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Let $A$ be an artin algebra, $mod$ $A$ the category of finitely generated right
$A$-modules, $rad^{\infty}(mod A)$ the infinite radical of $mod A$ , and $\Gamma_{A}$ the Auslander-
Reiten quiver of $A$ . It is well-known (see [6]) that $\Gamma_{A}$ describes the quotient
category $mod A/rad^{\infty}(mod A)$ . We are interested in the behaviour of the con-
nected components of $\Gamma_{A}$ in the category $mod A$ .

In the rePresentation theory of finite dimensional algebras over an alge-
braically closed field $k$ , an important role is played by the standard Auslander-
Reiten components. Recall that following [12], [36], a connected component $C$

of the Auslander-Reiten quiver $\Gamma_{A}$ of a finite dimensional $k$-algebra $\Lambda$ is called
standard if the full subcategory of $mod \Lambda$ formed by all modules from $C$ is
equivalent to the mesh-category $k(C)$ of $C$ . If $\Lambda$ is representation-finite (basic,

connected), then $\Gamma_{A}$ is standard if and only if $\Lambda$ admits a simply connected
Galois covering [12], [13]. Moreover, if $k$ is of characteristic 2, then there
are representation-finite, basic, connected $k$-algebras $A$ with $\Gamma_{A}$ nonstandard
[32]. Examples of infinite standard components are the preprojective com-
ponents, preinjective components and connecting components over representation-
infinite tilted algebras as well as all tubes over tame tilted and tubular algebras
[36], [24]. $ln$ the study of simply connected $k$-algebras of polynomial growth
(in the sense of [39]) apoeared a natural generalization of the notion of tube,
called a coil, and then a more general concept of a multicoil, being a glueing
of a finite number of coils by directed parts (see [3], [4], [41]). It is shown
in [41] that a strongly simply connected $k$-algebra $\Lambda$ is of polynomial growth
if and only if every connected comPonent of $\Gamma_{A}$ containing an oriented cycle
is a standard multicoil.

The aim of this paper is to introduce a natural generalization of the notion
of standard component, called generalized standard component, which is simpler
and makes sense for any artin algebra. We shall prove some basic facts on
generalized standard Auslander-Reiten components and on artin algebras whose
Auslander-Reiten quiver has such components. In particular, we solve (Corol-

lary 2.5) a Ringel’s problem [37, Problem 3] on the shape of regular standard
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components.

DEFINITION. Let $A$ be an artin algebra and $C$ be a connected component
of $\Gamma_{A}$ . We say that $C$ is generalized standard if $rad^{\infty}(X, Y)=0$ for all modules
$X$ and $Y$ from $C$ .

The above notion is motivated by some recent investigations of modules
over arbitrary artin algebras [29], [30], [40], [42], [43], [44], [45], and by the
fact that all preprojective components, all preinjective components, and the con-
necting components of all tilted artin algebras are generalized standard (see
$\langle$1.2) and (1.3) $)$ .

The paper is organized as follows. In Section 1 we recall those facts about
artin algebras and their module categories that will be needed in the paper. In
Section 2 we show that a generalized standard component admits at most finitely
many nonperiodic $DTr$-orbits, and then at most $finitel\dot{y}$ many modules of any
given length, which gives a partial solution of the Ringel’s Problem 1 in [37].
We also describe the shapes of regular generalized standard components. Sec-
tion 3 is devoted to a complete description of semi-regular generalized standard
components without oriented cycles. In particular, we show that almost all
generalized standard components of the Auslander-Reiten quiver of an artin
algebra are stable tubes. We show also that the preprojective components,
preinjective components and tubes are unique generalized standard semi-regular
components of the Auslander-Reiten quivers of tame algebras. Section 4 con-
tains an example showing that there are algebras whose Auslander-Reiten quiver
admits more than one sincere regular generalized standard component without
oriented cycles. In Section 5 we investigate generalized standard stable tubes.
We obtain some characterizations of such components and some bounds for their
ranks.

1. Preliminaries.

1.1. Notation. Throughout this paper, $A$ will denote a fixed artin algebra
over a commutative artin ring $R$ and $n$ be the rank of the Grothendieck group
$K_{0}(A)$ of $A$ . By a module is usually meant a finitely generated right module.
We shall denote by $mod$ $A$ the category of all (finitely generated right) A-
modules, by rad $(mod A)$ the radical of the category $mod A$ , and by radco $(mod A)$

the intersection of all powers rad‘ $(mod A),$ $i\geqq 0$ , of rad $(mod A)$ . From the ex-
istence of the Auslander-Reiten sequences in $mod$ $A$ we know that rad $(mod A)$

is generated by the irreducible maps as a left and as a right ideal [7], [8]. It
is known that $A$ is representation-finite if and only if $rad^{\infty}(mod A)=0$ (see [5],

[26, p. 332] $)$ . We denote be $D$ the standard duality $Hom_{R}(-, I)$ , where $I$ is
the injective envelope of $R/radR$ in $mod R$ . A path in $mod$ $A$ is a sequence of
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non-zero non-isomorphisms

$(^{*})$

$M_{0}arrow M_{1}arrow f_{1}f_{2}...arrow M_{t-1}arrow M_{t}f_{l}$

where the $M_{i}$ are indecomposable. Such a path $(^{*})$ is called infinite if $f$ be-
longs to radce $(mod A)$ for some l$i\leqq t. Further, it is a cycle if $M_{0}\cong M_{t}$ . More-
over, a path (resp. cycle) $(*)$ with $t\leqq 2$ is said to be short. An indecomposable
$A$-module $X$ is called directing (see [36]) if it lies on no cycle in $mod A$ .
Finally, an $A$-module $X$ with $End_{d1}(X)$ a division ring is said to be a brick.

1.2. Auslander-Reiten components. We denote by $\Gamma_{A}$ the Auslander-Reiten
quiver of $A$ and by $\tau_{A}$ and $\tau_{41}^{-}$ the Auslander-Reiten operators $DTr$ and $TrD$ ,
resPectively. We will not distinguish between an indecomposable $A$-module, its
isomorphism class and the vertex of $\Gamma_{A}$ corresponding to it. By a component
of $\Gamma_{A}$ we mean a connected component of $\Gamma_{A}$ . For a component $C$ of $\Gamma_{A}$ we
denote by ann $C$ the annihilator of $C$ in $A$ , that is, the intersection of the anni-
hilators ann $X$ of all modules $X$ in $C$ . If ann $C=0$ , then $C$ is called faithful.
Moreover, $C$ is called sincere if any simple $A$-module occurs as a simple com-
position factor of some module in $C$ . We say that two components $C$ and $\mathcal{D}$

of $\Gamma_{A}$ are orthogonal if $Hom_{A}(X, Y)=0=Hom_{A1}(Y, X)$ for all modules $X$ from
$C$ and $Y$ from $\mathcal{D}$ .

A component $C$ of $\Gamma_{A}$ is said to be regular if it contains neither a proiec-
tive nor an injective module. Moreover, a component $C$ of $\Gamma_{A}$ is said to be
semi-regular if it does not contain both a projective and an injective module.
A regular component of the form $ZA_{\infty}/(\tau^{r})$ , where $\tau$ is the translation of $ZA_{\infty}$

and $r$ some positive integer, is called a stable tube of rank $r$ . The $\tau_{A}$-orbit of
a stable tube $g$ of $\Gamma_{A}$ formed by the modules with only one direct predecessor
is called the mouth of S. A component $C$ of $\Gamma_{A}$ is said to be preprojective if
$C$ contains no oriented cycle and each module in $C$ belongs to the $\tau_{A}$-orbit of a
projective module, preinjective if $C$ contains no oriented cycle and each module
in $C$ belongs to the $\tau_{A}$-orbit of an injective module. It follows from [36, (2.4)]
that if $\mathcal{P}$ is a preprojective component of $\Gamma_{a1}$ then each module in $\mathcal{P}$ has only
finitely many predecessors and any path in $mod$ $A$ with the target module from
$\mathcal{P}$ consists entirely of modules from $\mathcal{P}$ , and consequently $\mathcal{P}$ is a generalized
standard component of $\Gamma_{A}$ . Dually, any preinjective component of $\Gamma_{A}$ is gene-
ralized standard.

Let $X$ be an indecomposable $A$-module. Then $X$ is said to be left stable
if $\tau_{4}^{m}X\neq 0$ for all positive integers $m$ , right stable if $\tau_{A}^{m}X\neq 0$ for all negative
integers $m$ , and stable if $\tau_{A}^{m}X\neq 0$ for all integers $m$ . Moreover, $X$ is called
periodic if $\tau_{41}^{m}X\cong X$ for some $m\geqq 1$ . A $\tau_{A}$-orbit of $\Gamma_{A}$ consisting of periodic
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modules is called periodic. A path $X_{0}arrow X_{1}arrow\cdotsarrow X_{*}$ in $\Gamma_{A}$ is called sectional if
$X_{i}\not\equiv\tau_{A}X_{i+2}$ for all $0\leqq i\leqq s-2$ . Following [9] and [29], an $A$-module $M$ is said
to be the middle of a short chain if there exists an indecomposable A-module
$X$ with $Hom_{A}(X, M)\neq 0$ and $Hom_{A}(M, \tau_{A}X)\neq 0$ .

For basic results of Auslander-Reiten theory we refer to [7], [8] and [36].

1.3. Tilting theory. Let $H$ be a hereditary artin algebra of type $\Delta,$ $T$ a
tilting $H$-module and $B=End_{H}(T)$ the associated tilted algebra. Then $T$ deter-
mines a torsion theory $(\mathcal{F}(T), \mathcal{G}(T))$ in $mod H$, where $\mathcal{F}(T)=\{X_{H}|Hom_{H}(T, X)$

$=0\}$ and $\mathcal{G}(T)=\{Y_{H}|Ext_{H}^{1}(T, Y)=0\}$ , and a splitting torsion theory $(\eta(T), X(T))$

in $mod B$ , where $\eta(T)=\{N_{B}|Tor_{1}^{B}(N, T)=0\}$ and $X(T)=\{M_{B}|M\otimes_{B}T=0\}$ . Then
by the theorem of Brenner and Butler the functor $F=Hom_{H}(T$ , - $)$ induces an
equivalence between $\mathcal{G}(T)$ and $\varphi(T)$ , and $F’=Ext_{H}^{1}(T$ , - $)$ an equivalence be-
tween $\mathcal{F}(T)$ and $X(T)$ . Then $DH$ belongs to $\mathcal{G}(T)$ , and all indecomposable
direct summands of $F(DH)$ belong to one connected component of $\Gamma_{B}$ , called
the connecting component of $\Gamma_{B}$ corresponding to $T$ . This connecting component
consists of two parts: the torsion-free part formed by all its modules belonging
to $\eta(T)$ , which is closed under predecessors, and the torsion part formed by all
its modules belonging to $X(T)$ , which is closed under successors (see [22], [24],
[36] $)$ . Since $Hom_{B}(X, Y)=0$ for all modules $X\in X(T)$ and $Y\in\psi(T)$ , this con-
necting component is a generalized standard component of $\Gamma_{B}$ . Moreover, the
connecting component $C$ of $\Gamma_{B}$ is regular (resp. does not contain projective
modules) if and only if $T$ is regular (resp. $T$ has no preinjective direct sum-
mands). In case $T$ is regular, $C$ is of the form $Z\Delta^{op}$ , where $\Delta^{op}$ is the opposite
quiver of $\Delta$ , and consists entirely of directing modules (see [36] and [37]). It
was proved in [38] that $H$ admits a regular tilting module if and only if $\Delta$ has
at least three vertices and is neither of Dynkin nor of Euclidean type.

We shall use in the paper the following lemma proved in [30, (1.6)].

LEMMA. Let $M$ be a faithful $A$-module with $pd_{A}M\leqq 1,$ $id_{A}M\leqq 1,$ $Ext_{A}^{1}(M, M)$

$=0$ and with the property that if $Hom_{A}(M, X)\neq 0$ for some indecomposable A-
module $X$ which is not direct summand of $M$ then $Hom_{A}(\tau_{A}^{-}M, X)\neq 0$ . Then $M$

is a tilting and cotilting A-module.

For a tilting-theoretical background we refer to [1], [11], [22] and [36].

1.4. Tame and wild algebras. Following [16] $A$ is said to be strictly wild
if there are $A$-modules $X$ and $Y$ whose endomorphism rings $End_{A}(X)$ and $End_{A}(Y)$

are division rings, with $Hom_{A}(X, Y)=0=Hom_{a}(Y, X)$ , and the product

$\dim_{End_{A^{(Y)}}}Ext_{A}^{1}(X, Y)\cdot\dim Ext_{A}^{1}(X, Y)_{End_{A^{(X)}}}$

is at least 5. If $R$ is a field $k$ , then by [33], $A$ is strictly wild if and only if
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there exists a finite field extension $K$ of $k$ and a $K\langle x, y\rangle- A$-bimodule $M$ which
is finitely generated projective over $K\langle x, y\rangle$ and such that the tensor product
functor $-\otimes_{K(x.y)}M$ : Mod $K\langle x, y\ranglearrow Mod$ $A$ is fully faithful. Here, $K\langle x, y\rangle$ de-
notes the free associative $K$-algebra in two generators, and Mod $K\langle x, y\rangle$ and
Mod $A$ the categories of all right $K\langle x, y\rangle$-modules and all right A-modules,
respectively. Moreover, following [15], we say that $A$ is wild if there exists
a $k\langle x, y\rangle- A$-bimodule $M$, finitely generated and projective as a left $k\langle x, y\rangle-$

module, such that the functor $-\otimes_{\iota\langle x.y\rangle}M$ : Mod $k\langle x, y\ranglearrow Mod$ $A$ preserves
indecomposability and isomorphism classes of modules. It is known that
a wild hereditary $k$-algebra is strictly wild (see [33], [16]) but in general
the converse is not true. Assume now that $R$ is an algebraically closed field
$k$ . Then following [18], $A$ is said to be tame if for all $d\in N$ there are a
finite number of $k[x]- A$-bimodules $M_{1},$ $\cdots$ , $M_{r}$ which are free of rank $d$ as left
$k[x]$ -modules, and such that every indecomposable $A$-module of dimension $d$ is
isomorphic to $k[x]/(x-\lambda)\otimes_{k[x]}M_{i}$ for some $1\leqq i\leqq r$ and $\lambda\in k$ . By the well-
known Drozd theorem [18] (see also [14]) a finite dimensional $k$-algebra $A$ is
either tame or wild, and not both. Moreover, $A$ is tame if and only if $A$ is
generically tame, that is, for each $d\in N$, there are only finitely many isomor-
phism classes of generic right $A$-modules of endolength $d$ (see [15]). Recall
that a right $A$-module $Z$ is called generic if $Z$ is indecomposable, of infinite
length over $A$ , but finite endolength (which is the length of $Z$ as an $End_{A}(Z)-$

module).

2. Properties of generalized standard components.

2.1. We shall use the following lemma proved in [40]. For a convenience
of the reader we present its short proof also here.

LEMMA. Let $M_{1},$ $\cdots$ $M_{r}$ be Pairwise nonisomorPhic indecomposable A-modules
such that $Hom_{A}(M_{i}, \tau_{A}M_{j})=0$ for all l$i, $j\leqq r$ . Let $M=M_{1}\oplus\cdots\oplus M_{r},$ I be the
annihilator of $M$ in $A$ , and $B=A/I$. Then $M$ is a Partial tilting $B$-module. $In$

particular, we have $r\leqq n$ .
PROOF. From our assumption we have $Hom_{A}(M, \tau_{4}M)=0$ , and then

$Hom_{B}(M, \tau_{B}M)=0$ because $\tau_{B}M$ is a submodule of $\tau_{A}M$. Moreover, $M$ is a
faithful $B$-module and Exth$(M, M)\cong D\overline{Hom}_{B}(M, \tau_{B}M)=0$ . This implies that
$pd_{B}M\leqq 1$ (see [30, (1.5)]). Indeed, since $M$ is faithful in $mod B$ , there is an
epimorphism $M^{\iota}arrow DB$ for some $s\geqq 1$ . Then $Hom_{B}(DB, \tau_{B}M)=0$ , because
$Hom_{B}(M, \tau_{B}M)=0$, and hence $pd_{B}M\leqq 1$ (see [36, (2.4)]). Therefore, $M$ is a
partial tilting $B$-module and, according to a result of Bongartz [111, $M$ may be
extended to a tilting $B$-module. Hence $r$ is less than or equal to the rank of
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$K_{0}(B)$ which is again less than or equal to $n$ .
2.2. Recall that a brick $X$ in $mod$ $A$ with $Ext_{4}^{1}(X, X)=0$ is called a Schur

module (see [47]). A Schur module $X$ with $pd_{A}X\leqq 1$ is called a stone (see [25]).
We propose the following notion. An indecomposable $A$-module $X$ with
$Hom_{A}(X, \tau_{A}X)=0$ is said to be a rock. Clearly, each stone is a rock. Moreover,
if $X$ is both a rock and brick, then it is a Schur module, and it is a stone in
$mod B$ , where $B=A/I$ and $I=annX$ . One can prove (see [29], [42]) that, if
$X$ and $Y$ are two nonisomorphic rocks in $mod$ $A$ having the same simple com-
position factors, then there is a short cycle $Xarrow Yarrow X$ in $mod A$ . We have also
the following consequence of the above lemma.

COROLLARY. The maximal number of pairwise orthogonal components of $\Gamma_{A}$

containing rocks is less than or equal to $n$ .
The above remarks suggest that it might be interesting to study properties

of rocks (see also (5.15)).

2.3. The following theorem gives some informations on the $\tau_{A}$-orbits of
generalized standard components of $\Gamma_{A}$ .

THEOREM. Let $C$ be a generalized standard component of $\Gamma_{A}$. Then $C$

admits at most finitely many nonperiodic $\tau_{A}$-orbits.

PROOF. Suppose that the number of nonperiodic $\tau_{A}$-orbits in $C$ is infinite.
Consider the right stable part $C_{r}$ of $C$ , obtained from $C$ by removing the $\tau_{4^{-}}$

orbits of injective modules and the arrows attached to them. Since $C$ is locally
finite, there exists a connected component 9 of $C_{r}$ which admits infinitely many
nonperiodic $\tau_{4}$-orbits. Then clearly $\mathcal{D}$ does not contain periodic modules. More-
over, since the number of $\tau_{A}$-orbits in $\mathcal{D}$ is infinite, we infer, by the dual of
[28, (2.3)], that $\mathcal{D}$ has no oriented cycle. Then, by [28, (3.7)], there exists an
infinite, locally finite valued quiver $\Delta$ containing no oriented cycle such that $\mathcal{D}$

is isomorphic to a full translation subquiver of $Z\Delta$ which is closed under suc-
cessors. Fix a copy of $\Delta$ in 9 such that there is no path in $C$ with the source
in $\Delta$ and the target in an injective module. Then, since $C$ is generalized
standard, we get that $Hom_{A}(X, \tau_{A}Y)=0$ for all $X$ and $Y$ from $\Delta$ . Hence, by
Lemma 2.1, $\Delta$ is finite, a contradiction. This finishes the proof.

A general theorem about the shapes of regular components of $\Gamma_{A}$ is given
by the Happel-Preiser-Ringel theorem [21] and Zhang’s theorem [48]. The
Happel-Preiser-Ringel theorem says that all regular components of $\Gamma_{4}$ contain-
ing periodic modules are stable tubes. The Zhang’s theorem says that if $C$ is
a regular component of $\Gamma_{A}$ without periodic modules then $C$ is isomorphic to
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$Z\Delta$ for some valued quiver a without oriented cycles. Combining this with the
above theorem we get the following description of the shapes of regular gene-
ralized standard components.

COROLLARY 2.4. Let $C$ be a regular generalized standard comPonent of $\Gamma_{A}$ .
Then $C$ is either a stable tube or of the form $Z\Delta$ for some finite valued quiver
a without oriented cycles.

Moreover, we get the following corollary which solves Problem 3 in [37].

COROLLARY 2.5. Let $R$ be an algebraically closed field $k$ and $C$ be a standard
regular comPonent of $\Gamma_{4}$ . Then $C$ is either a stable tube or of the form $Z\Delta$ for
some finite quiver $\Delta$ without oriented cycles.

PROOF. Assume that $C$ is not a stable tube. Then, by [48], $C$ is isomor-
phic to $Z\Delta$ for some quiver $\Delta$ without oriented cycles. Since $C$ is standard,
we get $Hom_{A}(X, \tau_{A}Y)=0$ for all $X$ and $Y$ from $\Delta$ . Hence a is finite, by
Lemma 2.1.

PROPOSITION 2.6. Let $C$ be a comPonent of $\Gamma_{4}$ which admits at most finitely
many nonperiodic $\tau_{4}$-orbits. Then for each given Positive integer $d$ , there are at
most finitely many modules of length $d$ in $C$ .

PROOF. Suppose that for some positive integer $d$ there are infinitely many
modules of length $d$ in $C$ . We claim that then there is a $\tau_{A}$-orbit $O$ in $C$ con-
taining infinitely many modules of length $d$ . Indeed, if this is not the case,
there is a connected component 9 of the stable part $C_{*}$ of $C$ having infinitely
many $\tau_{A}$-orbits containing modules of length $d$ . From our assumption, $\mathcal{D}$ con-
tains periodic modules and hence is a stable tube. Then there is a sectional
path in $\mathcal{D}$

$f_{1}$ $f_{2}$ $f_{i}$

$X_{1}arrow X_{g}arrow X,$ $arrow\cdotsarrow X_{i}arrow X_{i+1}-\cdots$

containing infinitely many modules of length $d$ . Since all compositions $f_{i}\cdots f_{1}$ ,
$i\geqq 1$ , are nonzero, there is a path in $mod A$

$x_{i_{1^{arrow X_{:_{2}}arrow X_{i_{8}}}}}^{g_{1}g_{8}}arrow\cdotsarrow x_{i_{r}^{arrow X_{i_{r+1}}-}}^{g_{r}}\cdots$

such that, for each $r\geqq 1$ , the composition $g_{r}\cdots g_{1}$ is nonzero, and all modules
$X_{i_{f}}$ are indecomposable of length $d$ . This contradicts to the lemma of Harada
and Sai [23] (see also [351). Therefore, there is a nonperiodic $\tau_{A}$-orbit $O$ in $C$

containing infinitely many modules of length $d$ . Without loss of generality,
we may assume that $0$ consists of left stable modules. Then, by $[\mathfrak{N}, (3.9)]$ ,
there is an infinite sectional Path $arrow Z_{j+1}arrow Z_{j}arrow\cdotsarrow Z,arrow Z_{1}$ in $C$ formed by
nonperiodic modules and which meets each $\tau_{4}$-orbit in $C$ at most once. But
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this is impossible because $C$ admits at most finitely many nonperiodic $\tau_{A}$-orbits.
The proof is completed.

We obtain the following consequence of Theorem 2.3 and Proposition 2.6.

COROLLARY 2.7. Let $C$ be a generalized standard component of $\Gamma_{A}$ . Then
for each given positive integer $d$, there are at most finitely many modules of
length $d$ in $C$ .

3. Generalized standard components without oriented cycles.

3.1. Recently, Liu described in [28] the shapes of semi-regular components
of $\Gamma_{A}$ . He proved that, if $C$ is a semi-regular component of $\Gamma_{A}$ containing an
oriented cycle then $C$ is a tube in the sense of [36]. Moreover, if $C$ is a semi-
regular component of $\Gamma_{A}$ without oriented cycles, then there is a valued quiver
A without oriented cycles such that $C$ is isomorphic to a full translation sub-
quiver of $Z\Delta$ which is closed under predecessors or closed under successors.
We shall now describe the structure of generalized standard semi-regular com-
ponents without oriented cycles.

THEOREM. Let $C$ be a generalized standard comPonent of $\Gamma_{A}$ without pro-
jective modules and oriented cycles. Let $I=annC$ and $B=A/I$. Then

(i) $B$ is a tilted algebra of the form $B=End_{H}(T)$ for some hereditary artin
algebra $H$ and a tilting $H$-module $T$ without preinjeciive direct summands.

(ii) $C$ is the connecting comPonent of $\Gamma_{B}$ .
PROOF. From [28] and Theorem 2.3, there exists a finite valued quiver a

without oriented cycles such that $C$ is isomorphic to a full translation subquiver
of $Z\Delta$ which is closed under predecessors. Since $A$ is an artin algebra there
is some $A$-module $U$ which is a direct sum of modules in $C$ such that $I=annU$ .
Let $M$ be the direct sum of all modules corresponding to the vertices of some
fixed a in $C$ such that every indecomposable direct summand of $U$ is a suc-
cessor in $C$ of some indecomposable direct summand of $M$. Then $I=annM,$ $M$

is a faithful $B$-module, $C$ consists entirely of $B$-modules and is a generalized
standard component of $\Gamma_{B}$. This implies that $Hom_{B}(M, \tau_{B}M)=0$ and
$Hom_{B}(\tau_{B}^{-}M, M)=0$ . In particular, $Ext_{B}^{1}(M, M)\cong D\overline{Hom}_{B}(M, \tau_{B}M)=0$ . Since $M$

is a faithful $B$-module, there are an epimorphism $M^{r}arrow DB$ and a monomorphism
$Barrow M^{\iota}$ for some $r$ and $s$ . Then $Hom_{B}(DB, \tau_{B}M)=0,$ $Hom_{B}(\tau_{B}^{-}M, B)=0$ , and
therefore $pd_{B}M\leqq 1$ and $id_{B}M\leqq 1$ (see [36, (2.4)]). Clearly, if $Hom_{B}(M, X)\neq 0$

for some indecomposable $B$-module $X$ which is not direct summand of $M$, then
$Hom_{B}(\tau_{B}^{-}M, X)\neq 0$ . Then, by Lemma 1.3, $M$ is a tilting $B$-module. Moreover,
since $C$ is generalized standard, $H=End_{B}(M)$ is a hereditary artin algebra of
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type $\Delta^{op}$ . Hence $B=End_{H}(T)$ for some tilting $H$-module $T$ , and $C$ is the con-
necting component of $\Gamma_{B}$ corresponding to $T$ . Moreover, since $C$ has no pro-
jective modules, $T$ has no preinjective direct summands.

Dually we obtain the following

THEOREM 3.2. Let $C$ be a generalized standard component of $\Gamma_{A}$ without
injective modules and oriented cycles. Let $I=annC$ and $B=A/I$. Then

(i) $B$ is a tilted algebra of the form $B=End_{H}(T)$ for some hereditary artin
algebra $H$ and a tilting $H$-module $T$ without preprojective direct summands.

(ii) $C$ is the connecting component of $\Gamma_{B}$.
COROLLARY 3.3. Let $C$ be a regular generalized standard component of $\Gamma_{4}$

without periodic modules, $I=annC$ and $B=A/I$. Then $B$ is a tilted algebra of
the form $End_{H}(T)$ , for some (wild) hereditary artin algebra $H$ and a regular tilt-
ing $H$-module $T$ , and $C$ is the connecting component of $\Gamma_{B}$ .

3.4. It is known that if $A$ is a tilted algebra and $C$ a regular connecting
component of $\Gamma_{A}$ , then $C$ is the unique regular generalized standard component
of $\Gamma_{A}$ and all but a finite number of modules in $C$ are faithful $A$-modules (see

[30, (1.8)] $)$ . Moreover, it was recently proved in [40] that, if $C$ is a regular
component of $\Gamma_{A}$ containing a directing module, then $C$ is generalized standard,
has only finitely many $\tau_{4}$-orbits and consists entirely of directing modules.
Further, by [36, (2.4)], all sincere directing modules are faithful. Then we
have the following consequence of the above corollary.

COROLLARY. Let $C$ be a regular component of $\Gamma_{A}$ . Then the following con-
ditions are equivalent.

(i) $A$ is a tilted algebra of the form $End_{H}(T)$ for some wild hereditary
artin algebra $H$ and a regular tilting $H$-module $T$, and $C$ is the connecting com-
ponent of $\Gamma_{A}$ .

(ii) $C$ is sincere and contains a directing module.
(iii) $C$ is faithful, generalized standard, and without oriented cycles.
(iv) $C$ is generalized standard, without oriented cycles, and all but a finite

number of modules in $C$ are faithful.
We may deduce from [30, (1.7), (1.9)] and [29, (1.6)] the following fact.

If $R$ is an algebraically closed field and $C$ a sincere regular component of $\Gamma_{4}$

having only finitely many $\tau_{4}$-orbits and consisting entirely of modules which do
not lie on short cycles, then $C$ is generalized standard without oriented cycles

and containing faithful indecomposable modules. Then it is a unique regular
generalized standard component of $\Gamma_{A}$ . We shall show in the next section that
there are algebras $\Lambda$ such that $\Gamma_{A}$ admits more than one regular generalized
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standard component without oriented cycles and containing sincere indecom-
posable $\Lambda$-modules.

NOW we shall show that, if $A$ is an arbitrary artin algebra, then $\Gamma_{4}$ admits
at most finitely many generalized standard components without oriented cycles.
For this the following result is useful.

LEMMA 3.5. Let $C$ be a sincere, regular, generalized standard component of
$\Gamma_{A}$ without oriented cycles. Denote by $t_{C}$ the ideal of A generated by all images
of all maps from modules in $C$ to A. Then ann $c=t_{c}$ .

PROOF. We know from Theorem 2.3 and [48] that $c=Z\Delta$ for some valued
finite quiver a without oriented cycles. As in the proof of Theorem 3.1, let
$M$ be the direct sum of all modules corresponding to the vertices of a fixed a
in $C$ and such that ann $C=annM$. Put $B=A/annC$ . Then $M$ is a faithful
tilting $B$-module. Hence there is a monomorphism $Barrow M$ ‘ for some $r$ . More-
over, $C$ is a connecting component of $\Gamma_{B}$, and hence the submodules of $B$ are
not successors of $C$ in $mod B$ . This implies that $t_{c}$ is contained in ann $C$ , be-
cause $C$ is generalized standard. Let $D=A/t_{C}$ . Then $C$ is a generalized
standard component of $\Gamma_{D}$ and $M$ is a sincere $D$-module. By definition of $t_{C}$

and the fact that $Ext_{A}^{1}(M, t_{C})=0$ , we get $Hom_{D}(\tau_{D}^{-}M, D)=0$ , and consequently
$id_{D}M\leqq 1$ . Then $M$ is a cotilting $D$-module, because $M$ has the correct number
of indecomposable direct summands and Extb$(M, M)\cong D\overline{Hom}_{D}(M, \tau_{D}M)=0$ .
Since $H=End_{D}(M)$ is hereditary, $D$ is a cotilted algebra of the form $End_{H}(T)$

for some regular cotilting $H$-module $T$ . Hence $M$ is not the middle of a short
chain in $mod D$ . Then, by [29, (3.2)], $M$ is a faithful $D$-module. But this
implies that ann $C=f_{C}$ .

THEOREM 3.6. There is only a finite number of generalized standard com-
ponents of $\Gamma_{A}$ which are not stable tubes.

PROOF. It is enough to show that $\Gamma_{4}$ admits at most finitely many gene-
ralized standard regular components without oriented cycles. Moreover, for a
regular generalized standard component $C$ of $\Gamma_{A}$ , we may write $A=P\oplus Q$ where
the simple direct summands of $P/radP$ are exactly the simple composition
factors of modules in $C$ . Let $t_{Q}(A)$ be the ideal of $A$ generated by the images
of all maps from $Q$ to $A$ , and $D=A/t_{Q}(A)$ . Then $t_{Q}(A)$ is contained in $annC$ ,

and $C$ is a sincere, regular, generalized standard component of $\Gamma_{D}$ . Observe
that $A$ admits only finitely many ideals of the form $t_{Q}(A)$ .

Suppose now that there are pairwise different regular generalized standard
components $C_{1},$ $C_{8},$ $C,,$ $\cdots$ of $\Gamma_{A}$ without oriented cycles. By the above remarks
we may assume that all these components $C_{i}$ are sincere. We claim that there
is a factor algebra $F$ of $A$ such that $\Gamma_{F}$ admits infinitely many pairwise differ-
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ent faithful generalized standard regular components without oriented cycles.
This will give a contradiction to Corollary 3.3.

Let $e_{1},$
$\cdots$ , $e_{n}$ be primitive orthogonal idempotents of $A$ such that $e_{1}A,$ $\cdots$ ,

$e_{n}A$ form a complete list of pairwise nonisomorphic indecomposable projective
$A$-modules. For any $r\geqq 1$ , let $I_{r}=annC_{r}$ and $B.=A/I.$ . Then from Theorem
3.1, each $B_{r}$ is a tilted algebra of the form $B,.=End_{H_{f}}(T_{r})$ for some hereditary
artin algebra $H_{r}$ and a regular tilting $H_{r}$-module $T_{r}$ . In particular, the ordinary
quiver of $B_{r}$ has no oriented cycles. Moreover, each $I,$. is contained in rad $A$ .
TO each $C_{r}$ we associate a partially ordered set $S_{r}$ whose set of vertices is
equal to $\{$ 1, $\cdots$ , $n\}$ , and its order $S_{r}$ is defined as follows: $i\leqq rj$ if and only if
$Hom_{B_{r}}(e_{i}B_{r}, e_{j}B_{r})\neq 0$ . Since the number of partially ordered sets with $n$ ele-
ments is finite, we may assume that all partially ordered sets $S$, coincide. Put
$S=S_{1}$ and $\leqq=\leqq 1$ . We may moreover assume that $\bigcap_{r\gtrless 1}I_{r}=0$ , because other-
wise replace $A$ by $A/( \bigcap_{r\geq 1}I_{r})$ . This implies that the simple projective $B_{r^{-}}$

modules, corresponding to the minimal elements of $S=S_{r}$ , are also simple pro-
jective $A$-modules. Indeed, for any minimal element $i$ of $S,$ $e_{i}$ rad $A$ is contained
in $\bigcap_{r\geq 1}I_{r}$ , and hence $e_{i}$ rad $A=0$ . In particular, $e_{i}I=0$ for any minimal ele-
ment $i$ of $S$ and all $r\geqq 1$ . Let $s$ be an elements of $S$ such that for infinitely
many $r\geqq 1$ we have $e_{*}I_{r}\neq 0$ and $e_{\iota}I_{r}=0$ for all elements $t$ of $S$ with $t<s$ . With-
out loss of generality, we may assume that $e_{*}I_{r}\neq 0$ and $e_{t}I_{r}=0$ for all $r\geqq 1$ and
all $t$ in $S$ with $t<s$ . Then, for each $r\geqq 1$ and $t$ from $S$ with $t<s$ , the projec-
tive $A$-module $e_{t}A$ is also a projective $B_{r}$-module. Fix $r\geqq 1$ . Then the projec-
tive cover of $e_{*}$ rad $A/e_{*}I_{r}=rad(e_{*}A/e_{*}I_{r})$ in $mod$ $A$ is a direct sum of modules
of the form $e_{\iota}A$ with $t<s$ . Hence, ( $e_{*}$ rad $A/e_{*}I_{r}$)$I_{m}=0$ for all $m\geqq 1$ . But then
( $e_{*}$ rad $A$) $I_{m}\subset e_{*}I_{r}$ for all $m$ and $r$ . Since $\bigcap_{r\geq 1}I_{r}=0$ , we then infer that
( $e_{s}$ rad $A$) $\Gamma_{m}=0$ for all $m\geqq 1$ . Then, for each $r\geqq 1$ , we have rad $(e_{*}A)=e_{*}$ rad $A$

$=X\oplus Y$ , where $X$ is a direct sum of indecomposable $B_{r}$-modules lying in the
torsion-free part $\eta(T_{r})$ of $mod B_{r}$ and $Y$ is a direct sum of indecomposable $B_{r^{-}}$

modules lying in the torsion part $X(T_{r})$ of $mod B_{r}$ . Moreover, by Lemma 3.5,
we deduce that $Y=e_{*}I_{r}$. Since $e_{*}$ rad $A$ has only finitely many pairwise noniso-
morphic indecomposable direct summands, there is an infinite sequence

1 $ $j_{1}<j_{2}<\cdots<j_{p}<\ldots$

such that $e_{*}I_{J_{1}}=e_{*}I_{ia}=\cdots=e_{*}I_{j_{p}}=\cdots$ . Let $J$ be the intersection of all $I_{J_{p}}$ ,
$p\geqq 1$ , and $A‘=A/J,$ $I_{J_{p}}’=I_{J_{p}}/J$ . Then $C_{J_{p}},$ $p\geqq 1$ , are generalized standard
regular components of $\Gamma_{A’},$

$I_{j_{p}}’$ are the annihilators of $C_{J_{p}}$ in $A’$ , and $e_{t}I_{j_{p}}’=0$

for all $p\geqq 1$ and elements $t$ of $S$ with $t\leqq s$ . Since $S$ is a finite partially ordered
set, repeating, if necessary, the above arguments finitely many times, we deduce
that there is a factor algebra $F$ of $A$ such that infinitely many components
from the sequence $C_{1},$ $C_{g},$ $C_{s},$ $\cdots$ are faithful generalized standard components of
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$\Gamma_{P}$. This finishes our proof.

PROPOSITION 3.7. Assume that $A$ is not strictly wild. Let $C$ be a generalized
standard component of $\Gamma_{A}$ without projective modules and oriented cycles. Then
$C$ is a preinjective comPonent of Euclidean type.

PROOF. We know from Theorem 2.3 and [28] that there is a finite valued
quiver $\Delta$ without oriented cycles such that $C$ is isomorphic to a full translation
subquiver of $Z\Delta$ closed under predecessors. Moreover, $\Delta$ is connected, since $C$

is connected. Let $I=annC$ and $B=A/I$. Then by Theorem 3.1, $B$ is a tilted
algebra of the form $End_{H}(T)$ for some connected hereditary artin algebra $H$ of
type $\Delta^{0p}$ and a tilting $H$-module $T$ without preinjective direct summands, and
$C$ is the connecting component of $\Gamma_{B}$ corresponding to $T$ . We claim that $\Delta$ is
a Euclidean quiver and $C$ is a preinjective component. Clearly, $\Delta$ is not of
Dynkin type, since $C$ has no projective modules. Suppose that $\Delta$ is wild.
Then, by [46, (7.5)], there exists a decomposition $T=V\oplus W$ such that

(a) $Hom_{H}(W, V)=0$ , and hence $B\cong\{\begin{array}{ll}D M0 C\end{array}\}$ , where $C=End_{H}(V)$ , $D=$

$End_{H}(W)$ , and $M=Hom_{H}(V, W)$ .
(b) There exists a connected hereditary artin algebra $\Lambda$ of wild type and

a preprojective tilting $\Lambda$ -module $U$ such that $C=End_{A}(U)$ .
(c) The preprojective component of $\Gamma_{c}$ is a full component of $\Gamma_{B}$ . We

shall show that $C$ is strictly wild. Then $A$ will be also strictly wild, which
is impossible by our assumption on $A$ . Since $\Lambda$ is connected of wild type, by
[38] and [16, Section 8], there are indecomposable $\Lambda$ -modules $L$ and $N$ satisfy-
ing the conditions:

(i) $L$ and $N$ are not preprojective in $mod \Lambda$ ,
(ii) $End_{A}(L)$ and End$A(N)$ are division algebras,
(iii) $Hom_{A}(L, N)=0=Hom_{A}(N, L)$ ,
(iv) $\dim_{EndAtN)}Ext_{\Lambda}^{1}(L, N)\cdot\dim Ext_{A}^{1}(L, N)_{End_{A^{(L)}}}\geqq 5$ .

Since $U$ is a preprojective tilting $\Lambda$ -module, the modules $L$ and $N$ belong to the
torsion part $\mathcal{G}(T)$ of $mod \Lambda$ , and then the $C$-modules $X=Hom_{A}(U, L)$ and $Y=$

$Hom_{\Lambda}(U, N)$ satisfy the conditions $(ii)-(iv)$ . Hence $C$ is strictly wild. There-
fore $\Delta$ is of Euclidean type. Finally, then $C$ is the connecting component of a
representation-infinite tilted algebra $B$ of Euclidean type $\Delta^{op}$ and without pro-
jective modules. Then $C$ is a preinjective component of $\Gamma_{A}$ and of Euclidean
type.

Dually, we get the following fact.

PROPOSITION 3.8. Assume that $A$ is not strictly wild. Let $C$ be a generalized
standard comPonent of $\Gamma_{4}$ without injective modules and oriented cycles. Then $C$

is a PreProjective comPonenf of Euclidean tyPe.
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Moreover, we have the following consequence of the above propositions and
[21], [48], [28].

COROLLARY 3.9. Assume that $A$ is not strictly wild. Then every generalized
standard regular component of $\Gamma_{A}$ is a stable tube.

Finally, by (1.4), [28], and the above results, we get the following descrip-
tion of semi-regular generalized standard components over tame algebras.

COROLLARY 3.10. Assume that $R$ is an algebraically closed field and $A$ is
tame. Let $C$ be a semi-regular generalized standard component of $\Gamma_{a1}$ . Then $C$

is one of the following types:
(i) a preprojective component of Euclidean type,
(ii) a preinjective component of Euclidean type,
(iii) a tube.

COROLLARY 3.11. Assume that $R$ is an algebraically closed field and $A$ is
tame. Then every regular generalized standard component of $\Gamma_{A}$ is a stable tube.

4. An example.

Let $k$ be an algebraically closed field. Consider the bound quiver algebra
$\Lambda=kQ/I$, where $Q$ is the quiver

2

and $I$ is the ideal in the path algebra $kQ$ of $Qge$nerated by the elements $\alpha_{1}\beta_{2}$ ,
$a_{1}\beta_{S},$ $a_{4}\beta_{1},$ $a_{4}\beta,,$ $\alpha_{2}\beta_{1}+\alpha_{g}\beta_{2},$ $\alpha_{g}\beta_{8}+a_{3}\beta_{1},$ $\alpha_{S}\beta_{1}+\alpha\beta_{S},$ $a_{1}\beta_{1}+a_{g}\beta,,$ $a_{g}\beta_{s}+a,\beta_{2}$ ,
$a,\beta_{2}+a_{s}\beta_{3},$ $\gamma_{a}\alpha_{1},$ $\gamma_{s}\alpha_{1},$ $\gamma_{1}\alpha_{4},$ $\gamma_{g}a_{4},$ $\gamma_{1}a_{g}+\gamma_{g}\alpha_{2},$ $\gamma_{g}\alpha_{2}+\gamma_{1}$ as’ $\gamma_{1}\alpha_{s}+\gamma_{s}\alpha_{4},$ $\gamma_{1}\alpha_{1}+\gamma,\alpha_{2}$ ,
$\gamma_{s}\alpha,+\gamma_{g}\alpha,,$ $\gamma_{g}a_{S}+\gamma_{s}\alpha,,$ $\gamma_{1}a_{1}\beta_{1}$ , and $\beta_{i}\gamma_{j},$ $\beta_{t}\gamma_{:}-\beta_{j}\gamma_{f}$ for all $i\neq j$ , 1Si, j$3. We
denote by $J$ the ideal of $\Lambda$ generated by the elements $\gamma_{1}+I,$ $\gamma_{i}+I,$ $\gamma_{s}+I$, by $K$

the ideal of $\Lambda$ generated by $\beta_{1}+I,$ $\beta_{f}+I,$ $\beta_{s}+I$, by $L$ the ideal of $\Lambda$ generated
by $\alpha_{1}+I,$ $\alpha_{8}+I,$ $a_{s}+I,$ $\alpha_{4}+I$, and put $B=\Lambda/J,$ $C=\Lambda/K$ and $D=\Lambda/L$ . More-
over, let $E=\Lambda/\Lambda e_{1}\Lambda,$ $\Omega=\Lambda/\Lambda e_{g}\Lambda$ and $H=\Lambda/\Lambda e_{s}\Lambda$ . Clearly, $E,$ $\Omega,$ $H$ are here-
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ditary algebras. From [10, (3.3)], $B$ is a tilted algebra of the form $End_{i\Delta}(T)$

where $k\Delta$ is the path algebra of the following quiver $\Delta$

$0=0-0$
and $T$ is a regular tilting $k\Delta$-module. Then, by (1.3), the connecting component
$C$ of $\Gamma_{B}$ associated to $T$ is regular of type $Z\Delta^{op}=Z\Delta$ . Moreover, by [24] and
[46], $\Gamma_{B}$ admits exactly one preprojective component $\mathcal{P}$ and exactly one prein-
jective component $\mathcal{I}$ . Further, $B$ is not concealed algebra, and then by [37] $\mathcal{P}$

(resp. $\mathcal{I}$) has at most two $\tau_{B}$-orbits. Therefore, $\mathcal{P}$ is the preproinjective compo-
nent of $\Gamma_{H}$ and $\mathcal{I}$ is the preinjective component of $\Gamma_{B}$ . Hence, $\Gamma_{B}$ is of the form

$\Gamma_{B}=\mathcal{P}RVCS\mathcal{I}$

where $R$ is a union of components contained in the torsion-free part $\psi(T)$ and
$S$ is a union of components contained in the torsion part $X(T)$ of $mod B$ . In
Particular, the Projective cover $P_{B}(3)=P_{A}(3)$ of the simple module $S(3)$ at 3 be-
longs to $R$ and the injective envelope $I_{B}(1)=I_{A}(1)$ of the simple module $S(1)$ at
1 belongs to $S$ . Then $B$ is a one-point extension $H[X]$ of $H$ by an indecom-
posable regular $H$-module $X$ , being the radical of $P_{B}(3)$ , and is a one-point co-
extension $[Y]E$ of $E$ by an indecomposable regular $E$-module $Y$ , being the socle
factor of $I_{B}(1)$ . Moreover, in the above decomposition of $\Gamma_{B}$ , there are only
nonzero maps in $mod B$ from any of these classes $\mathcal{P},$ $R,$ $C,$ $S,$ $\mathcal{I}$ to itself or to
the classes of its right side. Observe now that $C\cong B^{op}$ . Then, as above, $\Gamma_{C}$

is of the form
$\Gamma_{C}=\mathcal{P}’R’\mathcal{D}S’\mathcal{I}’$

where $\mathcal{P}’$ is the preprojective component of $\Gamma_{B},$ $\mathcal{I}’$ is the preinjective component
of $\Gamma_{\Omega},$ $\mathcal{D}$ is the regular connecting component of type $Z\Delta,$ $R’$ and $S’$ are unions
of components, the projective cover $P_{C}(1)=P_{A}(1)$ of the simple module $S(1)$ be-
longs to $R’$ , and the injective enveloPe $I_{C}(2)=I_{A}(2)$ of the simple module $S(2)$

belongs to $S’$ . Moreover, $C$ is a one-point extension $E[Y’]$ of $E$ by an inde-
composable regular $E$-module $Y$ ‘, being the radical of $P_{C}(1)$ , and is a one-point
coextension $[X’]\Omega$ of $\Omega$ by an indecomposable regular $\Omega$-module $X’$ , being the
socle factor of $I_{C}(2)$ . Further, since $\gamma_{r}\alpha_{f}\beta_{*}$ belongs to $I$ for all $1\leqq r,$ $s\leqq 3$ ,
$1\leqq j\leqq 4$ , the simple module $S(1)$ is not a composition factor of $Y$ ‘. Then using
the calculations from [10, (3.3)] we deduce that $Y’$ , considered as a B-module,
belongs to one of the components of $S$ . Finally, observe that the projective
cover $P_{A}(2)$ of $S(2)$ coincides with the injective envelope $I_{A}(3)$ of $S(3)$ . Hence,
$P_{D}(2)=P_{A}(2)=I_{A}(2)=I_{D}(3)$ is a projective-injective $D$-module (and $\Lambda$-module).
Therefore $D$ is a one-point extension $\Omega[U]$ of $\Omega$ by the injective envelope
$U=I_{\Omega}(3)$ of $S(3)$ in $mod \Omega$ , and is a one-point coextension $[V]H$ of $H$ by the
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projective cover $V=P_{H}(2)$ of $S(2)$ in $mMH$. Hence $\Gamma_{D}$ is of the form

$\Gamma_{D}=\mathcal{P}$“ Vgl“ $VXVS$“ VS“

where $\mathcal{P}$“ is the preprojective component of $\Gamma_{\Omega},$ $\mathcal{I}’$ is the preinjective com-
ponent of $\Gamma_{H},$ $R$“ is the union of all regular components of $\Gamma_{\Omega},$ $S$“ is the union
of all regular components of $\Gamma_{H}$ and $X$ is a component of the form

$...\backslash \backslash \backslash$

$\nearrow\nearrow\nearrow^{\mathfrak{k}\rho S(1)}\backslash \backslash \backslash$
$\nearrow\nearrow\nearrow\backslash \backslash \backslash S(1)$ $\nearrow\nearrow\nearrow^{P_{H}^{-}S(1)}\backslash \backslash \backslash$

$\nearrow\nearrow\nearrow$

$\tau oI_{O}(3)$
$I_{\Omega}(3)$ $P_{H}(2)$ $\tau_{H}^{-}P_{H}(2)$

$\backslash \backslash \backslash$ $\nearrow\nearrow\nearrow$

$P_{D}(2)=I_{D}(3)$

obtained by a glueing of the preprojective component of $\Gamma_{H}$ with the preinjec-
tive component of $\Gamma_{\Omega}$ and adding $P_{D}(2)=I_{D}(3)$ . Moreover, in the above decom-
position of $\Gamma_{D}$, there are only nonzero maps in $mod D$ from any of these classes
$\mathcal{P}$“, $R’,$ $X,$ $S$“, $\mathcal{I}’’$ to itself or to the classes of its right side. Clearly, $P_{D}(2)=$

$P_{A}(2)$ is a sincere indecomposable $\Lambda$ -module. Moreover, by [30, (1.8)], all but
a finite number of indecomposable modules from $C$ (resp. $\mathcal{D}$) are sincere B-
modules (resp. sincere $C$-modules), and hence sincere $\Lambda$-modules. We shall
show that $C,$ $\mathcal{D}$ and $x$ are generalized standard components of $\Gamma_{A}$ . We apply
the Galois covering techniques and for related details we refer to [12], [19]
and [17].

Let $\tilde{\Lambda}$ be the locally bounded $k$-category $k\tilde{Q}/\tilde{I}$, where $\tilde{Q}$ is the quiver

$arrow\gamma_{1.f}$ $arrow\beta_{1}$. $arrow\alpha_{1.r}a_{8}$

.
$\gamma_{1.r+1}$

$\underline{\beta_{1.r+1}}$

$-$

$...-(3, r-1)arrow\gamma_{2.r}(1, r)_{arrow}^{\beta_{2.r}}(2, r)_{a_{3.r}}^{arrow}(3, r)(1, r+1)(2, r+1)arrow\cdots$

$arrow\gamma_{S.r}$
$arrow\beta_{9.r}$

$arrow a.$

’

$\underline{\gamma_{\theta.r+1}}$ $\underline{\beta_{\theta.r+1}}$

$arrow$

$arrow$

with $r\in Z$, and $f$ is the ideal in the path category $k\tilde{Q}$ of $\tilde{Q}$ generated by all
elements $a_{1.r}\beta_{2.r},$ $a_{1.r}\beta_{S}$ . $,$

$\alpha_{4.r}\beta_{1.r},$ $\alpha_{4.r}\beta_{2.r},$ $a_{8}$ . $\beta_{1.r}+\alpha_{8.r}\beta_{2.r},$ $a_{2.r}\beta_{2.r}+a_{S.r}\beta_{1.r}$,
$a_{S.r}\beta_{1.r}+a_{4.r}\beta_{3.r},$ $a_{1.r}\beta_{1.r}+a_{S.r}\beta_{\.r},$ $a_{2}$ . $\beta_{S}$ . $+a_{8.r}\beta_{2.r}$ , as, $r\beta_{g.f}+a_{3.r}\beta_{S.r},$ $\gamma_{g.f}a_{1.r-1}$ ,
$\gamma_{\theta.r}\alpha_{1.r-1},$ $\gamma_{1.rr-1}a.,$ $\gamma_{2.r}a_{4.r-1},$ $\gamma_{1.r}\alpha_{2.r-1}+\gamma_{2.r}\alpha_{g.r-1},$ $\gamma_{2.r}a_{2.r-1+\gamma_{1.rr-1}}a,.,$ $\gamma_{1.r-1}\alpha,$.
$+\gamma_{9.r}\alpha_{4.r-1}$ , $\gamma_{1.r}\alpha_{1.r-1}+\gamma_{9.r}a_{8.r-1}$ , $\gamma_{3.r}\alpha_{2.r-1+2.rr-1}\gamma\alpha,.$ , $ra,.\S.r.r-1$
$\gamma_{1.r+1}\alpha_{1}$ . $\beta_{1.t},$ $\beta_{i.t}\gamma_{j.r},$ $\beta_{i.r}\gamma_{i.r}-\beta_{j.r}\gamma_{j.r}$ for all $i\neq j,$ $1\leqq i,$ $j\leqq 3,$ $r\in Z$. Let $G$ be
the infinite cyclic group of $k$-linear automorphisms of 1 generated by the shift
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$g:\tilde{\Lambda}arrow\tilde{\Lambda}$ such that $g(i, r)=(i, r+1),$ $g(\alpha_{j.r})=\alpha_{j.r+1},$ $g(\beta_{*.r})=\beta_{*.+1}$ and $g(r_{s,r})=$

$\gamma_{l.+1}$ for $r\in Z,$ $1\leqq i\leqq 3,1\leqq j\leqq 4$, l;!Ss$3. Then we can consider the quotient
category $ff/G$ (see [19]) whose objects are the $G$-orbits of the objects in 1,
and the Galois covering $F:\tilde{\Lambda}arrow\tilde{\Lambda}/G$ which assigns to each object $x=(i, r)$ of a
its $G$-orbit $Gx$ . Observe that $\tilde{A}/G=\Lambda$ , if we identify $\Lambda$ with the correspond-
ing $k$-category with the objects 1, 2, 3. Denote by $mod \tilde{\Lambda}$ the category of all
finite dimensional $\tilde{\Lambda}$-modules. Then $G$ acts on the category $mod Z$ by the
translations $h(-),$ $h\in G$ , which assign to each module $M$ from $mod \tilde{\Lambda}$ the $\tilde{\Lambda}-$

module $hM=M(h^{-1}(-))$ . Moreover, we have the push-down functor $F_{\lambda}$ : $mod \tilde{\Lambda}$

$arrow mod \tilde{A}/G=mod \Lambda$ (see [12]). Since $G$ , as a torsion-free group, acts freely on
the isoclasses of indecomposable objects in $mod \tilde{\Lambda}$ , the functor $F_{\lambda}$ preserves
indecomposable modules and Auslander-Reiten sequences (see [19, (3.5), (3.6)]).

We endow the set $Q_{0}=\{1,2,3\}xZ$ of vertices of $Q$ with the partial order-
ing $\leqq$ such that $(j, s)\leqq(i, r)$ if and only if $s<r$ or $s=r$ and $j\leqq i$ . For $(j, s)$

$\leqq(i, r)$ in $Q_{0}$ , we denote by $(J\cdot*)\tilde{\Lambda}_{(i.r)}$ the full subcategory of a formed by a1I
objects $(p, t)$ with ($j$, s):$(p, $t$) $\leqq(i, r)$ . For each $m\in Z$, we put $B_{m^{=}(1.m)}\tilde{\Lambda}_{(S.m)}$ ,
$C_{m^{=}(2.m)}\tilde{\Lambda}_{(1.m+1)},$ $D_{m^{=}(’.m)}\tilde{A}_{(2.m+1)},$ $E_{m^{=}(2.m)}1_{(S.m)},$ $\Omega_{m^{=}t9.m)}1_{(1.m+1)}$ , and $H_{m}=$

$(1.m)1_{(2.m)}$ . Observe that, for each $m\in Z$, there are isomorphisms $B_{m}\cong B$ ,
$C_{m}\cong C,$ $D_{m}\cong D,$ $E_{m}\cong E,$ $\Omega_{m}\cong\Omega$ , and $H_{m}\cong H$, if we again identify algebras with
the corresponding $k$-categories with finitely many objects. The above isomor-
phisms induce the corresponding decompositions of the Auslander-Reiten quivers

$\Gamma_{B_{m}}=\mathcal{P}_{m}R_{m}C_{m}S_{m}\mathcal{I}_{m}$ ,

$\Gamma_{C_{m}}=\mathcal{P}_{m}’\vee R_{m}’9_{m}\vee S_{m}’\vee \mathcal{I}_{m}’$ ,
and

$\Gamma_{D_{m}}R_{m}’’$ ,

$m\in Z$. Moreover, $B_{m}=H_{m}[X_{m}]=[Y_{m}]E_{m},$ $C_{m}=E_{m}[Y_{m}’]=[X_{m}’]\Omega_{m}$ and $D_{m}=$

$\Omega_{m}[U_{m}]=[V_{m}]H_{m+1}$ for the corresponding indecomposable modules $X_{m},$ $Y_{m},$ $Y_{m}’$ ,
$X_{m}’$ , $U_{m}$ and $V_{m}$ . Fix now $m\in Z$. Then 1 can be obtained from $B_{m}$ by suc-
cessive one-point extensions using the modules $Y_{m}’$ , $U_{m},$ $X_{m+1},$ $Y_{m+1}’,$ $U_{m+1}$ ,
$X_{m+g},$ $\cdots$ , and then successive one-point coextensions using the modules $V_{m-1}$ ,
$X_{m-1}’,$ $Y_{m-1},$ $V_{m-2},$ $X_{m-2}’,$ $Y_{m-2},$ $\cdots$ In this process, the component $C_{m}$ of $\Gamma_{B_{m}}$

remains unchanged. Similarly, 1 can be obtained from $C_{m}$ by successive one-
point extensions using the modules $U_{m},$ $X_{m+1},$ $Y_{m+1}’,$ $U_{m+1},$ $X_{m+2},$ $Y_{m+2}’,$ $\cdots$ , and
then by successive one-point coextensions using the modules $Y_{m},$ $V_{m-1},$ $X_{m-1}’$ ,
$Y_{m-1},$ $V_{m-g},$ $X_{m-2}’,$ $\cdots$ In this process, the component $\mathcal{D}_{m}$ of $\Gamma_{C_{m}}$ remains un-
changed. Finally, $\tilde{\Lambda}$ can be obtained from $D_{m}$ by successive one-point exten-
sions using the modules $X_{m+1},$ $Y_{m+1}’,$ $U_{m+1},$ $X_{m+2},$ $Y_{m+S}’,$ $U_{m+l},$ $\cdots$ , and then suc-
cessive one-point coextensions using the modules $X_{m}’$ , $Y_{m},$ $V_{m-1},$ $X_{m-1}’,$ $Y_{m-1}$ ,
$V_{m-2},$ $\cdots$ In this process, the component $X_{m}$ of $\Gamma_{D_{m}}$ remains unchanged.
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Therefore, $C_{m},$ $\mathcal{D}_{m}$ and $X_{m}$ are full components of $\Gamma_{A}^{\sim}$ . Moreover, we have the
following decomposition of $\Gamma_{\tilde{\Lambda}}$

$\Gamma_{\Lambda}^{\sim}=(c_{m}\vee q\psi_{m}\mathcal{D}_{m}\eta_{m}vx_{m}\vee\_{m})m\in Z$

where $\wp_{m}a$; and $\_{m}$ are unions of components of $\Gamma_{X}^{l}$ such that the supports
of modules from $\wp_{m}$ are contained $($ 1. $m)1_{(1.m+1)}$ , the supports of modules from
$\eta_{R}$ are contained in $t’.m$ )

$\tilde{A}1’.m+1$
), and the supports of modules from $Z_{m}$ are

contained in $($ 9. $m)ff(’.m+1)$ . In particular, 1 is a locally support-finite category
[17], that is, for each indecomposable projective $\tilde{A}$-module $P$, there are only
finitely many nonisomorphic indecomposable projective $Af$-modules $P’$ such that
$Hom_{A}^{\sim}(P, M)\neq 0$ and $Hom_{A}^{\sim}(P’, M)\neq 0$ for an indecomposable module $M$ from
$mod \tilde{A}$ . Then, by [17], the functor $F_{\lambda}$ : $mod \tilde{\Lambda}arrow mM\Lambda$ is dense, and con-
sequently we have a Galois covering $F_{\lambda}$ : $mod \tilde{\Lambda}arrow mod \Lambda$ of module categories.
In particular, $\Gamma_{A}$ coincides with the orbit quiver $\Gamma_{A}^{\sim}/G$ . Observe also that
$g(C_{m})=C_{m+1}$ , $g(\wp_{m})=\wp_{m+1}$ , $g(\mathcal{D}_{m})=9_{m+1}$ , $g(\eta_{m})=\eta_{m+1}$ , $g(X_{m})=X_{m+1}$ and
$g(Z_{m})=Z_{m+1}$ . Moreover, the supports of modules from $C_{m}$ are contain$ed$ in $B_{m}$ ,
the supports of modules from $\mathcal{D}_{m}$ are contained in $C_{m}$ , and the supports of
modules from $SEr_{m}$ are contained in $D_{m}$ . Hence,

(a) $C_{m},$ $m\in Z$ , are pairwise orthogonal generalized standard components
of $\Gamma_{A}^{\sim}$,

(b) $9_{m},$ $m\in Z$, are pairwise orthogonal generalized standard components
of $\Gamma_{A}^{\sim}$,

(c) $X_{m},$ $m\in Z$, are pairwise orthogonal generalized standard components
of $\Gamma_{A}^{\sim}$.

Since $F_{\lambda}$ : $mod \tilde{\Lambda}arrow mod \Lambda$ is a Galois covering, we infer that $C=F_{\lambda}(C_{0}),$ $\mathcal{D}=$

$F_{\lambda}(\mathcal{D}_{0})$ and $X=F_{\lambda}(X_{0})$ are sincere generalized standard components of $\Gamma_{A}$ .

5. Generalized standard stable tubes.

We shall first present some characterizations of generalized standard stable
tubes of $\Gamma_{A}$ . The following two lemmas will be useful.

LEMMA 5.1. Let $X$ be an indecomPosable $A$-module. Assume that the $\tau_{A}-$

orbit of $X$ is stable and consists of pairwise orthogonal bricks. Then $X$ is periodic.

PROOF. Suppose that $X$ is not periodic. Consider the modules $M_{i}=\tau_{4}^{2i}X$,
$1\leqq i\leqq n+1$ . Then $Hom_{4}(M_{:}, \tau_{A}M_{j})=0$ for all $1\leqq i,$ $j\leqq n+1$ , a contradiction with
Lemma 2.1. Henc$eX$ is periodic.

LEMMA 5.2. Let Er be a stable tube of $\Gamma_{4}$ . SuPPose that $rad^{\infty}(X, Y)\neq 0$ for
some modules $X$ and $Y$ from X. Then there are mouth modules $M$ and $N$ (may
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be $M=N$) in $X$ such that $rad^{\infty}(M, N)\neq 0$ .
PROOF. Let $0\neq f\in rad^{\infty}(X, Y)$ . If $X$ lies on the mouth of $g$ we put $M=X$.

Suppose that $X$ does not lie on the mouth of $q$ . Consider the sectional path

$x=x_{m^{arrow X_{m-1}}}^{a_{m-1}}arrow\cdotsarrow x_{g^{arrow X_{1}}}^{\alpha_{1}}$

in $q$ with $X_{1}$ lying on its mouth. Let $r,$ $1\leqq r\leqq m$ , be minimal such that $f=$

$f’\alpha_{r}a_{r+1}\cdots\alpha_{r’\iota-1}$ for some $f’$ : $X_{r}arrow Y$ . If $r=1$ , we put $M=X_{1}$ and $g=f’$ . Sup-
pose that $r>1$ . We have then an exact sequence

$0arrow Marrow X_{r}arrow X_{r-1}\gamma\alpha_{r-1}arrow 0$

with $M$ lying on the mouth of S. Since $f’$ does not factor through $X_{r-1}$ , the
composition $g=f’\gamma$ is nonzero and obviously belongs to $rad^{\infty}(mod A)$ . If $Y$ lies
on the mouth of $g$ , we put $N=Y$ , and then $0\neq g\in rad^{\infty}(M, N)$ . Suppose that
$Y$ does not lie on the mouth of $q$ . Consider the sectional path

$Y_{1}arrow Y_{g}arrow\beta_{1}\beta_{l}...arrow Y_{q-1}arrow Y_{q}=Y\beta_{q-1}$

in ff with $Y_{1}$ lying on its mouth. Let $s,$ $1\leqq s\leqq q$ , be minimal such that $g=$

$\beta_{q-1}\cdots\beta_{*}g’$ for some $g’$ : $Marrow Y_{*}$ . If $s=1$ , we put $N=Y_{1}$ and $h=g’$ . Suppose
that $s>1$ . Then we have an exact sequence

$0arrow Y_{*-1}arrow Y_{*}arrow N\beta_{*-1}\sigmaarrow 0$

with $N$ lying on the mouth of $g$ . Since $g’$ does not factor through $Y_{i-1}$ , the
composition $h=\sigma g’$ is nonzero and obviously belongs to $rad^{\infty}(mod A)$ . There-
fore, we proved that $0\neq h\in rad^{\infty}(M, N)$ for some modules $M$ and $N$ lying on
the mouth of $q$ .

COROLLARY 5.3. Let Er be a stable tube of $\Gamma_{4}$ . Then the following condi-
tions are equivalent:

(i) $q$ is generalized standard.
(ii) The mouth modules of ff are pairwise orthogonal bricks.
(iii) Every loop $Zarrow Z$ in $mod A$ with $Z$ from $q$ is finite.

PROOF. Obviously (i) implies (ii). Suppose that $rad^{\infty}(Z, Z)\neq 0$ for some
module $Z$ from $q$ . Then by the above lemma, $rad^{\infty}(M, N)\neq 0$ for some modules
$M$ and $N$ lying on the mouth of S. Consequently, (ii) implies (iii). Similarly,
’(iii) implies (i). Indeed, if $rad^{\infty}(X, Y)\neq 0$ for some modules $X$ and $Y$ from $q$ ,
then also $rad^{\infty}(M, N)\neq 0$ for some modules $M$ and $N$ lying on the mouth of $q$ .
Let $Z$ be a module in $g$ lying on the intersection of the sectional path in $g$
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from $M$ to infinity and the sectional path in $q$ from infinity to $N$. Then, for
each $0\neq h\in rad^{\infty}(M, N)$ , we have $h=ufv$ for some $f\in rad^{\infty}(Z, Z)$ and $v:Marrow Z$ ,
$u:Zarrow N$, being the compositions of the corresponding irreducible maps in $g$ .
Obviously, $f\neq 0$ .

In particular, we have the following facts:

COROLLARY 5.4. Let Er be a stable tube of $\Gamma_{A}$ consisting of modules which
do not lie on short infinite cycles. Then $g$ is generalized standard.

COROLLARY 5.5. Let Er be a regular component of $\Gamma_{A}$ . Then $S$ is a gene-
ralized standard tube if and only if Er admits a $\tau_{A}$-orbit consisting of pairwise
orthogonal bricks.

PROOF. It is a direct consequence of Lemma 5.1, Corollary 5.3, and [21].
For selfinjective artin algebras we have the following fact.

PROPOSITION 5.6. Assume that $A$ is selfinjective but not a Nakayama algebra.
Let Er be a comPonent of $\Gamma_{A}$ . Then Er is a generalized standard stable tube if
and only if $g$ admits a stable $\tau_{A}$-orbit consisting of pairwise orthogonal bricks.

PROOF. One implication is obvious. Assume that $g$ admits a stable $\tau_{A^{-}}$

orbit, say of a module $X$ , consisting of pairwise orthogonal bricks. We claim
that ff is a stable tube. Then Corollary 5.5 will imply that $g$ is also gene-
ralized standard. From Lemma 5.1 we know that $X$ is periodic. Let $C$ be the
stable part of $g$ . Observe that $C$ is connected because $A$ is selfinjective and
not Nakayama. Since $C$ admits the periodic module $X$, by [21], $C$ is either a
stable tube, if $C$ is infinite, or of the form $Z\Delta/G$ , where a is a Dynkin quiver
and $G$ is an automorphism group of $Z\Delta$ . Assume first that $C$ is a stable tube.
We claim that then $C=X$ . Suppose that $C\neq S$ . Then there is an Auslander-
Reiten sequence in $mod A$

$0arrow radParrow P\oplus radP/socParrow P/socParrow 0$

with $P$ projective-injective and rad $P$ in C. Since $C$ is a stable tube, its mouth is
form$ed$ by the $\tau_{A}$-orbit of $X$, and then rad $P/socP$ is a direct sum of two inde-
composable modules. Let $\tau_{4}X$ be the module lying on the sectional path in $C$

from the mouth to infinity passing through rad $P$, and $\tau_{A}^{\iota}X$ be the module lying
on the sectional path in $C$ from infinity to the mouth passing through $P/socP$.
Then clearly rad $(\tau_{l}1X, \tau_{A}^{*}X)\neq 0$, and we have a contradiction to our assumption
on the $\tau_{A}$-orbit of $X$ . Hence $g=C$ is a stable tube. Now suppose that $c=$

$Z\Delta/G$ for some Dynkin quiver $\Delta$ . From our assumption on the $\tau_{A}$-orbit of $X$

$we^{\vee}deduce$ that the Auslander-Reiten sequences ending at the modules $\tau AX$ have
indecomposable middIe terms. Similarly, we infer as above that the Auslander-
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Reiten sequences ending at other modules of $C$ have at most two indecomposa-
ble middle terms. Hence $\Delta$ is of type $A_{m}$ . Moreover, $G$ is an infinite cyclic
group generated by an element of the form $\tau^{l}\phi$ , where $\tau$ is the translation of $Z\Delta$

and $\phi$ is an automorphism of $Z\Delta$ which fixes a $ve$rtex of $Z\Delta$ (see [31]). Since
we have no sectional path in $C$ of the form $\tau_{A}^{r}Xarrow\cdotsarrow t_{A}X,$ $G$ is generated by a
power of the translation $\tau$ in $Z\Delta$ , and then $C$ is a cylinder $ZA_{m}/(\tau^{*})$ . More-
over, we conclude as above that each vertex of $\pi=\Gamma_{A}$ is a source (resp. target)

of at most two arrows. Then, for any indecomposable projective $A$-module $P$,
all its factor modules lie on one sectional path starting at $P$. Hence $A$ is a
Nakayama algebra, a contradiction. Therefore ff is a generalized standard
stable tube.

A family $q_{i},$ $i\in I$, of stable tubes in $\Gamma_{A}$ is said to be faithful if the inter-
section of the annihilators of all modules from this family is zero. Then we
have

LEMMA 5.7. Let $q_{t},$ $i\in I$, be a faithful family of stable tubes of $\Gamma_{A}$ .
Assume that any short path $Xarrow Yarrow Z$ in $mod$ $A$ with $X$ and $Z$ from the family
$S_{i},$ $i\in I$, is finite. Then $gl$ . $dim$ . $A\leqq 2$ .

PROOF. Let $N_{1},$ $\cdots$ $N_{t}$ be indecomposable modules from the family $q_{i},$ $i\in I$,
such that $N=N_{1}\oplus\cdots\oplus N_{t}$ is a faithful $A$-module. Let $X$ be an indecomposable
submodule of an indecomposable projective $A$-module $P$. We claim that $pd_{A}X\leqq 1$ .
Suppose that $pd_{A}X\geqq 2$ . Observe first that $X$ does not belong to the family $q_{i}$ ,

$i\in I$. Indeed, if this is not the case, we have in $mod$ $A$ a short path $X^{uv}arrow Parrow N_{j}$ ,

for some l\leqq j$t, with $u$ and $v$ from $rad^{\infty}(mod A)$ , because the tubes $g_{i}$ are
stable. But this contradicts our assumption on the family $g_{i},$ $i\in I$. Further,
since $N$ is a faithful $A$-module, there are an epimorphism $N^{r}arrow DA$ and a mono-
morphism $Aarrow N^{\iota}$ , for some $r,$ $s\geqq 1$ . Hence, $Hom_{A}(X, N)\neq 0$ because $X$ is a
submodule of $A$ , and $Hom_{A}(N, \tau_{a}X)\neq 0$ because $pd_{A}X\geqq 2$ implies $Hom_{4}(DA, \tau_{A}X)$

$\neq 0$ , by [36, (2.4)]. Then $N$ is the middle term of a short chain $Xarrow Narrow\tau_{A}X$

in $mod A$ . Consequently, by [29, (1.6)], we have in $mod$ $A$ a short path $N_{i}arrow$

$Varrow N_{p}$ , where l$k, P$t, and $V$ is an indecomposable direct summand of the
middle term of an Auslander-Reiten sequence in $mod$ $A$ $e$nding at $X$. Since $X$

does not belong to the family $q_{i},$ $i\in I$, also $V$ does not belong to this family,
and so the path $N_{i}arrow Varrow N_{p}$ is infinite. We have again a contradiction to our
assumption on the family $q_{i},$ $i\in I$. Therefore, $pd_{A}X\leqq 1$ , and hence $gl$ . $dim$ . $A$

S2.

COROLLARY 5.8. Let Er be a faithful stable tube of $\Gamma_{A}$ consisting entirely of
modules which do not lie on short infinite cycles. Then $gl$ . $dim$ . A;$2.

PROOF. Suppose that $Xarrow Yarrow Z$ is an infinite short path in $mod$ $A$ with $X$
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and $Z$ from $g$ . We know from Corollary 5.4 that $g$ is generalized standard.
Hence $Y$ does not belong to $g$ . Consequently, $rad^{\infty}(X, Y)\neq 0$ and $rad^{\infty}(Y, Z)\neq 0$.
Then, as in the proof of Lemma 5.2, we deduce that $rad^{\infty}(M, Y)\neq 0$ and
$rad^{\infty}(Y, N)\neq 0$ for some modules $M$ and $N$ lying on the mouth of $g$ . Let $W$ be
the module in $g$ lying on the intersection of the sectional path in $g$ from $M$

to infinity and the sectional path in $g$ from infinity to $N$. Then clearly
$rad^{\infty}(W, Y)\neq 0$ and $rad^{\infty}(Y, W)\neq 0$ , and so we have in $mod$ $A$ a short infinite
cycle $Warrow Yarrow W$ with $W$ from $g$ , a contradiction. Now the corollary is a direct
consequence of Lemma 5.7.

We shall need also the following lemma.

LEMMA 5.9. Let $Er_{i},$ $i\in I$, be a faithful family of Pairwise orthogonal,
generalized standard stable tubes of $\Gamma_{A}$ , and let $X$ be a module from this family.
Then $pd_{A}X\leqq 1$ and $id_{A}X\leqq 1$ .

PROOF. Let $N_{1},$ $\cdots$ , $N_{t}$ be indecomposable modules from the family $S_{i}$ ,
$i\in I$, such that $N=N_{1}\oplus\cdots\oplus N_{t}$ is a faithful $A$-module. Then there are an
epimorphism $f:N^{r}arrow DA$ and a monomorphism $g:Aarrow N^{\iota}$ for some $r,$ $s\geqq 1$ .
Since the tubes $q_{i}$ are stable, the maps $f$ and $g$ belong to $rad^{\infty}(mod A)$ . Sup-
pose that $pd_{4}X\geqq 2$ . Then, by [36, (2.4)], we get that $Hom_{A}(DA, \tau_{4}X)\neq 0$ , and
so there is a nonzero map $h:DAarrow\tau_{A}X$. But then $hf$ is nonzero and belongs
to $rad^{\infty}(N‘, \tau_{A}X)$ . Hence $rad^{\infty}(N_{f}, \tau_{A}X)\neq 0$ for some $j$ . This contradicts our
assumption that the tubes $g_{i}$ are pairwise orthogonal and generalized standard,
because $N_{j}$ and $\tau_{A}X$ belong to the family $Er_{i},$ $i\in I$. Therefore, $pd_{A}X\leqq 1$ . Dual
arguments show that also $id_{A}X\leqq 1$ .

We shall prove now some facts on the ranks of generalized standard stable
tubes in $\Gamma_{4}$ .

LEMMA 5.10. Let $q_{i},$ $i\in I$, be a family of Pairwise orthogonal, generalized
standard stable tubes of $\Gamma_{A}$ . For each $i\in I$, denote by $r_{i}$ the rank of the tube
$S_{i}$ . Then

$\sum_{i\in I}(r_{i}-1)\leqq n-1$ .

PROOF. We know from the Corollaries 2.2 and 5.3 that the number of tubes
$g_{t}$ with $r_{i}>1$ is finite. Hence we may assume that $I=\{1, \cdots m\}$ and $r_{t}>1$

for all $i\in I$. Let $J$ be the intersection of the annihilators ann $g_{i},$ $1\leqq i\leqq m$ .
Let $B=A/J$ . Then $q_{1}\ldots$ $q_{m}$ is a faithful family of pairwise orthogonal,
generalized standard stable tubes of $\Gamma_{B}$. For each $i\in I$, choose a sectional path

$M_{r_{i}-1}^{ti)}arrow M_{r}^{(i)}t^{-t}arrow\cdotsarrow M_{1}^{(i)}$

in $g_{i}$ with $M_{1}^{(i)}$ lying on the mouth of $g_{i}$ . Let $M$ be the direct sum of all
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modules $M_{J^{i)}}^{(}$ , 1Sj $<r_{i}$ , l$i.Sm. Since the tubes $q_{1}\ldots$ , $g_{m}$ are generaliz$ed$

standard and pairwise orthogonal, we get that $Hom_{B}(M_{j}^{(i)}, \tau_{B}M_{q}^{(p)})=0$ for any
$i,$ $j,$ $p,$ $q$ , and hence $Hom_{B}(M, \tau_{B}M)=0$ . Then $Ext_{B}^{1}(M, M)\cong D\overline{Hom}_{B}(M, \tau_{B}M)$

$=0$ . Moreover, by Lemma 5.9, we have $pd_{B}M\leqq 1$ . Consequently, $M$ is a
partial tilting $B$-module, and hence $\Sigma_{i\in I}(r_{i}-1)\leqq n$ . Suppose that $\Sigma_{i\in I}(r_{i}-1)$

$=n$ . Then $M$ is a tilting $B$-module. Observe that the algebra $H=End_{B}(M)$ is
a product of hereditary algebras of Dynkin types $A_{r_{i^{-1}}}$ , l\leqq i$m, and hence $B$

is $re$presentation-finite. But it is impossible because $\mathcal{F}_{1},$ $\cdots$ $g_{m}$ are infinite
components of $\Gamma_{B}$ . This proves that $\Sigma_{i\in I}(r_{i}-1)\leqq n-1$ .

COROLLARY 5.11. Let Er be a generalized standard stable tube of $\Gamma_{A}$ and
$r$ be the rank of S. Then $r\leqq n$ .

THEOREM 5.12. Let $Er_{i},$ $i\in I$, be a family of generalized standard stable
tubes of $r_{A}$ . Assume that any short path $Xarrow Yarrow Z$ in $mod$ $A$ with $X$ and $Z$

from the family $q_{i},$ $i\in I$, is finite. For each $i\in I$, denote by $r_{i}$ the rank of the
tube $q_{t}$ . Then

$\sum_{i\in I}(r_{i}-1)\leqq n-2$ .

PROOF. Observe that from our assumption the tubes $q_{i}$ are pairwise ortho-
gonal. Then from Lemma 5.10 we get that $\Sigma_{i\in I}(r_{t}-1)\leqq n-1$ . We use the
notation from the proof of Lemma 5.10.

Suppose that $\Sigma_{1\leq i\leq m}(r-1)=n-1$ . Then, by [11, (2.1)], there exists an
indecomposable $B$-module $Y$ such that $U=M\oplus Y$ is a tilting $B$-module. Since
$pdJJ\leqq 1$ , we get by [36, (2.4)] that $DHom_{B}(U, \tau_{B}U)=D\overline{Hom}_{B}(U, \tau_{B}U)\cong$

$Ext_{B}^{1}(U, U)=0$ , and hence $Hom_{B}(U, \tau_{B}U)=0$ . We shall prove now that $Y$ does
not belong to the family $q_{1}\ldots$ $g_{m}$ . Indeed, suppose that $Y$ belongs to some
$g_{i}$ . We know that the irreducible maps in $mod B$ corresponding to the arrows
of $q_{i}$ pointing to the mouth (respectively, pointing to infinity) are epimorphisms
(respectively, monomorphisms). Further, $r_{i}$ is the rank of $g_{i}$ and $M_{i^{-1}}^{tt)}arrow\cdots$

$arrow M_{1}^{(i)}$ is a sectional path in $q_{t}$ with $M_{1}^{(i)}$ lying on the mouth. Hence we infer
that either $Hom_{B}(Y, \tau_{B}Y)\neq 0$ or $Hom_{B}(Y, \tau_{B}M_{j}^{(i)})\neq 0$ for some $l; j<r_{i}$ . This
gives a contradiction because $Hom_{B}(U, \tau_{B}U)=0$ and $U=Y\oplus M$. Then our claim
follows. Let now $\Lambda=End_{B}(U)$ . If we show that $A$ is a hereditary algebra,
then the torsion pair $(\mathcal{F}(U), \mathcal{G}(U))$ in $mod B$ induced by $U$ is splitting [22, (6.3)],

where $q(U)=\{Z_{B}|Hom_{B}(U, Z)=0\}$ and $\mathcal{G}(U)=\{Z_{B}|Ext_{B}^{1}(U, Z)=0\}$ . In particular,
$\mathcal{G}(U)$ is closed under successors in $mod B$ . Hence $g_{i}$ is contained in $\mathcal{G}(U)$ for
any $i,$ $lSi\leqq m$ , because $M_{1}^{(i)}\in \mathcal{G}(U)$ and every module in $q_{i}$ is a successor of
$M_{1}^{tt)}$ . On the other hand, $Hom_{B}(U, \tau_{B}U)=0$ implies that $\tau_{B}M\in \mathcal{F}(U)$ , a contra-
diction. Thus we have only to show that $\Lambda$ is hereditary. Since $g_{1}\ldots$ $q_{m}$

is a faithful family of $\Gamma_{B}$, it follows from Lemma 5.7 that $gl$ . $dim$ . B;$2, and
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hence $gl$ . $dim.\Lambda\leqq 3$ (see [11], [22]). Denote by $P$ the projective $\Lambda$ -module
$Hom_{B}(U, Y)$ , by $S$ the top of $P$, and by $Q$ the injective envelope of $S$ in $mod \Lambda$ .
We have two cases to consider.

Assume that $Hom_{B}(Y, M)\neq 0$ . We claim that then $Hom_{B}(M, Y)=0$ . Indeed,
if $Hom_{B}(M, Y)\neq 0$, then there is a short path $M_{j}^{tt)}arrow Yarrow M_{q}^{tp)}$ . Since $Y$ does
not belong to the family $q_{1}\ldots$ , $q_{m}$ , the above path is infinite, a contradiction
to our assumption. We know that $End_{B}(M)$ is a product of hereditary algebras
of Dynkin types $A_{r_{i^{-1}}},1\leqq i\leqq m$ . Moreover, since $Hom_{B}(Y, \tau_{B}M)=0$ , every irre-
ducible epimorphism $M_{j}^{(i)}arrow M_{f-1}^{(i)}$ induces an isomorphism $Hom_{B}(Y, M_{j}^{(i)})\simarrow$

$Hom_{B}(Y, M_{j-1}^{(i)}),$ $2\leqq j<r_{t},$ $1\leqq i\leqq m$ . Hence, in order to prove that $\Lambda$ is here-
ditary, it is enough to show that $End_{B}(Y)$ is a division algebra. Since
$Hom_{B}(M, Y)=0$ , all simple composition factors of $P$ are isomorphic to $S$ . More-
over, $pd_{A}S\leqq 3$ , because $gl$ . $dim$ . $\Lambda\leqq 3$ . Therefore, $P=S$ and $End_{B}(Y)=End_{A}(P\rangle$

is a division algebra.
Assume now that $Hom_{B}(Y, M)=0$ . Applying Lemma 5.9 to the faithful

family $g_{1},$ $\cdots$ , $g_{m}$ in $\Gamma_{B}$ we get that $id_{B}M\leqq 1$ . Then, by [36, (2.4)], we obtain
that $DHom_{B}(\tau_{B}^{-}M, Y)=D\underline{Hom}_{B}(\tau_{B}^{-}M, Y)\cong Ext_{B}^{1}(Y, M)=0$ , and so $Hom_{B}(\tau_{B}^{-}M, Y)$

$=0$ . This implies that $Hom_{B}(M_{j}^{(i)}, Y)=0$ for any $1\leqq j<r_{i}-1,1\leqq i\leqq m$ , because
$M_{J^{i)}}^{(}$ lie on the sectional paths $M_{r_{i}-1}^{(i)}arrow\cdotsarrow M_{1}^{ti)}$ of the stable tubes $q$ and
$M_{\iota}^{(i)}$ are on the mouth of $g_{i}$ . Hence, in order to show that $\Lambda$ is hereditary, it
is enough to prove that $End_{B}(Y)$ is a division algebra. We claim that every
simple composition factor of $Q$ is isomorphic to $S$ . Indeed, let $0\neq f\in Hom_{A}(P‘, Q)$

for some indecomposable projective $\Lambda$ -module $P’$ . Then $S$ is a submodule of
the image of $f$ , and so there is a nonzero map $g:Parrow{\rm Im} f$ with ${\rm Im} g=S$ . Since
$P$ is projective, we then infer that $Hom_{A}(P, P’)\neq 0$ . Then $Hom_{B}(Y, M)=0$ im-
plies that $P\cong P’$ , which proves our claim. We know also that $id_{A}S\leqq 3$ since
$gl.dim$ . $\Lambda\leqq 3$. We then conclude that $Q=S$ and $P$ is of Loewy length 2. There-
fore, since $Ext_{\Lambda}^{1}(S, S)=0$ , we get that $End_{B}(Y)\cong End_{A}(P)$ is a division algebra.

COROLLARY 5.13. Let $q_{i},$ $i\in I$, be a separating tubular family of $\Gamma_{4}$ , in
the sense of [36, (3.1)]. For each $i\in I$, denote by $r_{i}$ the rank of the tube $g_{i}$ .
Then

$\sum_{i\in I}(r_{i}-1)\leqq n-2$ .

PROOF. It follows from the fact that the separating tubular families satisfy
the conditions of Theorem 5.12.

COROLLARY 5.14. Let $S$ be a stable tube of $\Gamma_{4}$ consisting entirely of modules
which do not lie on short infinite cycles. Denote by $r$ the rank of $g$ . Then
$r\leqq n-1$ .

PROOF. From Corollary 5.4 the tube $g$ is generalized $s$tandard. From the
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proof of Corollary 5.8 we know also that any short path $Xarrow Yarrow Z$ in $mod A$

with $X$ and $Z$ from $g$ is finite. Then the corollary is a direct consequence of
Theorem 5.12.

REMARK 5.15. The bounds on the ranks of generalized $s$tandard stable
tubes stated in (5.12), (5.13) and (5.14) are the best possible. For, if $k$ is an alge-
braically closed field and $A$ is the path algebra $kQ$ of the following quiver $Q$

then $\Gamma_{A}$ consists of a preprojective components 9?, a preinjective component $Q$ ,
and one family ET $\lambda,$

$\lambda\in P_{1}(k)$ , of generalized standard stable tub$es$ , separating
$\mathcal{P}$ from $Q$ . One of the tubes $q_{\lambda}$ has rank $2=3-1$ and the remaining tubes $g_{\lambda}$

have rank 1.
The following theorem gives a characterization of generalized standard com-

ponents of $\Gamma_{4}$ without rocks.

THEOREM 5.16. Let $C$ be a generalized standard component of $\Gamma_{A}$ . Then
the following conditions are equivalent.

(i) $C$ is a left stable tube with exactly one maximal ray (in the sense of [36])
and containing no directing module.

(ii) $Hom_{A}(X, \tau_{a}X)\neq 0$ for any indecomposable module $X$ from C.

PROOF. If (i) holds then, for any module $X$ in $C$ there is a sectional path
from $X$ to $\tau_{4}X$ , and hence $Hom_{A}(X, \tau_{A}X)\neq 0$ . Assume now that (ii) holds.
Then $C$ does not contain projective modules. Moreover, if $X$ is an indecom-
posable module from $C$ , then $Hom_{A}(X, \tau_{A}X)\neq 0$ implies existence of a cycle

$Xarrow\tau_{A}Xarrow Uarrow Xfgh$

in $mod A$ , where $U$ is an $indecom\mu sable$ direct summand of the middle term
of an Auslander-Reiten sequence ending at $X$, and $g$ and $h$ are irreducible
maps. Since $C$ is generalized standard, $f$ does not belongs to $rad^{\infty}(mMA)$ , and
consequently $X$ lies on a cycle in $C$ . Hence $C$ contains oriented cycles. Then,
by [28, (2.6)], $C$ is a tub$e$ in the sense of [36]. $Supwse$ that $C$ contains an
injective module. Then $C$ is a coray tube, that is, has trivial valuations and
its underlying translation quiver is isomorphic to one obtained from a stable
tube by coray insertions [36, (4.6)]. But then there is an indecomposable injec-
tive module $I$ in $C$ such that the socle factor $I/soc$ $I$ of $I$ admits an indecom-
posable noninjective direct summand $Y$ having the property that the middle
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term of the Auslander-Reiten sequence starting at $Y$ is indecomposable. Since
$C$ is generalized standard, all indecomposable modules $Z$ from $C$ such that
$Hom_{A}(Y, Z)\neq 0$ lie on the unique infinite sectional path in $C$ starting at Y. Hence
$\tau_{A}Y$ lies on this sectional path, and consequently $C$ admits exactly one maximal
ray, starting at an injective module and passing through $Y$ and $\tau_{A}Y$ . Moreover,
by (ii), $C$ has no directing module. Assume now that $C$ is a stable tube. If
$C$ is not of rank 1, then for any module $V$ lying on the mouth of $C$ we have
$Hom_{A}(V, \tau_{A}V)=0$ , by (5.3). Therefore $C$ is of rank 1 and clearly admits exactly
one maximal ray. Thus (ii) implies (i), and the proof is completed.

REMARK 5.17. In the forthcoming paper [42] we discuss the relations be-
tween the indecomposable modules lying in generalized standard stable tubes of
$\Gamma_{A}$ and having the same composition factors.

REMARK 5.18. We are also interested in description of all artin algebras $A$

such that $\Gamma_{4}$ admits a faithful generalized standard stable tube. In the forth-
coming paper [43] we solve a related problem for cycle-finite algebras. Recall
that following [2] an artin algebra $A$ is called cycle-finite if any cycle in $mod A$

is finite. For cycle-finite artin algebras $A$ , all stable tubes of $\Gamma_{A}$ are, by Corollary
5.4, generalized $s$tandard. In particular, we prove in [43] that, if $A$ is a cycle-
finite basic artin algebra such that $\Gamma_{A}$ admits a sincere stable tube, then $A$ is
either tame concealed or tubular (in the sense of [36]). In this case, $gl$ . $dim$ . $A$

:S2, and all sincere stable tubes are faithful. In general, there are algebras $\Lambda$

of infinite global dimension such that $\Gamma_{A}$ admits $s$incere generalized standard
stable tubes which are not faithful. Indeed, for the trivial extension $\Lambda=$

$H\propto DH$ of the path algebra $H=kQ$ of the quiver

$Q:0=0$
by $DH$, over an algebraically closed field $k$ , all stable tubes of $\Gamma_{A}$ are sincere
generalized standard but clearly not faithful.
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