction.

NOW we see assertion (3). By Sard’s theorem, we can find a point $t_{0}\in T$

such that the analytic subset $\Pi-1(t_{0})=\{(a, b)|\pi_{A}(a)-\pi_{B}(b)=t_{0}\}$ of $A$ $xB$ is non-
singular. Let $D$ be a connected component of $\Pi^{-1}(t_{0})$ . Take a point $x_{0}\in R$

with $t_{0}=\pi_{R_{0}}\circ\pi_{R}(x_{0})$ . We set $C=P_{R}^{-1}(x_{0})$ . It is easy to show that $D\cross C$ is a
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2-dimensional complex submanifold of $N$.
Finally we show assertion (4). Take a point $x_{0}\in R$ . We set $C=P_{R}^{-1}(x_{0})$

and $t_{0}=\pi_{R_{0}}\circ\pi_{R}(x_{0})\in T$ . Let $D$ be an irreducible component of the analytic
subset $\Pi^{-1}(t_{0})$ of $A\cross B$ . Then we see that the Douady space $Ho1(C, N)$ has an
irreducible component $X$ given by

$X=\{f_{(a.b)}|f_{(a.b)} : Carrow N, (a, b)\in D\}$ ,

where $f_{(a,b)}$ defined by $f_{(a.b)}(p)=(a, b, p)$ for any $p\in C$ . In fact, let $Y$ be an
irreducible component of $Ho1(C, N)$ with $X\subset Y$ . Take any element $f\in Y$ . For
any $(a, b)\in A\cross B$ the holomorphic map $P_{M^{\circ}}f_{(a.b)}=id$ on $C$ . Thus $P_{M^{Q}}f$ is non-
constant, and so $P_{M^{\circ}}f=P_{M^{\circ}}f_{(\cdot,b)}=id$ on $C$ by de Franchis’ theorem. Since the
holomorphic map $P_{A^{\circ}}f_{(a.b)}$ : $Carrow A$ is constant map with value $a$ , the holomor-
phic map $P_{A^{\circ}}f$ : $Carrow A$ is also constant. Similarly, $P_{B^{Q}}f$ : $Carrow B$ is also constant.
Hence $f$ is contained in $X$ , and $Y\subset X$ . Thus $X$ is an irreducible comPonent
of $Ho1(C, N)$ . It is seen that $X$ is biholomorphically equivalent to $D$ as follows:
By the universality ProPerty of $Ho1(C, N)$ , the holomorPhic map of $D\cross C$ into
$N$ sending $(a, b, p)$ to $(0, b, p)$ induces the bijective holomorphic map $G:Darrow$

$X\subset Ho1(C, N)$ given by $G(a, b)=f_{(a,b)}$ . The inverse map $G^{-1}$ : $Xarrow D$ of $G$

with $G^{-1}(f_{(a.b)})=(a, b)$ is also holomorphic because for a fixed $p_{0}\in C$ the map
of $X$ into $N$ sending $f_{(a,b)}$ into $f_{(a.b)}(p_{0})=(a, b, p_{0})$ is holomorphic, and so is
the map of $X$ to $D$ sending $f_{(a,b)}$ into $(a, b)$ . Thus $G$ gives a biholomorphic
map between $X$ and $D$ .

If we choose $t_{1}’,$ $t_{2}’’\in T$ with $t_{1}’=t_{2}’’$ and $t_{0}=0\in T$ , the $D$ has a singular point
as same as the singular point $(0,0)$ of the analytic subset $\{(z, w)\in C^{2}|w^{2}=z^{3}\}$ .
Therefore, $X$ has a singular point.
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